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Abstract. Floods are among the most destructive natural haz-
ards, causing extensive damage to companies through di-
rect impacts on assets and prolonged business interruptions.
The July 2021 flood in Germany caused unprecedented dam-
age, particularly in North Rhine-Westphalia and Rhineland-
Palatinate, affecting companies of all sizes. While the drivers
of company damages from riverine flooding are well docu-
mented, the drivers of both direct and indirect damages dur-
ing an extreme flash flood event have not yet been exam-
ined. This study addresses this gap using survey data from
431 companies affected by the July 2021 flood. Results show
that 62 % of companies incurred direct damages exceeding
EUR 100000. Machine learning models and Bayesian net-
work analyses identify water depth and flow velocity as the
primary drivers of both direct damage and business interrup-
tion. However, company characteristics (e.g., size premise,
number of employees) and preparedness also play critical
roles. Companies that implemented precautionary measures
experienced significantly shorter business interruption dura-
tions — up to 58 % for water depths below 1 m and 44 % for
depths above 2 m. These findings offer important insights for
policy development and risk-informed decision-making. In-
corporation of behavioural indicators into flood risk manage-
ment strategies and improving early warning systems could
significantly enhance business preparedness.

1 Introduction

Understanding the damage processes of companies during
unprecedented floods is essential to increase their resilience
and avoid catastrophic economic disruption. Unprecedented
floods are particularly destructive, as management measures
often fail during events of a magnitude not experienced be-
fore by locals (Kreibich et al., 2022). In Europe, unprece-
dented flash floods caused EUR 14.36 billion of damage in
Spain in October 2024 (Munich Re, 2025) and about EUR 33
billion of damage in Germany in July 2021 (Munich Re,
2022), additionally, such unprecedented floods are expected
to become more frequent with increasing climate change
(Bloschl et al., 2017; Hirabayashi et al., 2013; Merz et al.,
2021).

Damages to companies constitutes a significant portion of
the total flood loss (Schoppa et al., 2020). Direct damages
arise from the immediate physical contact of the flood water
with assets, such as damage to buildings, equipment, goods,
and stock. The June 2013 flood in Germany revealed that
32.4% of the total damage in Bavaria and 13.9 % of the
total damage in Saxony were attributed to companies, re-
spectively (Thieken et al., 2016). On the other hand, indi-
rect damages stem from disruptions caused by the flooding,
such as business interruptions and restrictions (Jongman et
al., 2012). In surveys conducted after the floods, 88 % of af-
fected companies reported that they had been significantly
affected by business interruptions (Thieken et al., 2016). The
severity of indirect damages can be equally significant and,
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in the case of rare and high-impact flood events, may even
exceed direct damages (Koks et al., 2015; Pfurtscheller and
Vetter, 2015; Sieg et al., 2019). For instance, Pfurtscheller
and Vetter (2015) reported that indirect damages are often
underestimated by companies. Using an Input-Output (I0)
model, Li et al. (2018) showed that business interruptions and
operational restrictions in Shanghai’s manufacturing firms
can propagate along interlinked value chains, with indirect
damages under extreme storm flood scenarios reaching up
to USD 60 billion. Similarly, Sieg et al. (2019) employed
a supply-side I0 model and identified the manufacturing,
and financial sectors vulnerable to indirect damages. Alto-
gether, these studies underscore that indirect damages, espe-
cially during low-probability, high-impact flood events, can
be substantial and warrant systematic investigation to better
understand the processes.

The process of understanding flood damage to companies
is complex due to their heterogeneous nature and is influ-
enced by several factors. Kreibich et al. (2010) examine fac-
tors such as water depth, sector, company size, precautionary
measures, and contamination to assess direct flood damage.
While the study provides valuable insights, it acknowledges
that the impact of precautionary measures and contamina-
tion on flood damages is not fully understood. Seifert et al.
(2010) estimated direct flood damage at the mesoscale and
highlighted the need for a deeper understanding of damage
processes in high water depth scenarios. Nafari et al. (2016),
focusing on Australian commercial structures, demonstrated
that considering building characteristics in addition to wa-
ter depth led to improved model performance, with lower
bias and mean absolute error. Schoppa et al. (2020) analyzed
comprehensive survey datasets collected after major flood
events between 2002 and 2013 in the Danube, Elbe, Oder,
and Rhine catchments. Their study identified water depth
and precautionary measures as primary factors for building
damage, while damage to equipment, goods, and stock was
strongly influenced by company characteristics such as sec-
tor, size, and precautionary measures. Schoppa et al. (2022)
developed a socio-hydrological model using water depth and
precautionary measures for estimating building damage. The
study revealed that companies in Dresden, Germany reduced
vulnerability through the implementation of precautionary
measures. Significant progress has been made in identifying
the variables that have explanatory power in estimating di-
rect damages to companies. While both the 2002 and 2021
floods in Germany were considered unprecedented in differ-
ent ways, the 2021 event stands out due to its exceptional
event magnitude, rapid onset, and high death toll (Rhein and
Kreibich, 2025; Thieken et al., 2023a). Given its rare nature
and distinct damage dynamics, this study focuses specifically
on the 2021 flood event to better understand the factors con-
tributing to direct damages.

Deciphering the factors of indirect damages, such as busi-
ness interruption and business restriction, is also crucial for
mitigating their contribution to the overall economic conse-
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quences. Yang et al. (2016) modeled business interruption
losses using water depth data collected from business surveys
conducted after the Tokai Heavy Rain in Japan. The model
showed a better fit for reported losses at lower inundation lev-
els, but it overestimated losses in areas with deeper inunda-
tion. Sultana et al. (2018) highlighted that company-specific
attributes, such as the number of employees and emergency
measures, often play a more critical role in estimating busi-
ness interruption costs than water depth. Endendijk et al.
(2024) investigated the relationship between flood character-
istics and business interruptions using post-disaster survey
data from the 2021 flood in the Netherlands. They identified
water depth, delayed compensation, and regional connectiv-
ity as critical factors affecting business interruption dura-
tion, while building-level mitigation measures were found to
have limited influence, highlighting an area for further explo-
ration. The study by Kabirzad et al. (2024) found that prox-
imity to the river and the profitability of business premises
were significant factors contributing to indirect flood dam-
ages to company buildings in Peninsular Malaysia. Sakai and
Yao (2023) underscore the vulnerability of small companies,
which suffer disproportionately higher damages relative to
turnover compared to larger companies. Business interrup-
tion, largely driven by temporary closures and reduced sales,
is identified as the most significant damage across sectors.
Despite these advancements, a significant research gap per-
sists in understanding the factors influencing indirect dam-
ages during unprecedented flood events.

