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Abstract. Extreme Rainfall Events (EREs) and resulting
flash floods in Saudi Arabia pose major threats, frequently
causing fatalities and significant economic losses. Accu-
rate ERE simulations are crucial for weather forecasting,
climate change assessment, and disaster management. This
study evaluates planetary boundary layer (PBL) and cloud
microphysics (MP) schemes to simulate EREs in the Ara-
bian Peninsula (AP) using the Advanced Research ver-
sion of the Weather Research and Forecasting (WRF-ARW)
model V4.4. Thirty-six combinations of four PBL and nine
MP schemes were tested across 17 EREs at a convection-
permitting 3 km resolution and compared with IMERG grid-
ded satellite data for rainfall and station observations for tem-
perature, humidity, and wind speed. The Kling—Gupta Ef-
ficiency (KGE), which incorporates correlation, variability,
and bias, was used as performance metric. We found a good
agreement between observed and simulated rainfall pat-
terns, though some over- and underestimations were present.
Among the PBL schemes, Yonsei University (YSU; BLI1)
tended to perform best in terms of rainfall, while Thompson
(MP8) ranked the highest among the MP schemes. Goddard
(MP7) also delivered strong results. Among all 36 combi-
nations, the Thompson-YSU (MP8_BL1) combination pro-
duced the highest mean KGE across the 17 EREs for rain-
fall, performing statistically significantly better than 21 other
combinations. While MP8_BL1 also performed best for
the other three meteorological variables, performance rank-

ings varied across variables, likely because different phys-
ical processes govern the simulation of different variables.
This study highlights the complexity of scheme evaluation
and the importance of analyzing multiple EREs with high-
quality reference data. The results offer practical guidance
for scheme selection and lay the foundation for improving
ERE forecasting and regional climate modeling over the AP.

1 Introduction

Extreme Rainfall Events (EREs) are episodes of intense rain-
fall over a short duration, often resulting in flash floods, land-
slides, severe damage to infrastructure and property, and loss
of life (Easterling et al., 2000; Houze, 2012; Kundzewicz
et al., 2014). These events are becoming more frequent
and intense as atmospheric moisture increases by about 7 %
per degree of warming, following Clausius—Clapeyron scal-
ing (e.g., Held and Soden, 2006; O’Gorman and Schneider,
2009; Muller and Takayabu, 2020; Fowler et al., 2021). Al-
though mean rainfall increases at a slower rate of 2 %-3 %
per degree, EREs can intensify by as much as 6 %—10 % de-
pending on their spatial and temporal scales (e.g., Allan and
Soden, 2008; O’Gorman and Schneider, 2009), significantly
increasing their potential for destructive impacts.
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Despite its arid desert climate and low annual rainfall,
Saudi Arabia regularly experiences significant EREs (Al-
mazroui, 2011; Haggag and El-Badry, 2013; Deng et al.,
2015; Yesubabu et al., 2016; Atif et al., 2020), particularly
during the rainy season from November to April. These
events are frequently associated with intrusions of an in-
tensified subtropical jet stream, mid-latitude cyclonic distur-
bances, and the low-level advection of warm, moist air from
nearby water bodies, including the Red Sea, Arabian Gulf,
and Arabian Sea (Evans et al., 2004; Barth and Steinkohl,
2004; Evans and Smith, 2006; De Vries et al., 2013, 2016).
Though infrequent, these EREs cause substantial damage (Al
Saud, 2010; Youssef et al., 2016), making accurate forecast-
ing and projection essential for disaster management, early
warning systems, and climate adaptation in the region (Hijji
et al., 2013; Abosuliman et al., 2014).

Advanced Research version of the Weather Research and
Forecasting (WRF-ARW; Skamarock et al., 2019) is a widely
used Numerical Weather Prediction (NWP) model in the
Arabian Peninsula (AP) to simulate and forecast EREs (Deng
et al., 2015; Taraphdar et al., 2021; Luong et al., 2025; Fran-
cis et al., 2025). These models are subject to various sources
of uncertainty, particularly due to parameterizations. Two
key parameterization schemes that strongly influence ERE
simulations include the Planetary Boundary Layer (PBL) and
cloud microphysics (MP) schemes.

The PBL scheme governs the vertical exchange of mo-
mentum, heat, and moisture between the surface and the at-
mosphere, playing a critical role in simulating near-surface
conditions. It regulates vertical mixing and turbulence, which
are essential for atmospheric instability and convective initia-
tion — key processes that directly impact rainfall development
(Kumar et al., 2008). The selection of an appropriate PBL
scheme is especially important in arid and semi-arid regions
such as the AP, as intense surface heating in desert environ-
ments leads to the formation of unusually deep PBLs, some-
times extending up to 5Skm during the day (Gamo, 1996;
Marsham et al., 2008; Ntoumos et al., 2023). This necessi-
tates the use of a scheme capable of accurately modeling the
vertical distribution of heat, moisture, and momentum within
such a deep layer. Furthermore, deserts are characterized by
complex thermodynamic profiles, including sharp temper-
ature gradients and significant humidity variations, which
complicate the modeling process. Strong diurnal tempera-
ture variations also require a PBL scheme capable of effec-
tively capturing short-term fluctuations in energy and mois-
ture fluxes.

The MP scheme governs the evolution of cloud particles,
including cloud droplets, rain, snow, and ice, which are es-
sential to determine the intensity and duration of rainfall
(Dudhia, 2014). It controls cloud formation, rainfall pro-
cesses, and interactions between different water phases. It
also influences radiative transfer by affecting cloud optical
properties such as droplet size distribution, phase, and con-
centration (Stull, 1988; Garratt, 1994; Dudhia, 2014). Ad-
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ditionally, MP schemes govern key hydrometeor processes
like condensation and coalescence, which directly impact
the timing, intensity, and spatial distribution of rainfall. Both
single-moment and double-moment schemes exist; the lat-
ter provide a more detailed representation by also predicting
number concentrations of hydrometeors (see, e.g., Kessler,
1969; Chen and Sun, 2002; Hong et al., 2004; Rogers et al.,
2001; Hong and Lim, 2006; Tao et al., 2016; Thompson et
al., 2008; Morrison et al., 2009).

Although several previous studies have evaluated different
WRF-ARW parameterization schemes in the AP (e.g., Deng
etal., 2015; Schwitalla et al., 2020; Attada et al., 2022; Abida
et al., 2022) and in other arid and semi-arid regions (e.g., Zit-
tis et al., 2014; Tian et al., 2017; Liu et al., 2021; Messmer
et al., 2021; Mekawy et al., 2022), they have typically fo-
cused on individual EREs and conducted limited sensitivity
analyses using a small number of parameterization schemes
(Table 1). The case-specific nature of these studies often re-
stricts the generalizability of their results to other EREs and
varying conditions, reducing their broader applicability for
predicting EREs in the complex climate dynamics of the AP.

