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Abstract. This paper presents a comprehensive critical re-
view of 250 studies published between January 2010 and
September 2023 that examine how social media data have
been used to manage disasters triggered by natural hazards.
The review focuses on data collection, processing, and anal-
ysis strategies, and evaluates their effectiveness in transform-
ing social media content into actionable information for dis-
aster preparedness, response, and recovery. A Social Media
Literature Database (SMLD) was developed to support this
analysis, categorising each study into seven main categories
and 27 subcategories covering (a) article details, (b) case
study regions, (c) disaster events, (d) social media platforms,
(e) data characteristics, (f) collection and analysis methods,
and (g) evaluation approaches. The reviewed literature en-
compasses disasters resulting from a wide range of natural
hazards, most frequently floods, hurricanes, and earthquakes,
but also including storms, wildfires, volcanic eruptions, land-
slides, droughts, and multi-hazard events. To assess how ef-
fectively social media contributes to actionable disaster in-
formation, the studies were further classified into nine the-
matic areas, including (a) public discourse and sentiment
analysis, (b) temporal and spatial insights, (c) relevance fil-
tering, (d) community and stakeholder engagement, (e) dis-
aster trend identification, and (f) resource mapping. While
Twitter (X) dominated as the primary data source, other plat-
forms such as Facebook, Instagram, Weibo, and Reddit were
also employed for text, image, and video analyses. Natural

Language Processing methods, particularly content analysis,
were widely used for relevance filtering and noise reduction,
while Machine Learning approaches such as Support Vec-
tor Machines, Naive Bayes, and Neural Networks supported
classification and event detection. Temporal and spatial anal-
yses were common, though their effectiveness in filtering rel-
evant data varied. The categorisation of actionable informa-
tion reveals continuing research gaps in understanding com-
munity interactions, cross-platform data integration, and re-
source identification during and after disasters. Drawing on
the reviewed studies and the authors’ own experience, six
best practices are proposed for community use of social me-
dia during disasters and five for researchers seeking to en-
hance the integration of social media analytics into disaster
management and resilience strategies.

1 Introduction

In the age of information, social media has become a
powerful platform for communication and rapid informa-
tion dissemination (McCormick et al., 2017; Wang et al.,
2018; Li et al., 2018b; Fauzi, 2023). Social media plat-
forms introduced a new direction in assisting in disaster
management, enhanced situation awareness, analysing emo-
tions, and community interaction analysis, discovering so-
lutions unified with current technologies (Bruns and Liang,
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2012; Gerlitz and Rieder, 2013; Kryvasheyeu et al., 2016;
Martinez-Rojas et al., 2018; Omitola and Wills, 2019). Re-
searchers have used textual posts to assess on-ground condi-
tions, extract sentiments of affected individuals, and utilise
associated metadata, such as geolocation and hashtags, for
situational mapping (Li et al., 2018b; Wang et al., 2018).
Additionally, images shared on social media platforms have
been employed to estimate flood severity, infrastructure dam-
age, and resource needs (Dashti et al., 2014; Chen et al.,
2016). This critical review explores the multifaceted relation-
ship between social media and disaster management, aiming
to identify gaps, provide insights, and offer potential future
directions.

While traditional media sources like newspapers, televi-
sion, and radio offer reliable information, social media pro-
vides distinct advantages, including convenient access to in-
formation, interactive community engagement, and diverse
situational insights from various perspectives and locations
(Chatfield and Brajawidagda, 2013; Dashti et al., 2014; Li
et al., 2015; Stieglitz et al., 2018; Wang and Ye, 2018). How-
ever, the challenge lies in sifting through the abundance of
information to identify trustworthy and pertinent data (Smith
et al., 2017; Gulnerman and Karaman, 2020; Srivastava et al.,
2020).

This challenge of too much information is particularly
critical in disaster scenarios where the spread of rumours
and misinformation is unacceptable (Cenni et al., 2017; Yan
et al., 2017). It is also important that the data extracted from
social media platforms must be actionable for disaster re-
sponse, recovery, relief, and rapid decision-making by au-
thorities (Sriram et al., 2010; Li et al., 2015; Cenni et al.,
2017). This critical review focuses on the process of discern-
ing relevant and actionable data from social media to enhance
disaster response and recovery efforts.

There are several existing literature reviews on Social Me-
dia Data (SMD) platform evaluations, data collection tools,
and analysis methods over time (Cheng et al., 2016; Shibuya
and Tanaka, 2019; Kitazawa and Hale, 2021). These reviews
address the utility of SMD across various phases of disaster
management. However, limited attention has been devoted
to the collection and analysis of topic-relevant data with an
emphasis on noise reduction for method enhancement. Even
when literature explores topic discovery methods (Volkova,
2014, éiéija et al., 2018; Qarabash and Qarabash, 2018), less
focus is placed on assessing the actionability of discovered
data in disaster scenarios. This critical review examines the
literature, aiming to establish a classification system for ac-
tionable information, thereby assessing the practical value of
SMD in disaster management.

The purpose of this critical review is twofold. First, we
seek to evaluate the existing literature on the topic of social
media usage for managing disasters where we discuss the
key findings, and methodologies used for relevance filtering
of SMD. Second, we aim to perform an in-depth analysis of
how the existing solutions helped bringing out “Actionable
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Information” from SMD. By performing this critical review
we aim to shed light on the various methods of SMD analysis
to identify pertinent data and to suggest future directions.

Throughout the following sections, we discuss the
methodologies used in the existing body of literature, major
disaster events in the past decade, and emerging trends, and
offer recommendations for future studies. By doing so, we
hope to gain a deeper understanding of how SMD analysis
can play a relevant role in improving rapid decision-making
during a disaster scenario by assisting policymakers, emer-
gency responders, researchers, and the general community.

The manuscript is organised as follows. In Sect. 2, we
present our critical review methodology, which includes sub-
sections detailing research question identification and the
steps in constructing our Social Media Literature Database
(SMLD) (Gopal et al., 2024). In Sect. 3, we bring in the re-
sults of the critical review methodology. In Sect. 4, we crit-
ically discuss all the categories in our SMLD to present in-
sightful information and we propose best practices to utilise
SMD for the community and researchers to improve disaster
management strategies. Finally, in Sect. 5, we summarise our
analysis based on the lessons learned. For reference, a list of
commonly used acronyms in the manuscript is provided in
Table 1.

2 Critical Literature Review Methodology

To construct our Social Media Literature Database (SMLD)
(Gopal et al., 2024), we conducted a critical review of perti-
nent English-language publications using “social media” and
“disaster management” related keywords, primarily sourcing
content from Google Scholar. The time period covered was
from January 2010 to September 2023. Section 2.2 details
the specific search criteria employed in building the literature
database. A two-stage screening process was implemented:
an initial assessment based on titles and abstracts to shortlist
relevant publications, followed by a critical review of the se-
lected publications to confirm their relevance to the research
topic.

We have taken elements from Boaz et al. (2002) to follow
a specific protocol for the critical literature review:

i. Focusing on answering a specific question(s)
ii. Seeking to identify relevant research

iii. Synthesising the research findings in the studies in-
cluded

iv. Aiming to be as objective as possible about research to
remove bias

In this paper, we followed a critical literature review with
four major stages as shown in Fig. 1 and each stage is de-
scribed in the following sub-sections.
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Table 1. Commonly used acronyms in the manuscript.

Acronym  Description

ANN Artificial Neural Networks

Bow Bag-of-Words

CNN Convolutional Neural Network

CRED Centre for Research on the Epidemiology of
Disasters

DT Decision Trees

EM-DAT Emergency Events Database

En Entropy

FEMA Federal Emergency Management Agency

Gv Glove

k-NN K Nearest Neighbours

LDA Latent Dirichlet Allocation

LSTM Long Short-Term Memory

ML Machine Learning

NB Naive Bayes

NER Named Entity Recognition

NLP Natural Language Processing

NN Neural Networks

PCA Principal Component Analysis

PoS Part-of-Speech

Regex Regular Expression

RF Random Forest

SMLD Social Media Literature Database

SMD Social Media Data

SVM Support Vector Machines

TF-IDF Term Frequency-Inverse Document Frequency

UGI User-Generated Information

USGS United States Geological Survey

Ve Vectorisation

VGI Volunteered Geographic Information

2.1 Research Question Identification

In a hazard scenario, Volunteered Geographic Information
(VGI) through social media is advantageous, but due to lack
of reliability and increased generation of data, rapid decision-
making is affected (Black et al., 2012; Ashktorab et al., 2014;
Radianti et al., 2016; Yan et al., 2017; Kankanamge et al.,
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Figure 1. Block diagram summarising the critical literature re-
view methodology used in this paper, structured into four major
stages: (i) Research Question Identification, which includes two
research questions explained in Sects. 2.1 and 3.3, respectively;
(ii) Publication Searching Criteria, outlining sources and search
strategy (Sect. 2.2); (iii) Critical Review methodology (Sect. 2.3);
and (iv) Actionable Information Extraction based on nine defined
categories (Sect. 3.3).

2020b). Considering these issues, we have derived the fol-
lowing research questions.

— QI: Do exclusion criteria assist in relevance filtering of
SMD?

In the context of large and noisy social media datasets,
exclusion criteria serve as initial filters to eliminate ir-
relevant or misleading content. These criteria typically
involve keywords or topic filters used to pre-process the
data before applying more advanced methods. While
technical in nature, this process is a foundational step
in any meaningful analysis of SMD, particularly in do-
mains like disaster response. Our review identifies and
analyses literature that applies exclusion-based tech-
niques, such as rule-based filters, Natural Language
Processing (NLP) models, or Machine Learning (ML)
algorithms, to enhance relevance in data collection.
These methods are widely applicable across domains,
not just in disaster management, and are crucial for
practitioners who engage with unstructured, real-time
SMD.

— Q2: Does social media provide actionable information
in disaster scenarios?

Nat. Hazards Earth Syst. Sci., 26, 215-250, 2026
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A significant drawback of SMD is its credibility (Win
and Aung, 2017; Ravi Shankar et al., 2019; Nair et al.,
2017; Loynes et al., 2022). Social media users encom-
pass various categories, including public users, gov-
ernment organisations, Non-Government Organisations
(NGOs), public figures, and news media. During a dis-
aster scenario, the government, NGOs, and news me-
dia typically provide trustworthy information about the
crisis. However, public posts may also include valuable
emergency information from actual victims, often in the
form of photos or videos (Khaleq and Ra, 2018; Banu-
jan et al., 2018).

