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Abstract. Compound flooding, where the combination or
successive occurrence of two or more flood drivers leads to
a greater impact, can exacerbate the adverse consequences
of flooding, particularly in coastal-estuarine regions. This
paper reviews the practices and trends in coastal-estuarine
compound flood research and synthesizes regional to global
findings. A systematic review is employed to construct a lit-
erature database of 279 studies relevant to compound flood-
ing in a coastal-estuarine context. This review explores the
types of compound flood events and their mechanistic pro-
cesses, and it synthesizes terminology throughout the litera-
ture. Considered in the review are six flood drivers (fluvial,
pluvial, coastal, groundwater, damming/dam failure, and
tsunami) and five precursor events and environmental con-
ditions (soil moisture, snow, temp/heat, fire, and drought).
Furthermore, this review summarizes research methodology
and study application trends, as well as considers the influ-
ences of climate change and urban environments. Finally,
this review highlights knowledge gaps in compound flood
research and discusses the implications on future practices.
Our five recommendations for compound flood research are
(1) adopt consistent terminology and approaches, (2) expand
the geographic coverage of research, (3) pursue more inter-

comparison projects, (4) develop modelling frameworks that
better couple dynamic Earth systems, and (5) design urban
and coastal infrastructure with compounding in mind.

1 Introduction

Flooding is the costliest and most common hazard worldwide
(Bevere and Remondi, 2022; Mishra et al., 2022; Rentschler
et al., 2022) and can lead to a wide range of environmental,
economic, and social repercussions. Over 1.8 billion peo-
ple, almost a quarter (23 %) of the world’s population, are
exposed to 1-in-100-year flooding (Rentschler et al., 2022).
The vast majority (89 %) of these people live in low- and
middle-income countries, and socially vulnerable communi-
ties are disproportionately at risk (Rentschler et al., 2022).
Since 1980, global floods have caused over 250 000 fatalities
and USD 1 trillion in losses (Munich Re, 2017; EM-DAT,
2022). In 2021 alone there were more than 50 severe flood
disasters recorded worldwide, causing economic losses to-
talling USD 82 billion (2022 USD) (Bevere and Remondi,
2022).
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A large proportion of deaths and the economic losses as-
sociated with flooding have historically occurred in densely
populated coastal-estuarine regions. Today, near-coastal
zones and low-elevation coastal zones, subject to flooding
from a range of drivers, are respectively home to 2.15 bil-
lion and ~900 million people globally (Reimann et al.,
2023). In the past decade, floods associated with strong on-
shore wind and pressure fields (e.g. 2013/2014 UK winter
floods, 2017 Atlantic hurricane season, 2019 Atlantic Hurri-
cane Dorian, 2019 East Africa Tropical Cyclone Idai, 2019
Pacific typhoon season, and 2022 eastern Australia floods)
have showcased the ever-present threat of extreme flood im-
pacts in coastal settings. Even in regions where coastal de-
fence standards are among the highest in the world (e.g. Eu-
rope, Japan, the Netherlands), potential defence failure dur-
ing events that exceed the standard of protection (e.g. major
overtopping or a breach) still poses considerable risk to pop-
ulations and development in coastal floodplains. Moreover,
flooding is a rapidly growing threat to most coastal regions
and their communities due to (i) sea-level rise, changes in
storminess, and increasingly variable rainfall patterns driven
by climate change (Church et al., 2001; Wood et al., 2023);
(ii) population growth, urbanization, and continued develop-
ment in floodplains (Hallegatte et al., 2013); and (iii) the con-
tinued decline in the extent of shorelines and habitats which
act as natural buffers to flooding (Woodruff et al., 2013; Op-
penheimer et al., 2019). Average global flood losses in large
coastal cities are estimated to increase approximately 10-fold
by 2050 due to socio-economic change alone, reaching up to
USD 1 trillion or more per year when considering sea-level
rise and land subsidence (Hallegatte et al., 2013). There is
clear importance in advancing our understanding of flooding
in coastal—estuarine regions.