Our study addresses this gap by conducting an extensive
evaluation of WRF-ARW PBL and MP schemes for sim-
ulating EREs over the AP at convection-permitting resolu-
tion (3km) to determine the best combination of PBL and
MP schemes. We simulate the EREs using a two-way nested
domain configuration with 53 vertical levels and horizontal
resolutions of 9 and 3 km. We analyze 17 EREs from 2010
to 2022 across the AP, testing 36 different combinations of
PBL and MP schemes. The Kling—Gupta Efficiency (KGE)
is used to evaluate the model’s performance. We also analyze
which component of the KGE exerts the dominant control on
the overall KGE scores and whether the performance rank-
ing of schemes is statistically significant and robust across
other meteorological variables (2 m air temperature, 2 m rel-
ative humidity, and 10 m wind speed). Additionally, we in-
vestigate the temporal and spatial consistency of the rainfall
evaluation. Lastly, we compare the PBL and MP schemes
identified by our assessment as the most effective with those
frequently used in previous studies.

2 Physiographic and climatic description of the study
area

Saudi Arabia, covering 80 % of the AP, spans from 16-33°N
and 34-56° E, with an area of approximately 2.1 million km?,
making it the largest country in the Middle East and the 12th
largest globally. The terrain includes highlands, volcanic
fields, mountain ranges, and the vast Arabian desert, featur-
ing the Rub’ al Khali, the world’s largest continuous sand
desert. Despite lacking permanent rivers, it has many wadis,
alluvial deposits (Vincent, 2008; WeatherOnline, 2024), and
about 1300 islands in the Arabian Gulf and the Red Sea. The
central plateau stretches from the Red Sea to the Arabian
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Table 1. Previous studies evaluating WRF-ARW physics schemes in the Middle East.

Region Kind of schemes Number of Number of  Conclusion Reference
events vertical
levels used
Jeddah, Microphysics schemes: ~ Three flash floods 50 The WRF-ARW model effectively simulates Deng et al. (2015)
Saudi Arabia  Lin, Eta Ferrier events flash floods in Jeddah, with 1 km resolution
improving rainfall accuracy and 5km
requiring careful parameterization
due to observed spatial displacement.
AP Cumulus schemes: Winter simulation 52 Selecting subgrid convective parameterization Attada et al. (2020)
KF, BMIJ, GF from 2001 to 2016 is crucial for accurate high-resolution
rainfall simulations over the AP.
AP MP schemes: Case study on 100 The best performance was obtained using Schwitalla et al. (2020)
Thompson 2-moment, 14 July 2015 a convection-permitting model resolution
and WDM6 and with aerosol-aware Thompson MP combined
PBL schemes: MYNN with the MYNN Level 2.5 PBL scheme,
Level 2.5 and YSU which effectively captured rainfall.
Middle East ~ PBL schemes: Single year run 45  Gray-zone simulations enhance rainfall modeling  Taraphdar et al. (2021)
ACM2, QNSE, for 2017 but are highly dependent on resolution and
MYNN Level 2.5 and the selection of physics schemes.
AP Cumulus schemes: Winter simulation 52 EREis best simulated using the KF scheme, Attada et al. (2022)
KF, BMJ, GF from 2001 to 2016 highlighting the importance of cumulus

parameterization in WRF-ARW for reliable
and the selection of physics schemes.

Gulf, while the Asir province reaches 3002 m above sea level
at Jabal Ferwa, and the Hejaz region contains approximately
2000 extinct volcanoes across 180000 km?. The climate is
characterized by vast deserts, rugged mountains, and a hyper-
arid climate, with extreme summer temperatures of 45-54 °C
and winters rarely below 0 °C (De Vries et al., 2016; El Ke-
nawy et al., 2014; Mostamandi et al., 2022; Ukhov et al.,
2020). The average annual rainfall over the region is about
63 mm, except in the southwest, where monsoons bring over
300 mm of rain from October to March (Wang et al., 2025).

The primary mechanisms driving rainfall vary between the
eastern and western coasts. On the western coast, the Asir
mountain chains play a significant role in capturing moist
northwesterly winds along the Red Sea coast, particularly
during winter, extending up to the Bab el-Mandeb Strait
(Pedgley, 1974; El Kenawy et al., 2014; Mostamandi et al.,
2022). From East Africa through the Red Sea towards the
eastern Mediterranean, the Red Sea Trough (RST) creates a
geographical environment conducive to forming strong low-
pressure systems over the central Red Sea. These systems
can generate substantial rainfall within the region (De Vries
et al., 2013; El Kenawy et al., 2014). In contrast, the eastern
coast, influenced by the Hajar Mountains and its proximity
to the Arabian Sea, receives convective rainfall driven by the
summer monsoon and moisture-laden winds from the Indian
Ocean (Babu et al., 2016).
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3 Data and Methods
3.1 Selection of Historical Extreme Rainfall Cases

We selected 17 EREs across from 2010 to 2022 that caused
significant damage to infrastructure and property, as well as
loss of life, and received widespread media coverage. Table 2
lists the EREs analyzed in this study. We included 17 cases
to increase the likelihood of obtaining statistically signifi-
cant results regarding the relative performance of different
schemes. We did not analyze more cases due to the signifi-
cant processing, storage, and computational demands.

3.2 Initial and Boundary Conditions

ERAS pressure-level data (with 37 levels, extending up to
approximately 30km altitude; 0.25° spatial resolution) was
utilized to provide initial and boundary conditions for each
3h time step to run WRF-ARW. ERAS is the most reli-
able reanalysis currently available and was therefore used for
this purpose (Hersbach et al., 2020). The data were obtained
from the Copernicus Climate Data Store (CDS; https://cds.
climate.copernicus.eu, last access: 24 June 2024). ERAS also
provides model-level fields, which offer a finer native repre-
sentation of the vertical structure, particularly in the bound-
ary layer and near the tropopause. Using model levels for all
17 EREs and 36 parameterization combinations (612 simula-
tions) would substantially increase the initial-condition data
volume and I/O burden, particularly when combined with a
denser WREF vertical grid, which further increases computa-
tional cost. We therefore used pressure levels as a pragmatic
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compromise, and our results should be interpreted with the
caveat that some small-scale vertical features may be under-
resolved.

3.3 Observations

As a reference for our assessment, we used rainfall esti-
mates from the satellite-based Integrated Multi-satellite Re-
trievals for GPM (IMERG) Final V07 product (Huffman et
al., 2023). The product covers 2000 to the present, has a
30 min 0.1° resolution, and was aggregated to hourly for our
analysis.

We also used 2m air temperature (°C), 2m rela-
tive humidity (%), and 10m wind speed (metre per
second) observations from the IOWA Environmental
Mesonet (METAR) data provided by Iowa State Uni-
versity (https://mesonet.agron.iastate.edu/request/download.
phtml?network=SA__ASOS, last access: 24 June 2024; for
locations, see Fig. S1 in the Supplement).

