Nat. Hazards Earth Syst. Sci., 26, 251-270, 2026
https://doi.org/10.5194/nhess-26-251-2026

© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.

Econometric modelling for estimating direct flood damage to firms:
a micro-scale approach using post-event records in Italy

Marta Ballocci!, Daniela MolinariZ, Giovanni Marin®, Marta Galliani', Alessio Domeneghetti*, Giovanni Menduni?,
4

Simone Sterlacchini’, and Francesco Ballio®

!'University School for Advanced Studies, Pavia, Italy

Dept. of Civil and Environmental Engineering DICA, Politecnico di Milano, Milano, Italy
3Department of Economics, Society, Politics, University of Urbino “Carlo Bo”, via Aurelio Saffi, 2, 61029 Urbino, Italy
4Dept. of Civil, Chemical, Environmental and Materials Engineering,

Alma Mater Studiorum — University of Bologna, Bologna, Italy

SInstitute of Environmental Geology & Geoengineering, National Research Council of Italy, Milano, Italy

Correspondence: Marta Ballocci (marta.ballocci @iusspavia.it)

Received: 26 September 2024 — Discussion started: 28 November 2024
Revised: 14 October 2025 — Accepted: 14 December 2025 — Published: 19 January 2026

Abstract. Managing flood risk is crucial for achieving global
sustainability. Flood damage to firms’ assets, in particular,
imposes significant financial stress, necessitating efforts to
minimize future consequences. However, current tools and
knowledge for estimating flood damage to firms are inade-
quate, primarily due to a lack of high-quality damage data
and the diversity of firm characteristics, complicating gen-
eralization. This study aims to improve understanding of
micro-scale flood damage to firms in Italy through the anal-
ysis of empirical data, focusing specifically on direct dam-
age. The dataset comprises 812 observed damage records
collected after five flood events. Damage is categorized into
building structure, stock, and equipment. The analysis re-
veals relationships between damage, economic sector, and
water depth. Results indicate that damage increases at a rate
less than proportional to the firm surface area and with wa-
ter depth significantly explaining only stock damage. The
quantification of damages across different sectors shows that
healthcare facilities register the highest average damage to
building structures, the commercial sector is most affected
in terms of stock damage, and the manufacturing sector ex-
hibits the greatest average damage to equipment. The derived
damage model offers better predictive accuracy than foreign
models in the Italian context. These findings aid in develop-
ing effective, tailored risk mitigation strategies and provide
valuable insights for future research and policy aimed at re-
ducing flood impacts on firms in Italy.

1 Introduction

This paper presents an empirical analysis of flood damage
data related to Italian economic activities, aimed at devel-
oping a forecast model to estimate micro-scale direct flood
damages to Italian firms.

Flood risk is one of the main concerns of policymakers
aiming for a more sustainable future (see, e.g., the Sendai
Framework for Disaster Risk Reduction, the UN Sustainable
Development Goals, and the European Floods Directive).
Europe has 18.7 % of its territory exposed to high flood haz-
ard (Arrighi et al., 2013), while Italy has, respectively, 5.4 %,
10% and 14 % of its territory exposed to hydro-geological
risk in the high, medium and low probability hazard scenario
(Trigila et al., 2021). Projected climate change scenarios in-
dicate a rise in precipitation intensity that, without proper
adaptation policies and measures, will results in higher flood
risk with significant negative consequences (IPCC, 2022).

Managing flood risk is essential for protecting people and
properties, preserving the environment, and minimizing eco-
nomic impacts of floods on societies. Especially, damage to
firms is a significant source of financial stress after floods.
Reduced sales during and in the aftermath of the event, dam-
aged stock, and disrupted equipment and machinery all affect
business interruption and pose challenges to recovery, espe-
cially for uninsured or financially strained firms (Samantha,
2018).
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The study of flood impacts on the different sectors that
compose the built environment, and society is crucial to im-
prove the information used by modelers and decision-makers
to guide flood risk management. This includes prevention,
protection, mitigation and risk-aware planning actions to re-
duce potential adverse consequences of floods (Bremond
et al., 2018). In particular, the analysis of direct damages
to economic activities provides insight into the quantifica-
tion of costs across economic sectors and the interaction be-
tween damage and its explanatory variable (like hazard inten-
sity and the characteristics of different economic activities)
thereby enabling the implementation of adaptation measures
to reduce avoidable costs. The assessment of damages is im-
portant to evaluate actions from the individual entrepreneur
to the public decision-makers, enabling public or private
preventive policies against damages. Knowledge and under-
standing of the specificities of each case permit to implement
tailored measures to a specific economic sector, while pre-
paredness is becoming increasingly important in managing
the magnitude of impact that can be mitigated by popula-
tion behaviour, incentivizing insurance policies and adaptive
measures (Balbi et al., 2013).

Although the business sector assumes a critical role, for
both its importance for the economic well-being of society
and the high losses it suffers in case of inundations, meth-
ods to assess damage to economic activities are much less
developed and affected by higher uncertainty compared to
other sectors, such as the residential (Gissing and Blong,
2004; Samantha, 2018; Zhou and Botzen, 2021). To provide
an overview of the existing literature, Table 1 displays the
number of papers retrieved from the Scopus database through
queries conducted on the title, abstract, and keywords.

Studying the damage to the business sector means facing
a complex problem, involving interconnections among sev-
eral systems (e.g., society, the reference market, the financial
system) as floods may have devastating effects not only on
business survival but also on the economic and social fabric
(Menoni et al., 2016; Wedawatta et al., 2014).

Damage to economic activities is generally distinguished
in three different impacts: direct damages to capital goods,
including moveable and unmoveable goods (structure of the
building, equipment, stock), caused by contact with water;
damages caused by business interruption to the affected eco-
nomic activities inside the flooded area; indirect damages
or costs suffered by business in the supply chain outside
the flooded area, deriving from the supply interruption from
firms in the flooded area (Danish Coastal Authority, 2017).
The three impacts are strongly interconnected with each
other.

The analysis presented in this paper contributes to flood
damage modelling for economic activities by proposing a
model for the estimation of direct damage. More specifically,
the aim of this work is to enhance modelling capability and
knowledge of damage mechanisms, towards more reliable
and comprehensive flood risk assessment.
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The analysis is conducted by investigating empirical dam-
age data collected in the aftermath of flood events through
an econometric approach with a multiple regression model.
Data refer to different floods that affected Italy in the last
twenty years, all characterized by the common feature of be-
ing riverine and low-velocity floods. The analysis goes be-
yond considering water depth as the sole explanatory vari-
able for damage. Notably, previous studies (Van Ootegem
et al., 2015; Wagenaar et al., 2017; Endendijk et al., 2023)
have utilized regression analysis to integrate non-hazard indi-
cators, recognizing the importance of considering additional
factors beyond water depth in understanding and modelling
flood risk.