This review focuses on compound flooding that takes place
in coastal (ocean/lake) and estuarine regions, which primar-
ily arises from three main drivers: (1a) river discharge (flu-
vial); (1b) precipitation surface runoff (pluvial); and (1c)
coastal processes including storm surge, astronomical tides,
wave action, and relative sea-level rise (SLR) (coastal) as
shown in Fig. 1. Traditionally, most existing flood risk as-
sessments consider these main drivers of flooding separately,
and many oversimplify or ignore key interactions altogether.
However, in many coastal-estuarine regions, floods are of-
ten caused by more than one driver as the processes are
naturally correlated. For example, intense tropical/extratrop-
ical cyclones (TCs/ETCs) can generate heavy precipitation
that enhances river discharges, while at the same time strong
winds and low pressures cause large storm surges and waves.
When fluvial, pluvial, and/or coastal drivers occur at the
same time, or within a few hours or days, the adverse ef-
fects of flooding can be measurably exacerbated (Gori et al.,
2020a; Khalil et al., 2022). The synergy of multiple hazard
drivers can result in disproportionately extreme events, even
if individual flood drivers are not extreme themselves. This is
often referred to as “compound events” (Hewitt and Burton,
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1971; Adhikari et al., 2010; Seneviratne et al., 2012; Leonard
et al., 2014; Zscheischler et al., 2020). It is only in the last
decade that we are beginning to recognize the necessity of
compound-event-based approaches to flood risk assessment,
as traditional univariate methods of analysis fail to capture
the non-linear impacts of multiple flood drivers (Kappes et
al., 2010; Leonard et al., 2014; Eshrati et al., 2015; Klerk et
al., 2015; Ridder et al., 2018; Zscheischler et al., 2018; Hao
and Singh, 2020; Ridder et al., 2020; Manoj et al., 2022).

In recent decades our knowledge of individual flood
drivers has improved tremendously, as a result of better in
situ and remote sensing datasets, as well as advances in sta-
tistical and numerical modelling techniques. However, our
understanding of compound flood events is still limited —
from the synergetic processes to the spatiotemporal trends
and scales of interacting drivers. Compound-event-based re-
search is relatively new (Wu et al., 2020; Bevacqua et al.,
2021), having only gained notable attention in 2012 when it
was formally defined in the Intergovernmental Panel on Cli-
mate Change’s (IPCC) Special Report on Climate Extremes
(SREX) (Seneviratne et al., 2012), and is a key guiding prin-
ciple of the 2015 UN Sendai Framework for Disaster Risk
Reduction (UNDRR, 2015). Additionally, there has been
growing public awareness of extreme compound flooding
following a decade of increasingly frequent extreme weather
events, where catastrophic disasters arose from multiple in-
teracting flood drivers. For example, in 2017 Hurricane Har-
vey resulted in record-breaking rainfall, river discharge, and
runoff, which when combined with long-lasting storm surge
resulted in catastrophic flooding in Houston, Texas (Valle-
Levinson et al., 2020; Huang et al., 2021; Gutenson et al.,
2023). This was the second costliest (USD 152.5 billion) nat-
ural hazard in US history (NCEI, 2023). As a result of this
event, it has been recognized that by failing to consider com-
pound flooding, the risk to Houston and elsewhere had been,
and currently remains, greatly underestimated.

Compound flood research at local, regional, and recently
global scales has experienced growing recognition and sub-
stantial advancements over the past decade, with rapid in-
creases in the number of academic publications (particu-
larly since 2020). However, to date, there have only been
a handful of published reviews that have synthesized the
current understanding of compound flooding. Moreover, the
reviews that do exist have only focused on specific ele-
ments of the broader compound flood subject. Bensi et
al. (2020) reviewed the drivers and mechanisms of com-
pound flooding, the methods of joint distribution analysis re-
garding probability hazard assessment, and the key findings
of various bivariate coastal-fluvial and coastal-pluvial flood
studies. Recently, Guan et al. (2023) completed a brief re-
view of 13 compound pluvial-fluvial flood papers, synthe-
sizing case studies, approaches, and knowledge gaps, in ad-
dition to highlighting the value of including damage mod-
els in risk management. To the best of our knowledge, three
publications have reviewed compound flood modelling ap-
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Figure 1. Schematic diagram of flood drivers showing (a) fluvial (river discharge), (b) pluvial (rainfall-runoff), and (c) coastal (surge, tide,
waves, and total sea level) components, as well as their (d) compound flood interactions.