3.4 WRF-ARW Model Configuration

This study uses the WRF-ARW model version 4.4, a
non-hydrostatic, fully compressible model with a terrain-
following coordinate system (Skamarock et al., 2019). The
model is configured with two-way nested domains with hor-
izontal grid dimensions of 493 x 418 for the parent domain
(D01) and 1012 x 889 for the nested domain (D02), and a
model top pressure of 30 hPa, comprising 53 vertical hybrid
sigma levels and a horizontal resolution of 3 km in the inner-
most domain, as shown in Fig. 1. The DO1 domain covers
a vast region of the AP from 21 to 65°E in the zonal direc-
tion and from 2 to 40° N in the meridional direction. We used
a two-way nesting approach to allow feedback between the
high-resolution inner domain and the coarser parent domain.
This is essential for capturing small-scale processes like con-
vection, PBL turbulence, and orographic effects, which can
influence larger-scale circulation. The dynamic interaction
improves physical consistency and is crucial for realistically
simulating mesoscale convective systems (MCS) and asso-
ciated rainfall. We conducted 612 simulations, spanning all
36 possible PBL-MP scheme combinations, to assess their
joint performance across 17 EREs. Convection is explicitly
resolved in D02, while D01 uses the Kain—Fritsch parame-
terization (Kain and Fritsch, 1993) for sub-grid convective
processes (Snook et al., 2019).

We considered 36 combinations involving nine MP and
four PBL schemes. The PBL schemes tested include Mellor-
Yamada Nakanishi Niino (MYNN) Level 2.5 and Level 3
(BL5, BL6; Nakanishi and Niino, 2006), Yonsei University
(YSU; BL1; Hong et al., 2006), and Bougeault-Lacarrere
(BouLac; BLS; Bougeault and Lacarrere, 1989), while the
MP schemes include Kessler (MP1; Kessler, 1969), Pur-
due Lin (MP2; Chen and Sun, 2002), WRF Single-Moment
3-class and 5-class (MP3 and MP4, respectively; Hong et
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al., 2004), Eta Ferrier, (MP5; Rogers et al., 2001), WRF
Single-Moment 6-class (MP6; Hong and Lim, 2006), God-
dard (MP7; Tao et al., 2016), Thompson (MP8; Thompson
et al., 2008), and Morrison 2-Moment (MP10; Morrison et
al., 2009). These combinations were selected based on their
compatibility with the surface layer physics Revised MMS5
scheme (Jiménez et al., 2012), and additional schemes were
not included due to the higher computational and storage de-
mands. Previous studies focusing on the AP have also uti-
lized these schemes, including Deng et al. (2015), Attada et
al. (2022), Luong et al. (2020), Schwitalla et al. (2020).

Initial and boundary conditions were extracted from ERAS
reanalysis data at 3 h intervals with a 0.25° resolution. All
model simulations were conducted for 84 h, including a 48 h
spin-up period to ensure model stability and reduce initial-
ization biases. The analysis was focused on a 24 h window
corresponding to the peak rainfall period of each ERE (Ta-
ble 2). Our study specifically targets short-duration, event-
based simulations of ERE. In such cases, the primary drivers
are typically large-scale atmospheric instabilities and mois-
ture advection rather than slower processes like land—surface
interactions. Consequently, a 48 h spin-up period is sufficient
to allow the model to dynamically and thermodynamically
adjust to the initial and boundary conditions. Refer to Ta-
ble 2 for the simulation start dates and Table 3 for the model
configuration.

3.5 Model Assessment Approach

Each combination of MP and PBL schemes was extensively
evaluated using the Kling—Gupta Efficiency (KGE; Gupta et
al., 2009; Kling et al., 2012). The KGE is an aggregate per-
formance metric that integrates correlation, bias ratio, and
variability ratio into a single score, providing a holistic as-
sessment of model performance. Several studies have suc-
cessfully used KGE for spatial performance assessment of
hydrometeorological models (e.g., Gupta et al., 2009; Patil
and Stieglitz, 2015; Beck et al., 2019; Nguyen et al., 2022;
Tudaji et al., 2025), supporting its application in our analysis.
The formula for KGE is given by:

KGE:1—\/(r—1)2+(,3—1)2+(y—1)2, 9]

where r is Pearson’s correlation coefficient between the ob-
served and simulated data, 8 is the ratio of the mean simu-
lated data to the mean observed data, assessing the bias, and
y is the ratio of the coefficients of variation of the simulated
and observed data, evaluating the variability. A perfect but
unattainable KGE score is 1, indicating complete agreement
between simulated and observed data. A hypothetical sim-
ulation predicting only the observed mean would achieve a
KGE of —0.41 (Knoben et al., 2019).

For rainfall, the KGE was calculated separately in space
and in time. For the temporal KGE (Fig. 2), we first cal-
culated, for each hour of the event day (Table 2), the spa-
tial average of observed and simulated rainfall across D02
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Figure 1. WRF-ARW domain for the AP region showing the elevation in the background. METAR locations are indicated with red markers.

Table 2. EREs across the AP selected to determine the performance of different MP and PBL scheme combinations. All simulation start
times are at 00:00 UTC. IMERG-Final V07 rainfall values represent 24 h totals from simulation start for the 0.1° grid-cell with the highest
amount for each ERE. Abbreviations: N = north, E = east, S = south, W = west, P = people.

Event date Location Simulation Reported IMERG Fatalities/impact Source
start rainfall rainfall
24 November 2022 Jeddah, Makkah, 22 November 2022 179 mm 120mm 2 P died in flooding FloodList
Saudi Arabia (W) (https://floodlist.com/,
last access: 24 June 2024)
27 April 2021 Makkah (W) 25 April 2021 Unknown 32mm Severe flooding reported  FloodList
4 February 2021 Tabuk (NW), 2 February 2021 Unknown 60 mm 7 P died; 1100 P affected  General Directorate of
Hafr Al-Batin (E) Civil Defense (CDD)
27 October 2019 Hafr Al-Batin (E) 25 October 2019 43mm in 30min 30 mm 18 P died, 11 P injured FloodList
23 May 2019 Jazan, Najran (SW) 21 March 2019 Unknown 33 mm 1 P missing in floods FloodList
8 February 2019 Madinah (W), 6 February 2019 36.6mmin24h 20mm 4 P died; many rescued FloodList
Tabuk (NW),
Riyadh (E)
28 January 2019 Tabuk (NW), 26 January 2019 Unknown 41 mm 1 P died; 30 P evacuated = CDD
Riyadh (C),
Jeddah
20 November 2017  Jeddah, Hail (W) 18 November 2017 115.5mmh~! 73 mm 4 P died; 481 rescued FloodList
14 February 2017 Asir (SW), Dammam (E) 12 February 2017 90 mm in 24 h 97 mm 1 P died; 10 P injured CDD
28 November 2016  Asir (SW), Riyadh (C) 26 November 2016 ~ Unknown 47 mm 8 P died; 120 evacuated FloodList
8 April 2016 Asir, Baha, Taif (S) 6 April 2016 Unknown 36 mm 3 P died FloodList
24 November 2015  Riyadh, Al-Qassim 22 November 2015  Unknown 35mm 1P died FloodList
28 October 2015 Saudi Arabia (N) 26 October 2015 Unknown 24 mm 6 P died FloodList
23 March 2015 Riyadh (C), 21 March 2015 Unknown 29 mm 11 P died; 300 P rescued ~ FloodList
Al Bahah (NW)
20 November 2013  Riyadh (C), Arar 18 November 2013~ Unknown 42 mm 4 P died CDD
14 January 2011 Jeddah (W) 12 January 2011 110mm in 3h 10lmm 10 P died CDD
30 December 2010 Jeddah (W) 28 December 2010 Unknown 46 mm No data CDD
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Table 3. WRF-ARW (Version 4.4) model configuration used in this study.

