
Supplement of Nat. Hazards Earth Syst. Sci., 26, 163–186, 2026
https://doi.org/10.5194/nhess-26-163-2026-supplement
© Author(s) 2026. CC BY 4.0 License.

Supplement of

Deciphering the drivers of direct and indirect damages to companies from
an unprecedented flood event: A data-driven, multivariate probabilistic
approach
Ravikumar Guntu et al.

Correspondence to: Ravikumar Guntu (ravikumar.guntu@gfz.de)

The copyright of individual parts of the supplement might differ from the article licence.

Fig. S1: Percentage of missing values per factor (x-axis) for each damage type (y-axis). The values shown in the

heatmap are the percentages of missing data, where 0.1 corresponds to 10%. The value in parentheses for each

damage type indicates the number of responses available out of 431. For warning time (wt), cases where no

warning was received are treated as zero.

S1 Optimal hyperparameters selection

We conducted hyperparameter tuning, which randomly samples from a predefined range of values for each

hyperparameter. The search was performed within a nested cross-validation framework. The framework consists

of two levels of cross-validation.

Outer cross-validation: The outer loop is responsible for evaluating the overall performance of the model. It splits

the dataset into training and testing subsets, ensuring that performance estimation is conducted on unseen data.

We employed RepeatedKFold cross-validation with 10 splits and 10 repeats, resulting in a total of 100 evaluations.

Inner cross-validation: Within each outer loop iteration, the inner cross-validation loop is used to tune

hyperparameters. We employed RandomizedSearchCV, which samples different hyperparameter combinations

and evaluates them using 10-fold cross-validation within the training set.

This approach ensures that model selection (inner loop) and performance evaluation (outer loop) are conducted

independently, leading to a more reliable assessment of the model’s generalization ability (Cawley and Talbot,

2010). The optimal combination of hyperparameters was selected based on the lowest Mean Absolute Error

(MAE) during outer cross-validation.

Example breakdown for one outer fold – bdam (total 188 samples)

Outer loop (10-fold cross-validation, repeated 10 times)

• Test set: 19 samples (1-fold, unseen during training and tuning).

• Training set: 169 samples (remaining 9 folds, used for inner-loop tuning and training).

Inner loop (10-fold cross-validation within the training set of 169 samples)

• Training fold (inner loop): 152 samples (9 folds, used for model training).

• Validation fold (inner loop): 17 samples (1-fold, used to evaluate hyperparameters tuing).

The following hyperparameters and their respective search ranges were examined. All other hyperparameters were

set to their default values as provided in the relevant scikit-learn packages (Pedregosa et al., 2011). The random

state/seed was kept constant across all three models.

S1.1 Elastic Net (EN) Hyperparameters

Elastic Net is a linear model that combines Lasso and Ridge regularization. The following hyperparameters

control its regularization strength:

• 𝛼: Controls the strength of the regularization and balances between Lasso (α = 1) and Ridge (𝛼 = 0)

regression. 𝛼: [0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 1]

• 𝜆: Determines the balance between the Lasso and Ridge terms. 𝜆: [0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]

S1.2 Random Forest (RF) Hyperparameters

Random Forest is an ensemble method that constructs multiple decision trees. Key hyperparameters that influence

the model's performance are:

• n_estimators: The number of trees in the forest. n_estimators = [50, 100, 200, 300]

• max_depth: The maximum depth of the individual trees. max_depth = [3, 5, 7, 10, 15, 20]

• min_samples_split: Minimum number of samples required to split an internal node. min_samples_split

= [2, 5, 10]

• min_samples_leaf: Minimum number of samples required to be at a leaf node. min_samples_leaf = [1,

2, 4]

• max_features: Number of features to consider when splitting a node. max_features = ["sqrt", "log2", 0.5,

0.75, 1.0]

S1.3 XGBoost (XGB) Hyperparameters

XGBoost is a gradient boosting method that optimizes speed and performance. The following hyperparameters

are crucial for controlling the boosting process:

• n_estimators: The number of boosting rounds or trees. n_estimators = [50, 100, 200, 300, 500]

• learning_rate: Step size for each iteration, which controls the contribution of each tree. learning_rate =

[0.005, 0.01, 0.05, 0.1, 0.2]

• max_depth: The maximum depth of each tree. max_depth = [3, 5, 7, 10, 15, 20]

• subsample: Fraction of samples used to train each tree. subsample = [0.1, 0.3, 0.5, 0.7, 1.0]

• colsample_bytree: Fraction of features used to train each tree. colsample_bytree = [0.1, 0.3, 0.5, 0.7, 1.0]

• gamma: Regularization parameter that controls overfitting. Gamma = [0, 0.1, 0.5, 1, 5]

• lambda (L2 regularization) and alpha (L1 regularization): These terms control overfitting by penalizing

the tree's complexity. λ = [0, 0.1, 1, 10], α = [0, 0.1, 1, 10].