The analysis is carried out at the micro-scale (i.e., at the
single economic activity level), (i) studying the relation-
ship between damage (total, and subdivided by components:
structure, equipment, stock), and their main explanatory vari-
ables (water depth, firm size, economic sector), and (ii) ob-
taining a preliminary estimation of flood damage for different
categories of activity.

The results provide a forecast model for the total damage
and a preliminary model for the single damage components.
The prediction offers a clearer idea of which variables are sta-
tistically significant in determining differences in the amount
of damage suffered by firms due to a flood event in Italy at
the micro-scale.

The paper is organized as follows: Section 2 provides an
overview of available damage models for the business sector
in Europe and Italy, along with a discussion of their limi-
tations, emphasizing the need for the current research. Sec-
tion 3 describes the case studies and data used in this anal-
ysis. Section 4 presents the methodology underpinning the
analysis. Sections 5 and 6 detail the results along with model
validation. Section 7 compares the performance of existing
models with the model proposed in this study, highlighting
improvements over the current state of the art. Section 8
discusses the strengths and limitations of the present work,
along with directions for further research. Section 9 provides
concluding remarks.

2 Flood damage to firms: state-of-the-art

The estimation of damages to economic activities includes
both direct and indirect damage. Direct damages are usually
assessed using a damage function that depends on hazard,
vulnerability and exposure (Koks et al., 2015). On the other
hand, indirect damages are commonly assessed using Gen-
eral Equilibrium Models or Input-Output models which mea-
sure how the effects of a disaster propagate throughout the
economy over a period of time (Allaire, 2018). However, in-
direct flood damage assessment is beyond the scope of this
analysis.

https://doi.org/10.5194/nhess-26-251-2026



M. Ballocci et al.: Econometric modelling for estimating direct flood damage to firms 253

Table 1. Number of papers in Scopus by keywords in the title, abstract and keywords (LIMIT-TO (DOCTYPE, “ar”’)) AND (LIMIT-TO
(LANGUAGE, “English”)) AND (LIMIT-TO (EXACTKEYWORD, “Flood Damage”)) (last access: May 2024).

Strings Number of papers
Flood* AND damage* AND (firm*OR enterprise™) 100
Flood* AND damage* AND (residential OR building*) 172
Flood* AND damage* AND (crop* OR agriculture) 211
Flood* AND damage* AND infrastructure 716

Flood* AND damage*

2907

With respect to direct damages, two main approaches are
commonly used: empirical estimations and synthetic models.
Empirical estimations are typically based on data collected
from past flood events, while a synthetic model uses assump-
tions about damage mechanisms (Dottori et al., 2016). Most
past studies on damage to the firms have utilized empirical
models. Despite the scarcity of observed damage data, which
makes calibration and validation problematic (especially for
contexts that differ from the original case study), empirical
models are usually preferred when assessing firm damage.
The wide heterogeneity of economic activities makes it dif-
ficult to analyse all damage mechanisms using a synthetic
approach.

Examples of micro-scale models for assessing direct flood
damage to economic activities can be found both in Eu-
rope and Italy (Amadio et al., 2016; Arrighi et al., 2013;
Grelot and Richert, 2019; Kreibich et al., 2007; Martinez et
al., 2018; Martinez-Gomariz et al., 2020; Penning-Rowsell
et al., 2005), or outside Europe (Bari et al., 2021; Hasan-
zadeh Nafari et al., 2016; Hu et al., 2019; Hung and Diep,
2022; Kuroda et al., 2022; Li et al., 2018; Olmez and Deniz,
2023; Samantha, 2018; Scawthorn et al., 2006; Wedawatta et
al., 2014).

In the European context, FLEMOcs (Kreibich et al., 2010)
is an empirical model based on data collected in Ger-
many, which estimates the loss ratio of buildings, equip-
ment, goods, products and stock for four sectors: public and
private services, industry, corporate services and trade. Ac-
cording to the model, losses depend on several hazard and
vulnerability variables: water depth, economic sector, firm
size, precautionary behaviour taken by firm owners and the
level of contamination of water. In the UK, the Multicoloured
Manual (Penning-Rowsell et al., 2005), includes synthetic
damage functions to estimate the damage to different cate-
gories of non-residential properties, including economic ac-
tivities (e.g., retail, office, distribution/logistics, manufac-
turing). Susceptibility functions proposed by the model re-
late damage to water depth, flood duration and firm surface.
France developed national damage functions to assess dam-
age to equipment, stock, and structure of economic activities,
as a function of water depth and flood duration (Bremond
et al., 2018; Grelot and Richert, 2019). In Spain, Martinez-
Gomariz et al. (2020) developed national empirical flood
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depth-damage curved, based on actual data in Barcelona,
for buildings, stock and inventories for the following eco-
nomic sectors: warehouses, car parks, restaurants, general
trading, homeowners associations, sport, education, hotels,
industries, offices, health, workshops, dwellings, churches &
singular buildings. Functions vary with the category of the
activity, identified by the NACE code.

Consensus within literature highlights the importance of
being cautious when attempting to transfer damage models
within different countries, as it involves a notable degree
of uncertainty, particularly within regions lacking sufficient
data. Moreover, it is recommended to use models developed
in regions similar to that of the initial application, because
characteristics of floods, vulnerability or exposed elements
and relative values are strongly context specific (Cammerer
et al., 2013; Merz et al., 2010; Smith, 1994). This makes the
use of foreign models in the Italian context very difficult due
to scarcity of data for their validation (see Sect. 7).

Two main studies in Italy propose methods to assess the
potential damage to economic activities. Arrighi et al. (2013)
propose a method to assess direct damage to structures and
contents of commercial activities at the scale of the census
block, i.e. at the meso-scale, by developing stage-damage
curves for the urban context of Florence. However, this
model is strictly related to the exposure and vulnerability pa-
rameters of the city of Florence, therefore hardly transferable
to a different context. Molinari et al. (2016) develop another
approach, named Flood-IMPAT, to assess direct damage to
the business sector, again at the meso-scale. They propose the
net capital stock, supplied by the Italian Institute of Statistics
(ISTAT), as a proxy indicator of the value of contents and
structure of firms and uses the depth-damage functions by
the International Commission for the Protection of the Rhine
— ICPR (ICPR, 2001) to assess the damage, distinguishing
by economic sector using the NACE code. Still, the authors
highlight the limitation of using a foreign model, in terms
of reliability of results, and the importance of implementing
models that are specific for the context under investigation
and that work at lower scales. Thus, available tools do not
allow reliable estimation of damage to economic activities in
Italy. Indeed, even the MOVIDA project (led by the Po River
District Authority in collaboration with several Italian uni-
versities and research centres), representing one of the most
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recent attempts to define a procedure to estimate flood dam-
age in the Italian context, refrained from estimating direct
damage to economic activities, limiting the analysis to the
estimation of their exposed value (Simonelli et al., 2022).