proaches in coastal regions (Santiago-Collazo et al., 2019;
Xu et al., 2022; Jafarzadegan et al., 2023). Santiago-Collazo
et al. (2019) summarized practices of numerical compound
flood modelling methodologies including different frame-
works for linking (or coupling) multiple hydrologic, hydro-
dynamic, and ocean circulation models. Xu et al. (2022)
examined the advancements, benefits, limitations, and un-
certainties of varying numerical and statistical (joint prob-
ability and dependence) models and frameworks for com-
pound flood inundation. Lastly, Jafarzadegan et al. (2023)
provided a general review of advancements in both univari-
ate riverine and coastal modelling, briefly touching on a hy-
brid compound modelling approach using linked statistical—
hydrodynamic models and physics-informed machine learn-
ing (ML). More broadly, two additional papers by Hao et
al. (2018) and Zhang et al. (2021a) reviewed the advancing
work on compound flood extremes in the realm of hydrom-
eteorology, evaluating the physical drivers and underlying
mechanisms (Hao et al., 2018) plus analytical and modelling
research methods (Zhang et al., 2021a). Hao et al. (2018)
outlined the characteristics and key statistical tools for as-
sessing compound flood and other compound hydroclimatic
extremes (drought, heatwave, cold wave, extreme rainfall).
Zhang et al. (2021a) discussed these same statistical ap-
proaches when reviewing drivers, mechanisms, and means
of quantifying risk for compound flooding and four other
compound extremes (drought, hot—wet, cold—wet, cold—dry).
In addition, they reflected on methods of numerical mod-
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elling and collated findings on pluvial-surge, fluvial-surge,
sea-level-tide, and fluvial-tide compound flood studies. Re-
garding compound events and driver dependence, Hao and
Singh (2020) and Zscheischler and Seneviratne (2017) re-
viewed standard methods of measuring dependence (using
copulas) as well as approaches for quantifying the likelihood
of compound floods. Abbaszadeh et al. (2022) reviewed the
sources and challenges of uncertainty in flood modelling and
forecasting and offered guidance on reducing uncertainty in
the context of compound floods. In addition to these afore-
mentioned papers that reviewed specific aspects of com-
pound flooding, there are several articles (e.g. Leonard et
al., 2014; AghaKouchak et al., 2020; Ridder et al., 2020;
Zscheischler et al., 2020; Bevacqua et al., 2021; Simmonds
et al., 2022; Van Den Hurk et al., 2023) that have reviewed
broader compound event research involving a range of haz-
ards beyond just flooding. These papers have discussed com-
pound flooding and provide a diversity of detailed case ex-
amples but largely focus on the frameworks, typologies, the-
ories, and perspectives of compound-event-based research
and disaster risk reduction as a whole (Leonard et al., 2014;
AghaKouchak et al., 2020; Ridder et al., 2020; Zscheischler
et al., 2020; Bevacqua et al., 2021; Simmonds et al., 2022).
Overall, these previous reviews have provided an excellent
synthesis of specific aspects of compound flooding; how-
ever, they have each only focused on a narrow area within the
much broader compound flooding discipline. To date, a de-
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tailed state-of-the-art review of the entire body of compound
flood literature has yet to be done.

Therefore, the overall aim of this paper is to carry out
a comprehensive systematic review and synthesis of com-
pound flood literature, with a focus on coastal-estuarine re-
gions where compound flooding is most prevalent. We stress
that this is not a review of coastal flooding but rather com-
pound flooding occurring in coastal (ocean/lake) and estuar-
ine settings.