S2 Bayesian Network learning using the BDe score

The top four variables identified from the combined weighted importance scores obtained using three machine le

arning models were selected to predict flood damage through Bayesian Networks (BNs). Given that the dataset i

ncludes both discrete and continuous variables, continuous variables were discretized using an equal-frequency b

inning approach, ensuring all variables became categorical after discretization.

S2.1 Bayesian Network Structure Learning

The Tabu search algorithm was applied to determine the Bayesian Network structure by maximizing the Bayesia

n Dirichlet equivalent (BDe) score. The learning process began with a simple Naive Bayes structure, in which al

l predictor variables (parent nodes) are assumed to be conditionally independent of each other given the target va

riable (child node). This initial structure reflects the assumption that no dependencies exist among predictors wh

en conditioned on the target.

Fig. S2: Illustration of the initial Naive Bayes structure for modeling company building damage using predictor

variables as parents and the damage variable as the child node.

S2.2 BDe Score Definition

The BDe score, a log-likelihood-based metric, evaluates how well a network structure (DAG) fits the data. It is

computed as (Heckerman et al., 1995):

wd

bdam

con

ms

v

𝐵𝐷𝑒(𝐺|𝐷) = ∏ (∏ (
Γ(𝛼𝑖𝑗)

Γ(𝛼𝑖𝑗 + 𝑁𝑖𝑗)
∏

Γ(𝛼𝑖𝑗𝑘 + 𝑁𝑖𝑗𝑘)

Γ(𝛼𝑖𝑗𝑘)

𝑟𝑖

𝑘=1

)

𝑞𝑖

𝑗=1

)

𝑛

𝑖=1

 (S1)

Where:

• 𝑛 = number of variables

• 𝑞𝑖 = number of parent configurations for variable 𝑋𝑖

• 𝑟𝑖 = number of bins for 𝑋𝑖

• 𝑁𝑖𝑗𝑘 = observed count of instances where 𝑋𝑖 = 𝑥𝑘 given parent configuration 𝑃𝑎𝑗

• 𝑁𝑖𝑗 = total count for parent configuration 𝑗.

• 𝛼𝑖𝑗𝑘 = Dirichlet prior parameter.

• 𝛼𝑖𝑗 = Sum of Dirichlet priors for a given parent configuration.

• Γ(∙) = Gamma function.

A higher BDe score indicates a better-fitting network.

Example calculation of the BDe score

Consider a simplified BN with two variables: 𝑤𝑑 (predictor: water depth) and 𝑏𝑑𝑎𝑚 (target: relative damage to

building). Both are discretized into bins as shown below.

Fig. S3: A simple Bayesian network representing the relationship between water depth (𝑤𝑑) and building damage

(𝑏𝑑𝑎𝑚).

S2.3 Frequency Counts and Total Counts

Observed frequencies (𝑁𝑖𝑗𝑘) from the sample data are presented in Table S1.

Table S1: Observed frequency of 𝑏𝑑𝑎𝑚 conditional on 𝑤𝑑.

𝒘𝒅 𝒃𝒅𝒂𝒎 Count (𝑵𝒊𝒋𝒌)

≤ 1 𝑚 [0.00025,0.120) 30

≤ 1 𝑚 [0.12000,0.300) 19

≤ 1 𝑚 [0.30000,0.528) 7

≤ 1 𝑚 [0.52761,0.960) 4

≤ 1 𝑚 [0.96000,1.000] 5

> 1 𝑚 & ≤ 2 𝑚 [0.00025,0.120) 3

> 1 𝑚 & ≤ 2 𝑚 [0.12000,0.300) 18

> 1 𝑚 & ≤ 2 𝑚 [0.30000,0.528) 16

> 1 𝑚 & ≤ 2 𝑚 [0.52761,0.960) 20

> 1 𝑚 & ≤ 2 𝑚 [0.96000,1.000] 16

> 2 𝑚 [0.00025,0.120) 5

> 2 𝑚 [0.12000,0.300) 4

> 2 𝑚 [0.30000,0.528) 18

> 2 𝑚 [0.52761,0.960) 7

> 2 𝑚 [0.96000,1.000] 16

wd

bdam

Table S2: Total counts (𝑁𝑖𝑗) for each parent configuration (𝑤𝑑 bins).