3 Data

The dataset analysed in the present work is composed of 812
observed damage records to individual firms, collected after
five flood events in Italy:

— The flood occurred in the town of Lodi (Northern Italy),
in November 2002, due to the overflow of the Adda river
(Molinari et al., 2019, 2020).

— The extensive flood that affected the Sardegna Region
(Insular Italy) in November 2013. Collected data refer
to the city of Olbia.

— The flood occurred in the province of Modena (North-
ern Italy), in January 2014 (Carisi et al., 2018), caused
by an embankment breach along the Secchia river. Data
refer to three municipalities: Bastiglia, Bomporto, and
Modena.

— The flood of the Enza river in the Emilia Romagna Re-
gion (Northern Italy) in December 2017; affecting the
town of Lentigione (Regione Emilia Romagna, 2018)
(Tarpanelli et al., 2023).

— The flood of the Misa river, in September 2023, in
the Marche region (Central Italy). Data on affected
economic activities regard the municipalities of Ostra,
Senigallia and Trecastelli.

Data from the different case studies were merged in a unique
dataset to obtain a larger data sample that could be repre-
sentative of Italy’s geographical diversity. Indeed, all case
studies refer to riverine flood events. The dataset was then
partitioned into two groups (see Table 2) according to the
available information on observed damage and related ex-
planatory variables.

Indeed, while all the data originate from declarations filled
in by entrepreneurs in the aftermath of the floods to claim
compensation of damages from the government, the level of
detail of the information collected for the various case stud-
ies is different for two main reasons: (i) case studies refer
to different years and regions, each with distinct regulations
and standards for data collection, and (ii) the collected data
were previously pre-processed by different authorities, rang-
ing from local to regional, responsible for damage compensa-
tion. More specifically, a first group comprises 325 observa-
tions providing information on the total declared damage, its
breakdown by components (structure, equipment, and stock),
the estimated water depth at the premises location, the sur-
face occupied by the economic activity, and the NACE code
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of the economic activity. For a second group, consisting of
487 observations, information is limited to the total amount
of the damage, the damage to the structure, the surface, and
the NACE code.

For Group 1, data referring to hazard (i.e., water depth)
come from the hydraulic simulation of the flood events pro-
viding the perimeter of the flooded area and the spatial dis-
tribution of the water depth, for each case study (Amadio
et al., 2019; Scorzini et al., 2018; Carisi et al., 2018; Gatti,
2016) For detailed information on the hydraulic model devel-
opment, calibration, and validation, refer to the original cited
sources. Thanks to the knowledge of the address of affected
firms, it was possible to estimate the water depth at the firms’
location. As explained before, the considered flood events
are all characterized by low-velocity, riverine flooding, where
spatial variability in water depth is minimal across the inun-
dated area of a building. For this reason, a single represen-
tative water depth value — extracted at the building centroid
— was considered sufficient to describe flood intensity at the
firms’ location, even for larger buildings.

Damage data refer to the full replacement or repair cost
of damaged assets. This value is commonly used for detailed
micro-scale analysis when depreciated values of assets (i.e.,
the value at the time the damage occurred) are not available
(Allaire, 2018; Balbi et al., 2013). Depending on the case
study, damage values are available for the different compo-
nents of the economic activity. However, for the scope of the
analysis, all the data were aggregated into the total damage
and, when possible, into three main damage components:
structure, equipment, and stock. “Structure” identifies the
building in which the economic activity is located with the
internal systems necessary for its functioning (e.g., electrical
or heating system); “equipment” refers to machinery, furni-
ture, vehicles, and tools necessary for the functioning of the
firm; “stock” refers to raw materials, semi-finished and fin-
ished products. The choice of the three components is coher-
ent with previous studies (Grelot and Richert, 2019; Kreibich
et al., 2010; Schoppa et al., 2020; CGGD, 2018; Booysen et
al., 1999). Indeed, it is expected that flood damage mech-
anisms are different among them, thus requiring different
methods to assess damage. All the data were converted to
2022 prices using the consumer price index for comparabil-
ity reasons.

The NACE code is available at the first level. Although the
use of the NACE nomenclature to represent the vulnerabil-
ity of an activity has been questioned (Molinari et al., 2019;
Kreibich et al., 2010), we decided to maintain this informa-
tion to exploit statistical data on the business sector elabo-
rated by ISTAT (that are organised through the NACE code)
and to obtain a description of the economic activities that is
shared at the European level (Bremond et al., 2018; Paprotny
et al., 2020). The following sectors (C, G, I, J, K, M, N, Q, S)
were included in the analysis (see Table 3). In detail, the sec-
tor G (wholesale and retail trade), C (manufacturing), I (ac-
commodation and food service activities), Q (healthcare and
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Table 2. Number of observations per type of available information in the analysed dataset.

Damage Water depth ~ Activity type  Surface
Total  Structure Equipment  Stock
Group 1 325 212 221 271 325 325 325
Group 2 487 449 - - - 487 487
Entire dataset 812 661 221 271 325 812 812
social care) and S (other services activities) were considered 4 Method

and renamed for simplicity “Commercial”, “Manufacturing”,
“Restaurant”, “Healthcare” and “Services”, respectively. The
sectors J (information and communication), K (financial and
insurance activities), M (professional, scientific, and techni-
cal activities) and N (administrative and support service ac-
tivities) were aggregated in a unique category named “Of-
fice”, since it was assumed the office configuration as preva-
lent for all the activities referring to these NACE codes. Some
sectors have been neglected as they are usually considered
separate sectors of investigation in flood risk analysis (Merz
et al., 2010) with respect to business activities. This is the
case of category A (agricultural, forestry and fishing); sec-
tors D (electricity, gas, steam, and air conditioning supply);
E (water supply, sewerage, waste management and remedia-
tion activities); H (transporting and storage) that refer to in-
frastructures; O (public administration and defence, compul-
sory social security) and P (Education) that were considered
part of the public sector and strategic infrastructures. Other
sectors were instead neglected as they present specific pe-
culiarities that impede a proper comparison; this is the case
of sectors F (Construction) whose elements cannot be asso-
ciated with a “typical” economic activity configuration of
one/some premises with contents, and the category of real
estate activities (L) because the damage and the exposed val-
ues could refer to the several properties owned or managed
by the business, that could be spread in the territory, beyond
the flooded areas. The NACE sectors B (extraction of miner-
als from quarries and mines) and R (arts and sports activities)
were not investigated because of the limited number of avail-
able data.

Table 3 shows that 46 % of the flooded activities were
Commercial, 17 % Manufacturing, 14 % Restaurant, 14 %
Offices, 3 % Healthcare and 6 % Services.