Inaccurate information may be disseminated, whether
intentionally or unintentionally, including the spread of
rumours or discussions about similar disaster events oc-
curring elsewhere (Remy et al., 2013; Musaev et al.,
2018; Arapostathis, 2021). This challenge underscores
the difficulty in identifying relevant data that can be
considered actionable. In this context, actionable in-
formation is defined as data that facilitates prompt
decision-making in disaster scenarios.

We have defined various forms of actionable informa-
tion from SMD, as detailed in Sect. 3.3. We reviewed
the publications in the database to ascertain if they pro-
posed solutions for extracting actionable information.
Our objective is to gain a comprehensive understand-
ing and determine whether social media indeed con-
tributes to effective disaster management by providing
pertinent information for rapid decision-making. By ad-
dressing these research questions, we also aim to offer
optimal guidance for investigators regarding the extent
to which social media contributes to disaster manage-
ment research.

To address the above research questions, we bring in
seven main categories in our critical review literature
database, where data related to the following questions
will be placed:

a. What are the methods opted to collect disaster-
related SMD?

b. What are the existing methods of relevance or do-
main filtering of SMD, within and outside disaster
scenarios?

c. What are the methods of exclusion criteria usage
for relevance filtering?

d. Does the literature further analyse the exclusion cri-
teria to avoid missing data and not to include irrel-
evant data?

e. What are the existing data analysis methods used,
specifically using ML and NLP?

f. Does the literature address the issue of false infor-
mation dissemination?
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g. What approaches have the publications introduced
to identify, analyse, and extract actionable informa-
tion?

2.2 Publication Searching Criteria

To construct the Social Media Literature Database (SMLD)
(Gopal et al., 2024), we searched Google Scholar and Sco-
pus using keywords related to “disaster management” and
“data analysis”, forming five Boolean search strings applied
to publication titles (Fig. 2). Each search yielded publications
(ny), from which relevant ones (n;) were manually selected
from peer-reviewed journals, conferences, and reports (Jan-
uary 2010-September 2023).

Our search used only the keyword “Twitter” to repre-
sent social media, omitting platforms like Facebook, Insta-
gram, TikTok, and Weibo. This platform-specific focus re-
flects broader trends in literature due to Twitter’s accessi-
ble Application Programming Interface (API). Nonetheless,
around 5 % of publications also discussed other platforms
(Sects. 2.2 and 3.7).

During Phase I, we screened titles using disaster-related
Boolean combinations and reviewed abstracts for relevance.
However, some relevant studies were missed due to un-
matched keyword variations. For instance, a key article by
Niles et al. (2019) was excluded despite being retrieved us-
ing (“Social Media” AND “Natural Hazard*”), a test query
that yielded thirty publications, of which seven were relevant,
but only one matched our original search.

Examples of relevant but missed studies include “Rapid
Flood Inundation Mapping using Social Media, Remote
Sensing and Topographic Data” (Rosser et al., 2017), “Sub-
Event Discovery and Retrieval during Natural Hazards on
Social Media Data” (Wu et al., 2016), “Detecting Natural
Hazard-Related Disaster Impacts with Social Media Analyt-
ics: The Case of Australian States and Territories” (Yigit-
canlar et al., 2022), and “Public Attention to Natural Hazard
Warnings on Social Media in China” (Hu et al., 2019).

After inclusion keyword searches were done, and publi-
cations that did not match our focus area of research were
removed, our critical literature review resulted in 250 publi-
cations which were included in our Social Media Literature
Database. Future reviews might iteratively refine keyword
strategies to improve coverage and reduce bias.

2.3 Synthesis of Research Findings

We defined seven major categories, and 27 sub-categories for
our Social Media Literature Database (Fig. 3). For each of
the 250 publications, we identified information that could be
assigned to these seven categories and their respective cate-
gories. In addition to these data, we also conducted an action-
able information analysis of the 250 publications, as detailed
in Sect. 3.3. We briefly describe the seven major categories
here:

https://doi.org/10.5194/nhess-26-215-2026
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allintitle: ("social media" OR "twitter") AND
("Disaster Response" OR "Disaster Mitigation" OR
"Disaster Recovery" OR "Disaster Preparedness"
OR "Disaster Monitoring")
n, =107

ni:82

allintitle: "disaster management" allintitle: "data collection" AND ("disaster"

219

AND ("social media" OR "twitter" OR
"news" OR "crowdsourcing")
n, =125

OR "hazard" OR "flood" OR "landslide") AND
("social media" OR "twitter" OR "tweet")
n.=4

LN
S35
lintitle: A——— ter) Social Media
allintitle: ("social media" "twitter" :
Literature intitle: ("soci ia" "twitter"

AND ("disaster” OR "hazard") AND ("data" OR ni=23 n;=31 a"IIInhtIe. ("social medlf OF'(‘ .twnter ) ANP
PP s —e Database @———— ("emergency response" OR "disaster relief")
filtering" OR "exclusion") -

ne =81 n =250 k=

Figure 2. Boolean search strings used in our critical literature review. The search strings (treated as search queries and labelled Q1-Q5 in the
figure) were applied to the publication titles when searching in Google Scholar (last queried on September 2023). The variable n; represents
the number of resultant publications of each Boolean search string, n; represents the number of publications included in the literature database
from each search string, and n represents the total number of publications in the literature database.

A. “Article Description” describes the metadata, such as
the author and publication details.

B. “Study Area” documents whether the publication in-
cludes a case study and specifies the event location.

C. “Event” identifies the nature of the disaster, such as
floods, earthquakes, or hurricanes.

D. “Data Details” records the use of SMD as well as sup-
porting data from official sources.

E. “Data Collection Methods” includes how the data was
gathered and whether exclusion criteria were applied.

F. “Data Analysis Methods” compiles the use of tech-
niques like NLP, Artificial Intelligence (Al), and statis-
tical models. Finally,

G. “Evaluation Methods” summarises the metrics or ap-
proaches used to assess model performance.

Detailed descriptions of all SMLD subcategories are pro-
vided in the Appendix A (Table Al and Fig. Al).

In the following section, we describe results of further
analyses of the SMLD (Gopal et al., 2024).

3 Results

In this section, we present the results and findings of the So-
cial Media Literature Database construction. In the follow-
ing subsections, we present a detailed analysis across several
key dimensions, including early works, publication trends,
publication classification, data collection methodologies, rel-
evance filtering strategies, and actionable information extrac-
tion.

https://doi.org/10.5194/nhess-26-215-2026

3.1 Overview of Social Media Literature Database
Construction

Figure 4 provides an overview of the total number of publi-
cations in SMLD and the total number of citations per year
from January 2010 to September 2023. Approximately 90 %
of the publications were sourced from Google Scholar, with
the remaining 10 % obtained from Scopus.

Over the past decade, many authors (Sakaki et al.,
2012; Carter et al., 2014; Gunawong and Butakhieo, 2016;
Stephenson et al., 2018; Bunney et al., 2018; Brangbour
et al., 2019, 2020; Podhoranyi, 2021) have conducted exper-
iments in SMD collection and analysis as depicted in Fig. 4.
Initially, while the number of publications was relatively low,
there were a significant number of citations. However, in
the SMLD, we observe a substantial increase in both pub-
lications and citations from 2014 to 2018. During the last
10 years, a wide range of publications, including journals,
conference proceedings, reports, and book chapters, have
been published due to the growing use of web data in var-
ious phases of the disaster management cycle.

Our critical review encompasses not only peer-reviewed
journal articles, but also conference proceedings, reports, and
book series chapters. This choice is driven by the fact that
these sources often provide insights into the development of
SMD collection, which includes filtering, a core aspect of
our review. Figure 5 illustrates the distribution of publica-
tions among the categories: “Journal”, “Conference”, “Re-
port”, and “Book”, with the majority of publications falling
under the “Journal” category. The year 2018 had the max-
imum of journals and conference publications. Reports and
book chapters are comparatively fewer but provide insights
into data collection and analysis strategies.

Nat. Hazards Earth Syst. Sci., 26, 215-250, 2026
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A. Publication Details

A6. Citations

A7. Kind of Publication

A8. Type of Publication
A9. Publication Name

B1. Case Study

B2, Location B. Study Area

B3. Scope

C1. Event Type C. Event
D1. Social Media Used

D2. Data Size:

D3. Data Duration D. Data Details

D4. Data Language
D5. Other Data Used

Critical Literature
Review

El. Overview

E2. Data Collection
Methods Used

E. Data Collection

Methods E3. Data Collection/

Analysis Methodology

E4. Exclusion Criteria
Used

ES. Exclusion Criteria
Analysis

F. Data Analysis
Methods

F1. Data Analysis
Method Used

F2. Algorithms Used

G1. Evaluation Methods

G. Evaluation Methods (Used

G2. Evaluation Score

Figure 3. Social Media Literature Database: seven main categories (A to G) and their respective 27 subcategories (Al to A9, B1 to B3 etc.)
populated in the critical review database (for further details refer to Appendix Table Al and Fig. Al).
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Figure 4. The total citations (dark yellow, primary y axis) and the number of publications (dark grey, secondary y axis) per year, in the Social
Media Literature Database from January 2010 to September 2023 (250 publications).

3.2 Early Works on Social Media Data in Disaster
Management (2010-2023)

Over the past decade, researchers have extensively explored
the role of data in disaster management, with a growing fo-
cus on SMD for collection, analysis, and decision-making
support. This section provides an overview of early works,
including case studies, methodological publications, and re-
view publications, and outlines the current state of research
on the use of SMD in disaster contexts.

We identified four major categories of literature that utilise
User-Generated Information (UGI) for disaster management,
with the focus and application of each category evolving over
time.

L. Surveys and Questionnaires. These studies collect UGI
directly from disaster-affected communities through
surveys and interviews to assess preparedness and es-

Nat. Hazards Earth Syst. Sci., 26, 215-250, 2026

timate damages (Lopez-Marrero, 2010; Aisha et al.,
2015; Anson et al., 2017). Post-disaster surveys serve as
reliable sources for informing mitigation efforts, involv-
ing both citizens and officials (Islam and Walkerden,
2015; Ferris et al., 2016). Questionnaire surveys were
typically conducted among local residents, officials, and
school authorities to assess disaster awareness, inform
mitigation strategies, and estimate damages based on
firsthand accounts of impacts and preventive measures.
publications argue that such data is often more credible
than social media content, which may contain misinfor-
mation (Tandoc Jr and Takahashi, 2017; Albris, 2018;
Delilah Roque et al., 2020).