𝒘𝒅 Total 𝑵𝒊𝒋

≤ 1 𝑚 65

> 1 𝑚 & ≤ 2 𝑚 73

> 2 𝑚 50

S2.4 Dirichlet Prior

Assuming a uniform Dirichlet prior with α = 15:

𝛼𝑖𝑗𝑘 =
𝛼

𝑟 × 𝑞
=

15

5 × 3
= 1

𝛼𝑖𝑗 = ∑ 𝛼𝑖𝑗𝑘

𝑟

𝑘=1

= 5

S2.5 BDe Score Computation

the BDe score is calculated for each parent configuration.

For 𝑤𝑑 (𝑗 = 1):
Γ(5)

Γ(5+65)
×

Γ(1+30)

Γ(1)
×

Γ(1+19)

Γ(1)
×

Γ(1+7)

Γ(1)
×

Γ(1+4)

Γ(1)
×

Γ(1+5)

Γ(1)

For 𝑤𝑑 (𝑗 = 2):
Γ(5)

Γ(5+73)
×

Γ(1+3)

Γ(1)
×

Γ(1+18)

Γ(1)
×

Γ(1+16)

Γ(1)
×

Γ(1+20)

Γ(1)
×

Γ(1+16)

Γ(1)

For 𝑤𝑑 (𝑗 = 3):
Γ(5)

Γ(5+50)
×

Γ(1+5)

Γ(1)
×

Γ(1+4)

Γ(1)
×

Γ(1+18)

Γ(1)
×

Γ(1+7)

Γ(1)
×

Γ(1+16)

Γ(1)

𝐵𝐷𝑒 (
𝐺

𝐷
) = 𝑤𝑑 (𝑗 = 1) × 𝑤𝑑 (𝑗 = 2) × 𝑤𝑑 (𝑗 = 3) ≈ 8.98 × 10−125

The Tabu Search algorithm iteratively explores modifications to the DAG (adding, deleting, or reversing edges)

while avoiding cycles. Each candidate structure is evaluated using the BDe score, and the highest-scoring network

is selected.

S2.6 Conditional Probability Tables (CPTs)

With the learned structure, CPTs are computed:

𝑃(𝑋 = 𝑥𝑘|𝑃𝑎(𝑋) = 𝑝𝑎𝑗) =
𝑁𝑖𝑗𝑘

𝑁𝑖𝑗

 (S2)

Table S3: Conditional Probability Table (CPT) representing 𝑃(𝑏𝑑𝑎𝑚|𝑤𝑑).

bdam 𝒘𝒅 ≤ 𝟏 𝒎 𝒘𝒅 > 𝟏 𝒎 & 𝒘𝒅 ≤ 𝟐 𝒎 𝒘𝒅 > 𝟐 𝒎

[0.000, 0.120) 30

65
= 0.46

3

73
= 0.04

5

50
= 0.10

[0.120, 0.300) 19

65
= 0.29

18

73
= 0.25

4

50
= 0.08

[0.300, 0.528) 7

65
= 0.11

16

73
= 0.22

18

50
= 0.36

[0.528, 0.960) 4

65
= 0.06

20

73
= 0.27

7

50
= 0.14

[0.960, 1.000] 5

65
= 0.08

16

73
= 0.22

16

50
= 0.32

S2.7 Bayesian Inference using the Markov Blanket

With CPTs established, Bayesian inference is conducted using the Markov Blanket of the target node. The

posterior is calculated as:

𝑃(𝑋𝑖|𝐸) =
𝑃(𝐸|𝑋𝑖)𝑃(𝑋𝑖)

𝑃(𝐸)
 (S3)

Where:

𝑃(𝐸|𝑋𝑖) = likelihood of evidence given 𝑋𝑖.

𝑃(𝑋𝑖) = prior probability of 𝑋𝑖.