Adaptation to flood risk encompasses a range of mea-
sures aimed at reducing vulnerability and exposure to flood
impacts. These can be broadly categorized into short-term
emergency responses, such as evacuation or temporary pro-
tection, and long-term precautionary strategies, including el-
evating buildings or relocating critical infrastructure (Neise
and Revilla Diez, 2019). While emergency measures require
a degree of preparedness, they are reactive and distinct from
long-term adaptation strategies (Wutzler et al., 2022). Un-
derstanding the effectiveness of adaptation behaviors during
unprecedented events is crucial in determining whether these
measures can mitigate damages or fail. Kreibich et al. (2007)
noted that the effectiveness of such measures depends on fac-
tors like prior flood experience, emergency plans, and early
warning systems. Jehmlich et al. (2020) further investigated
the drivers behind flood-adaptive behavior and reported that
firsthand flood experience increases the likelihood of compa-
nies adopting precautionary measures. However, the lack of
property ownership can hinder property-level adaptation, as
companies are less inclined to invest in resilience measures
for rented properties. In fact, Hudson et al. (2022) found only
little difference between the adaptation of small and medium
companies on the one hand and private households on the
other hand. Leitold et al. (2021) examined adaptation strate-
gies and found that the manufacturing sector tends to adopt
reactive or temporary measures rather than long-term, proac-
tive strategies. Wutzler et al. (2022) identified perceived low
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self-efficacy as a barrier to proactive adaptation. The study
also noted that property ownership plays a significant role,
with property owners more likely to adopt adaptive measures
than tenants. Companies with extensive flood experience and
low response costs are more likely to engage in proactive
adaptation. Furthermore, Hudson and Thieken (2022) inves-
tigated the potential presence of moral hazard, suggesting
that increased insurance coverage may discourage precau-
tionary measures. Using German data between 2002 and
2013, it was found that there’s an indication after 2005 that
insurance coverage lowered businesses’ intentions to employ
more adaptation measures. Despite these findings, the inter-
action between adaptation strategies and flood damage re-
mains unclear during rare events.

This study aims to build on existing advancements to gain
a deeper understanding of the processes underlying both di-
rect and indirect flood damages, particularly in the context of
rare events. To achieve this, we analyze data collected in the
aftermath of the 2021 flood in Germany. The objectives of
this study are:

1. To assess the type and extent of flood damage across
companies of varying sizes.

2. To identify the key factors influencing direct damages
(to buildings, equipment, and goods and stock) and in-
direct damages (particularly business interruptions and
restriction durations) using machine learning techniques
(Random Forest, Elastic Net, and XGBoost).

3. To develop a multivariate probabilistic model using
Bayesian networks to derive predictive density esti-
mates of damages, including median values and uncer-
tainty ranges, across a range of hazard and exposure sce-
narios.

2 Data and Methods
2.1 Survey data

The July 2021 flood in Germany has been widely described
as unprecedented in terms of its hydrological magnitude,
spatial extent, exceeding the scale and severity of previ-
ously recorded floods in the affected regions (Mohr et al.,
2023; Thieken et al., 2023b; Zander et al., 2023) and it
caused an estimated EUR 33.1 billion in direct damages and
EUR 7.1 billion in indirect damages (Trenczek et al., 2022).
In the affected regions of North Rhine-Westphalia (NRW)
and Rhineland-Palatinate (RLP), thousands of companies
were severely impacted. According to BMI and BMF (2022),
approximately 7000 companies in NRW and 3000 in RLP
were affected by the flood. The German Insurance Associa-
tion (GDV, 2023) reported 27 000 insured claims from com-
panies, with claims expenditures totaling EUR 2.4 billion in
NRW and EUR 0.9 billion in RLP.
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To assess the impacts of the July 2021 flood on companies
in NRW and RLP, a telephone survey was conducted between
8 November 2022 and 31 January 2023. The goal of the sur-
vey was to collect data on damages, influencing factors, the
reconstruction process, and the preparedness and precaution-
ary measures undertaken by the companies. The survey ques-
tionnaire was adapted from former surveys (Kreibich et al.,
2007; Thieken et al., 2017) to ensure consistency in data col-
lection. A total of 434 companies participated in the survey,
with an average interview duration of 42 min. The response
rate was approximately 14 %, with 608 refusals, 76 cancelled
or unarranged surveys, and 1886 companies that could not be
reached by telephone. Three responses, which were referred
to multiple business locations, including educational institu-
tions and administrative buildings, were excluded from the
analysis, which ultimately included 431 valid responses. Of
the companies surveyed, 258 (60 %) were located in NRW
and 173 (40 %) were based in RLP.

The surveyed variables were grouped into five categories:
hazard, emergency measures, precaution, company charac-
teristics, and damage type. The variable types and ranges
are outlined in Table 1. Table Al provides an overview of
all variables, including survey questions, and response op-
tions. All variables were included in the data-driven analysis
to identify the most influential factors for each damage type.
We analyzed the damage types separately for two main rea-
sons. First, this approach allowed us to capture asset-specific
processes and identify distinct drivers for each category (e.g.,
buildings, equipment, goods and stock, business interrup-
tion), which can behave very differently during a rare flood
event. Second, the dataset had varying levels of complete-
ness across damage types: some companies reported only
building damages, while others provided data on equipment
or business interruption. By analyzing them separately, we
were able to make use of larger and more reliable subsam-
ples, rather than restricting the analysis to the smaller set of
companies with complete data across all damage types. For
each damage type, the percentage of missing values per vari-
able was less than 10 %, as some companies did not provide
responses (Fig. S1 in the Supplement). To avoid reducing the
sample size, we employed the k-nearest neighbor technique
with k = 5 (Zhang and Tian, 2025) to impute the missing data
across the dataset. We used the Gower distance to calculate
similarity between observations, which is ideal for a dataset
with different types of variables (continuous, nominal, and
ordinal) (Kowarik and Templ, 2016). We calculated the aver-
age Gower distance between each row with missing data and
its 5 nearest neighbors. The mean of these distances across all
rows with missing values was approximately 0.09, indicating
that imputation was performed among observations that were
relatively similar in terms of their characteristics. Also, we
conducted a sensitivity analysis using k values of 1, 3, 7, and
9, and the findings were insensitive to the choice of k.
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Table 1. List of factors influencing direct and indirect flood damages to companies. The variable type “c
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TR

stands for continuous, “o” for

ordinal and “n” for nominal. The overview of all the variables is provided in Table Al.

Abbreviation  Variable Type Range
Hazard wd Water depth c: 1 to 963 cm above ground
d Inundation duration c: 1to 1200h
v Velocity o: 1 =low flow to 3 = torrential flow
con Contamination o: 0 = none to 4 = heavy contamination
emergency wt Warning lead time c: 0to336h
measures
WS Early warning source 0: 0 = no warning to 4 = official warning through authorities
ew Early warning received n: 0=no, 1 =yes
me Emergency measures n: 0=no, 1 =yes
undertaken
ep Emergency plan n: 0=no, 1 =yes
kh Knowledge about hazard n: 0=no, 1 =yes
ms Emergency measures success o: 0 = no measure undertaken, 1 = completely ineffective to 3
= very effective
precaution fe Flood experience o: 0 = no experience to 3 = recent flood experience
pr Precaution measures o: 0 = no precaution, 1 = medium precaution, 2 = Very good
precaution.
in Insurance n: 0=no, 1 =yes
company sp Size premise c: 100 to 4400000 m2
characteristics
sec Sector n: 1 = Agriculture, 2 = Manufacturing, 3 = Commerce, 4 =
Financial, 5 = Private and public services
ss Spatial situation o: 1 = several buildings, 2 = entire building, 3 = one or more
floors, 4 = less than one floor
own Ownership n: 1 = building owned, 2 = rented, 3 = partly owned/partly
rented
emp Number of employees c: 1 t0 920
damage type bdam Relative damage to building c: degree of damage between 0 and 1
edam Relative damage to equipment  ¢: degree of damage between 0 and 1
gsdam Relative damage to goods and  c¢: degree of damage between 0 and 1
stock
bid Business interruption duration  ¢: 0 to 540 d (cases with 540 d reflect the end of the survey.
Durations beyond that point are not available as numeric
value)
brd Business restriction duration c: 0 to 540d (cases with 540 d reflect the end of the survey.