The surface occupied by the economic activity is not al-
ways available in the original data. In case of its absence,
it was approximated with the footprint area of the building
in which the activity is located, obtained by Regional Topo-
graphic Databases, provided by public authorities (e.g., Re-
gione Lombardia, Regione Sardegna etc.).
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The conceptual model at the basis of the analysis is reported
in Eq. (1), where damage (d) is expressed as a function of
three variables: activity type (), activity surface (A) and
water depth (WD). Such variables are identified in the liter-
ature as the most explicative of damage (Merz et al., 2010;
Paprotny et al., 2020; Penning-Rowsell et al., 2005; Schoppa
et al., 2020).

d= f(N, A, WD) (1)

First, a correlation analysis was implemented to explore the
relationship between the damage and the explanatory vari-
ables, as well as to detect potential multicollinearity among
them. Then, a damage model was derived for each economic
category included in the analysis. The analysis was carried
out firstly for the total damage. Subsequently, we delved into
an examination of damage by components, using the same
approach as used for the total damage. However, only pre-
liminary insights were obtained in this case because of the
low size of the available data sample.

The damage value used in all the analyses is the unitary
damage, obtained dividing the damage (D) by the surface
of the economic activity Eq. (2), as better discussed in the
following section:

D(EUR)

d (EURm_2> = oD

2

5 Results: total damage
5.1 Descriptive statistics

Figure 1 shows the distribution of the unitary total damage,
the surface, and the water depth in the observed data. The
unitary total damage (Fig. 1a) varies from a minimum value
of approximately EUR 1 m~2 to a maximum value of approx-
imately EUR 10000 m™~2, with the first quartile, Q1, equal to
EUR 26 m~2, the third, Q3, equal to EUR 277 m~2, the me-
dian being EUR 91 m~2 and the average EUR 280 m~2. Fig-
ure 1b and c show statistics for the explanatory variables: the
firm surface varies from approximately 5 to 70000 m2, Qy is
147 m? and Q3 is 1055 m?, the median is 392 m? and the av-
erage is 1100 m?; the water depth varies from around 0.05 m

Nat. Hazards Earth Syst. Sci., 26, 251-270, 2026
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Table 3. Number of economic activities per NACE code in the entire dataset.

Category NACE code  Number Percentage
Manufacturing C Manufacturing 142 17%
Commercial G Wholesale and retail trade 371 46 %
Restaurant I Accommodation and food service 114 14%
Office J Information and communication 13 14%

K Financial and insurance 10

M Professional, scientific, and technical 67

N Administrative and support services 23
Healthcare Q Healthcare and social work 22 3%
Services S Other services 50 6 %

Total 812

Table 4. Average data values for the unitary total damage (dT), the
total damage (D), and the surface of economic activities (A) by
economic category, for the entire dataset (group 1 and 2).

Economic sectors Average values

dr (EURm™2) Dy (EUR) A (m?)
Manufacturing (C) 250 191 000 1500
Commercial (G) 250 100700 1100
Restaurant (I) 390 121200 870
Healthcare (Q) 920 195200 310
Services (S) 130 33600 640
Offices (J, K, M, N) 220 30900 1200
Total 280 108200 1100
Total SD 670 320100 3400

to around 3.00 m, with the first quintile, Q1, equal to 0.40 m
and, the third quintile, Q3, equal to 1.00 m. the median and
the average are approximately 0.70 m. As expected, values
for the surface area and the total damage span over orders of
magnitude, while water depths have relatively little variabil-
ity, with 50 % of the data being concentrated in a small range
(0.4-1m).

Table 4 reports the average values of the unitary total dam-
age and the firm surface by economic category, while their
distribution is reported in Figs. 2 and 3. Detectable differ-
ences suggest that both the surface and the economic cate-
gory may be relevant explanatory variables to be included in
a damage model.

5.2 Correlation analysis

The entire dataset was used to test the correlation between
the unitary damage and the firm surface (Fig. 4a), and only
group 1 for the correlation between the unitary damage and
the water depth (Fig. 4b). Figure 4 plots, for each correlation,
outcomes for a Loess (Locally Weighted Scatterplot Smooth-
ing) regression, together with the confidence interval of the
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curve estimate. Notice that Loess is a non-parametric regres-
sion that fits a smooth curve to the data by considering the
local density of the data points, thus suggesting possible non-
linear trends between the variables.

Figure 4a shows a negative correlation between the uni-
tary damage and the firm surface, indicating that damage
increases less than proportionally with respect to the sur-
face. Figure 4b shows a weak positive correlation between
the damage and the water depth. The Loess curve is use-
ful to identify a threshold of the positive correlation, with
no effect on damages for water depth values smaller than
0.2 m. The damage-surface and damage-water depth correla-
tions are, however, influenced by the existence of a negative
correlation between the surface and the water depth (Fig. 4c);
therefore, although the positive (although here weak) corre-
lation between water depth and damage is physically sound,
its statistical evidence may be masked by the water depth-
surface collinearity in the dataset (which has no evident phys-
ical meaning).

5.3 Forecast model
The following function has been assumed to describe the re-

lationship between the unitary damage and the explanatory
variables:

dr = ePo. APL.WDP2. eB3Dc . pPaDr, ,BsDq | p,Ps Dot ,P1Ds (3)

where:

Dc is the dummy variable for the manufacture category.

Dy is the dummy variable for the restaurant category.

D,r is the dummy variable for the offices category.

Dq is the dummy variable for the healthcare category.

Ds is the dummy variable for the services category.

https://doi.org/10.5194/nhess-26-251-2026
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Figure 1. (a) Distribution of the unitary total damage (dT), (b) the
surface (A) and the (c¢) water depth (WD) in observed data. WD
values refer to Group 1 only. The rhombus represents the average
value. The central rectangular box represents the interquartile range
(IQR), which spans from the first quartile (Q1) to the third quartile
(Q3), including 50 % of the data. The black line inside the box rep-
resents the median (Qy). The “whiskers” (i.e. the two lines extend-
ing above and below the box) indicates the minimum and maximum
values within the range equal to 1.5 times the IQR. Any data points
beyond the whiskers (i.e., outliers) are plotted individually.
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The decision to use a product function for damage estimation
was primarily driven by the need to account for a relative in-
dependence of the firm’s size and/or water depth on the dam-
age. This implies that, according to Eq. (3), any variation in
firm size or water depth will lead to a multiplicative effect in
damage. The decision to use dummy variables to account for
the variation in damage across economic sectors is driven by
the limited size of the dataset, which is insufficient to create
a separate econometric model for each sector. The model ac-
cordingly assumes the impact of surface and water depth on
damage as uniform across all economic sectors.