To address this aim we have six objectives around which
the paper is structured:

1. to survey the range of compound event definitions and
terminologies and examine how they pertain to the
scope of compound flooding (Sect. 2);

2. to briefly discuss the key physical processes contribut-
ing to flood events from individual drivers (Sect. 3);

3. todevelop an extensive literature database on compound
flood research in coastal-estuarine regions (Sect. 4);

4. to identify trends in the characteristics of compound
flood research (Sect. 5);

5. to synthesize the key findings (dependence hotspots and
driver dominance), considerations (coastal urban infras-
tructure and climate change), and standard practices
(application cases and analytical methods) of compound
flood research (Sect. 6); and

6. to reflect on the knowledge gaps in multivariate flood
hazard research and suggest potential directions for re-
search going forward (Sect. 7).

Finally, overall conclusions are given (Sect. 8). Com-
pound flood research is a rapidly developing field of science.
As well as providing a comprehensive review, identifying
knowledge gaps, and suggesting potential areas for future re-
search, one of our secondary goals of this paper is to pro-
vide an initial starting point to better inform researchers and
decision-makers new to the emerging field.

2 Definitions and types of compound events and
multi-hazard events

Our first objective is to survey the range of compound
event terminologies observed in literature and to establish
the scope of compound flooding considered in this review.
First, we do this broadly, reflecting on the definitions of com-
pound events across different types of hazards (and risks)
that have been defined in the literature, and then we exam-
ine how the various definitions pertain specifically to com-
pound flood types and accompanying drivers. After this, we
seek to champion a unifying definition framework (i.e. en-
compassing a diversity of perspectives and use cases around
compound events) for this review.

Nat. Hazards Earth Syst. Sci., 25, 747-816, 2025

Throughout the natural hazard literature, terminology
around “compound event”, “compound hazard”, and “multi-
hazard” is highly inconsistent. In the past, these terms have
sometimes been applied interchangeably. Some refer to com-
pound hazards as a type of multi-hazard event within the
larger umbrella of the multi-hazard framework. We believe
each of these terms are distinct from one another, and thus
for the purposes of this review we use the phrase “com-
pound event”. Examples of different compound event (and
related) terminologies are listed in Table 1 (general disas-
ter and hazard definitions are also provided for context).
Several terms have been used to describe similar concepts
that all broadly involve the consideration of multiple haz-
ards, drivers, mechanisms, variables, and extremes in a mul-
tivariate and non-linear assessment of risk (i.e. hazard expo-
sure x vulnerability x capacity) and impact as defined by the
IPCC (IPCC, 2012, 2014).

Use of the term “compound event” (and similar phrases)
has been observed in older academic publications (Hewitt
and Burton, 1971); however, it was only formally defined
in an official context in the 2012 IPCC SREX (Seneviratne
et al., 2012). As of present, the most widely accepted defi-
nitions of compound events are those from the [PCC SREX
(Seneviratne et al., 2012), Leonard et al. (2014), and Zscheis-
chler et al. (2020), which we briefly discuss below.

The IPCC SREX (Seneviratne et al., 2012) defines com-
pound events as a combination of multiple divers or hazards
with adverse environmental or social risk/impact. A more
detailed explanation is as follows: (1) two or more extreme
events occurring simultaneously or successively, (2) combi-
nations of extreme events with underlying conditions that
amplify the impact of the events, or (3) combinations of
events that are not themselves extremes but lead to an ex-
treme event or impact when combined. The contributing
events can be of similar (clustered multiple events) or dif-
ferent type(s).

According to this definition, compound flooding could,
for instance, describe the occurrence of a moderate rain-
fall event that causes surface runoff and discharges at the
coast, in addition to elevated coastal water levels from storm
surge and wave action (whether simultaneous or a few days
later). None, one, or both of the two events may be con-
sidered extreme according to threshold or probability-based
approaches, but together they lead to extreme coastal water
levels. This definition also emphasizes the potential for com-
pounding from the temporal clustering of the same (or dif-
ferent) types of events (e.g. storm clustering involving quick
succession of storm events and associated coastal hazards;
Jenkins et al., 2023).