Durations beyond that point are not available as numeric
value)

2.2 Variable Selection

Flood damage processes vary by region, flood type, and as-
set type (Mohor et al., 2020; Sairam et al., 2019; Wagenaar et
al., 2018). Since our analysis focuses on flash floods and cov-
ers five different asset types, we use a data-driven approach
to identify which variables strongly influence these diverse
outcomes. We adopt a feature selection approach that is ro-
bust to multicollinearity and capable of capturing nonlinear
relationships and interactions. To this end, we employ three
complementary machine learning techniques: Elastic Net
(EN), Random Forest (RF), and Extreme Gradient Boosting
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(XGBoost). EN efficiently handles multicollinearity and per-
forms variable selection through regularization; RF captures
nonlinear relationships and complex interactions via ensem-
ble decision trees; and XGBoost, a gradient boosting algo-
rithm, provides high predictive accuracy and models intricate
dependencies. By combining the strengths of these methods,
we ensure a comprehensive assessment of variable impor-
tance. To mitigate potential biases from relying on a single
model, we aggregate the variable importance scores across
all three methods to derive a final ranking.
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2.2.1 Elastic Net

Elastic Net (EN) balances variable selection and model fit-
ting, making it suitable for handling multicollinearity (Tay et
al., 2023). It combines the strengths of both Lasso and Ridge
regression. Lasso promotes sparsity by driving less impor-
tant coefficients to zero, effectively performing variable se-
lection. Whereas, Ridge shrinks all coefficients to stabilize
the model in the presence of highly correlated variables. The
EN objective function is given by (Zou and Hastie, 2005):

n

1
Obj(B) = -3 (vi —Xip)’

i=1
p 1—n & 5
+a xZ|ﬁ,|+TZﬁj (1
j=1 j=1

Where n is the number of samples (excluding one fold for
cross-validation), p is the number of variables (19 in this
case), y; represents the response for ith sample, and X; is the
corresponding variable vector. The coefficient B; represents
the effect of the jth variable. The hyperparameter o con-
trols the strength of the regularization, while A determines
the balance between Ridge (A = 0) and Lasso (A = 1) regres-
sion. The regression coefficients 8 were obtained by mini-
mizing the Obj(B8). The optimal hyperparameters (o, A) were
selected based on the lowest mean absolute error (MAE) ob-
tained from the nested cross validation (see S1 in the Sup-
plement). The use of MAE as the objective function treats
residuals symmetrically, ensuring that both small and large
errors are proportionally considered. This metric is robust to
outliers and provides an interpretable measure of error in the
same units as the response variables i.e., relative loss (0-1)
and duration (0-540d). We implemented EN using the Elas-
ticNet package from scikit-learn python library (Pedregosa
et al., 2011). Predictions for the test dataset (X;) were com-
puted as:

yr = X:B 2)

Where y, represents the predicted values. Elastic Net is a
powerful linear model that is effective in handling multi-
collinearity. However, in its standard application without ex-
plicit transformations, it primarily captures linear associa-
tions and cannot model complex nonlinear relationships di-
rectly.

2.2.2 Random Forest

Random Forest (RF) is an ensemble learning method that im-
proves predictive performance and prevents overfitting by ag-
gregating multiple decision trees (Breiman, 2001). Individual
decision trees tend to have high variance due to their sensi-
tivity to data variability. RF addresses this limitation by con-
structing multiple decision trees, each trained on a bootstrap
sample of the data (Aria et al., 2021). Additionally, at each
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root node, RF selects a random subset of variables for split-
ting, reducing correlation among trees and enhancing gener-
alization.

We implemented RF using the RandomForestRegressor
package from scikit-learn python library (Pedregosa et al.,
2011). A randomized search was conducted over predefined
hyperparameter ranges, including the number of trees, max-
imum tree depth, and the number of variables per split (see
S1). Using the optimal hyperparameters, predictions for the
test dataset (X;) were obtained by averaging predictions from
all individual trees:

1 R
= E;fr(xt) 3)

Where f,(X;) is the prediction from tree r, and R is the total
number of trees. RF is well-suited for heterogeneous data and
often outperforms linear model (Schoppa et al., 2020; Sieg et
al., 2017). However, it can be computationally expensive for
large datasets with numerous variables and deep trees.

2.2.3 XGBoost

XGBoost (Extreme Gradient Boosting, XGB) is an opti-
mized gradient boosting algorithm designed for speed and ef-
ficiency (Chen and Guestrin, 2016). XGB also handles miss-
ing values, whereas RF requires explicit imputation. The ob-
jective function for XGB is defined as (Chen and Guestrin,
2016):

u B
obj® =3 "Ly yP) +d () “
k=1 1

b=

Where L(yy, y,f ) is the loss function measuring the differ-
ence between the actual value yi, and the predicted value y,f
at boosting iteration B. The updated prediction for the kth
sample after B iterations is:

e =y + fa(xx) (5)

Where, y,f ~!is the prediction for the kth sample after B — 1
iterations. fp(xx) is the prediction made by the model at iter-
ation B for the kth sample. Unlike RF, which constructs trees
independently and in parallel, XGB builds trees sequentially,
where each new tree corrects the residual errors of the previ-
ous ones (Narin, 2025). Additionally, XGB incorporates both
Lasso and Ridge regularization to control overfitting (Ma et
al., 2021). The regularization term $2(f;) for the bth model
is defined as:

1 T
Q(fb):yT+§AmZ::1w,%l (6)

Where T is the number of terminal nodes in the tree f. y is a
regularization parameter that penalizes the number of leaves
in the tree (encouraging simpler trees with fewer leaves). w,,
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represents the weight associated with the mth leaf of the tree.
A is a regularization parameter that penalizes the squared
weights of the leaves. This term helps prevent overfitting by
controlling the weights of the leaves. We implemented XGB
using the XGBRegressor package from scikit-learn python
library (Pedregosa et al., 2011). Predictions for test dataset
(X}) using optimal hyperparameter selection were computed
as:

B
=y fo(X:) @)
b=1

2.2.4 Variable importance

To assess the importance of each predictor across the three
models, we used the Permutation Variable Importance (PVI)
technique. PVI quantifies the contribution of each variable by
measuring the change in model performance when its values
are randomly permuted while keeping all others unchanged
(Breiman, 2001). Variables that cause a greater increase in
error upon shuffling are considered more important (Fisher
et al., 2019). This approach is model-agnostic and provides
a consistent framework for comparing variable importance
across different predictive models.