Configuration parameter

Details

Dynamics Non-hydrostatics
Boundary and initial conditions ERAS reanalysis
Data interval 3h

Grid size DO1: 493 x 418, D02: 1012 x 889
Resolution DO01: 9 km and D02: 3km

Map projection Mercator

Model top pressure 30hPa

Land category USGS (21)

Integration time step 30s

Vertical coordinates

Terrain-following hydrostatic pressure vertical coordinate with 53 vertical levels

Time integration scheme

3rd-order Runge—Kutta scheme

Spatial differencing scheme

6th-order centre differencing

Microphysics parameterization (MP)

Kessler (MP1), Purdue Lin (MP2), WRF Single-moment 3-class (WSM3; MP3),
WREF Single-moment 5-class (WSMS5; MP4), Eta (Ferrier; MP5),

WREF Single-moment 6-class (WSM6; MP6), Goddard (MP7),

Thompson graupel (MPS8), Morrison 2—moment (MP10)

Cumulus parameterization (CU)

DO1: Kain Fritsch, D02: no CU scheme used

Planetary Boundary Layer (PBL) parameterization

Yonsei University Scheme (YSU; BL1), Mellor-Yamada Nakanishi and
Niino Level 2.5 (BLS5), Mellor-Yamada Nakanishi and
Niino Level 3 (BL6), BouLac (BLS)

Surface layer parameterization

Noah Land Surface scheme (Chen and Dudhia, 2001)

Surface layer physics

Revised MM5 (Jiménez et al., 2012)

Short wave radiation (ra_sw_physics)

RRTMG scheme (Iacono et al., 2008)

Long wave radiation (ra_lw_physics)

RRTMG scheme

(Fig. 1). The KGE was derived from these 24 pairs of ob-
served and simulated spatially averaged values. For the spa-
tial KGE, for each grid cell within D02, the daily mean of
observed and simulated rainfall was computed (Fig. S2). The
KGE was subsequently calculated using these observed and
simulated grid-cell daily means. To enable a consistent grid-
cell-to-grid-cell comparison with IMERG-Final V07 obser-
vations, we resampled the WRF-ARW simulated rainfall data
to the 0.1° IMERG grid using averaging. This resampling
was performed using the xarray package in Python (Hoyer
and Hamman, 2017).

Additionally, to determine whether the performance is sig-
nificantly different between scheme combinations for rain-
fall, we calculated AKGE scores by subtracting the mean
KGE across EREs from the KGE values, thereby eliminat-
ing systematic differences in scores among EREs. We then
tested whether the distributions of AKGE values for differ-
ent scheme combinations are statistically similar or differ-
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ent using pairwise independent ¢ tests (Fig. S3). For 2 m air
temperature, 2 m relative humidity, and 10m wind speed,
KGE was calculated from hourly METAR observations from
the IOWA Mesonet and corresponding simulations from the
nearest model grid-cell for the day of each ERE.

4 Results and Discussion

4.1 Which PBL scheme performs best in terms of
rainfall?

Figure 2 presents temporal KGE scores for 36 PBL-MP com-
binations across 17 EREs. As spatial KGE scores (Fig. S2)
exhibit comparable patterns, the analysis here focuses on the
temporal scores. The mean temporal and spatial KGE for the
PBL schemes — BL1, BL5, BL6, and BL8 — are summarized
in Table 4. Among these, the BL1 scheme showed superior

https://doi.org/10.5194/nhess-26-21-2026
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performance among the PBL schemes (mean KGE of 0.43).
Notably, BLI is the only scheme with a non-local approach,
unlike the other schemes, which are all local. This non-local
mixing likely explains BL1’s superior performance, enabling
enhanced vertical mixing across the entire PBL. Non-local
schemes like BL1 can represent large eddy structures and
transport heat, moisture, and momentum over considerable
vertical distances, a capability that is particularly crucial in
arid environments with intense surface heating and sharp
thermal gradients, such as Saudi Arabia (Hong et al., 2006;
Hu et al., 2010). In contrast, local schemes like the BLS5,
BL6, and BL8 (mean KGE values of 0.38, 0.26, and 0.41,
respectively) rely on gradients at specific vertical levels and
small-scale turbulence, which restricts their ability to simu-
late deep convection and rapid vertical mixing.

Previous research has shown that non-local schemes, in-
cluding BL1, yield a deeper and more accurately structured
PBL than local schemes, especially in the presence of strong
surface heating and convective activity, which are character-
istic of desert climates (Xie et al., 2012; Cohen et al., 2015).
Specifically, BL1’s non-local treatment of PBL processes al-
lows it to develop a deeper PBL during the daytime, a typ-
ical feature in arid regions, enhancing the scheme’s ability
to capture severe convective activity (Cohen et al., 2015).
The performance of BL1 in representing PBL processes is
especially advantageous in regions where convection is often
triggered by advancing frontal systems, as is common in the
AP. In a case study using the WRF-ARW model, Cohen et
al. (2015) demonstrated that BL1’s non-local treatment im-
proves the PBL’s response to cold fronts, triggering convec-
tion more realistically and enhancing features like the forma-
tion of double lines of intense convection. This improvement
arises because BL1 minimizes the dilution of moist air by dry
air entrainment, maintaining a higher moisture concentration
within the PBL. This “fuel” is crucial for sustaining severe
convection when fronts initiate it, particularly in desert re-
gions, where dry air entrainment can otherwise weaken or
inhibit intense convective activity and thus reduce the accu-
racy of ERE simulations.