𝑃(𝐸) = ∑ 𝑃(𝐸|𝑋𝑖)𝑃(𝑋𝑖)𝑋𝑖

Example: For evidence 𝑤𝑑 > 2 𝑚:

1. Compute marginal probabilities 𝑃(𝑏𝑑𝑎𝑚𝑘)

Table S4: Marginal probabilities of 𝑏𝑑𝑎𝑚 bins.

bdam count 𝑷(𝒃𝒅𝒂𝒎𝒌)

[0.000, 0.120) 30+3+5=38 38

188
= 0.2021

[0.120, 0.300) 19+18+4=41 41

188
= 0.2181

[0.300, 0.528) 7+16+18=41 41

188
= 0.2181

[0.528, 0.960) 4+20+7=31 31

188
= 0.1649

[0.960, 1.000] 5+16+16=37 37

188
= 0.1968

Total 188

2. Compute conditional probabilities 𝑃(𝑤𝑑 = 3|𝑏𝑑𝑎𝑚𝑘)

Table S5: Conditional probabilities

bdam 𝒘𝒅 > 𝟐 𝒎 Count 𝑷(𝒘𝒅 > 𝟐 𝒎|𝒃𝒅𝒂𝒎𝒌)

[0.000, 0.120) 5 5

38
= 0.1316

[0.120, 0.300) 4 4

41
= 0.0976

[0.300, 0.528) 18 18

41
= 0.4390

[0.528, 0.960) 7 7

31
= 0.2258

[0.960, 1.000] 16 16

37
= 0.4324

Total 50

3. Compute 𝑃(𝑤𝑑 > 𝟐 𝒎)

𝑃(𝑤𝑑 > 𝟐 𝒎) =
50

188
= 0.26596

4. Compute posterior probabilities:

𝑃(𝑏𝑑𝑎𝑚𝑘|𝑤𝑑 > 𝟐 𝒎) =
𝑃(𝑤𝑑 > 𝟐 𝒎|𝑏𝑑𝑎𝑚𝑘) × 𝑃(𝑏𝑑𝑎𝑚𝑘)

𝑃(𝑤𝑑 > 𝟐 𝒎)

Table S6: Posterior probabilities

bdam bin 𝑷(𝒘𝒅 > 𝟐 𝒎|𝒃𝒅𝒂𝒎𝒌) 𝑷(𝒃𝒅𝒂𝒎𝒌) 𝑷(𝒘𝒅 > 𝟐 𝒎) 𝑷(𝒃𝒅𝒂𝒎𝒌|𝒅 > 𝟐 𝒎)

[0.000, 0.120) 5

38
= 0.1316

38

188
= 0.2021

0.26596 0.10

[0.120, 0.300) 4

41
= 0.0976

41

188
= 0.2181

0.26596 0.08

[0.300, 0.528) 18

41
= 0.4390

41

188
= 0.2181

0.26596 0.36

[0.528, 0.960) 7

31
= 0.2258

31

188
= 0.1649

0.26596 0.14

[0.960, 1.000] 16

37
= 0.4324

37

188
= 0.1968

0.26596 0.32

𝑃(𝑏𝑑𝑎𝑚𝑘|𝑤𝑑 > 2 𝑚) = [0.10,0.08,0.36,0.14,0.32]

Fig. S4: Spider chart illustrating the percentage of companies experiencing different types of flood

impacts, categorized by the sector.

Fig. S5: Conditional probability table of companies building Bayesian network (Fig. 7a). X-axis denotes the parent

node, while Y-axis denotes the children node within the network.

References:

Cawley, G. C. and Talbot, N. L. C.: On Over-fitting in Model Selection and Subsequent Selection Bias in

Performance Evaluation, Journal of Machine Learning Research, 11, 2079–2107, 2010.

Heckerman, D., Geiger, D., and Chickering, D. M.: Learning Bayesian networks: The combination of knowledge

and statistical data, Mach Learn, 20, 197–243, https://doi.org/10.1007/BF00994016, 1995.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.:

Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825–2830, 2011.

	S1 Optimal hyperparameters selection
	S1.1 Elastic Net (EN) Hyperparameters
	S1.2 Random Forest (RF) Hyperparameters
	S1.3 XGBoost (XGB) Hyperparameters

	S2 Bayesian Network learning using the BDe score
	S2.1 Bayesian Network Structure Learning
	S2.2 BDe Score Definition
	S2.3 Frequency Counts and Total Counts
	S2.4 Dirichlet Prior
	S2.5 BDe Score Computation
	S2.6 Conditional Probability Tables (CPTs)
	S2.7 Bayesian Inference using the Markov Blanket