Each model was developed using nested a cross-validation
framework (10 splits x 10 repeats = 100 evaluations). For
each damage type, the median MAE from cross-validation
was computed for each model, denoted as MAEgN, MAERE,
and MAExgg. PVI scores of all variables were rescaled to a
range of 0 to 100 using min-max normalization. To account
for differences in model performance, the PVI scores from
each model were weighted according to the respective model
weights as follows:

1
. MAEModel
Weight =—,
g0tviodel Total )
1 1
where Total = + +
MAEgny MAERr MAExgs

The final variable importance is the sum of the weighted PVI
scores across all three models, ranging from 0-100. If all
three models identify the same variable as the most impor-
tant, its score reaches 100. Variables were then ranked ac-
cording to these combined weighted scores (key variables are
shown in Fig. 5).

2.3 Bayesian Networks for multivariate probabilistic
modeling

Bayesian networks (BNs) are probabilistic graphical mod-
els that represent dependencies among multiple variables
and enable multivariate predictive density estimation (Sucar,
2021). In this study, BNs are employed to complement the
machine learning models by providing a probabilistic frame-
work for analyzing multivariate dependencies and scenario-
based inference. Whereas EN, RF, and XGBoost primarily
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emphasize predictive accuracy and variable ranking, BNs ex-
plicitly capture conditional dependencies among variables.
This is particularly valuable in flood damage analysis, where
damage outcomes result from complex interactions between
hazard intensity, company characteristics, and preparedness
measures. Moreover, BNs enable the estimation of poste-
rior probabilities of damages given partial evidence (e.g., ob-
served water depth or company preparedness), thereby offer-
ing a transparent and interpretable tool for risk assessment
under uncertainty.

A BN is a directed acyclic graph (DAG), G = (V, E),
where V denotes the set of variables and E represents the di-
rected edges encoding conditional dependencies. The dataset
comprises both continuous and categorical variables (see Ta-
ble 1). BNs can theoretically handle both continuous and dis-
crete variables. However, in practice, continuous BNs are
often limited to normally distributed variables to preserve
closed-form probability distributions (Kitson et al., 2023).
Since our flood loss data include mixed variable types with
some skewed distributions, we adopted discrete BNs for this
study. Continuous variables are discretized using an equal-
frequency binning approach, where the number of bins is de-
termined iteratively to optimize network learning while pre-
serving data characteristics. The network structure is learned
through a data-driven approach based on the Tabu Search al-
gorithm (Glover, 1986; Goudet et al., 2018), which iteratively
explores possible network configurations by adding, remov-
ing, or reversing edges. The optimal structure is selected by
maximizing the Bayesian Dirichlet Equivalent (BDe) score
(Heckerman et al., 1995), which balances model complex-
ity and goodness of fit while incorporating prior knowledge.
We employed a uniform prior over the conditional probabil-
ity tables. This corresponds to setting an equivalent sample
size that distributes prior probability mass evenly across all
states of each variable. This ensures that all parent—child con-
figurations are treated equally a priori, and that the posterior
distributions are driven primarily by the empirical data.

We developed five separate BNs corresponding to differ-
ent damage types. During model development, we observed
that for some damage types, the direct connections to the tar-
get variable (i.e., damage) involved up to four variables. To
ensure consistency across BNs and to maintain model inter-
pretability and parsimony, we selected the top four variables
based on the combined weighted importance scores. The
learned BN enables probabilistic inference, allowing com-
putation of the posterior probability of any variable X; given
observed evidence E (Pearl, 1988):

P(E|X;)P(X;
P(Xi|E) - %
)
with P(E) =Y P(E|X;)P(X;)
X

Where P(E|X;) is the likelihood of evidence given X;, and
P(X;) is the prior probability of X;. See S2 in the Sup-
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plement for a detailed step-by-step procedure of the BN
learning process, Conditional Probability Tables (CPTs), and
Bayesian inference. The posterior probability of flood dam-
age given the observed evidence E is discrete in nature. How-
ever, this discrete representation is limited by the binning
of the data and does not allow precise estimates or a mean-
ingful characterization of predictive uncertainty. To address
this, we derived a continuous distribution of direct and in-
direct damages by fitting a probability distribution based on
weighted sampling of the empirical damage data, following
the approach of Schoppa et al. (2020). This allows for a more
precise representation of uncertainty and predictions at finer
scales beyond the original bins.

3 Results and Discussion

3.1 Opverview of affected companies in the 2021 flood
event

This section provides an in-depth analysis of the affected
companies, focusing on their demographic profiles, the types
of damage sustained, the extent of business interruptions,
and the financial implications across various damage cate-
gories. The companies range from micro-companies with up
to nine employees to large companies with 250 and more em-
ployees, according to the European classification (Destatis,
2003). The majority of the companies surveyed are therefore
classified as micro-companies (1-9 employees) followed by
small companies with 10 to 49 employees and medium-sized
companies with 50 to 249 employees (Fig. 1). Large compa-
nies with 250 and more employees rarely participated.

Figure la illustrates the distribution of companies across
sectors, showing a relatively balanced representation except
for agriculture. Based on the WZ2008 economic classifi-
cation (Destatis, 2008), all companies surveyed were as-
signed to one of five economic sectors: (1) agriculture (n =
14); (2) manufacturing (n = 81); (3) commercial (n = 126);
(4) corporate and financial services (further: financial) (n =
81) and (5) public and private services (further: services)
including educational, health and social services (n = 129).
Micro and small companies dominate the sample, which
aligns with the typical business landscape of many European
countries (Eurostat, 2024). Figure 1b indicates a clear rela-
tionship between company size and the size premise of the
companies. Micro-companies predominantly operated from
size premise < 5000 m?2, whereas medium and large com-
panies were more likely to occupy a higher size premise
> 5000m?>. Large size premise inherently increased expo-
sure to floodwaters, which partly explains the heightened
damages among medium and large companies. A significant
observation from Fig. 1c is the generally low implementa-
tion of precautionary measures, particularly among micro
and small companies.
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Floods not only cause damage to tangible assets through
hydrodynamic forces and chemical contamination but also
lead to significant disruptions in supply chains and trans-
portation. Such disruptions can result in partial or complete
business interruptions and, in extreme cases, bankruptcy
Thieken et al., 2016). Figure 2 illustrates the percentage of
companies affected by various types of impacts, categorized
by company size, while Fig. S4 in the Supplement presents
the same results by sectors. Since company size emerged as
the dominant factor explaining variations in damages, our
main emphasis in this study is on company size. To maintain
focus and clarity, sectoral differences are not discussed in
detailed here. The results reveal clear differences in vulner-
ability and exposure levels across different company sizes.
Damage to buildings emerges as the most frequently reported
impact, with nearly 100 % of companies across all size cat-
egories affected. Larger companies report the highest expo-
sure to equipment damage (100 %) and loss of goods and
stock (over 80 %), suggesting that companies with larger op-
erational setups have more assets at risk. In contrast, the
micro-companies report slightly lower, yet still significant,
impacts in these categories, with equipment damage close to
90 % and goods and stock losses around 70 %.