In contrast, local schemes like BL5 and BL6 and BLS8 are
optimized for stable or stratified PBLs, typically performing
well by simulating small-scale turbulence. However, these
schemes often struggle in unstable, highly convective envi-
ronments like those in Saudi Arabia, where larger eddy struc-
tures dominate and require extensive vertical mixing to cap-
ture intense updrafts and rainfall (Hu et al., 2013; Cohen
et al., 2015). Performance is particularly low for the BL6
scheme (mean KGE of 0.26; Table 4), sometimes showing
negative KGE scores across different MP schemes (Fig. 2).
The scheme’s higher-order local closure approach can lead
to over-diffusion, dampening essential vertical motions and
limiting its ability to capture coherent eddies and large-scale
vertical transport — critical for effective moisture and heat
distribution needed for convective rainfall (Nakanishi and
Niino, 2006; Shin and Hong, 2011).
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Nevertheless, Schwitalla et al. (2020) reported the best
performance with the MP8-BLS5 scheme combination in their
convection-permitting simulation over the AP for a single
ERE on 14 July 2015 (Table 1), which contrasts with our
findings. This contrast may be due to differences in the char-
acteristics of that particular ERE, model setup, or surface
properties. In particular, their use of a higher vertical res-
olution (100 levels) may have favored the performance of
BLS5, a local scheme that strongly depends on accurately re-
solved vertical gradients. Similarly, the relatively weaker per-
formance of the BL6 and BL8 schemes in our simulations
may be partly attributed to the coarser vertical resolution.
However, unlike their single-event study, the present research
evaluates 17 EREs across the AP spanning multiple seasons
and years. This multi-ERE approach is particularly impor-
tant for identifying parameterization schemes that are con-
sistently reliable under a range of conditions. Since future
climate projections cannot be directly validated against ob-
servations, selecting robust configurations based on a diverse
set of past EREs is essential for improving model confidence
in future applications.

4.2 Which MP scheme performs best in terms of
rainfall?

Figure 2 presents temporal KGE scores for 36 PBL-MP com-
binations across 17 EREs. Since spatial KGE scores (Fig. S2)
demonstrate similar values, the discussion is limited to tem-
poral scores. The mean temporal and spatial KGE for various
MP schemes, including MP1, MP2, MP3, MP4, MP5, MP6,
MP7, MPS8, and MP10, are presented in Table 4. The MP7
and MPS8 schemes achieved the highest mean KGE scores.
This is likely due to their sophisticated handling of cloud mi-
crophysics, especially in representing mixed-phase and ice-
phase processes essential for simulating ERESs in arid regions
like Saudi Arabia. Though MP7 is a single-moment scheme,
it includes detailed processes for ice, snow, and graupel,
making it effective for capturing intense convective storms
driven by complex thermodynamics and rapid cloud develop-
ment (Tao, 2003). Its optimized treatment of rain formation
and melting allows it to handle the rapid updrafts and tem-
perature variations characteristic of desert climates, where
efficient particle formation and fallout are crucial for high-
intensity EREs.

As a double-moment approach, the MP8 scheme further
enhances these capabilities by dynamically adjusting parti-
cle size distributions, including cloud droplets, rain, ice and
snow. This adaptability allows it to respond effectively to en-
vironmental changes typical of desert frontal systems, where
intense updrafts can quickly alter particle sizes (Thompson
et al., 2008). The double-moment structure offers flexibility
in tracking a broad range of particle sizes, enabling MP8 to
simulate light and heavy rainfall effectively. This capability
is crucial in arid regions, where rapid shifts between intense
rainfall and dry conditions are common, and tracking both
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Figure 2. Temporal KGE scores for rainfall derived from 36 WRF-ARW scheme combinations across 17 EREs. The scores were calculated
by comparing hourly WRF-ARW simulated rainfall against IMERG-Final V07 satellite rainfall data over the event day.

Table 4. Mean KGE values across all simulations for temporal and spatial assessments of MP and PBL schemes.

Scheme Temporal KGE  Spatial KGE

MP schemes
Kessler (MP1) 0.26 0.05
Purdue Lin (MP2) 0.35 0.27
WREF Single-Moment 3-class (WSM3; MP3) 0.41 0.30
WREF Single-Moment 5-class (WSMS5; MP4) 0.39 0.25
Eta Ferrier (MP5) 0.39 0.28
WREF Single-Moment 6-class (WSM6; MP6) 0.36 0.28
Goddard (MP7) 0.42 0.33
Thompson (MP8) 0.42 0.31
Morrison (MP10) 0.30 0.29

PBL schemes
YSU (BL1) 0.43 0.29
Mellor-Yamada Nakanishi Niino Level 2.5 (MYNN Level 2.5; BL5) 0.38 0.27
Mellor-Yamada Nakanishi Niino Level 3 (MYNN Level 3; BL6) 0.26 0.21
Boulac (BLS) 0.41 0.27
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mass and concentration enhances the accuracy of these tran-
sitions.

The superior performance of these schemes over sim-
pler single-moment models, like MP1, MP2, or MP3 under-
scores the importance of advanced microphysical processes
— including graupel and hail processes, multiple ice-phase
species, prognostic treatment of various hydrometeors, and
more complex interactions between cloud and rainfall par-
ticles — for capturing ERE variability and intensity. Simpler
schemes lack adaptability to evolving particle size distribu-
tions, limiting their effectiveness in highly convective en-
vironments with rapid shifts. Notably, despite its advanced
double-moment structure, Morrison underperformed, possi-
bly due to interactions with other model components that
may hinder accuracy in arid, convective conditions — a point
warranting further research beyond this study. Overall, our
results highlight the importance of selecting MP schemes
with detailed ice and mixed-phase processes when modeling
EREs in desert regions.

4.3 'Which component of the Kling—-Gupta Efficiency
(KGE) affects the final rainfall scores the most?

Figure 3a presents the values of KGE and its components —
correlation, bias, and variability (r, y, and B, respectively;
Eq. 1) — for all 17 EREs for the best performing MPS_BL1
scheme combination for rainfall (Fig. 2 and Table 4). In the
interest of conciseness, we focus only on the temporal KGE
results here, as the spatial KGE results are quite consistent
(see Sect. 4.1,4.2, and 4.5, and Table 4).

Correlation is sensitive to the timing of EREs, variabil-
ity ratio is sensitive to the distribution, and bias reflects the
mean. For the best combination (MP8_BL1), the mean tem-
poral KGE score for rainfall across 17 EREs is 0.48. De-
composing this score into the three components, expressed as
|r —1], |8 — 1] and |y — 1| to make them comparable, yields
mean absolute values of 0.33, 0.23, 0.25, respectively, where
values closer to 0 indicate better performance. Among the
three KGE components, the scheme thus performed worst in
terms of correlation, and this subcomponent thus exerted the
dominant influence on the final KGE scores. This suggests
that in order to get an improved KGE score, the most impor-
tant component score to improve is the correlation, which, in
the temporal assessment, is related to the timing of EREs.
The mean KGE value across all other schemes and EREs
is 0.36, and the mean values for |[r — 1], |8 — 1] and |y — 1|
are 0.34, 0.29, and 0.24, respectively. This suggests that the
correlation also tends to exert the dominant influence for the
other scheme combinations, while bias also plays a role. The
mean KGE score for the worst-performing scheme combina-
tion MP10_BL6 is 0.13, while the mean values of the three
KGE components |r — 1], |8 — 1], and |y — 1] are 0.33, 0.57,
and 0.36, respectively. This scheme thus performs particu-
larly poorly in terms of bias.
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4.4 How statistically significant are the differences in
performance among scheme combinations in terms
of rainfall?