The model assumes “commercial” as the reference cat-
egory; therefore, no dummy variable is introduced for this
category. If data pertain to another sector (say, manufacture),
the corresponding dummy variable is equal to unity, while all
the others are zero; consequently, e#3°¢ amplifies (83 > 0) or
diminishes (83 < 0) the reference constant 0, while all the
other groups ef+Px are neutral in the regression as they take
unity values.

A logarithmic transform turns Eq. (3) into Eq. (4), to be
estimated by Ordinary Least Squares (OLS) after adding u,
the random error term, representing the unobserved factors
that affect the damage but are not included in the model.

In(dt) = Bo + B1In(A) + B2In (WD) + B3 Dc + B4 Dy
+ BsDott + Be D + B7Ds +u “4)

Log transformations of variables also have some statistical
advantages in the case of skewed distributions as those in
Fig. 1: by taking the natural logarithm of the values, the dis-
tribution becomes more symmetrical, allowing a more reli-
able calculation of some statistical measures (mean and stan-
dard deviation, test of normality, OLS assumptions, ¢ test,
R?) that assume the data are approximately normally dis-
tributed. Using log transformed variables the variability of
both dependent and independent variables is reduced, and
it permits to decrease the susceptibility of Ordinary Least
Squares (OLS) estimates to extreme (outlying) values; thus,
there is no need to eliminate them.

The forecast model was initially derived using only the
data from Group 1, the dataset for which all explanatory vari-
ables are available. The results are provided in the first col-
umn (1) of Table 5, indicating the lack of statistical signif-
icance for water depth, likely because the variable does not
vary enough to significantly influence the damage caused.
Subsequently, water depth was dropped as explanatory vari-
able, and the analysis was extended to the entire dataset
(Group 1 and 2) to enhance model robustness. For the same
reason, the K-fold cross-validation technique was imple-
mented (Hasanzadeh Nafari et al., 2016). The dataset was
divided into K subsets (folds) of approximately equal size,
with K set to 10. The model was then trained and evaluated
K times, each time using one of the folds as the test set and
the remaining (K — 1) folds as the training set. The second
column (2) of Table 5 reports the average values of the es-
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Figure 3. Boxplot of the Surface (A) of the economic activities by economic category for the entire dataset (In-scale).

timated coefficients and performance metrics across the 10
folds, representing the results of model training and valida-
tion.

Results reveal a negative and statistically significant coef-
ficient for the firm’s surface (p < 0.01), confirming the cor-
relation observed in the previous section. In the model with
Group 1, differences across sectors are evident only for dam-
age to manufacturing, which is higher than the others. By
adding observations (Groups 1 and 2), it becomes appar-
ent that damage to offices (Dyff) is also statistically signif-
icant. Specifically, the manufacturing (Dc) category exhibits
higher damage (by 88 %)', while offices have lower damage
(by 67 %) compared to the commercial category. Concerning

IThe percentage values refer to the estimated beta coefficient
from the regression model. The transformation of the beta coeffi-
cients, to interpret a dummy variable when the dependent variable
(Y) is in logarithmic, is the following: 100 - (exp(8) — 1).
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the surface coefficient, for a 10 % increase in the size of the
firm, the unitary damage decreases, on average, by around
8 %.

The goodness of fit, expressed by the adjusted R? in Ta-
ble 5, is 0.37, indicating that the model can explain 37 %
of the total variance in damage. The coefficient of variation
(CV) indicates that, on average, individual point errors are
approximately two and a half times the mean of the response
variable.

According to the analysis, the forecast model for the dam-
age can be expressed as:

dr =8022- A7989.1.88D - 0.60 Dy (5)

The scatterplot in Fig. 5 shows the comparison between
the observed and the estimated total unitary damage: most
points cluster around the bisector, indicating a good level of
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Figure 4. (a) Unitary damage (dT) vs. firm surface (A), entire
dataset. (b) Unitary damage (d1) vs. water depth (WD), group 1.
(¢) Firm surface (A) vs. water depth (WD), group 1. The dashed
curve represents the results of the Loess regression. The grey shaded
region shows the 95 % confidence interval of the LOESS estimate.

agreement between actual and predicted values; however, a
high dispersion is observed across the range of damage val-
ues, consistently with the moderate R2, suggesting limited
explanatory power of the model.

https://doi.org/10.5194/nhess-26-251-2026

Table 5. Results of the log-log regression with OLS for the unitary
total damage; standard errors in brackets. The magnitude of the sta-
tistical significance of the explicative variables is expressed by the
number of stars (*). A low p value (**%*), indicates greater evidence
against the null hypothesis and thus greater statistical significance:
* p <0.1; %% p <0.05; xxx p <0.01.

(1) Group 1 (2) Group 1 and 2
Variables In (dT1) In (d1)
c 8.43%kx* 8.99skx
onstant 0.37) 0.22)
—0.68%%%  —(.78%k*
In (4) (0.06) (0.03)
0.12
1In (WD) ©.09)
D 0.58%* 0.63%#*
¢ (0.20) (0.13)
—0.02
Dr (0.24)

D —0.24 —0.5] %%
off (0.22) (0.14)
0.56

Dq 0.37) N
—0.33

Ds 0.27) -
R? adj. 0.30 0.37
F-statistics 20.09 157
No. of obs. 325 812
Average RMSE 661
cv 2.4
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Figure 5. Scatterplot of the observed versus estimated unitary total
damage (EUR m_z). The black line is the bisector.
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6 Results: damage to components

This paragraph replicates the analysis made in previous sec-
tion, albeit with a distinction among the damage components.

6.1 Descriptive statistics

The analysed variables are the unitary damage to the building
structure (dps), stock (ds) and equipment (dg) in relation to
the surface of the activity (A) and the water depths (WD):
Table 6 presents the average values of unitary damage by
component and economic category, while their distribution
is depicted in Fig. 6. Across all sectors, the highest aver-
age damage is observed for equipment, followed by stock
and structure. Similar findings were reported by Samantha
(2018). It is evident that for the unitary damage to the build-
ing structure and equipment, the highest median values are
observed for the Healthcare, Offices, and Restaurant sectors,
which have the lowest surface area (Fig. 3) and are often lo-
cated in civil buildings. For damage to the stock, the highest
median value is associated with the commercial category.

6.2 Correlation analysis

Figures 7 and 8 illustrate the correlation between the unitary
damage incurred for various components and the surface area
of the firm, along with the water depth level. The correlation
with the surface is negative for all the components, confirm-
ing the trend observed for the unitary total damage (Fig. 4).
In Fig. 8, the Loess curve indicates a positive correlation with
water depth, with the stock component showing the most pro-
nounced dependence.