Business interruption is another major consequence re-
ported consistently across all company sizes, reaching 100 %
among large companies (Fig. 2). This suggests that larger
operational scales correlate with increased disruption poten-
tial. Business restrictions due to regulatory or environmen-
tal constraints are reported less frequently but remain rele-
vant, particularly for medium and large companies, with a
frequency exceeding 60 %. Interruptions in utility services
are a widespread issue, affecting 90 % to 100 % of compa-
nies across all size categories. This finding highlights the uni-
versal dependency of businesses on essential services such
as electricity, water, and telecommunications. Loss of cus-
tomers and employee delays are also commonly reported
impacts. Micro-companies experience customer losses of
around 60 %, underlining the challenges to business con-
tinuity and client retention following flood events. In con-
trast, employee delays affect approximately 80 % of compa-
nies, except micro-companies, reflecting disruptions in work-
force mobility. Regarding supply chain disruptions, problems
with suppliers affect between 40 % and 80 % of companies,
with the highest impacts reported by larger businesses (80 %;
Fig. 2). This suggests greater vulnerability due to complex
supply dependencies. Conversely, delivery problems are re-
ported less frequently, with medium-sized companies expe-
riencing the lowest impact (40 %).

Turnover reduction is moderately reported (60 %—80 %)
without a distinct size-based pattern, although micro-
companies appear more affected, with rates around 80 %.
Damage or inaccessibility of road infrastructure is reported
by approximately 80 % of companies, underscoring systemic
exposure that affects businesses regardless of size. Car dam-
age is less frequently reported but shows slightly higher
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Figure 2. Spider chart illustrating the percentage of companies experiencing different types of flood impacts, categorized by the number of

employees.

percentages (above 60 %) among medium-sized companies.
Sales restrictions exhibit variability, with micro-companies
reporting higher percentages (over 60 %), possibly due to
their greater dependence on physical sales venues. Glass
damage is moderately reported across companies but is no-
tably higher among larger companies (around 80 %), likely
due to their larger commercial structures and exposure. Over-
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all, the results illustrate the complex and diverse impacts
of flooding on companies, varying by size and operational
characteristics. Micro and small companies are more sus-
ceptible to supply chain disruptions and sales restrictions,
while larger companies face higher asset-related risks. Ac-
cordingly, risk management and resilience strategies should
be tailored to company size.
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Figure 3. Boxplot of (a) Business interruption duration (days) and
(b) Business restriction duration (days) for companies categorized
by the number of employees. Black circular markers represent indi-
vidual data points, and red crosses indicate outliers.

July 2021 flood event had long-lasting impacts on busi-
nesses, severely disrupting operations for months or even
years. Figure 3 presents the distribution of business inter-
ruption duration and business restriction duration (both mea-
sured in days) across companies of varying sizes. The box-
plots reveal clear differences in the duration of these impacts
based on company size. For business interruption duration,
micro-companies (1-9 employees) experienced the longest
disruptions overall, with a median duration of approximately
40 d. However, the range of reported durations for this group
was highly variable, with several extreme cases extending be-
yond 365d, as reflected by numerous outliers. This finding
underscores the particular vulnerability of micro-enterprises
to prolonged operational disruptions following flood events,
likely due to their limited resources and reduced adaptive ca-
pacity. In contrast, small, medium, and large companies re-
ported comparatively shorter business interruption durations.
The median interruption durations for these groups ranged
between 10 and 30d, with fewer extreme cases observed.
Notably, medium-sized companies demonstrated shorter in-
terruption periods overall, suggesting better resilience or re-
covery capacity. This may be attributed to diversified oper-
ations, greater financial buffers, or the presence of formal
contingency plans that facilitate faster recovery. The number
of outliers differs across company sizes because thresholds
were determined using the standard 1.5 x IQR rule. For busi-
ness restriction duration, no outliers were detected, as the up-
per thresholds were consistently high (e.g., > 650 d for micro
and small companies) and all observations fell within these
ranges.

The pattern shifts when examining the duration of business
restrictions. Both micro and small companies reported signif-
icantly prolonged periods of business restrictions, with me-
dian durations exceeding 100d. In some cases, restrictions
extended up to 365 d, again marked by several extreme val-
ues. The persistence of these restrictions may reflect regu-
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latory, environmental, or logistical hurdles encountered dur-
ing the recovery phase, particularly by smaller companies
that often lack the influence or flexibility to expedite reso-
lution. Interestingly, medium-sized companies reported rel-
atively shorter business restriction durations, with a median
significantly lower than that of micro and small companies.
Most data points for this group clustered below 100d, in-
dicating a more efficient recovery from regulatory or oper-
ational constraints. For large companies, only a few values
were reported, which likely explains the narrower distribu-
tion observed. Overall, these results highlight that company
size is a critical factor influencing the duration of operational
disruptions following extreme events. Micro and small com-
panies are particularly vulnerable to prolonged indirect im-
pacts, such as extended business restrictions and interrup-
tions. In contrast, medium and large companies tend to re-
cover more quickly, likely because they benefit from diversi-
fied operations, and access to more substantial resources.

The survey recorded specific damage amounts across three
categories of direct property damage: (1) building, (2) equip-
ment, (3) goods and stock, as well as financial losses due to
business interruptions. In most cases (approximately 62 %),
the direct damages amounted to more than EUR 100000
while around 24 % of companies reported damages reaching
into the millions. The average costs (in euros) for each com-
pany size are presented in Table 2, alongside medians and the
number of companies (n) contributing to each calculation.
Building damages accounted for the highest average costs
across all company sizes, particularly impacting medium and
large companies. Micro companies reported average building
damages of EUR 711459, with a median of EUR 250 000.
This wide gap between the mean and median suggests that
while many small firms experienced moderate losses, a few
outliers faced severe damages. For small companies, the
average building damage increased to EUR 908 482 (me-
dian EUR 500000). Medium companies faced substantial
building-related losses, averaging EUR 2 838 103 with a me-
dian of EUR 1350 000. Large companies, though represented
by a very small sample (n = 4), reported the highest average
building damages of EUR 7350000, reflecting the scale of
structures at risk within large industrial facilities.

In terms of equipment damages, micro companies in-
curred an average loss of EUR 297 854, while small com-
panies experienced significantly higher average costs of
EUR 541 898. Medium companies reported the highest aver-
age equipment losses at EUR 3 630 652, likely driven by the
presence of high-value machinery. Interestingly, large com-
panies recorded a comparatively lower average equipment
loss of EUR 160000, though this is based on a very small
sample size (n =3). Lower median values across groups
suggest the presence of extreme cases skewing the mean,
particularly among medium-sized companies. Goods and
stock damages were generally lower across all company
sizes (Table 2). Micro companies faced average losses of
EUR 159422, while small companies reported similar av-
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Table 2. Average financial costs (in euros) incurred for building, equipment, goods and stock, and business interruption categorized by the
number of employees (values in brackets represent medians, and n denotes the number of companies included in the calculation of the means

and medians)

Number of employees Building Equipment Goods and Business
(Company size) stock interruption
1-9 (Micro) 711459 297 854 159422 139931
(250000) (50000) (30000) (30000)
n=167 n =203 n=154 n=143
10-49 (Small) 908 482 541898 134470 311173
(500000) (150000) (31500) (100000)
n=283 n =296 n=2382 n=74
50-249 (Medium) 2838103 3630652 1503250 703250
(1350000) (600000) (150000) (200000)
n=29 n=23 n=20 n=16
249-920 (Large) 7350000 160 000 55000 400000
(1700 000) (200000) (10000) (500000)
n==4 n=3 n=3 n=3
Total 1080999 604 528 254083 215910
(350000) (100000) (30000) (50000)
n =283 n =325 n =259 n =236

erage damages of EUR 134 470. Medium companies expe-
rienced higher average losses of EUR 1503 250, indicating
greater inventory exposure. Large companies reported much
smaller average losses of EUR 55 000. Lower median values
that most companies incurred relatively less damages in this
category, with a few outliers.