The differences in KGE between different scheme combi-
nations for rainfall are generally relatively small. For exam-
ple, the best-performing scheme combination (MP8_BL1)
achieved a mean KGE of 0.48, while the second-best-
performing scheme combination (MP7_BL1) achieved a
mean KGE of 0.44 (Fig. 2). Furthermore, the correspond-
ing standard deviations across EREs are 0.20 and 0.24, re-
spectively, indicating substantial variability in scores among
EREs. Additionally, the consistency in performance ranking
among ERE:s is fairly low (Fig. 5). This raises the question
whether the observed differences in performance between
scheme combinations are statistically significant and, hence,
whether our evaluation approach is adequate for determining
the relative performance of different scheme combinations,
which is the primary objective of this study.

Figure 4 presents a 36 x 36 matrix of pairwise p values
from independent ¢ tests comparing AKGE distributions of
36 scheme combinations for rainfall. AKGE values were cal-
culated by subtracting the mean KGE across EREs from the
KGE values presented in Fig. 2, thereby eliminating system-
atic differences in scores among EREs. The results reveal
that the best-performing scheme combination (MP8_BL1)
significantly outperforms 21 other scheme combinations (at
p < 0.1), whereas the worst-performing scheme combination
(MP10_BL6) performed significantly worse than 28 other
scheme combinations (also at p < 0.1). These results con-
firm that our assessment provides meaningful and statisti-
cally significant insights into the relative performance of dif-
ferent scheme combinations. However, our assessment does
not definitively identify a single best-performing scheme but
instead highlights groups of better- and worse-performing
schemes.

The ability of an assessment such as this to detect signif-
icant differences in performance between schemes depends
on the mean and standard deviation of the AKGE distri-
bution. Assuming a standard deviation of 0.15 (equivalent
to that of MP8_BL1), the current sample size of 17 EREs
requires a mean AKGE difference greater than 0.06 be-
tween schemes to yield a statistically significant difference
at p <0.1. Analyzing a larger sample of EREs would re-
duce the required mean difference, making it easier to detect
significant differences in performance between schemes. For
example, if we were to analyze 50 EREs, the required dif-
ference in mean AKGE would be just 0.03 (assuming again
a standard deviation of 0.15). However, analyzing a larger
number of EREs is computationally more expensive.

The standard deviation (i.e., the variability in AKGE
among EREs) and hence the number of EREs required to de-
tect significant performance differences between schemes are
partly influenced by the quality of the reference data. In this
study, we used a microwave satellite-based rainfall product
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Figure 3. Correlation coefficient (r), bias (), and variability ratio (y) values used to calculate the KGE values for the best-performing
combination across 17 EREs for (a) Rainfall, (b) 2 m air temperature, (¢) 2 m relative humidity, and (d) 10 m wind speed. Panel (a) uses
IMERG-Final V07 as reference and panels (b)—(d) METAR observations over each 24 h event day. The letters (A, B,..., Q) indicate the 17

different EREs (Table 2).

(IMERG-Final V07), which is associated with greater uncer-
tainty than gauge-radar-based datasets (Beck et al., 2019).
This increased uncertainty may have contributed to higher
variability in KGE scores (Evans and Imran, 2024). Unfor-
tunately, radar data are only commercially available in Saudi
Arabia. Due to the strong correlation between different mi-
crowave satellite-based rainfall datasets — such as IMERG,
GSMaP (Kubota et al., 2024), and CMORPH (Xie et al.,
2019) — and the fact that IMERG-Final V07 significantly out-
performs other satellite datasets (Wang et al., 2025), we were
unable to quantify the uncertainty arising from the choice of
reference data as done by Evans and Imran (2024).

4.5 How consistent are the temporal and spatial
performance assessments for rainfall?

We calculated KGE scores both temporally and spatially to
assess the performance of the 36 PBL-MP scheme combi-
nations across the 17 EREs. The temporal KGE results for
rainfall are presented in Fig. 2, while the spatial KGE results
for rainfall are provided in Fig. S2. The mean KGE values
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categorized by MP and PBL schemes, for both temporal and
spatial assessments, are summarized in Table 4. The overall
mean temporal KGE across all schemes and EREs for rain-
fall is 0.37, whereas the overall mean spatial KGE 1is 0.26.
This indicates that the simulations are more effective at cap-
turing temporal variations in rainfall than spatial variations.
This is expected, as accurately simulating the location of lo-
calized convective systems remains a major challenge. Over-
all, we found a strong consistency in the overall ranking of
schemes between the temporal and spatial assessments, with
a Spearman rank correlation of 0.65 (p < 0.001) between the
mean temporal and spatial KGE values for the scheme com-
binations. The MP7 and MP8 schemes, when combined with
BL1, consistently ranked highest across both temporal and
spatial KGE assessments (Figs. 2 and S2; Table 4). Con-
versely, the MP1 scheme with BL6 scheme performed worst
in both assessments.
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4.6 How consistent is the performance ranking among
different variables?

Ideally, if our conclusions about the performance of vari-
ous MP and PBL scheme combinations regarding rainfall are
valid, and if this superior performance truly reflects a model
that better represents reality (i.e., we are getting the right
results for the right reasons; Kirchner, 2006), then the per-
formance ranking for rainfall should align with those of the
other variables (2m air temperature, 2 m relative humidity,
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and 10m wind speed). Indeed, for all variables, MP§_BL1
provided the highest mean temporal KGE (Fig. 2 and Ta-
ble 4), tentatively suggesting that this particular scheme com-
bination does indeed yield a more robust model in all re-
spects.

Additionally, we calculated Spearman rank correlations
and corresponding p values between the temporal mean
KGE scores for the different variables (Fig. 5), to examine
the degree of consistency in performance rankings among
the variables. Most variable pairs exhibited insignificant cor-
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relations except for temperature and relative humidity, which
are intrinsically linked through the Clausius—Clapeyron re-
lationship as temperature controls saturation vapor pressure
and, thus, relative humidity. The lack of significant corre-
lations might have three potential explanations. First, un-
certainties in the reference data may cause discrepancies in
model performance; the significant uncertainty in IMERG
for rainfall (Wang et al., 2025), along with the difficulty of
comparing point-based IOWA Environmental Mesonet data
to WRF-ARW grid cells for other variables, makes this ex-
planation plausible. Second, although MP and PBL schemes
strongly influence rainfall simulation, other model compo-
nents like land surface schemes, which affect soil moisture
and heat fluxes, and radiation schemes, which affect sur-
face and atmospheric energy balances, may have a more pro-
nounced impact on variables such as temperature and wind
speed. Third, there might be compensatory behavior within
the model, where improvements in simulating one variable
do not necessarily result in a more realistic simulation and
may yield reduced performance in others.

This phenomenon, where models achieve the right re-
sults for the wrong reasons, is not uncommon in geosciences
and poses significant challenges in model evaluation and
improvement (Kirchner, 2006; Parker, 2006; Knutti, 2010;
Hourdin et al., 2017; Broecker, 2017; Krantz et al., 2021).
Resolving this requires examining model structure and vari-
able interactions more closely to determine if improvements
reflect real accuracy or trade-offs, which is beyond the scope
of the current study.