Leonard et al. (2014) argue that the IPCC SREX (Senevi-
ratne et al., 2012) definition is unable to capture extreme
event edge cases (i.e. unexpected or outlier situations) and
is not founded on the physical systems at play. They instead
propose a definition that focuses on the variable interactions
and event impact, as follows. Our definition emphasizes three

https://doi.org/10.5194/nhess-25-747-2025
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Table 1. Examples of different compound event (and related) terminologies, types, and definitions in scientific literature. Unique aspects of
varying definitions are emphasized in bold. The “Multi-" category refers to any terminology involving the truncated word root “multi” and

LEIT3 LLIT3

includes terms such as “multiple hazards”, “multi-hazards”, “multihazards”, and more.

Term category Reference Term Definition
General UNDRR Disaster A serious disruption of the functioning of a community or a
(2016) society at any scale due to hazardous events interacting with

conditions of exposure, vulnerability, and capacity, leading
to one or more of the following: human, material, economic,
and environmental losses and impacts.

General IPCC (2012) Disaster Severe alterations in the normal functioning of a community or
a society due to hazardous physical events interacting with
vulnerable social conditions, leading to widespread adverse
human, material, economic, or environmental effects that
require immediate emergency response to satisfy critical
human needs and that may require external support for

recovery.
General UNDRR Hazard A process, phenomenon, or human activity that may cause
(2016) loss of life, injury, or other health impacts, as well as property
damage, social and economic disruption, or environmental
degradation.
General IPCC (2012) Hazard The potential occurrence of a natural or human-induced

physical event that may cause loss of life, injury, or other
health impacts, as well as damage and loss to property,
infrastructure, livelihoods, service provision, and
environmental resources.

General IPCC (2012) Disaster risk The likelihood over a specified time period of severe alterations
in the normal functioning of a community or a society due to
hazardous physical events interacting with vulnerable
social conditions, leading to widespread adverse human,
material, economic, or environmental effects that require
immediate emergency response to satisfy critical human needs
and that may require external support for recovery.

General UNDRR Disaster risk The potential loss of life, injury, or destroyed or damaged
(2016) assets that could occur to a system, society, or a community in
a specific period of time, determined probabilistically as a
function of hazard, exposure, vulnerability, and capacity.

General IPCC (2012) Impacts The effects on natural and human systems of physical events,
of disasters, and of climate change.

General UNDRR Disaster The total effect, including negative effects (e.g. economic
(2016) impact losses) and positive effects (e.g. economic gains) of a
hazardous event or a disaster. The term includes economic,
human, and environmental impacts and may include death,
injuries, disease, and other negative effects on human physical,
mental, and social well-being.

General Herring (2020)  Extreme A time and place in which weather, climate, or

event environmental conditions — such as temperature,
precipitation, drought, or flooding — statistically rank above a
threshold value near the upper or lower ends of the range of
historical measurements. Though the threshold is subjective,
some scientists define extreme events as those that occur in the
highest or lowest 5 % or 10 % of historical measurements.
Other times they describe events by how far they are from the
mean or by their recurrence interval or probability.
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Table 1. Continued.
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Term category Reference Term Definition
General Sarewitz and Extreme An occurrence that, with respect to some class of occurrences,
Pielke (2001) event is either notable, rare, unique, profound, or otherwise
significant in terms of its impacts, effects, or outcomes. An
extreme event is not simply “something big and rare and
different”. “Eventness” demands some type of temporal and
spatial boundaries, while “extremeness” reflects an event’s
potential to cause change.
General IPCC (2014) Extreme An extreme weather event is an event that is rare at a
weather event  particular place and time of year. Definitions of rare vary,
but an extreme weather event would normally be as rare as or
rarer than the 10th or 90th percentile of a probability density
function estimated from observations. The characteristics of
what is called extreme weather may vary from place to place in
an absolute sense. When a pattern of extreme weather persists
for some time, such as a season, it may be classed as an
extreme climate event, especially if it yields an average or total
that is itself extreme (e.g. drought or heavy rainfall over a
season).
Multi- UNDRR Multi-hazard (1) The selection of multiple major hazards that the country
(2016) faces and (2) the specific contexts where hazardous events
may occur simultaneously, cascadingly, or camulatively
over time, taking into account the potential interrelated effects.
Multi- Zschau (2017) Multi-hazard More than one hazard where hazard interactions are
considered.
Multi- Komendantova  Multi-hazard The analysis of different relevant hazards, triggering, and
et al. (2014) cascade effects threatening the same exposed elements with
or without temporal concurrence.
Multi- Tilloy et Multi-hazard More than one natural hazard with interrelationships
al. (2019) between the hazards that impact the same location and time
period.
Multi- Gill and Multihazards ~ All possible and relevant hazards, as well as their
Malamud interactions, in a given spatial region and/or temporal
(2014) period.
Multi- Hewitt and Multiple Elements of quite different kinds coinciding accidentally or,
Burton (1971) hazards more often, following one another with damaging force, for
instance, floods in the midst of a drought or hurricanes
followed by landslides and floods.
Multi- Zschau (2017) Multi-hazard Risk in a multi-hazard framework where no hazard
risk interactions are considered on the vulnerability level.
Multi- Eshrati et Multi-hazard The consideration of multiple (if possible all relevant)
al. (2015) risk hazards posing risk to a certain area under observation.
Multi- Kappes et Multi-hazard ~ The totality of relevant hazards in a defined area. Hazards
al. (2010) risk are, as natural processes, part of the same overall system,