Business interruption losses also varied by company
size. Micro companies faced average interruption costs of
EUR 139931, while small companies reported higher aver-
age losses of EUR311173. Medium companies were the
most affected, with average losses of EUR 703 250. Large
companies, despite the small sample size (n = 3), recorded
an average business interruption cost of EUR 400 000, with
the median even higher at EUR 500 000, reflecting significant
operational disruptions. Overall, the financial costs associ-
ated with building, equipment, goods and stock, and busi-
ness interruption showed that larger companies typically in-
curred more significant costs. Importantly, the limited num-
ber of large companies surveyed suggests that these results
should be interpreted cautiously, as they may not fully repre-
sentative. However, due to the extremely limited number of
large companies surveyed, these results cannot be general-
ized and should be interpreted with caution. These values are
presented for illustration purposes only and cannot be con-
sidered representative of large companies in general.

3.2 Data-driven analysis of factors influencing direct
and indirect flood damages

Understanding the complex processes driving flood damage
is crucial for developing effective risk reduction measures for
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companies. To date, most insights into damage mechanisms
stem from studies on private households affected by riverine
floods (Gerl et al., 2016; Thieken et al., 2022). This analy-
sis seeks to close the knowledge gap on the factors driving
direct and indirect damages to companies during unprece-
dented flood events. Based on data availability, 19 potentially
relevant influencing factors were selected, covering hazard
characteristics, emergency measures, precautionary actions,
and company characteristics (Table 1). The dataset exhib-
ited less than 7 % missing data for 18 out of 19 variables
(Fig. S1), which were imputed using the kNN technique
with k = 5 neighbors (Askr et al., 2024). The remaining vari-
able, warning lead time (wt), had approximately 10 % miss-
ing data, which was also imputed using the same approach.
Figure 4 presents the pairwise Spearman rank correlations
between influencing factors and the five damage types — rel-
ative damage to buildings (bdam), equipment (edam), goods
and stock (gsdam), business interruption duration (bid), and
business restriction duration (brd).

High positive correlations exist between water depth (wd),
flow velocity (v), and various damage types, highlighting the
critical role of flood intensity in driving both direct and indi-
rect damages. Interestingly, factors characterizing emergency
response and preparedness exhibit negative correlations with
business interruption and restriction durations. Specifically,
the successful implementation of emergency measures (ms),
and precaution (pr) are associated with reduced indirect im-
pacts (Fig. 4). Additionally, company characteristics such as
the size of the premises (sp) and the number of employees
(emp) show negative correlations with equipment and goods
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Figure 4. Spearman rank correlation coefficients between 19 influencing factors and five damage types. Only significant correlations (p-value
< 0.05) are displayed, providing insights into key factor-damage relationships. See Table 1 for abbreviations.

and stock damages, as well as business interruption duration,
reflecting the role of operational scale and exposure in shap-
ing flood impacts. Furthermore, significant correlations exist
between several influencing factors, underscoring the impor-
tance of a multivariate modelling approach.

To account for these interactions and robustly identify the
most influential factors, a data-driven modelling framework
was implemented. Three machine learning models (Random
Forest, Elastic Net, and Extreme Gradient Boosting (XG-
Boost)) were trained on the empirical survey data. Ten repe-
titions of a ten-fold cross-validation based on random parti-
tioning were carried out. In each model, the hyperparameter
combination model yielding the lowest MAE was used to de-
rive the variable importance. The combined variable impor-
tance scores from all three models are illustrated in Fig. 5.
As expected, water depth (wd) consistently emerged as the
most important driver across all damage types, aligning with
previous findings (Schoppa et al., 2020; Sieg et al., 2017).
Notably, flow velocity (v) ranked as the second or third most
influential factor, particularly for the 2021 flood event. This
prominence of velocity reflects the dynamic nature of the
flood, contrasting with large-scale, slowly rising river floods
where factors like contamination typically dominate damage
(Kreibich et al., 2007; Sieg et al., 2017). In addition, com-
pany characteristics such as the size of the premises (sp) and
the number of employees (emp) also played significant roles
(Fig. 5). The success of emergency measures (ms) further in-
fluenced damage, ranking fourth or fifth in importance for
direct damages (Fig. 5a—c). Interestingly, business restriction
duration (brd) was primarily influenced by preparedness-
related variables, i.e., amount of precaution taken (pr), prior
knowledge about the hazard (kh), and the company’s insur-
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ance status (Fig. 5e). This finding underscores the critical
role of proactive risk management in minimizing operational
disruptions, during unprecedented events like the 2021 flood.

3.3 Quantifying direct and indirect flood damages
using multivariate probabilistic modelling

Understanding interdependencies among influencing factors
and damage types is crucial for reliable flood damage esti-
mation. Figure 6 presents the kernel density estimations of
the top four influencing factors considered for multivariate
probabilistic damage modelling across five different types of
damage. The violin plots illustrate the probability density of
scaled variables (ranging from 0 to 1), with quartile lines
indicating central tendencies and variability. The presence
of skewed distributions and multimodal characteristics high-
lights the complexity of flood damage relationships across
different damage types.

Bayesian networks (BN) provide a probabilistic frame-
work for understanding the interdependencies between the
top four influencing factors and damage outcomes. We de-
veloped data-driven BN models using a score-based struc-
ture learning algorithm. The BN structure (Fig. 7) provides
a probabilistic representation of these relationships, allow-
ing users to estimate both direct and indirect damages along
with a quantification of uncertainty. The direction of the ar-
rows represents conditional dependencies between variables
but does not imply causality (Schréter et al., 2014). Some di-
rections may appear unintuitive because the structure is de-
rived from a score-based learning algorithm that optimizes
the overall network fit to the data. The results align with pre-
vious studies while also offering new insights into key influ-
encing factors.
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(Random Forest, Elastic Net, and XGBoost).

Consistent with prior research (Kreibich et al., 2010; Na-
fari et al., 2016; Schoppa et al., 2020, 2022; Seifert et al.,
2010; Sieg et al., 2017), our results confirm that water depth
(wd) and velocity (v) are strongly associated with direct dam-
ages, particularly for building damage (bdam). The direct
link between these variables and bdam (Fig. 7a) underscores
the predominant role of flood intensity in the network. The
BN structure also identifies that contamination (con) is linked
to building damage, consistent with Sieg et al. (2017). For
equipment damage (edam) and goods and stock damage (gs-
dam), our results show that flow velocity and company char-
acteristics such as size premises (sp) and number of employ-
ees (emp) are important nodes in the network (Fig. 7b and c).

Nat. Hazards Earth Syst. Sci., 26, 163-186, 2026

This aligns with Schoppa et al. (2020), who emphasized that
company-specific characteristics play an important role in
explaining non-structural damages. Unlike previous studies
that primarily focused on hazard intensity variables (Nafari
etal., 2016; Sieg et al., 2017), our results show that company
exposure variables also appear as relevant variables in the
inferred BN structures, indicating conditional dependencies
with damage outcomes.