6.3 Forecast model

The functional relations tested for damage to components is
analogous to that for the total damage:

dps s = el . APL . WDP2 . oP3Dc . oPaDr, oPsDo

. eﬂsDOff . eﬂ7 Dgs (6)

Table 7 shows the results of the linear log-log regression
model used to derive the forecast model. The analysis was
performed without validation, using the whole dataset due
to the limited number of observations. Specifically, columns
(1), (3), (5) present the results of the initial regression, in-
cluding all explanatory variables. Subsequently, columns (2),
(4), (6) present the outcomes of a refined regression, consid-
ering only the variables with statistically significant coeffi-
cients.

The results align with the correlation analysis. The coeffi-
cients for the surface are negative and significant for all dam-
age components, signifying that, as for the total damage, as
the size of the firm increases, the unit damage decreases by
an amount that depends on the A value. The coefficient of
water depth is positive and significant only for stock damage,
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indicating that as the water depth increases, the unit damage
increases by an amount that depends on the value of WD. In
terms of differences between damage in different sectors, sta-
tistically significant variations are observed. For damage to
structure, only the Healthcare category shows significantly
higher average damage compared to the Commercial cate-
gory. In the case of equipment damage, the Manufacturing
category stands out with statistically higher damage than the
Commercial category. Regarding stock damage, all sectors,
except Manufacturing, exhibit lower average damage than
the Commercial category.

The goodness of the fit expressed by the adjusted R? varies
from 0.26 to 0.36, meaning that the model explains from
26 % to 36 % of the variance of the unitary damage to the
different components.

According to the analysis, the forecast model for the uni-
tary damage to the components can be expressed as:

dps =1118- AC06D . 418D, 7
ds = 1339 A703% .wD©035 .0 29D,

-0.16 Doft - 0.23Dq - 0.26(Ds) (8)
dp = 4491 - AC08Y .1 88 D¢ )

The scatterplots in Fig. 9 compare observed and estimated
unitary damages across three asset sectors: structures (a),
stock (b), and equipment (c). Overall, dispersion increases
from (a) to (c), indicating a decreasing model performance
across asset types. In the case of stock (b), there appears to
be a tendency to overestimate smaller damages and under-
estimate larger ones. Structural damage (a) shows the closest
fit overall, with most values distributed symmetrically around
the bisector.

7 Performance compared to foreign models

We conducted a comparison between the estimations pro-
vided by our model and those of existing models in Europe
to determine added value with respect to the unsuitable im-
plementation of foreign models. Specifically, the comparison
was made with models discussed in Sect. 2, namely FLEMO-
cs, the model included in the Multicoloured Manual (referred
to as MCM hereafter), and the French model (Ministere de
la Transition Ecologique et de la Cohésion des Territoires,
2024). This comparison was conducted using data only from
group 1, as foreign models typically require input values for
water depth, which are available only for this dataset. Ad-
ditionally, with the exception of the French model, the for-
eign models are relative, necessitating a preliminary estima-
tion of the exposed value to achieve damage estimations that
are comparable among all the models under consideration. To
accomplish this task, we implemented the method based on
the net capital stock proposed by Molinari et al. (2016) and
further implemented in the MOVIDA project. This approach

https://doi.org/10.5194/nhess-26-251-2026
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Figure 6. Boxplot of the unitary damage by component and by economic category (In-scale); (a) damage to the structure (dgs); (b) damage
to the stock (dg); (¢) damage to the equipment (dE).
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Table 6. Average values of the damage by components and by economic sectors. Damage to the structure (BS) includes data from the entire
dataset; damages for the equipment (E) and stock (S) include only the data of the Group 1. Total average (last line) refers to the average for
all sectors for each damage component.

Economic sectors Average values

dps BEURmM2) dg (BEURm %) dg (EURm™ %) Dgg(EUR) Dg(EUR) Dg (EUR)
Manufacturing (C) 70 90 140 63700 73300 83500
Commercial (G) 80 240 140 41700 56100 2700
Restaurant (I) 240 50 220 58200 5800 48 800
Health (Q) 630 90 300 109 600 5200 23300
Services (S) 70 70 80 18400 10300 16200
Offices (J, K, M, N) 120 50 190 20700 4700 15700
Total average 120 140 161 45500 42800 41200

Table 7. Result of the log-log regression model for each component of the damage: unitary damage to the structure (dgg), unitary damage
to the stock (dg), unitary damage to the equipment (dg). Standard errors in brackets. The magnitude of the statistical significance of the
explicative variables is expressed by the number of stars (*). A low p value (**%), indicates greater evidence against the null hypothesis and
thus greater statistical significance: * p < 0.1; xx p < 0.05; **x p < 0.01.

(1) 2 3) 4 () (6)
Variables In (dpsg) In (dps) In (ds) In (dg) In (dp) In (dg)
Constan | O98F¥F 702 T0pEeE 700k BT 841
0.44) (0.36) (0.49) (0.49) 0.44) (0.38)
In (4) —0.63FF  —0.61FFF 0,550 (. 55%x Q. 81HE ()840
0.07) (0.06) (0.08) (0.08) (—0.81) 0.07)
0.01 0.35 *3* 0.35%:* 0.15
In (WD) 0.11) B (0.13) (0.13) 0.11)
D 0.31 3 0.06 3 0.75%%* 0.63**
C (0.23) (0.26) 0.22) 0.21)
D 0.12 : —1.28%**  —130%*%* (.43
! (0.28) (0.30) (0.29) 0.27)
Do 0.42 _ —1.84%** 1 86%** (.17 3
off (0.28) (0.34) (0.33) (0.30)
D 1.55%%%* 1.43%* —1.49% —1.51%* 0.50
Q (1.55) (0.39) (0.58) (0.57) (0.42) -
Dg —0.17 —1.34%x% 1 37%x% (.26 _
(=0.17) (0.40) (0.38) (0.32)
R? adj. 0.36 0.36 0.25 0.26 0.37 0.36
F-statistics 18 69 12 14 23 77
No. of obs. 212 212 221 221 271 271

has two main limitations: (i) the uncertainty of estimated ex-
posed values, and (ii) the possibility to compare only dam-
age to structure and equipment, as net capital stock values
are supplied by ISTAT only at the national level and with-
out reference to stock; however, a distinction is made among
the various NACE sectors. Nonetheless, it was not possible
to compare all the models for all the sectors included in our

Nat. Hazards Earth Syst. Sci., 26, 251-270, 2026

model, as they are not always present in foreign models. Ta-
ble 8 provides a synthesis of the main characteristics of com-
pared models. With specific reference to the French model,
even though it provides a direct estimation of damage and
includes all sectors, the comparison was possible only for
the damage to the structure component, as information on
the number of employees required for the estimation of the
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Figure 7. Scatterplot of the unitary damage vs. firm surface.
(a) Unitary damage to the structure (dgs). (b) Unitary damage to
the stock (ds). (¢) Unitary damage to the equipment (dg). The grey
shaded region shows the 95 % confidence interval of the LOESS
estimate.

damage to equipment is not present in our dataset. The com-
parison with available Italian models (Molinari et al., 2020;
Arrighi et al., 2013) was not conducted for the following rea-
sons. As discussed in Sect. 2, the model of Arrighi et al. is
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estimate.
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(dp). The dot red line is the bisector.

closely tied to the exposure and vulnerability parameters of
the city of Florence. It relies on local real estate values spe-
cific to the city, making it difficult to compare with national
net capital stock values.