4.7 What do the spatial patterns in simulated and
observed rainfall look like for the EREs?

Figures 6 and 7, respectively, present observed (IMERG-
Final VO07) and simulated (WRF-ARW) 24 h rainfall ac-
cumulations for the 17 selected EREs. The WRF-ARW
model simulations were generated using the best-performing
scheme (MP8_BL1). Overall, WRF-ARW generally seems
to capture reasonably well the location, extent, and amounts
indicated by IMERG. For example, the strong convec-
tive systems with high-intensity localized rainfall exceeding
120 mm on EREs like 20 November 2013 and 28 January
2019 are captured well. However, the model overestimates
rainfall for several EREs (e.g., 8 February 2019) and under-
estimates rainfall for others (e.g., 28 October 2015). While
WREF-ARW generally captures the broad patterns, the lack
of a better match is attributable to several reasons. First, po-
tential deficiencies in the MP, BL, and convection schemes,
along with other modeling limitations, can lead to inaccura-
cies in moisture convergence and convective updrafts (Tara-
phdar et al., 2021; Attada et al., 2022). These limitations
include simplified representations of land—atmosphere inter-
actions, unresolved sub-grid processes, and the use of pre-
scribed lateral boundary conditions updated every 6 h, which
may not fully capture fast-evolving or small-scale features
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entering the domain. Second, we used ERAS as boundary
conditions to force the model, and while ERAS is the best re-
analysis currently available, it nonetheless is subject to ran-
dom errors and bias (Hersbach et al., 2020; Soci et al., 2024).
Third, we did not include data assimilation or nudging (Lei
and Hacker, 2015; Feng et al., 2021), two important tech-
niques to improve the simulations. Fourth and finally, the
IMERG data, though found to perform relatively well in pre-
cipitation product evaluations (Abbas et al., 2025; Wang et
al., 2025), nonetheless carries significant uncertainty in the
region.

4.8 How well does the model perform in terms of the
other variables?

While the previous subsections focused primarily on rain-
fall, it is worthwhile to investigate how the model performs
in terms of other meteorological variables. To this end we an-
alyzed the KGE components for 2 m air temperature, 2 m rel-
ative humidity, and 10 m wind speed as presented in Fig. 3b,
¢, and d, respectively. Fig. 3b presents the KGE and its com-
ponents (r, y, and B) for all 17 EREs for temperature us-
ing the best-performing combination (MP8_BL1). For this
scheme, the mean temporal KGE score across the 17 EREs
is 0.47, which is similar to that obtained for rainfall (0.48).
This is somewhat unexpected, as temperature is constrained
by surface energy balance processes, resulting in smoother
variations and less extreme variability compared to rainfall.
The mean values for |r — 1|, |8 — 1| and |y — 1| for temper-
ature are 0.32, 0.06, and 0.33, respectively. Among the three
KGE components, the scheme thus performed worst in terms
of correlation and variability, which therefore exert the dom-
inant influence on the final KGE scores.

Figure 3c presents the KGE and its components for the 17
EREs for relative humidity using the best performing scheme
(MP8_BL1). For this scheme, the mean temporal KGE score
across 17 EREs is 0.31, which is lower than that obtained
for rainfall and temperature. This may reflect relative humid-
ity’s nonlinear dependence on both temperature and moisture
in addition to the high spatio-temporal variability. The mean
values for |r — 1|, |8 — 1| and |y — 1| are 0.47, 0.18, 0.33,
respectively. Among the three KGE components, the scheme
thus performed worst in terms of correlation, followed by
variability, which therefore exert the dominant influence on
the final KGE scores.

Figure 3d presents the KGE and its components for the
17 EREs for wind speed using the best performing scheme
(MP8_BL1). For this scheme, the mean temporal KGE score
across the 17 EREs is 0.29, the lowest among the four vari-
ables, likely due to the influence of fine-scale topography and
surface roughness variability on wind speed (Branch et al.,
2021). The mean values for |[r — 1|, | — 1| and |y — 1| are
0.52, 0.28, 0.30, respectively. Among the three KGE com-
ponents, the scheme thus performed worst in terms of corre-
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Figure 6. Daily accumulated rainfall from our observation-based data source (IMERG-Final V07) for the 17 EREs. The white areas indicate

grid cells with daily rainfall < 0.1 mm.

lation, which therefore exerts the dominant influence on the
final KGE scores.

4.9 How do the PBL and MP schemes used in previous
studies compare with those identified as optimal in
our evaluation?

Although our findings are subject to uncertainty and must be
interpreted with caution, as highlighted in the previous sub-
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sections, they provide a useful basis for evaluating schemes
used in previous WRF-ARW studies in the region. Our re-
view of these studies (Table 5) reveals varying choices of
PBL and MP schemes, with mixed alignment to the results
of this study. Several studies, such as those by Abida et al.
(2022), Almazroui et al. (2018), and Patlakas et al. (2023),
used the BL1 scheme, which our results confirm as the best-
performing scheme for capturing the unique convective dy-
namics in arid climates. These studies highlighted BL1’s ro-
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bust vertical mixing capabilities and adaptability to desert
environments. On the other hand, studies like Attada et al.
(2020) and Taraphdar et al. (2021), which employed BL6 and
QNSE (BLA4), respectively, used local turbulence schemes
that our findings show may be less suited for unstable, highly
convective conditions typical in the region. Similarly, while
MP schemes like MP8 and MP7, identified in our study as
well-performing, were used in some cases (Taraphdar et al.,
2021; Attada et al., 2020), other studies, such as Deng et al.
(2015), relied on simpler MP schemes like MP2 and MPS5,
which may lack the sophistication needed to capture mixed-
phase processes in intense convective systems fully. Thus,
while several studies employed schemes previously shown
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to perform well in similar regional contexts, others might
have improved simulation accuracy by incorporating the BL1
scheme and advanced MP schemes identified as effective in
our study. However, we would like to reiterate that our find-
ings are subject to uncertainty, and these conclusions should
therefore be interpreted with caution.

5 Conclusion

This study evaluated the performance of PBL and MP param-
eterizations for simulating EREs in the AP using the WRF-
ARW model at a convection-permitting resolution, serving
as a verification study for hydrometeorology in the region.
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Table 5. Studies simulating EREs in the Middle East using WRF-ARW.

Study MP scheme PBL scheme

Key findings

Luong et al. (2020) Morrison (MP10)

(MYIJ; BL2)

Mellor—Yamada—Janjic

Evaluated urbanization impacts on ERE over Jeddah;
high-resolution models essential for urban storm simulation.