BN structure of business interruption duration (bid)
(Fig. 7d) shows dependencies with water depth (wd), veloc-
ity (v), and number of employees (emp), which is in agree-
ment with Sultana et al. (2018), who found that company-
specific factors (e.g., emp) often outweigh hazard charac-
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Figure 7. Bayesian network structure showing interdependencies among factors and damage types, derived from a score-based structure

learning algorithm.

teristics in estimating business interruption costs. Moreover,
our findings complement those of Sakai and Yao (2023),
who highlighted that small companies suffer disproportion-
ately higher business interruption relative to turnover. Inter-
estingly, the BN structure of business restriction duration
(brd) (Fig. 7e) reveals that precautionary measures (pr), are
conditionally linked to the knowledge about flood hazard
(kh). This provides a leverage point for risk communication
to shape proactive behavior. While previous studies have ac-
knowledged the importance of preparedness (Kreibich et al.,
2010; Schoppa et al., 2022), our BN results provides a quan-
titative depiction of how these variables co-occur within the
inferred network. The dependency between precaution mea-
sures (pr) and business restriction duration (brd) indicates
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that proactive measures and restriction duration are closely
associated within the network.

We used the BNs to estimate the damage under differ-
ent hazard, exposure, and vulnerability scenarios. Figure 8
shows the distribution for five types of flood damage, where
each damage type is probabilistically modelled using its
respective Markov blanket. These distributions are derived
from Conditional Probability Tables (Fig. S4). In all cases,
horizontal solid lines represent the observed range of dam-
age and business interruption/restriction durations (scaled 0
to 1), red dots indicate the median (50th percentile), and dot-
ted vertical lines denote the interquartile range (25th—75th
percentiles), providing an indication of uncertainty. Across
many scenarios, the distributions overlap considerably, sug-
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gesting that the differences between categories should be in-
terpreted with caution.

The relative damage to buildings is modeled as a function
of water depth and flow velocity (Fig. 8a). As water depth in-
creases, the median damage values generally rise, especially
under moderate and torrential flow conditions. At low flow
velocities, median damage remains relatively low across all
depth levels, however the uncertainty increases with depth,
suggesting various possible outcomes. Under moderate flow
conditions, damage estimates increase slightly compared to
low flow, with overlapping uncertainty bounds. In contrast,
torrential flow conditions consistently lead to the highest
damage estimates, particularly for water depths exceeding
2 m, where the 75th percentile approaches near-total destruc-
tion. Notably, the uncertainty in damage estimates increases
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with both rising water depth and flow velocity, indicating
heightened variability (or uncertainty) in damage outcomes
under extreme flood conditions.

The relative damage to equipment (edam) is assessed
as a function of flow velocity and company size premises
(Fig. 8b). Flow velocity categories (Low, Moderate, Tor-
rential) are arranged as columns, while the size premises
classes (75-500, 501-1500, > 1500 m2) in rows. Under low
flow conditions, median damage tends to decrease as size
premises increases, especially for the largest category (>
1500 m2). Under moderate and torrential flows, companies
with size premises < 500m? show damage values that often
reach the maximum. Under torrential flow, high damage val-
ues are likely across all size classes. The relative damage to
goods and stock is also modeled as a function of flow ve-
locity and size premises (Fig. 8c). Even under low flow con-
ditions, companies with smaller premises (< 1500m?) may
experience high damage, whereas companies with premises
> 1500m? show median damage estimates of around 50 %.
Under moderate and torrential flow conditions, the damage
values concentrate around 1.0, indicating near-total damage
to goods and stock under extreme flood conditions, largely
irrespective of size premises. However, the companies with
size premises > 1500m? exhibit greater variability. Overall,
the substantial overlap of uncertainty across scenarios in-
dicates a wide range of possible outcomes, suggesting that
these patterns should be interpreted as general tendencies
rather than definitive outcomes.

The predicted business interruption duration (Fig. 8d) also
shows overlapping distributions across company size and
flow conditions. Micro-companies (1-9 employees) may ex-
perience a median interruption duration of around 22 d un-
der low and moderate flow conditions. While under torrential
flow conditions, the interruption duration tends to increase to
nearly 60d. Small companies (10-49 employees) exhibit a
similar trend, although their modelled interruption duration
under torrential flow may be slightly lower. For medium and
large companies (> 49 employees), the modelled interrup-
tion duration ranges from about 11 to 33d across all flow
conditions. The results indicate that small companies, partic-
ularly micro-companies, may have been disproportionately
affected during the 2021 flood event. The analysis of busi-
ness restriction duration (Fig. 8e¢) emphasizes the role of im-
plementation of precautionary measures. The median restric-
tion duration for companies without precaution is expected
to be approximately 210d for water depth > 2m. While for
companies with very good precautionary measures, the me-
dian restriction durations may be below 150 d. This indicates
that very good precautionary measures can help in reducing
the restriction periods, however the overlapping distributions
says the outcomes may not be uniform across scenarios.
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3.4 Limitations and future scope

While the study combines a unique dataset with innovative
machine learning methods, our approach does have some
limitations. First, the sample size for some company cat-
egories, particularly large companies, was small, which is
due to the fact that the fraction of large companies affected
was low. Second, survey participation was voluntary, which
may have introduced selection bias. Although 431 responses
create a notable sample size given the challenges of post-
disaster data collection, future studies should aim for a more
diverse, representative sample across different company sizes
and sectors. This would further strengthen the generalizabil-
ity of the findings. Moreover, comparative analyses across
multiple extreme flood events in different geographical re-
gions and socio-economic contexts would allow for broader
generalization of findings. Future work should also explore
sector-specific analysis, given the heterogeneous nature of
companies.

The machine-learning models (EN/RF/XGB) were trained
entirely on empirical data, and the bounded nature of the re-
sponse variables was not explicitly encoded in their objec-
tive functions. As our study focuses on the assessment of
variable importance rather than on prediction, the lack of
bound-preserving objective functions has limited impact on
our findings. Nevertheless, future studies should consider in-
corporating a modelling framework that explicitly enforces
response bounds, particularly when the primary goal is pre-
dictive accuracy. Finally, converting the discretized BN out-
puts into continuous probability distributions enables a finer
representation of predictive uncertainty, however, this step
introduces an additional approximation. Specifically, the un-
certainty arising from fitting the continuous probability den-
sity function replaces the discretization uncertainty inherent
in the BN. This additional imprecision should be considered
when interpreting the predictive density distribution.