On the other hand, the model of Molinari et al. (2020) im-
plements a foreign meso-scale model, rendering the compar-
ison with our micro-scale model nonsensical a priori.

Tables 9 and 10 display the results of the comparison in
terms of the RMSE calculated with reference to the logarithm
of the unitary damage, considering the nature of our model
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that minimizes relative errors — i.e., percentage differences —
rather than absolute errors, due to the log-transformation ap-
plied to the dependent variable. The findings underscore that
our model exhibits the best performance, thereby enhancing
the reliability of damage estimation for the Italian context.
This result was expected, since the model was built on this
data set. However, this comparison gives a measure of the
reduction in uncertainty (error) that we would have had in
the case of directly applying the other models to the Italian
context.

8 Discussion

The adopted modelling approach proved to be valuable for
both comprehending the role of each explanatory variable in
the definition of the damage to different business components
and detecting differences among damages occurring in dif-
ferent business sectors.

Results indicate a significant impact of the firm’s surface
on the extent of damage, albeit with varying degrees for dif-
ferent damage components (structure, equipment, stock, and
total). Notably, water depth exhibits a significant influence
only on stock damage. It is worth noting that the limited vari-
ation in water depth within the data sample (with 50 % of val-
ues ranging between 0.40 and 1 m) may inhibit to establish a
statistically significant relationship with the overall damage.

The study identifies Healthcare, Commercial, and Manu-
facturing as the most vulnerable sectors for building struc-
ture, stock, and equipment, respectively. Several factors may
contribute to the higher damage in the manufacturing cate-
gory. One possibility is the presence of more expensive and
specialized equipment, which could be more susceptible to
flooding compared to equipment in other sectors. Addition-
ally, the manufacturing and commercial sectors may handle
a greater quantity of goods, and the nature of these goods
(such as food, electronics, or chemicals) could make them
more sensitive to water damage, resulting in higher damage
to stocks. As for the elevated damage to the structure in the
Healthcare category, this could be attributed to the typically
civil nature of the buildings where they are located, generally
more vulnerable than industrial sheds. Overall, the observed
variability underscores the importance of tailored risk man-
agement approaches for different business sectors.

However, despite an improvement in damage estimation
reliability compared to the implementation of foreign mod-
els in the Italian context, the model’s predictive capability
is still considered unsatisfactory. The goodness of fit to the
observed data indicates that the model can only account for
around 37 % of the variance in total unitary damage and
between 26 % and 36 % of the variance in individual com-
ponents. Additionally, the root mean square error (RMSE)
for total unitary damage is approximately double the aver-
age unitary damage. We attribute these limitations mainly
to constraints within the available dataset. It is evident that
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Table 8. Main characteristics of models used for comparison.

265

Model Damage type  Economic category Measure of damage
FLEMO-cs Structure Public and private services % of the exposed value
Equipment Industry
Stock Commercial
France Structure All sectors EUR m 2 (Structure)
Equipment EUR per employee (equipment)
MCM Structure Commercial % of the exposed value
Equipment
Stock
Ballocci et al. (this study)  Structure Commercial EURm™2
Equipment Manufacturing
Stock Restaurant
Total Services
Healthcare
Offices

Table 9. RMSE of the logarithm of the unitary damage to the struc-
ture (EUR mfz). “n.a.” indicates that the model does not provide an
estimation for the corresponding category.

Model
Category France FLEMO-cs MCM Ballocci et al.
Manufacturing 1.53 1.46 1.17 1.14
Commercial 1.67 1.86 1.65 1.42
Restaurant 1.68 n.a. 1.52 1.26
Offices 1.35 n.a. 1.65 0.96
Healthcare 2.05 n.a. n.a. 1.07
Services 1.33 n.a. n.a. 0.95

Table 10. RMSE of the logarithm of the unitary damage to equip-
ment (EUR mfz), “n.a.” indicates that the model does not provide
an estimation for the corresponding category, or that our data do not
allow the model implementation (i.e., French model). Only sectors
for which at least one foreign model is available are reported.

Model
Category France FLEMO-cs MCM Ballocci et al.
Manufacturing n.a. 5.45 1.85 1.51
Commercial n.a. 1.69 1.85 1.36
Restaurant n.a. n.a. 1.52 1.28
Offices n.a. n.a. 1.43 0.72

crucial explanatory variables are missing, or in other words,
the variables incorporated in the model might not be cap-
turing all the relevant damage mechanisms. Moreover, as ex-
plained in Sect. 3, available data are characterized by varying
levels of reliability, contingent upon the specific case study
to which they refer, and thus, on the methods employed for
their collection and evaluation. Another potential concern is
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the presence of a “selection bias” arising from the counter-
intuitive negative relationship between the building’s surface
area and water depth. This bias might be elucidated by an un-
derrepresentation of small firms with shallow water depths in
the dataset. Specifically, the dataset predominantly includes
large firms (i.e., exceeding 80 m?) with water depths lower
than the average value, resulting in high absolute damage
(Fig. 4b). Conversely, small firms (below 80m?) with wa-
ter depths higher than the average value exhibit lower ab-
solute damage (see Fig. Al). This suggests the possibility
of missing values associated with small economic activities
with low water depth. This absence of information could im-
pact both correlations depicted in Fig. 4a and b. As a mat-
ter of fact, it is likely that larger firms, possessing more re-
sources and personnel, are more inclined to report damages
compared to smaller firms. The increased likelihood of larger
firms engaging in the reporting process could stem from their
ability to allocate resources to such endeavours and navi-
gate through bureaucratic procedures. In contrast, smaller
firms, constrained by limited resources and personnel, may
find the process more burdensome, especially when there are
low expectations of receiving compensation, leading to un-
derrepresentation in the reported data. The knowledge about
flooded companies that suffered damage but did not declare
it could support the testing of the selection bias by means
of the “Heckman model” (Heckman, 1979). The latter would
be able to test if the likelihood of an observation to be within
the sample is related to the characteristics of the firm and to
correct the coefficients estimation for missing data. In addi-
tion, another potential source of uncertainty may lie in the
estimation of surface area, which was not always available in
the original dataset. In these cases, the surface was manually
estimated through GIS analysis using topographic databases.
While this allowed us to reconstruct missing values, it may
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have introduced further variability that interacts with water
depth in affecting damage estimates.