IL. Justifying Social Media as UGI. These works highlight

social media’s potential for crisis communication and
awareness-building, focusing on platforms like Twit-

https://doi.org/10.5194/nhess-26-215-2026



L. S. Gopal et al.: Review Article: Social Media and Disaster Management 221

(a)

0.8%

0.8%

2022

M Journal
Conference

B Report

Il Book

I
2020 I
I

2018
S
3 2016 /e
R I ——
2014 —
—
2012 —
—
2010 —
0 5 10 ) 20 5 30 35 20 G

Number of Publications

Figure 5. The number of publications under the categories “Journal”, “Conference”, “Report”, and “Book”. (a) The percentage of publica-
tions (out of 250) and (b) number of publications under each category, by year, in the period January 2010 to September 2023.

ter (X) and Weibo during emergencies (Gao et al.,
2011; Abel et al., 2012; Imran et al., 2013b). They dis-
cuss tools such as APIs and open-source crisis mapping
platforms that enhance information flow and response.
These publications also emphasised the active engage-
ment of people on social media platforms during disas-
ters and their role in information dissemination.

III. Use of Social Media Data (SMD) in Practice. Studies in
this category collect and analyse real-time or historical
SMD to improve disaster response. Beginning in 2011,
research emphasised SMD, specifically Twitter (X) data
for early warning, identifying disaster hotspots, situa-
tional awareness, and community-level insights (Choi
and Bae, 2015; Huang and Xiao, 2015; Ogie et al., 2019;
Son et al., 2019; Singh et al., 2019; Fan et al., 2020).
Findings revealed spikes in activity near disaster events
and the role of social platforms in fostering emergent
responder communities.

IV. Advanced Analysis Using ML and NLP. From 2013 on-
wards, research focused on applying ML and NLP to
analyse social media content more effectively to ex-
tract insightful inferences from SMD (Olteanu et al.,
2015; Wang et al., 2016; Han et al., 2020). These studies
address challenges like multilingualism, informal lan-
guage, and contextual understanding in disaster-related
posts.

Figure 6 visualises the evolution of these categories.
Survey-based approaches (Category I) were more prevalent
until 2011, after which focus shifted toward social media
(Categories II, III, and IV). The literature consistently af-
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firms the utility of social media in disaster contexts, while
also acknowledging concerns over data reliability. Some pub-
lications span multiple categories, covering both conceptual
potential and practical application.

To further understand the current technological trends, we
examined the publications that explored the technical as-
pects of SMD collection and analysis. Since 2010, several
authors have employed advanced methods for identifying,
acquiring, filtering, and analysing relevant data (Gerlitz and
Rieder, 2013; Tang et al., 2015; Batrinca and Treleaven,
2015; Steiger et al., 2015; Eilander et al., 2016; Ilieva and
McPhearson, 2018; Zhang et al., 2018; Bukar et al., 2022).
Around 95 % of the publications in our database relied on
Twitter (X), with the remaining 5 % using other sources
like Facebook, Weibo, or manual surveys. This Twitter (X)
bias largely stems from search queries emphasising the term
“Twitter” (see Fig. 2) and is influenced by its greater acces-
sibility and data availability (Sect. 4.7), limiting representa-
tiveness across all platforms.

Several authors (Cameron et al., 2012; Black et al., 2012;
Oussalah et al., 2013; Schempp et al., 2019; Kejriwal and
Gu, 2019; St Denis et al., 2020; de Oliveira and Guelpeli,
2020) experimented SMD collection methodologies where
they developed frameworks to query the Twitter Streaming
API using independent search jobs, storing results in struc-
tured databases. These tools allow keyword-, user-, location-
, and date-specific queries, proving especially useful in dis-
aster scenarios requiring precise, location-based data (Abel
et al., 2012; Muhammad et al., 2018; Yang et al., 2019a;
Ghawana et al., 2021).

Nat. Hazards Earth Syst. Sci., 26, 215-250, 2026
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(a) SMD analysis
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Figure 6. The classification of publications in the Social Media
Literature Database within four categories for disaster manage-
ment (I. SMD analysis using ML/NLP; II. Why use social media?;
III. Twitter (X) data usage; IV. Surveys and Questionnaires) (see Ta-
ble 1 for acronyms). (a) Venn diagram showing the number of pub-
lications in one or more of these categories; (b) Bar chart showing
the number of publications in each category per year, 2010 to 2021
(publications from 2022 and 2023 were omitted due to limited rep-
resentation, as the analysis focuses on the evolution of social media
usage over time).

To further analyse SMD, several studies experimented
with emerging technologies such as NLP and Al (Gautam
and Yadav, 2014; Wachowicz et al., 2016; Huang et al.,
2016, 2018; Mazoyer et al., 2018; Suzuki, 2019; Brena et al.,
2019; Hao and Wang, 2020; Domala et al., 2020; Yuan et al.,
2021; Akhter et al., 2021; Jiang et al., 2022). These works
applied sentiment analysis and feature extraction, particu-
larly from adjectives in tweets, to detect public opinion and
emotional tone using probabilistic models like Naive Bayes
and Maximum Entropy. Such analysis is valuable for assess-
ing community response and needs during or after disasters
(Mandel et al., 2012; Neppalli et al., 2017; Ragini et al.,
2018; Wu and Cui, 2018; Reynard and Shirgaokar, 2019;
Pourebrahim et al., 2019; Yabe and Ukkusuri, 2019; Karim-
iziarani and Moradkhani, 2023).

Several studies examined the behaviour of social media
users involved in sharing and consuming disaster-related
news, offering insights into user activity patterns and retweet
behaviours on platforms like Twitter (X) (Lachlan et al.,
2010; Houston et al., 2012; Liu and Stevenson, 2013; Kaewk-
itipong et al., 2016; Valenzuela et al., 2017; Kim et al,,
2018; Verma et al., 2019; Yeo et al., 2022). Such behavioural
analyses help reveal how information spreads during crises
and support the development of effective communication
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strategies (Mendoza et al., 2010; Kim, 2014; Chae et al.,
2014; Spence et al., 2015; Hara, 2015; Kibanov et al., 2017,
Jitkajornwanich et al., 2018). Additionally, researchers high-
lighted the importance of analysing language use in social
media, particularly non-English content, to improve global
and community-level disaster response (Lee et al., 2011;
Abel et al., 2012; Reuter and Schréter, 2015; Carley et al.,
2016a; Xu et al., 2016). These works emphasised that lin-
guistic variation, such as local grammar and usage, requires
adaptable ML and NLP techniques to extract actionable in-
sights across diverse language contexts.

We also examined several survey and review publications
within the literature database that offered critical insights into
the methodologies, opportunities, and challenges associated
with using SMD across different phases of disaster manage-
ment.

In the late 2010s, a seminal work by Hristidis et al. (2010)
explored data integration, information extraction, filtering,
mining, and decision support methods in disaster manage-
ment. Early contributions (Imran et al., 2015; Granell and
Ostermann, 2016) stressed the need for a disaster manage-
ment dataspace and highlighted related challenges. Simulta-
neously, Veil et al. (2011) reviewed the development of risk
and crisis management processes to support community en-
gagement in decision-making.

Several authors emphasise the potential of social media
to enhance community interaction across all disaster man-
agement phases (Tim et al., 2017; Anson et al., 2017; Nazer
etal., 2017). A pivotal work by Landwehr and Carley (2014)
explores the roles of the community and organisations in dis-
aster management, on how the public not only seeks life-
saving information but can also contribute to effective infor-
mation dissemination, fostering community awareness. Ad-
ditionally, the authors critically review how first responder
organisations increasingly rely on SMD to identify areas in
need of assistance during crises.

Recent reviews have examined advanced data acquisition
and preparation techniques, including API calls, querying,
and pre-processing (Houston et al., 2015; Spence et al., 2016;
Eriksson, 2018; Zhou et al., 2018; Luna and Pennock, 2018;
Saroj and Pal, 2020). These studies also address geolocation
and geocoding for identifying disaster zones. Notably, Im-
ran et al. (2015) provided early insights into event detection
using such methods.

Key challenges identified include data quality and cred-
ibility, particularly in the context of relevance for disaster
response (Simon et al., 2015; Lin et al., 2016; Said et al.,
2019; Acikara et al., 2023). Concerns about misinforma-
tion, such as rumours and false data, are prevalent (Reuter
and Kaufhold, 2018; Jurgens and Helsloot, 2018). Haworth
and Bruce (2015) discusses the risks associated with data
from untrained individuals with diverse agendas and exper-
tise, emphasising the lack of quality assurance, and warned
of risks posed by unverified sources in SMD, and highlighted
the danger of delayed official responses.
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Nazer et al. (2017) investigated the impact of misleading
content (e.g., spam, bots, rumours), stressing the importance
of filtering such data. The study also noted how user lan-
guage shifts under distress and recommended probabilistic
topic modeling, such as LDA, to detect underlying themes.

Other recent reviews explored Al applications in disas-
ter contexts, especially the analysis of multimodal SMD
(text, images, videos, metadata), which can collectively en-
hance crisis understanding (Pender et al., 2014; Yu et al.,
2018; Goswami et al., 2018; Eckert et al., 2018; Akter and
Wamba, 2019; Vongkusolkit and Huang, 2021; Aboualola
et al., 2023). In a pivotal work by Imran et al. (2020), the
article highlights that the multimodal nature of SMD, when
collectively analysed, can significantly enhance the under-
standing of a crisis.

Bibliometric studies by Tang et al. (2021) and Fauzi
(2023) showed that SMD research gained stability between
2015 and 2019, with NLP, ML, and computer vision emerg-
ing as prominent themes. While social media enhances com-
munity engagement during crises (Alexander, 2014; Reuter
and Kauthold, 2018), its practical use remains constrained
by concerns over data reliability and credibility (Beigi et al.,
2016; Palen and Hughes, 2018; Zhang et al., 2019a; Imran
et al., 2020).

3.3 Actionable Information (A-Info) Analysis

To address our research question “Does social media provide
actionable information (A-Info) in disaster scenarios?”’, we
analyse the publications listed in the Social Media Literature
Database under the theme of “Disaster Management”. By us-
ing various studies (Palen et al., 2010; Sakaki et al., 2010;
Zhou et al., 2013; Jongman et al., 2015; Musaev et al., 2018;
Phengsuwan et al., 2019; Guntha et al., 2020b; Gopal et al.,
2020; Guntha et al., 2020a; Gopal et al., 2022; Aswathy et al.,
2022) and based on our experience, we have defined nine
generic Actionable Information (A-Info) categories which
are assigned to each publication under the “Disaster man-
agement” theme listed in the SMLD.