Francis et al. (2024)

Thompson aerosol-aware ~ Quasi-Normal Scale

Enhanced performance in capturing rainfall patterns for EREs

(MP28) Elimination involving atmospheric rivers in the Middle East.
(QNSE; BL4)
Deng et al. (2015) Lin (MP2), Mellor-Yamada—Janjic ~ Demonstrated role of different MP schemes in capturing
Eta Ferrier (MP5) (MYJ; BL2) Jeddah flash-flood events.
Attada et al. (2020) Thompson (MP8) MYNN Level 3 (BL6) Demonstrates consistent skill in simulating rainfall

associated with EREs over arid regions of the AP

Taraphdar et al. (2021)  Thompson (MP8)

Quasi-Normal Scale

Optimal pairing for rainfall simulation under 9 km resolution,

Elimination balancing accuracy and efficiency in UAE simulations.
(QNSE; BL4)
Abida et al. (2022) WSM 3-class (MP3) YSU (BL1) Best performance in hyper-arid coastal regions, enhancing
temperature, humidity, and wind accuracy at BNPP site.
Almazroui et al. (2018)  Eta Ferrier (MP5) YSU (BL1) Highlighted YSU’s reliability for PBL dynamics in
ERE conditions (e.g., Jeddah 2009 event).
Patlakas et al. (2023) Single-moment YSU (BL1) YSU’s adoption in operational forecasting at the Saudi National

six-class (MP6)

Center for Meteorology for its robustness in arid climates.

The results show that the model captures temporal rainfall
variations (mean KGE = 0.37) more effectively than spatial
patterns (mean KGE =0.26), reflecting the localized nature
of rainfall in the region. Nonetheless, a strong correlation
(Spearman rank correlation of 0.65, p < 0.001) between tem-
poral and spatial KGE rankings highlights consistency in
scheme performance. This verification is crucial for improv-
ing confidence in hydrometeorological modeling and fore-
casting, particularly for regions prone to flash floods and ex-
treme rainfall. Thus, the findings guide model selection and
a vital validation benchmark for future hydrometeorological
research and operational forecasting in desert climates.The
answers to the questions, each addressed in detail in the Re-
sults and Discussion, are as follows:

a. Which PBL scheme performs best in terms of rainfall?

The BL1 scheme outperformed the other PBL
schemes, achieving a mean temporal KGE of 0.43 and
a mean spatial KGE of 0.29. This superior performance
is attributed to non-local mixing, which enhances
vertical transport and convective processes and makes it
particularly effective for simulating ERE in arid regions
like the AP. In contrast, local schemes such as BLS5,
BL6, and BL8 performed worse because they rely on
small-scale turbulence, which limits the representation
of deep convection.

b. Which MP scheme performs best in terms of rainfall?

The MP7 and MP8 schemes performed best, achieving
a mean temporal KGE of 0.42, with mean spatial KGEs
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of 0.33 and 0.31, respectively. Their strong performance
is attributed to their advanced mixed-phase and ice-
phase microphysics. MP8’s double-moment structure
enhances adaptability, while MP7’s optimized ice and
graupel processes improve convective simulations.
These results highlight the benefit of advanced MP
schemes for accurately modeling EREs in arid regions.

. Which component of the Kling—Gupta Efficiency (KGE)

affects the final rainfall scores the most?

Among the three KGE components (correlation,
bias ratio, and variability), correlation and variability
exerted the strongest influence on the temporal rainfall
KGE scores. Enhancing these components should be
prioritized to further improve the accuracy of ERE
simulations.

. How statistically significant are the differences in

performance between scheme combinations in terms of
rainfall?

Pairwise statistical tests between distributions of
temporal KGE scores obtained by the scheme com-
binations revealed that the MP8 BL1 combination
significantly outperformed 21 other scheme combi-
nations, while the poorest-performing combination,
MP10_BL6, was statistically inferior to 28 other
combinations. Thus, we could not statistically identify
a single best- or worst-performing combination, despite
the large sample of 17 EREs.
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e. How consistent are the temporal and spatial perfor-
mance assessments for rainfall?

The assessment reveals that MP7_BL1 and MP8_BL1
performed best in both the temporal and spatial as-
sessment for rainfall. The higher mean temporal KGE
(0.37) compared to the mean spatial KGE (0.26) for
all 36 combinations indicates that the model captures
rainfall variability more effectively over time than
across space. Although spatial KGE values were lower,
the ranking of combination performance remained
consistent (Spearman rank correlation of 0.65).

f. How consistent is the performance ranking among
different variables?

The MP8_BL1 combination provided the best perfor-
mance for all variables (rainfall, 2m air temperature,
2 m relative humidity, and 10 m wind speed). However,
we obtained weak correlations between performance
rankings across the variables, indicating poor con-
sistency. This is likely because different physical
processes govern the simulations of different variables.
That is, while MP and PBL schemes influence rainfall,
other components, such as land surface and radiation
schemes, affect temperature and wind. This underlines
the complexity of model parameterization, particularly
as cloud evolution is influenced not only by PBL
and MP schemes but also by radiative processes,
emphasizing the need for further integrated research.

g. What do the spatial patterns in simulated and observed
rainfall look like for the EREs?

For the best-performing physics combination
(MP8_BL1), the spatial patterns of simulated and
observed rainfall were generally well captured,
although occasional overestimations and underesti-
mations were noted. These discrepancies are likely
attributable to limitations in the boundary conditions
(the ERAS reanalysis) and uncertainties in the obser-
vations (the IMERG-Final V07 satellite-based rainfall

product).

h. How well does the model perform in terms of the other
variables?
Using the best-performing scheme combination

(MP8_BL1), air temperature showed a mean tem-
poral KGE score of 0.47, similar to that of rainfall
(0.48), with performance limited mainly by correlation
and variability. Relative humidity had a lower mean
temporal KGE score (0.31), like due to its nonlinear
dependence on temperature and moisture, with corre-
lation as the dominant error source. Wind speed had
the poorest performance (mean temporal KGE of 0.29),
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likely due to unresolved fine-scale topographic and
surface roughness effects.

i. How do the PBL and MP schemes used in previous
studies compare with those identified as optimal in our
evaluation?

Our findings align with several previous studies in
the Middle East that employed the BLI1 scheme,
reinforcing its effectiveness for simulating regional
atmospheric dynamics. At the same time, our results
suggest that studies using simpler MP schemes — such
as MP2 or MP5 — may achieve improved simulation
accuracy by adopting more advanced schemes like
MPS.

By identifying the optimal PBL and MP combination from
36 tested configurations across 17 EREs, we established a
strong foundation for improving the accuracy of ERE sim-
ulations across the AP, a region that remains understudied
despite frequent flash floods and significant casualties. As
the most comprehensive evaluation of PBL and MP schemes
in the AP to date, our study emphasizes the importance of
parameterization choices on ERE simulation performance,
serving as a key reference for future modeling efforts. Our
results may guide researchers and forecasters in selecting
the most effective parameterization schemes, ultimately con-
tributing to more reliable forecasting and enhanced disaster
preparedness in arid environments. To further advance ERE
simulation fidelity, future work should extend beyond PBL
and MP schemes to systematically evaluate the impact of
land surface schemes, radiation parameterizations, and data
assimilation techniques.
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study is available from the corresponding author upon request.
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