Another possible limitation is related to the fact that the
dataset relies on self-reported information collected shortly
after flood events, it is subject to potential inaccuracies due
to memory recall, subjective estimations of damages by busi-
ness owners, or the pressure to report higher damages to ac-
cess public compensation schemes.

Overall, our results point to the need of disposing of more
complete and numerous data, specifically collected for the
objective of damage modelling (Ballio et al., 2018; Pogliani
et al., 2021). This could also lead to the possibility of per-
forming different econometric analysis for different business
sectors.

It is well known that micro-scale damage models exhibit
significant dispersion with respect to observed data. This
phenomenon applies even to residential buildings, which are
characterized by less heterogeneity than economic activities
and for which more reliable data generally exist (Molinari et
al., 2020).

In terms of feasibility, our model overcomes the challenge
of reliably estimating the value of exposed assets in Italy,
as discussed in the previous section. On the contrary, as it
provides estimates of damage in absolute terms, it also re-
quires updating the estimated damage value to the current
currency, posing a further obstacle to its exportability to for-
eign countries. The model can be applied to estimate dam-
age to economic activities across the entire Italian territory in
cases of riverine floods. It is derived from data collected from
various regions of the country and relies on input data com-
monly available throughout Italy, such as the surface area of
the activity and the NACE code. Importantly, its indepen-
dence from the water depth enables damage estimation in
the early aftermath of a flood, when only the perimeter of
the flooded area is typically known, as well as in areas lack-
ing 2D hydraulic modelling. The independence from hazard
variables also implies that the model is not suitable for evalu-
ating the effectiveness of hazard-focused risk reduction mea-
sures (e.g., levees, retention basins), except in the case the
measure totally avoid the flooding of the firm (WD =0).

Nonetheless, the model proves valuable for other key as-
pects of flood risk management — particularly in identifying
the most vulnerable business sectors and estimating potential
economic damages. These outputs can inform targeted adap-
tation strategies, such as the development of insurance instru-
ments, emergency preparedness plans, and policies aimed at
enhancing business resilience.

Moreover, the model outperforms existing foreign ap-
proaches when applied to the Italian context, as demonstrated
by its lower average estimation error. Therefore, despite the
absence of explicit hazard indicators, the total damage model
offers reliable comparative insights that are useful for policy-
making, especially in post-event and planning phases.

Given the inherent uncertainty of the model, however, we
recommend its use primarily for comparative analyses — such
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as assessing relative risk levels across different areas — rather
than for precise risk estimation at individual sites.

9 Conclusions

The analysis conducted in this study provides significant new
insights into the direct damage caused by floods to economic
activities in Italy. By employing an econometric approach to
empirical damage data, the study enhances our understand-
ing of the impact of explanatory variables on damage to dif-
ferent firm components (structure, stock, and equipment),
and identifies variations in damages across different busi-
ness sectors, enabling the adoption of tailored risk manage-
ment approaches. The main findings indicate that firm size
(in terms of surface area) has a consistent and significant in-
fluence on the unitary damage across all damage components
while water depth is only statistically significant for stock
damage. Additionally, different business sectors exhibit dis-
tinct vulnerability profiles, with healthcare, commercial, and
manufacturing firms showing the highest average damage to
structure, stock, and equipment, respectively. Furthermore,
the study derives a forecast model that outperforms foreign
models and can be utilized for comparative purposes across
the entire Italian territory to estimate flood risk/damage, both
in post-event scenarios and in the peace time, where riverine
floods are of concern. These findings underscore the impor-
tance of context-specific modelling and highlight the need for
comprehensive and systematically collected empirical data
to improve our understanding of damage mechanisms and
strengthen flood risk assessment, insurance design, and pub-
lic compensation strategies.

Appendix A
A1l Selection bias

In Fig. Al is represented the average total damage by class
of water depth with the number of firms for small and large
firms. The aim of this figure is to show that in our sample
there is a prevalence of large firms, with a size larger than
80 mz, with shallow water depth, lower than 0.7 m, which
have high absolute damage (EUR) and small firms with high
water depths (higher than 0.7 m) which have lower absolute
damage. This leads to the assumption that there could be
missing values related to the small economic activity with
low water depth. These possible existence of missing values
could lead to a bias in the econometric model that could be
tested with the “Heckman model”, if we had data on flooded
companies that suffered damage but did not declare it by fill-
ing the form. The Heckman model would be able to test if the
likelihood of an observation to be within the sample could be
related to the characteristics of the firm.

The choice by firms to declare the existence of damage
could depend on their own characteristics. Larger firms with
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Table A1l. Analysis of residuals of OLS specification.

Test type dt

Shapiro-Wilk normality test
Studentized Breusch-Pagan test
Durbin-Watson test

W =0.996, p value=0.198
BP=19.3, p value =0.0002
DW =2.18, p value =0.983

Table A2. Analysis of residuals of OLS specification.

age, the analysis indicates potential issues with slight het-
eroscedasticity and autocorrelation in the model residuals.
Concerning stock damage, the residuals do not show sig-
nificant autocorrelation and may exhibit some evidence of
heteroscedasticity, although the latter is not highly signifi-
cant. For equipment damage, the residuals do not show sig-
nificant autocorrelation, but there is substantial evidence of
heteroscedasticity.

Test type dgs

ds dg

Shapiro-Wilk normality test
Studentized Breusch-Pagan test
Durbin-Watson test

W =0.9966, p-v.=0.0794

BP =8.0136, p-v.=0.0182

DW =1.7714, p-v.=0.0392

W =0.994, p-v.=0.5281
DW =1.9621, p-v.=0.2784
BP=11.763, p-v. =0.0675

W =0.99491, p-v.=0.5085
BP=10.897, p-v.=0.0043
DW =1.9828, p-v.=0.4143

more employees and turnover may have a higher likelihood
of reporting damage than smaller businesses. Conversely,
small firms with few staff may have fewer resources to em-
ploy in damage reporting especially if they suffered a small
damage and the expectation of being compensated may dis-
courage them due to the large bureaucracy. Using the Heck-
man model helps address this issue and correct the estimation
for missing data related to small firms with low water depths.

A2 OLS assumption validation total damage

Table A1 presents the results validating the OLS assumptions
of the total damage model. The Shapiro-Wilk test suggests
that the residuals follow an approximately normal distribu-
tion (p value > 0.05). Heteroscedasticity is evident in the
residuals, as indicated by the significantly low p value of the
Breusch-Pagan test. However, there is no significant evidence
of autocorrelation in the residuals, as indicated by the high
p value of the Durbin-Watson test.

A3 OLS assumption validation damage by components

Table A2 presents the results validating the OLS assumptions
of the damage model by components. For structure dam-
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