A publication can fall into one or more of the nine
A-Info categories as described in Table 2. These classifi-
cations center around data collection methods, geolocation
identification, relevance filtering strategies, community and
stakeholder collaborations, and software development. Ta-
ble 2 displays the various categories with their respective de-
scriptions, detailing the methods and applications considered
within each A-Info category in this study. Additionally, we
include references for publications under each A-Info cate-
gory that have garnered higher citations compared to others
in the same category.

3.4 Journal Distribution and Theme Analysis

Among the 250 publications in the SMLD, 184 were journal
articles. Figure 7 highlights the top five journals (3.0 % of
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123 journals) and their article counts (total of 51 journal ar-
ticles in the top five journals). These articles were classified
into three themes: “Disaster Management”, “Social Media
Analytics”, and “Social Science”, with “Disaster Manage-
ment” being the most prominent. Although only two articles
fell under “Social Science”, they provide valuable insights
into demographic studies using SMD, while “Social Media
Analytics” articles focus on data collection techniques from
a systems development perspective.

3.5 Case Studies and Geographic Scope

Over 60 % of the publications (Jung et al., 2015; Chen et al.,
2016; Bala et al., 2017; Kurkcu et al., 2017; Liu et al., 2018;
Brangbour et al., 2020; Rahmadan et al., 2020; Liu et al.,
2020) categorised under the “Disaster Management” theme
employed case studies to evaluate their methodologies.

Figure 8 provides metrics on the use of case studies and
their geographical scope. Notably, approximately 50 % of
the publications (Yuan and Liu, 2018; Kanth et al., 2019;
Yang et al., 2019b; Kankanamge et al., 2020a) utilised re-
gional case studies, which were the most prevalent among
the different geographical scopes. It is worth mentioning that
North America, particularly events such as Hurricane Sandy
(2012), Hurricane Matthew (2016), and the Red River Valley
Flood (2009), was the most frequently used region in these
case studies (Ferris et al., 2016; Martin et al., 2017). We can
also observe from Figure 8 that around 39 % of the 250 pub-
lications do not use a case study to validate their respective
methodologies.

3.6 Disaster Events

Publications categorised under the theme “Disaster Manage-
ment” were further classified in the “Event” category, indi-
cating the specific disaster event type (the type of natural
hazard) studied by the respective authors. Figure 9 shows
the metrics of the “Event Type” category in the Social Me-
dia Literature Database for 175 publications where a hazard
type is mentioned and named (removed are n =75, which in-
cludes “Other” event types and “NA” entries). In some stud-
ies (n = 10), more than one disaster event was studied. Our
examination of these case studies revealed that flood was the
most frequently studied hazard type in disasters (n = 47), fol-
lowed by hurricane (n = 44) (Middleton et al., 2013; Freberg
et al., 2013; Gupta et al., 2013; Guan and Chen, 2014; Xiao
etal., 2015; Yoo et al., 2016; Jamali et al., 2019; Wang et al.,
2019). We can also observe that earthquakes as a source of
disaster events was studied every year of the review period by
authors in our review. The least studied events were storms,
volcanoes, and cyclones.

3.7 Data Sources and Collection Methods

Among the studies listed in the literature database, exclud-
ing the review publications, approximately 72 % (182 out of

Nat. Hazards Earth Syst. Sci., 26, 215-250, 2026



224 L. S. Gopal et al.: Review Article: Social Media and Disaster Management

Top Journals
& International Journal of Disaster Risk Reduction

[ International Journal of Information Management
B Computers in Human Behavior
[[] computers, Environment and Urban Systems

[] IEEE Intelligent Systems

Themes
[ Disaster Management

[ Social Media Analytics

[l Social Science
(b)

2022
2020
2018

E 2016
2014
2012

2010

0 5 10 15 20 25 30 35 40 45
Number of Articles

Figure 7. Classification of journal articles in the Social Media Literature Database based on three themes “Disaster Management”, “Social
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Table 2. Description of nine Actionable Information (A-Info) categories. Each publication listed in the Social Media Literature Database be-
longing to the “Disaster Management” theme is grouped under one or more A-Info categories. The “References” column shows publications

with high citations under the A-Info category for reference.

A-Info Category

Description

References

A-Info-1. Disaster Data Collection

Uses Application Protocol Interfaces (APIs)
or tools to collect and analyse public
communication during disasters.

Middleton et al. (2013),
Radianti et al. (2016),
Granell and Ostermann (2016)

A-Info-2. Geolocation Detection
and Analysis

Extracts location from user content or
geotagged data; performs spatial analysis.

Kryvasheyeu et al. (2016),
Cenni et al. (2017),
Kankanamge et al. (2020b)

A-Info-3. Relevance Filtering

Uses keyword filters to exclude irrelevant,
outdated, or misleading posts
(e.g., ads, past events, rumoured content).

Campan et al. (2018),
Abedin and Babar (2018)

A-Info-4. Community Collaborations

Uses Social Media Data (SMD) to improve community
awareness and share preparation information

(e.g., rescue camps, aid sources), and analyse public
emotions before, during, and after disasters.

Plachouras et al. (2013),
Olteanu et al. (2014),
Verma et al. (2019)

A-Info-5. Disaster Trends

Analyses past disaster events and current landscape
(geography, demography) using SMD to predict
recurrence, identify events, and perform topic
modeling or classification.

De Albuquerque et al. (2015),
Fohringer et al. (2015)

A-Info-6. Stakeholder Collaboration

Identifies key stakeholders (community, government,
NGOs, volunteers), Builds collaborative crisis strategies
and analyses stakeholder-public communication.

Imran et al. (2013a),
Ragini et al. (2018)

A-Info-7. Software Development

Software tool/dashboards/websites/apps,
a Tool that provides real-time alerts, warnings

Lachlan et al. (2010),
Ashktorab et al. (2014),
Jitkajornwanich et al. (2018)

A-Info-8. Resource Identification

Identifies public needs and aids organisations

Lee et al. (2011)

in resource allocation (rescue, essentials),
including damage and risk assessment.

A-Info-9. Community Response

or interviews.

Captures public feedback post-response,
analyses behaviour, and includes surveys

Chen et al. (2014),
Reuter and Schroter (2015),
Huang et al. (2016)

250) utilised SMD from various platforms as their input data
(e.g., Gautam and Yadav, 2014; Uchida et al., 2016; Branz
and Brockmann, 2018; Alampay et al., 2018). Within this
category, 70 % of the studies developed their own methodolo-
gies for collecting SMD tailored to their specific needs (e.g.,
Driscoll and Walker, 2014; Gaspar et al., 2016; Mac Kim
et al., 2016; Healy et al., 2017; Campan et al., 2018). They
frequently employed APIs, such as the Twitter Streaming
API and Representational State Transfer (REST) APIL. The
remaining 2 % of the studies utilised SMD available as on-
line resources from various portals (e.g., Ai et al., 2016;
Madichetty and Sridevi, 2021).

Out of the 250 studies, excluding the review publications,
nearly 13 % (34 publications) sourced their data from gov-
ernment authority portals (Ofli et al., 2016; Williams et al.,
2018). Frequently accessed portals included FEMA (Federal
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Emergency Management Agency, USA) and USGS (United
States Geological Survey), which offered valuable disaster-
related social information, satellite image data, and historical
event damage data. Additionally, approximately 4 % (11 pub-
lications) of the total used manually collected interview or
survey data (Adam et al., 2012; Aisha et al., 2015; Le Coz
etal., 2016; Lin et al., 2018; Lu and Yuan, 2021).

3.8 Data Relevance Filtering

The identification of relevant data presents a significant
challenge in SMD collection. The majority of publications,
around 70 %, employed NLP-based methods, particularly
text analysis, to address this challenge (Starbird et al., 2010;
Terpstra et al., 2012; Panagiotopoulos et al., 2016; Laylavi
et al., 2017; Lin et al., 2018). These methods involved the
use of inclusion keywords specific to their topics of interest
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Figure 9. Classification of 175 publications in the Social Media
Literature Database where authors gave the type of hazard for which
a disaster was studied. The large bar chart at the top represents the
number of publications under various hazard types, further divided
by case study types national, regional, and local. The smaller bar
charts in the lower half of the figure show the number of each hazard
type event, by year, for the years 2010 to 2023.

during data collection. While this approach aids in identify-
ing topic-relevant data, it may also introduce a considerable
amount of noise.

The use of exclusionary criteria proved valuable in noise
reduction, with approximately 12 % of the publications
adopting this approach (Joseph et al., 2014; Radianti et al.,
2016; McCormick et al., 2017). These publications utilised
NLP and ML-based solutions to exclude irrelevant data. Ex-
clusionary criteria are often constructed based on assump-
tions, emphasising the need for rigorous evaluation before
concluding. However, only a small percentage, approxi-
mately 2 % of the publications, conducted such evaluations
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before proceeding with the data analysis (Spinsanti and Os-
termann, 2013; Herfort et al., 2014; Li et al., 2018a; Ahmad
et al., 2019).

In Fig. 10, we present a summary of the relevance filtering
analysis from the publications in the SMLD. We can observe
that only 14 % of the 250 publications used exclusionary cri-
teria to perform relevance filtering. Notably, the majority of
the publications employed NLP methods to perform filtering
in comparison to ML methods. This analysis allowed us to
answer our research question (Q1), demonstrating that per-
forming relevance filtering is vital for improving data qual-
ity and application effectiveness. We recommend a thorough
study of input data and the implementation of NLP or ML
methods for effective relevance filtering strategies.

3.9 Data Analysis Methodologies

The methodologies employed in the publications within the
SMLD encompass a range of techniques in the fields of NLP
and ML. These methodologies include text analysis, Named
Entity Recognition (NER), Bag-of-Words (BoW), Part-of-
speech Tagging (PoS), and various feature extraction meth-
ods. Data analysis is carried out using both supervised and
unsupervised ML models, employing algorithms such as Lo-
gistic Regression (LR), Support Vector Machines (SVM),
Naive Bayes (NB), K-Nearest Neighbours (k-NN), Convolu-
tional Neural Networks (CNN), Decision Trees (DT), Ran-
dom Forest (RF), Latent Dirichlet Allocation (LDA), and
more (Plachouras et al., 2013; De Albuquerque et al., 2015;
Zhang et al., 2019b).