4 Conclusions

The July 2021 flood in Germany highlighted the significant
vulnerability of companies to unprecedented floods, with
both direct and indirect damage resulting in substantial finan-
cial costs. This reaffirms the need for a deeper understanding
of how multiple interacting factors shape damage outcomes
under extreme conditions. Our findings indicate that core
hazard related variables, including water depth, flow veloc-
ity, and contamination, are predictors of damage consistently
across the five damage types investigated. Company charac-
teristics such as size of the premises and number of employ-
ees also play an important role. These findings strengthen
the knowledge gained on basis of earlier flood events while
revealing new information in respect to an unprecedented
event. What sets the 2021 flood damage processes apart is
the elevated importance of emergency preparedness and be-
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havioural responses, particularly in influencing indirect dam-
age such as business restriction duration. A novel insight
from this study is the link between knowledge about flood
hazard and amount of precaution taken, highlighting its rel-
evance in reducing business restriction duration. Small and
micro-companies that implemented very good precaution-
ary measures experienced notably shorter restriction dura-
tions. Nonetheless, scenario-based analysis shows consider-
able overlap and variability across scenarios indicating that
the resulting damage outcomes remain highly variable and
uncertain. Overall, the results underscore the critical role of
preparedness and emergency and risk communication, that
support non-structural measures as essential complements
to structural protection that may be less effective under un-
precedented conditions. This also provide a leverage point
for risk communication tailored to business owners.
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Appendix A

Table A1. Overview of the company variables, including survey questions, and response.

Predictors Survey question Response

wd  Water depth At maximum water level, how high was the Continuous variable
water above the Earth’s surface on your
company premises in cm?

d Inundation duration ~ For how many hours did water remain on the Continuous variable
company premises?

v Velocity indicator How strong was the water current in the 1 — Calm/slowly flowing
immediate vicinity of your company? 2
3
4
5

6 — Wild/violent current

Recoded categories (used in the analysis):
Low flow (original categories 1-2)
Moderate flow (original categories 3—4)
Torrential flow (original categories 5-6)

con Contamination Did contamination from the following Response (with multiple options possible):
substances entered your company during the — Oil/Gasoline
flood event?
— Chemicals
— Sewage

— No contamination

Recoded categories (used in the analysis):
1. No contamination
2. Sewage or Chemicals only
3. Oil/Gasoline only
4

. Oil/Gasoline + Sewage, or
Oil/Gasoline + Chemicals

5. Oil/Gasoline + Chemicals + Sewage

wt Warning lead time How many hours before the arrival of the flash — Number of hours
flood or heavy rainfall did the warning reach

— No warning received
your company?
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Table Al. Continued.

179

Predictors

Survey question

Response

ws  Early warning
source

From which source did your company receive
the flood warning?

Response (with multiple options possible):

Loudspeaker announcements
App or SMS

Telephone call

Radio report

TV report

Newspaper report

Social media

Own research

Own observation

No warning

Recoded categories (used in the analysis):

1.
2.

No warning

Own research

3. Contacts (employees, acquaintances, other

companies, phone calls)

4. Media (radio, TV, newspaper, online, social
media)

5. Official authorities (direct official warning,
apps/SMS, civil protection, loudspeaker
announcements, regional services)

ew Early warning Did your company receive an early warning of 0. No
received the flood event? 1 Yes
me Emergency Were measures to reduce damage undertaken in 0. No
measures your company before or during the flood event? 1. Yes
undertaken ’
ep  Emergency plan At the time of the flood event, did your 0. No
company have an emergency or flood 1. Yes
protection plan? '
kh  Knowledge about Had this site already been flooded before? 0. No
hazard Were you aware that your company is located 1. Yes

in a flood-prone area?
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Table Al. Continued.

Predictors Survey question Response
ms  Emergency Were measures to reduce damage undertaken in — No measure undertaken
measures success your company before or during the flood event?

Not effective at all

How effective were these mitigation measures?

Only partly effective

Mostly effective

Completely effective

Recoded categories (used in the analysis):
0. No measure undertaken
1. Completely ineffective,
2. Partly effective,
3. Mostly/completely effective

fe  Flood experience Q1: Had this company site already been Number of previous floods:
flooded before the event? If yes, how many 0. Never
times?
1. Once
2. Twice

0. > Three times
Q2: When was the company site last affected Time elapsed since the last flood:

by a flood prior to the event? (Year) 1. > 25 years ago

2. 11-25 years ago

3. 2-10 years ago
Flood experience was calculated from the — If only one value (Q1 or Q2) was available, that
number of previous floods (Q1) and the time value was used.

elapsed since the last flood (Q2). — If both values were available, the flood

experience score was calculated as the mean of
the two.
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Table A1l. Continued.

Predictors Survey question Response
pr  Precaution Measures included Conversion:
measures V1. Company insured against flood damages. — Each measure was coded as 1 if implemented
V2. Heating system adjusted (converted or prior to the flood, 0 otherwise.
flood-protected). — For drills, any positive frequency (> 1 per year)
V3. Emergency plan in place. was coded as 1, absence as 0.
V4. Frequency of emergency drills conducted Weighting scheme:
before the flood. — Low impact/basic preparedness (weight = 1): V1
V5. Tanks, silos, or storage facilities securely to V4
anchored. — Medium impact/protective but limited scope
V6. Stationary or mobile water barriers (weight=5): V5 to V8
installed. — High impact/comprehensive protection (weight =
V7. Sensitive equipment relocated to higher 10): V9 to V11
floors. Calculation of weighted score (p):
V8. Water-hazardous substances relocated to p=vl+v2+v3+vd+(5x W5+v6+v7+08))+
higher floors. (10 x (v9+v10+v1D))
Precaution Indicator (pr):
V9. Use of flood-prone areas adapted to risk. .
0. No precautionary measures
V10. Air conditioning/ventilation system . .
flood-proofed. 1. Medium precaution (p: 1-5)
V11. Building flood safety improved (e.g., 2. Very good precaution (p > 6)
sealing basements, strengthening
stability).
in Insurance Is the company insured against flood damages 0. No
before the flood event?
1. Yes
sp  Size premise How large is the property on which your Continuous variable
company is located?
sec  Sector Which sector does your company belong to? 1. Agriculture
2. Manufacturing
3. Commerce
4. Financial
5. Private and public services
Ss Spatial situation Which description best fits the spatial situation 1. Business premises with several buildings

of this flood-affected company site?

belonging to the company
2. Entire building fully used by the company

3. One or more floors in a building otherwise used
for non-business purposes

4. Less than one floor in a building otherwise used
for non-business purposes
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Predictors Survey question Response
own Ownership Are the buildings or rooms owned by the 1. Owned

company or rented? 2 Rented

3. Partly owned/partly rented
emp Number of How many people were employed in the Continuous variable
employees previous month?
Damage type

Predictand Description Response
bdam  Relative damage to  Represents the percentage of costs incurred Degree of damage between 0 and 1

building

repairing or replacing elements of the building
fabric in relation to its new value.

edam  Relative damage to ~ Represents the percentage of costs incurred Degree of damage between 0 and 1
equipment repairing or replacing equipment of fixed
assets in relation to its new value.
gsdam Relative damage to  Represents the percentage of costs incurred Degree of damage between 0 and 1
goods and stock repairing or replacing goods, products, and
stock in relation to its new values.
bid Business How long, in the aftermath the flooding event, 0 to 540d (A value of 0 indicates no interruption, while
interruption were businesses operations totally interrupted values up to 540 indicate the reported duration of full
duration shutdown. Cases recorded at 540 d reflect the survey
limit, meaning that the business had not yet resumed
operations at the time of the survey)
brd Business restriction ~ How long, in the aftermath the flooding event, 0 to 540 d (The maximum value is 540 d, meaning the

duration

businesses operations resumed without any
restrictions

business still had restrictions when the survey ended)
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