Some publications employ statistical techniques, includ-
ing correlation analysis (e.g., Pearson’s and Kendall’s), dis-
tribution analysis (e.g., Poisson and Binomial), and Gener-
alised Additive Models (GAM) (L6pez-Marrero, 2010; Liu
and Lee, 2010; Lu and Yang, 2011; Yin et al., 2012; Wester-
man et al., 2014). Others explore methodologies that estab-
lish relationships among stakeholders in disaster scenarios
and conduct network analyses to enhance decision-making in
the wake of disasters (Kogan et al., 2015; Wang et al., 2016;
Htein et al., 2018; Kim and Hastak, 2018; Rajput et al., 2020;
Wang et al., 2021). Figure 11 provides metrics on the tech-
nologies featured in the reviewed publications.

Figure 11 shows that NLP methods were employed the
most, where text analysis was in the majority. Analysing
the text of the social media post helps in identifying topic-
relevant keywords, event location, duration of the event, and
sentiment of the user. ML methods were also used for anal-
ysis, and the SVM algorithm was found frequently used by
the investigators. However, neural network algorithms were
not used much in the literature duration.

Roughly 65 % of the 250 publications in the SMLD con-
duct performance evaluations using a range of methods. Pub-
lications employing ML algorithms often rely on scoring
metrics like accuracy, precision, recall, and F-score (e.g., Im-
ran et al.,, 2013a; Olteanu et al., 2014; Wang et al., 2016;
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Figure 10. Result of research question Q1, “Does the use of exclusion criteria assist in relevance filtering of Social Media Data (SMD)?”
(see Sect. 2.1). The chart illustrates the percentage of publications (176 of 250 using social media data methodologies) within each legend
category, summarising data filtering approaches in the Social Media Literature Database (for abbreviations, see Table 1).
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Figure 11. Treemap of data collection and analysis algorithms used in the 250 publications listed in the Social Media Literature Database.
The percentages within the treemap indicate the proportion of publications employing each specific method, while the legend represents the
overall distribution across broader methodological categories (for abbreviations, see Table 1).

Nguyen et al., 2017). Those exploring sentiment analysis
in SMD typically utilise polarity scores for evaluation (e.g.,
Bala et al., 2017; Yuan et al., 2021). Some publications also
employ statistical tests, such as ANOVA, chi-square, corre-
lation values, and invariance tests to validate their method-
ologies (e.g., Steelman et al., 2015; Reuter and Spielhofer,
2017). Additionally, a few authors opt for manual evaluations
(e.g., Stephenson et al., 2018; Liu et al., 2020).

3.10 Actionable Information
The publications categorised under the “Disaster Manage-

ment” theme were categorised further based on the Action-
able Information (A-Info, see Table 2) classes to address our
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research question Q2, “Does social media provide action-
able information in disaster scenarios?”. Figure 12 shows the
number of publications assigned to each A-Info category by
year (2010 to 2023) and on an overall basis, noting that a
given study can be categorised in more than one A-Info.

From Fig. 12 we can observe that the following three
A-Info categories were the most prevalent, where studies fo-
cused on the development and testing of SMD collection
methodologies and geolocation identification methodologies,
and conducting spatial analyses:

— A-Info-1 “Disaster Data Collection” (45 %; 95 of 211
publications) (e.g., Howe et al., 2011; Chae et al., 2012;
Fohringer et al., 2015).
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— A-Info-2 “Geolocation Detection and Analysis” (43 %;
91 of 211 publications) (e.g., McClendon and Robinson,
2013; Abedin and Babar, 2018; Boas et al., 2020) and,

— A-Info-3 “Relevance Filtering” (57 %; 121 of 211) (e.g.,
Castillo et al., 2013; Neppalli et al., 2017; Madichetty,
2020).

Notably, 57 % of the publications were classified under
A-Info-3, emphasising the significance of relevance filtering
in disaster scenarios, and investigating methods to enhance
data quality and reduce noise.

For the other A-Info categories we observed the following:

— A-Info-4 “Community Collaborations” (11 %; 25 of
211), which studied how SMD can be utilised for com-
munity collaborations (e.g., Yang et al., 2019b; Yuan
et al., 2021).

— A-Info-5 “Disaster Trends” (23 %; 50 of 211), which
also focused on disaster hotspots (e.g., Podhoranyi,
2021; Karimiziarani and Moradkhani, 2023).

— A-Info-6 “Stakeholder Collaboration” (10 %; 22 of 211)
(e.g., Htein et al., 2018; Delilah Roque et al., 2020).

— A-Info-7 “Software Development” (8 %; 17 of 211),
were mostly open source software development (e.g.,
Yuan and Liu, 2018; Podhoranyi, 2021).

— A-Info-8 “Resource Identification” (7 %; 14 of 211), in-
volving resource identification methodologies, received
the least attention (e.g., Lépez-Marrero, 2010; Houston
et al., 2012; Delilah Roque et al., 2020).

— A-Info-9 “Community Response” (8 %; 18 of 211)
(e.g., Jitkajornwanich et al., 2018; Ahmad et al., 2019).

The analysis indicates that current methods, such as NLP
and ML, effectively aid in filtering SMD for relevance, re-
ducing noise, and excluding irrelevant content. However,
challenges related to data reliability, including rumours and
false information, persist. Many data collection methods em-
ploy inclusion keywords for relevance, which can introduce
noise. The use of exclusion criteria proves valuable in en-
hancing efficiency by eliminating specific data.

Each study categorised under the “Disaster Management”
theme fulfilled at least one A-Info category. Several stud-
ies (Cervone et al., 2016; Schempp et al., 2019; Podhoranyi,
2021) met more than five actionable information categories,
demonstrating their valuable contributions to efficient disas-
ter management.

4 Discussion

In this section, we analyse and discuss the different cate-
gories and the corresponding information within the Social

Nat. Hazards Earth Syst. Sci., 26, 215-250, 2026

Media Literature Database (Gopal et al., 2024). We organise
this section into subsections to address the various categories
within the SMLD. We discuss the data collection methods
used in the publications (Sect. 4.1), major disaster events
used as case studies in the publications (Sect. 4.2), SMD reli-
ability and external data usage in the publication methodolo-
gies (Sect. 4.3), algorithms used in the publication method-
ologies (Sect. 4.4), actionable information in the publications
(Sect. 4.5), methodological biases (Sect. 4.7), best practices
of social media usage (Sect. 4.8) and the practical applica-
tions of the Social Media Literature Database (Sect. 4.9). Ad-
ditionally, in Sect. 4.6, we showcase a methodology based on
our previous work for effectively collecting SMD through the
use of exclusion criteria and other NLP techniques.

4.1 Keyword Strategies and Filtering Challenges in
Social Media Data Collection

Approximately 70 % of the 250 publications in our Social
Media Literature Database (Gopal et al., 2024) employed
keyword-based methods for SMD collection, using topic-
relevant inclusion terms to extract relevant content (Wendt
et al., 2016; Henry, 2021). A common challenge in this ap-
proach was filtering noise (in other words, false positives,
potential social media “hits” which were not relevant).

For example, studies on Hurricane Sandy, a frequently
analysed event, used keywords such as “Sandy”, “Hurri-
cane”, “New York”, and “2012” to retrieve related content.
However, these also led to irrelevant data like metaphorical
phrases (e.g., “hurricane of emotions”) (Spence et al., 2015;
Kogan et al., 2015; Neppalli et al., 2017; Wang et al., 2019).

To reduce noise, some researchers incorporated exclusion
keyword sets. McCormick et al. (2017), for instance, re-
moved tweets mentioning “TV shows” during demographic
analysis, while Aswathy et al. (2022) filtered disaster-related
tweets and news by excluding terms like “Songs”, “Elec-
tion”, and “Victory” to avoid non-disaster phrases such as
“Landslide Victory” (see Sect. 4.6). This approach demon-
strates the effectiveness of exclusion keywords in improving
data collection efficiency.

Others applied ML techniques, particularly supervised
classifiers, to identify relevant posts. However, this required
large labelled datasets and domain expertise, making the pro-
cess resource-intensive (Chen et al., 2014; Ghani et al., 2019;
Fan et al., 2021).

Our review underscores the utility of exclusion-based fil-
tering in reducing noise (false positives) and improving effi-
ciency. However, it is vital to ensure that such filtering does
not omit valuable data. We recommend careful topic analysis
and early-stage implementation of exclusion criteria to opti-
mise both time and space complexity in SMD workflows.
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4.2 Major Disaster Events in the SMLD Publications

Approximately 74 % of the 250 publications in the SMLD
under the “Disaster Management” theme used real-world
disaster events as case studies to validate their methodolo-
gies. Figure 13 highlights major events frequently exam-
ined. These studies often relied on APIs to extract location-
specific data (e.g., via bounding boxes) (Purohit et al., 2014;
Neubaum et al., 2014). However, inaccuracies arose when
users mentioned non-existent locations. To address this, sev-
eral works focused on collecting geotagged posts, which bet-
ter reflect actual user location (Steelman et al., 2015; Resch
et al., 2018; Leon et al., 2018; Wang et al., 2021).

Hurricane Sandy (2012, USA) was the most frequently
studied event due to its high social media activity (Gupta
et al., 2013; Neubaum et al., 2014; Steelman et al., 2015;
Olteanu et al., 2015; Mukkamala and Beck, 2016; Jamali
et al., 2019). Several studies addressed misinformation and
challenges in content reliability during this event, highlight-
ing the impact of fake content on public perception (Poure-
brahim et al., 2019; Wang et al., 2019).

Smith et al. (2017) introduced a real-time flood monitor-
ing framework using social media, tested on the 2012 Tyne
and Wear flood. For the 2015 Nepal earthquake, Radianti
et al. (2016) proposed a multilingual tweet categorisation
approach to identify disaster needs and damages. The 2018
Woolsey fire was also analysed by St Denis et al. (2020), fo-
cusing on local user behaviour and content.

The events depicted in Fig. 13 have had significant impacts
on the affected populations. To gain a better understanding of
the scale of these disasters, we collected and analysed data
related to some of the major disasters from EM-DAT, the In-
ternational Disaster Database maintained by CRED (Centre
for Research on the Epidemiology of Disasters), covering the
period 2010 to 2023, to assess the number of affected individ-
uals. Figure 14 presents our findings revealing that the 2012
Hurricane Sandy in the USA and the 2010 China earthquakes
(including major events such as the Yushu and Qinghai earth-
quakes and others in 2010), each affected more than 2 million
people.

As demonstrated in Fig. 8 (refer to Sect. 3.5), our analysis
of continent-based case studies revealed that North America
was the most frequently utilised region, and it was evident
that major disaster events generated more data and garnered
increased attention on social media platforms. We recom-
mend increased focus on local disaster events to improve data
relevance, manage location ambiguity, and enhance response
strategies.

4.3 Social Media Reliability and Usage of External
Data in Database publications

Reliability remains a major concern in leveraging social me-

dia for disaster management (Mazoyer et al., 2018; Liu et al.,
2020). To address this, many authors combined social media
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with external data sources to improve methodological robust-
ness (Chatfield and Brajawidagda, 2013; Joseph et al., 2014,
Musaev et al., 2018).

External sources included government portals, satellite
imagery, disaster statistics, GIS and precipitation data, news
reports, and survey/interview data. Among the 250 publica-
tions reviewed, 26 % (65 publications) integrated such data,
particularly in US-based studies that frequently used FEMA
and USGS datasets (Hodas et al., 2015; Liu et al., 2018;
Musaeyv et al., 2018).

These sources aided not only in supplementing and val-
idating social media-derived insights (Earle et al., 2011; Li
et al., 2018b) but also in refining keyword sets and identify-
ing location details often missing from user-generated con-
tent (Dashti et al., 2014; Kryvasheyeu et al., 2016). We rec-
ommend continued integration of reliable external datasets
to improve authenticity and decision-making in disaster re-
sponse frameworks.

4.4 Algorithms used by Database Publications

As detailed in Sect. 3.9 and illustrated in Fig. 11, the algo-
rithms used in the reviewed publications were classified into
four categories: NLP, ML, Statistical, and Neural Networks.
NLP techniques were the most commonly employed, particu-
larly for content analysis during data collection and filtering
(Gupta et al., 2013; Madichetty, 2020). Statistical methods
supported correlation and distribution analyses (Htein et al.,
2018; Wang et al., 2019).

ML methods gained popularity after 2013 for classifi-
cation, clustering, and filtering tasks, with SVM, NB, and
RF frequently used (Nair et al., 2017; Srivastava et al.,
2020). Neural network models, though less common, showed
promising results in selected applications (Neppalli et al.,
2017; Reynard and Shirgaokar, 2019).

As shown in Fig. 15, the use of these methods increased
after 2015. Researchers often used ML/NN for relevance fil-
tering and disaster event detection in social media content
(Khaleq and Ra, 2018; Zhang et al., 2019b; Loynes et al.,
2022). However, few studies explicitly analysed pre-,during-,
and post-event social media posts.

Pre-event posts typically contain early warnings or alerts
(Chatfield and Brajawidagda, 2013; Carley et al., 2016b),
while during-event content includes rescue requests and ur-
gent needs (Jongman et al., 2015; Jitkajornwanich et al.,
2018). Post-event posts support damage assessment and re-
covery analysis (Shi et al., 2019; Rahmadan et al., 2020).

In our recommendations, we emphasise the importance of
investigating pre-event posts, as they can provide critical in-
formation for early warning systems, helping to save lives
and reduce the impact of disasters before they strike a loca-
tion, contributing to better disaster preparedness and timely
responses.

Nat. Hazards Earth Syst. Sci., 26, 215-250, 2026



230 L. S. Gopal et al.: Review Article: Social Media and Disaster Management

I. LN B
I
I |"
< o -] o
L) - - o
S < 5

Figure 12. Analysis of the 212 publications (out of 250) categorised under the “Disaster Management” theme. The stacked bar chart sum-
marises the percentage of Actionable Information (A-Info) classes by year for the years January 2010 to September 2023, while the smaller
bar charts show individual summaries, by year, for each A-Info (AI) class: A1 Disaster Data Collection, A2 Geolocation Detection and Analy-
sis, A3 Relevance Filtering, A4 Community Collaborations, AS Disaster Trends, A6 Stakeholder Collaborations, A7 Software Development,
A8 Resource Identification, A9 Community Response. See Table 2 for descriptions of each A-Info category.
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Figure 13. Timeline of 22 significant disaster events that occurred from 2010 to 2019. The legend shows the number of publications in our
Social Media Literature Database (250 publications) that used a particular natural hazard type as their case study (154 publications out of
250). Event names correspond to the case study entries in the Social Media Literature Database (Gopal et al., 2024).
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2010 Queensland Flood, Australia

2013 Australia Bushfire

2011 Bangkok Flood, Thailand

2017 Hurricane Harvey, Texas, USA

2015 Chennai Flood, India

2015 Nepal Earthquake

2016 Amatrice Earthquake, Italy

2015 South Africa Fire

2012 Tyne and Wear Flood, England

2015 Philippines Typhoon

2014 Ireland Flood

2015 Japan Flood

2014 Iceland Volcano

2012 Pakistan Flood
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2012 Hurricane Sandy, USA

2015 South Carolina Flood, USA

2010 Yushu Earthquake, China

2013 Colorado Flood, USA

\2012 Indonesia Tsunami

Figure 14. Affected population of twenty historical disaster events. The colour legend represents the affected population, and the alphabet

legend shows the details of the disaster event plotted on the map.

4.5 Actionable Information in Database Publications

To address research question Q2, “Does social media pro-
vide actionable information in disaster scenarios?”, the “Dis-
aster Management” related publications were mapped to nine
Actionable Information (A-Info) classes, revealing that ev-
ery study aligned with at least one class. A-Info-1 (Disaster
Data Collection), A-Info-2 (Geolocation Identification and
Analysis), and A-Info-3 (Relevance Filtering) were the most
frequently addressed, indicating a strong focus on data col-
lection, relevance filtering, and spatiotemporal analysis (Li
et al., 2018b; Wang et al., 2018). In contrast, A-Info-8 (Re-
source Identification), related to identifying resource needs
from social media, was the least explored, reflecting limited
attention to during-event classification (Houston et al., 2012;
Kryvasheyeu et al., 2016).

A-Info-7 (Software Development), focusing on real-time
platforms for public dissemination, also saw limited re-
search, possibly due to the lack of open-source tools dur-
ing the review period (Lépez-Marrero, 2010; Carley et al.,
2016a). Developing such platforms could enhance rapid re-
sponse and recovery. We recommend that researchers con-
sider creating more platforms or applications for making
disaster-relevant data and real-time analysis available to the
public.

A-Info-8 (Resource Identification), concerning commu-
nity interaction analysis, was underrepresented, despite its
importance for understanding behavioural dynamics during
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disaster phases (Valenzuela et al., 2017; Delilah Roque et al.,
2020). We recommend that future studies explore these as-
pects to inform community-based strategies.

Only a few studies addressed five or more A-Info cate-
gories (see Table 3), primarily focusing on floods and hur-
ricanes. These studies excelled in integrating data filtering,
spatial-temporal analysis, and community engagement.

Overall, our analysis highlights the strengths of social
media: real-time user content, geolocation, and situational
awareness, but also warns of issues like misinformation. Ro-
bust filtering and verification mechanisms remain essential.
We encourage more focus on A-Info-8 (Resource Identifi-
cation) and A-Info-9 (Community Response) to support in-
formed, real-time disaster response and resource allocation.

4.6 Exclusionary Criteria — reducing noise in data

Aswathy et al. (2022) collected disaster-related tweets using
inclusion keyword sets. However, further analysis of their
data revealed significant noise, tweets containing relevant
keywords but unrelated to disasters (e.g., “landslide victory,”
“flood of emotions,” “market flooded”). To address this,
we developed an exclusion keyword set comprising around
56 exclusionary terms related to elections, music, emotions,
and markets.

To evaluate its impact, we sampled 1000 tweets. As shown
in Fig. 16, around 80 % of irrelevant tweets were correctly
filtered using four exclusion sets, though some relevant data
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Table 3. Actionable Information (A-Info) categories (Table 2) from key publications in our Social Media Literature Database where A-Info

> 5 categories for a given publication.

Publication A-Infos  Purpose of study Event type

Fohringer et al. (2015) 1,2,3,5,8 Uses social media to task remote sensing during Flood
disasters for infrastructure damage assessment.

Haworth and Bruce (2015) 1,2,3,5,7 Crowd-based flood mapping using multiple social Flood
observations and reliability analysis.

Yu et al. (2018) 1,2,3,4,6,7,8 An interdisciplinary framework integrating social and  Hurricane
authoritative data to model rescue demand.

Guy et al. (2010) 1,2,3,4,7,8 NLP-based Twitter analysis for situational General emergency
awareness in emergencies.

Chae et al. (2012) 1,2,3,4,5 Facebook analysis to study social roles and Flood
connections in disaster response.

Bala et al. (2017) 1,2,3,5,7 Identifies relevant social media messages Flood
for disaster response.

Carley et al. (2016a) 1,2,3,4,5,6 Classifies social media messages across Hurricane

disaster phases and themes.
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Figure 15. Analysis of the methodologies employed in 190 of the
250 publications listed in the Social Media Literature Database. The
stacked bar chart summarises the overall percentage of “NLP” (Nat-
ural Language Processing), “ML” (Machine Learning), “Statistics”,
and “NN” (Neural Network) categories by year for the period Jan-
uary 2010 to September 2023, while the sub-bar plots show the
count per year of publications employing each methodology cate-
gory (with corresponding colours of sub-plot categories used in the
stacked bar plot).

(approx. 20 %) was missed, especially with music-related fil-
ters. Despite this limitation, exclusion criteria proved effec-
tive as a first-level filtering approach.
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Figure 17 illustrates a word cloud showing reduced noise
and enhanced disaster relevance post-exclusion. While the
strategy helps improve data quality, it demands manual cura-
tion and periodic updates to adapt to evolving contexts.

In disaster situations, where accuracy is paramount, ML
can play a pivotal role in identifying and eliminating outliers
and noise. By leveraging both basic NLP and advanced ML,
researchers can aspire to achieve a comprehensive strategy
for data collection, ensuring that the information extracted
from social media during crises is both accurate and action-
able.

4.7 Methodological Biases in Disaster-Related Social
Media Studies in Database publications

This section describes seven biases within the Social Me-
dia Literature Database (Gopal et al., 2024) publications re-
garding geographic, methodological, and data-related ten-
dencies. We recognised these biases as the critical review
methodology proceeded, solidified through extensive discus-
sions among the authors. By identifying these biases, we aim
to enhance the transparency of our analysis and provide a
foundation for future research.

1. Geographic location of the case studies used in
disaster-related publications. A notable geographic bias
was found in the case studies employed by researchers
in the literature, with a predominant focus on North
America (see Fig. 8). Around 40 % of the studies (60 of
154) used Hurricanes as the case study event, among
which around 60 % of the publications used events from
North America (Kryvasheyeu et al., 2016; Mukkamala
and Beck, 2016; Jamali et al., 2019). This raises con-
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L. S. Gopal et al.: Review Article: Social Media and Disaster Management 233

Number of correctly filtered
articles after exclusion

after exclusion

Number of articles not filtered

Number of relevant articles
missed after excluding

Figure 16. Evaluation of exclusionary criteria applied in a previous study on Twitter data collection framework for disaster management
(Aswathy et al., 2022). Tweets were initially collected using hazard-related keywords (Tweets geotagged as India, dated 2019-2020), but
non-hazard noise (false positives) still appeared. Four common false positive types were identified, “Election”, “Music”, “Market”, and
“Emotion”, and exclusion rules were applied to a sample of 1000 tweets. The donut charts show the percentage of tweets correctly excluded,
incorrectly retained, and relevant tweets missed for each false positive category.
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Figure 17. Results of the exclusionary criteria applied in a previous study on Twitter data collection framework for disaster management
(Aswathy et al., 2022). A sample of 1000 tweets (geotagged as India, dated 2019-2020) was selected from a larger dataset collected using
hazard-related keywords (see Fig. 16). The top word clouds show the presence of noise when “Music” and “Election” related tweets are not
excluded, while the bottom word cloud shows the dataset after applying exclusionary criteria (see Sect. 4.6). The words highlighted in red
are related to disasters. The size of each word represents the frequency of occurrence of a word in the sample data.

cerns about the generalisation of the findings in a global
context.

The majority of studies exhibit a bias towards regional
and national investigations, overshadowing the impor-
tance of local studies (see Fig. 8). One of the reasons is
that the availability of data is limited from a local scope
when compared to a national or regional disaster event.
The amount of population that uses social media plat-
forms also varies based on the area scope. Such biases
may limit the applicability of findings to specific con-
texts (e.g., Liu and Stevenson, 2013; Kankanamge et al.,
2020a; Li et al., 2021).
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2. External data used in disaster-related publications for

methodology validation. Various publications in the lit-
erature use external data such as EM-DAT, FEMA,
USGS, and more as supporting data to validate the
methodologies employed (e.g., Spinsanti and Oster-
mann, 2013; Hodas et al., 2015; Liu et al., 2018). This
may introduce a bias as these datasets may not compre-
hensively represent the effects of a disaster that occurred
in a specific region.

3. Social media data language preference in the publica-

tion. The publications that used SMD predominantly fo-
cused on the English language, which raises a linguistic
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Table 4. Comparison of search results using Boolean search strings Q1 to Q5 (see Fig. 2) used for publication searching in Google Scholar,
applied to the titles of the publication, replacing the word “Twitter” with other social media platforms. Section A of the table shows the
number of publications retrieved from Google Scholar, and Section B shows the number of publications relevant to each platform based on
abstract and title review. Under the Platform column, (a) represents original analyses (January 2010 to September 2023), and (b) represents
new analyses (2010 to July 2024). Note that the same publication might appear under different rows.

Platform A. Search Results ‘ B. Platform Related Publications

QL Q2 Q3 Q4 Q5|Ql Q Q3 Q4 Q5
Twitter (X) (a) 107 125 4 81 48 82 112 2 23 31
Twitter X)(b) 123 145 5 117 79 | 85 117 5 38 34
Facebook (b) 122 135 3 88 68 8 30 2 4
Weibo (b) 115 131 3 88 65 5 1 0 2 2
Instagram (b) 116 134 3 86 65 1 2 0 0 0
TikTok (b) 115 132 3 86 65 0 0 0 0 0
Reddit (b) 115 132 3 86 65 0 1 0 0 1
Quora (b) 115 132 3 86 65 0 0 0 0 0

bias, potentially excluding valuable insights from non- 5. Disaster events used in the publication for case stud-

English sources. Around 6 % (15 of 250) publications
used a language that is regional and relevant to their re-
spective case studies (Lee et al., 2011; Jongman et al.,
2015; Radianti et al., 2016).

. Social media platform preference for data collection
methodology in the publications. A clear platform bias
is evident, with the majority of studies relying on Twit-
ter (X) data (Earle et al., 2011; Sakaki et al., 2012).
This bias can be attributed in part to the Boolean search
strings used in our study, which emphasised the term

ies. The publications listed in the literature database
predominantly explore hurricanes and floods (Le Coz
et al., 2016; Madichetty, 2020), neglecting other im-
pactful events such as pandemics, landslides, storms,
and cyclones, which are few (Islam and Walkerden,
2015; Musaev et al., 2018). This may overlook crucial
aspects of disaster dynamics (see Sect. 4.2). It is also
relevant to analyse precursor events, such as heavy rain
as a precursor of a flood or a landslide, which aids in
early warning and mitigation.

: S i . - 6. Preference of disaster management phase in the publi-
“Twitter”, thereby limiting the inclusion of studies fo- cations for case studies. A bias emerges towards post-
cused on other social media platforms. However, this disaster phases such as response and recovery, with lim-
also reﬂech a broadF:r trend in the research community, ited exploration of early warning and mitigation phases.
where Twitter (X) is frequently used due to its open Around 4 % (7 of 154) publications experimented with
API access and the availability of structured metadata, early warning methodologies (Leon et al., 2018; Wu and
which facilitates data collection (Jitkajornwanich et al., Cui, 2018; Kitazawa and Hale, 2021). This raises the
2018). While platforms such as Facebook and Weibo concern about SMD availability in real-time from the
were mentioned in a few studies (Xu et al., 2016; Li social media platforms to develop solutions for early
et al., 2018a; Fang et al., 2019), their limited data ac- warning and mitigation.
cessibility continues to hinder their widespread use in ) o )
disaster-related research. Figure 18 shows the number of publications categorised

under each disaster management phase, by year, and
To explore this methodological bias further, we re-ran we can observe that post-disaster phases, which include
our original Boolean search strings (Q1-Q5, refer to response and recovery, are discussed more when com-
Fig. 2) by replacing “Twitter” with six other commonly pared to mitigation and preparedness. We recommend
used social media platforms (Facebook, Instagram, Tik- that the investigators develop early warning solutions
Tok, Reddit, Quora, Weibo). The results of this experi- using social media by analysing the precursor events of
ment are summarised in Table 4. a disaster.
Although search results across platforms were compara- 7. Actionable Information in the methodologies of

ble in number, actual usage of data from platforms other
than Twitter (X) was notably sparse. Twitter (X)’s ease
of access continues to skew data collection trends to-
ward its platform, creating a visibility gap for equally
relevant but less accessible platforms.
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disaster-related publications. While researchers excel
in temporal and spatial analysis (Kryvasheyeu et al.,
2016; Wang et al., 2018), there is a noticeable bias with
limited attention given to community interaction anal-
ysis, stakeholder engagement, and resource allocation
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Figure 18. Stacked bar chart showing the number of publications
(out of 250) listed in the Social Media Literature Database, cate-
gorised under each disaster management phase by year for the pe-
riod January 2010 to September 2023. Publications that addressed
more than one disaster management phase were assigned to the
phase most substantially discussed in the study.

strategies hindering a holistic approach to actionable in-
formation (see Fig. 12 and Sect. 3.10). Around 24 % of
the publications (49 of 212) discuss methods of com-
munity and stakeholder engagement to understand the
needs of the public during and post-disaster event (Chae
et al., 2014; Wang et al., 2016).

4.8 Best Practices of Social Media Usage for
Community and Researchers

Social media has become a vital tool for real-time com-
munication and information dissemination during disasters,
supporting the efforts of the public, government, and non-
government agencies, volunteers, and other stakeholders in
disaster management (Bruns and Liang, 2012; Smith et al.,
2017; Kankanamge et al., 2020b). As public reliance on these
platforms grows, it is essential to establish best practices for
both users and researchers to responsibly harness their poten-
tial (Lin et al., 2016). Drawing from the literature, we pro-
pose guidelines for public information sharing and outline
strategies for researchers to extract disaster-relevant data.
Adopting these practices can enhance disaster response, mit-
igation, and recovery.

The community plays a crucial role in disaster response by
providing valuable information to first responders (Stephen-
son et al., 2018; Kankanamge et al., 2020a). Social media
platforms are widely utilised for data acquisition during dis-
asters, but the major challenge is to identify reliable infor-
mation (Khaleq and Ra, 2018; Loynes et al., 2022). Table 5
shows a few best practices identified from the literature that
can be followed by the community to provide credible infor-
mation on social media.
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As researchers increasingly turn to SMD to gain insights
about disasters, it is necessary to consider a few best practices
to be followed so that data can be acquired and analysed effi-
ciently (Branz and Brockmann, 2018; Campan et al., 2018).
Drawing from our comprehensive examination of the litera-
ture and our own experience in the subject, we offer recom-
mendations to researchers as described in Table 6.

These recommendations can enhance the effectiveness of
data collection and analysis methodologies when working
with SMD for disaster management.

4.9 Utilising the Social Media Literature Database:
Practical Applications and Recommendations

Our Social Media Literature Database is available in the form
of an Excel file that is open-access (Gopal et al., 2024). Upon
accessing the database, users can employ various functional-
ities to facilitate their research. The following are a few ex-
amples:

1. Search and Filter. Researchers can search for publica-
tions based on specific criteria such as year, keyword,
or journal using the search option. Additionally, the fil-
tering option enables users to view publications based
on particular conditions (e.g., publications published in
a specific year).

2. Sort Data. The sorting option allows users to organise
the data in ascending or descending order based on pa-
rameters such as year, citations, and the number of data
used.

3. Advanced Data Extraction. Advanced users with profi-
ciency in Excel can utilise formulas to perform complex
data extractions. For example, researchers can identify
publications that utilise NLP as a methodology within a
specified timeframe.

4. Reuse for Review publications. In the last decade, vari-
ous authors contributed critical and systematic reviews
in the domain of social media and disaster manage-
ment (Tang et al., 2021; Tsao et al., 2021; Bukar et al.,
2022). Researchers interested in conducting review pub-
lications in their domain can follow the publication
searching criteria and Boolean search string formation
methodologies outlined in the database. This enables
them to search for relevant publications and extract per-
tinent information for their review.

5. Usage for social media researchers. While the columns
in the database are tailored for social media relevance
filtering in disaster management, researchers from the
social media domain can adapt the database to their
needs. By excluding irrelevant columns and focusing
on relevant ones, such as publication source details, re-
searchers can redefine the database for their specific do-
main.
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Table 5. Six proposed best practices for social media usage for the community for effective disaster response.

# Best Practices Description

i Social Media Platform Leverage location-specific popular platforms to enhance reach and improve information
Selection for Effective dissemination during disasters (e.g., Twitter (X) in the USA, Facebook in India
Disaster Communication and the UK, and Weibo in China).

ii.  Mitigating Rumours Ensuring accuracy is crucial to prevent the spread of rumours during disaster management.
and Misinformation Avoiding assumptions and speculations in social media sharing is vital for effective

information dissemination.

iii.  Tagging official social Every major disaster-managing government or non-government organisations use social media
media handles for handles to share information. During or post-disaster, the public may have water, food,
effective response shelter, and rescue requirements that need immediate attention. The public can tag these

handles while sharing information which aids in informing the first responders easily.

iv.  Provide location For first responders, acquiring accurate location information is a challenge. The public can
information in the contribute effectively by sharing the location details of the affected area by geotagging
social media post or by providing landmarks or street names for efficient response.

v.  Disaster event description Public-provided detailed descriptions during disasters, including emergency type, severity, and
in the social media post visible hazards, aid first responders in assessing the situation. Using relevant hashtags of

official authorities helps consolidate information for easier tracking of updates.

vi.  Contribute multimedia data  Image and video information provides a better understanding of the disaster situation.

in the social media post

By not compromising on safety and privacy, if the public can share such data,
it will assist the authorities in rapid decision-making. It also provides additional
credibility to the social media posts which encourages other users to forward it further.

Table 6. Five proposed best practices for social media usage by investigators for effective research in the field of social media and disaster
management.

#

Best Practices

Description

i

Optimise data collection
with clear data
requirements

Conduct thorough data requirement analysis in the initial stages to devise an efficient data collection
strategy. Developing a well-defined keyword set, especially for temporal and spatial-specific data,
necessitates a deep understanding of the topic of interest.

ii.

Look beyond metadata
for precise location
extraction

Pay particular attention to the content within social media posts when extracting location
information. This approach may yield more accurate and contextually relevant location
data compared to relying solely on metadata.

iii.

Validate SMD with
external data sources

Detecting rumours can be challenging. The usage of valid data (such as news reports, and verified
social media handles, government reports) along with SMD can be experimented with for validation.

iv.  Improve stakeholder Stakeholder identification and network creation are highly necessary for the effective management
engagement of disasters. Through social media, a spatial analysis may assist in identifying necessary stakeholders
which can in turn help in rapid communication pre-, during, and post a disaster event.
v.  Language inclusivity in ~ Be language independent — focusing only on a single language could be ineffective.

disaster data extraction

The community-level public may post information in local languages,
which may contain relevant information.

6. Usage for disaster management researchers.

Re- 5 Conclusions

searchers in the field of disaster management can lever-
age the “Event” and “Case Study” columns to perform

basic searching and sorting techniques. This allows for
a detailed analysis of various disaster events in different

years and locations.
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The surge in SMD usage as a real-time information source
has had a transformative impact on the field of disaster man-
agement (Valenzuela et al., 2017; Mazoyer et al., 2018). To
leverage SMD usage for improving disaster management, the
identification of relevant and credible information is the main
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priority (Schempp et al., 2019; Domala et al., 2020). Our crit-
ical review of 250 studies, spanning from 2010 to 2023, is
available as a Social Media Literature Database (Gopal et al.,
2024) and has unveiled the methodologies, challenges, and
actionable insights on how to harness the potential of SMD.

Our findings highlight the usage of diverse technological
approaches employed by researchers over the years, mainly
focusing on NLP (Houston et al., 2012; de Oliveira and
Guelpeli, 2020), ML (Hodas et al., 2015; Domala et al.,
2020), and statistical approaches (Middleton et al., 2013; Lu
and Yuan, 2021) to address the challenges in identifying rel-
evant and actionable information from social media to apply
in the various phases of disaster management. We discussed
various algorithms used since 2010 to collect and analyse
SMD. These methodologies offer the means to identify noise,
which improves the data and relevance filtering (De Albu-
querque et al., 2015; Jiang et al., 2022).

Our review also focused on the influence of historical dis-
aster events on the researchers (Gupta et al., 2013; Ferris
et al., 2016) and observed that the same selected major disas-
ter events were often considered case studies (see Sect. 4.2).
Such events will contain vast amounts of data, which helps
in gaining a wider perspective from multiple dimensions. By
categorising the publications into nine actionable informa-
tion classes (see Sects. 3.3 and 4.5), we observed the multi-
faceted usage of SMD in various applications. Notably, some
researchers have achieved classification into multiple A-Info
classes, as shown in Table 3. This success points to the po-
tential usage of SMD in disaster response, preparedness, and
relief efforts.

The studies included in the critical review that employed a
spatiotemporal analysis mostly studied hurricanes and floods
(Rossi et al., 2018; Madichetty, 2020). We observed that Hur-
ricane Sandy (2012) was one of the key events that was used
as a case study by the researchers (Pourebrahim et al., 2019;
Wang et al., 2019). Across the majority of the publications
used in this review, Twitter (X) was the most prevalent plat-
form. Other platforms such as Facebook and Weibo were also
used, but in limited numbers (Xu et al., 2016; Han et al.,
2020).

Through this critical review, we conclude that exclusion-
ary criteria implemented using current technologies such as
NLP and ML significantly aid in relevance filtering of SMD.
One of the key advantages observed is the availability of real-
time, geolocated user-generated content that offers timely in-
sights into disaster situations, supporting situational aware-
ness, public sentiment analysis, and early impact assess-
ments. Moreover, actionable information for disaster man-
agement can indeed be extracted from social media. How-
ever, there is a need for greater emphasis on improving data
reliability (Bruns and Liang, 2012; Muhammad et al., 2018).
A predominant challenge remains the spread of rumours and
misinformation, which can have critical implications during
emergencies (Mendoza et al., 2010; Zhang et al., 2019b). Ad-
ditionally, our analysis highlights a relatively limited focus
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on understanding community and stakeholder interactions,
an area with significant potential to support first responders
and enhance coordinated disaster response.

Our review also proposed best practices for the usage of
social media to the community and researchers. We sug-
gested methods of posting disaster-related content on social
media to gain maximum reach and attention. We suggested
including account tagging and hashtags of concerned author-
ity accounts to receive attention. We also observed through
the critical review that clarity in the post content and inclu-
sion of multimedia improves credibility (Muhammad et al.,
2018; Alam et al., 2018). We suggested methods of extract-
ing SMD to the researchers and the good practices to utilise
them.

This review has not only aimed to provide a compre-
hensive overview of the existing literature but also aims to
contribute to future studies to explore various disciplines in
leveraging SMD to fortify disaster management efforts.
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Appendix A: Structure of the Social Media Literature
Database

In this section, we describe the structure of the Social Me-
dia Literature Database (SMLD) (Gopal et al., 2024), out-
lining the main categories and their corresponding subcate-
gories used to annotate the 250 publications reviewed in this
study. Table A1l presents the full set of categories and sub-
categories defined in the SMLD, while Fig. Al provides a
detailed illustration of Category B, “Study Area”.

Table A1. Overview of categories and subcategories used in the critical review to develop the Social Media Literature Database (SMLD).

Main Category ‘ Sub Category

ID Name ‘ID Name Description

A Publication Details | A1 ID Unique identifiers assigned to each of the 250 publications,

numbered sequentially from 1 to 250.

A2  Title Title of the article.

A3  Theme Thematic category assigned to each publication: “Disaster Management”,
“Social Media Analytics”, or “Social Science”.

A4 Author(s) Name of the authors (minimum 1, maximum 5).
A6  Citations Number of citations received by the article, as of September 2023.

A7 Kind of Publication = Type of publication assigned to each publication, classified into
one of four categories: journal, conference, report, or book chapter.

A8  Type of Publication Indicates whether the publication is a survey/review article or another type.

|
|
‘ A5 Year Publication year as recorded in the source.
|
|
|

A9  Publication Name Name of the journal, conference, or book in which the study was published.
B Study Area B1 Case Study Indicates whether the publication includes a case study,
with entries marked as “Y” (Yes) or “N”” (No).
B2  Location Specifies the location of the case study for publications that include one.
B3 Scope Indicates the scope of the case study, categorised as “national”, “regional”,

or “local” (refer to Fig. Al).

C  Event C1  Event Type Type of disaster event discussed in the publication, such as flood, landslide,
or other hazards.

D  Data Details D1  Social Media Used  Indicates whether the publication utilises SMD in its methodology,
with entries marked as “Yes” (if publication analyses Social

Media Data (SMD)) or “No” (if publication is a survey/review or

if it uses User-Generated Information (UGI) from official platforms).

D2 Data Size Represents the size of data used in the study.

D3  Data Duration Indicates the period or date range during which the SMD was collected,
as mentioned in the publication.

D4  Data Language Specifies the language(s) in which the SMD was collected and analysed,
as mentioned in the publication.

D5  Other Data Used Indicates whether the publication incorporates external data sources
apart from SMD.
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Table A1l. Continued.
Main Category Sub Category
ID Name ID Name Description
E  Data Collection Methods | E1 ~ Overview A summary of the overall methods used
in the publication.
E2  Data Collection Indicates whether the publication explicitly defines
Methods Used the data collection method used for SMD.
Entries are marked as “Y” (Yes) or “N” (No).
E3  Data Collection/ A brief description of the tools, programming languages,
Analysis Methodology or APIs used for data collection and analysis.

E4  Exclusion Criteria Used  Indicates whether the publication mentions applying any exclusion
criteria during data collection; recorded as “Y” (Yes) or “N”” (No).

E5  Exclusion Criteria Indicates whether the publication evaluates the applied exclusion

Evaluated criteria to check for missing relevant data or presence of noise;
recorded as “Y” (Yes) or “N” (No).
F Data Analysis Methods F1  Data Analysis Method Records the broader category of data analysis methods used in
Used the publication. The four categories recorded are: “NLP”, “ML”,
“Statistical”, and “NN”.

F2  Algorithms Used Records the specific algorithms employed in the methodology of
each publication. These may fall under one or more of the broader
categories mentioned in F1.

G  Evaluation Methods G1  Evaluation methods Records the evaluation or scoring metrics used to assess
the performance of the methodology.
G2  Evaluation score Records the performance score or metric value corresponding to

the evaluation method used.

Spatial Scale

[ contry ey

States / Provinces

Districts / Counties

Terminology

: From multiple countries
National

Regional

Data Characteristics

From a country/large state,
specific to an event, > 1 million km?

Related to events in districts,
county, provinces, < 1 million km?

cities, villages, < 10 thousand km

Wm Related to events in towns,

Figure Al. Study area scope categorised by geographic scale, namely, “National”, “Regional”, and “Local”, with their respective spatial
scale and data characteristics.
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