influence each other, and interact. Thus, multi-hazard risk
contains emergent properties: it is not just the sum of
single-hazard risks since their relations would not be
considered and this would lead to unexpected effects.

Nat. Hazards Earth Syst. Sci., 25, 747-816, 2025
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Table 1. Continued.

Term category Reference Term

Definition

Multi- Kappes et Multi-hazard

al. (2012) risk

A first definition of the term multi-hazard in a risk reduction
context could read as follows: the totality of relevant hazards in
a defined area (Kappes et al., 2011). However, whether a
hazardous process is relevant has to be defined according to the
specific setting of the respective area and the objective of the
study. Additionally, not all studies on multiple hazards share the
aim of involving all relevant processes of a defined area but can
rather be described as more-than-one-hazard approaches. In
summary, two approaches to multi-hazard can be distinguished:
(1) primarily spatially oriented that aims at including all
relevant hazards and (2) primarily thematically defined.

Multi- Multi-hazard
interaction

types

Eshrati et
al. (2015)

Hazard relationship refers to many different types of influence of
hazards to each other.

(1) Triggering of a hazard by another.

(2) Simultaneous impact of several hazards due to the same
triggering event.

(3) Disposition alteration of a hazard after another hazard
occurrence.

(4) Multiple effects of a hazard phenomenon.

Multi- Multi-hazard
interaction

types

Tilloy et
al. (2019)

(1) Independence, where there is spatial and temporal
overlapping of the impact of two hazards without any
dependence or triggering relationship.

(2) Triggering/cascading, where there is a primary hazard that
triggers and a secondary hazard.

(3) Change conditions, where there is one hazard altering the
disposition of a second hazard by changing environmental
conditions.

(4) Compound hazard (association), where different hazards
are the result of the same primary event or large-scale processes
which are not necessarily a hazard.

(5) Mutual exclusion (negative dependence), where two
hazards can also exhibit negative dependence or be mutually
exclusive.

Multi- Multi-hazard
interaction

types

Kappes et
al. (2010)

(1) Disposition altering, where modification of environmental
characteristics, whether long-term basic disposition (e.g. relief,
climate, vegetation cover) or faster variable disposition (e.g. daily
to seasonal weather, water balance, vegetation period), causes the
exceedance of a threshold and resulting hazard.

(2) Triggering/cascading, where one hazard is directly triggered
or provoked by another hazard, or a chain of two or more hazards
are induced as a result of a shared external event.

Multi- Gill and Multihazard
Malamud interaction

(2014) types

Multiple hazard interaction types are divided into four categories:

(1) coincidence relationship involving the spatial and temporal
coincidence of natural hazards;

(2) triggering relationship, where a hazard is triggered (e.g.
lightning triggering a wildfire, groundwater abstraction triggering
regional subsidence, a flood triggering a landslide which then
triggers a further flood);

(3) increased probability relationship, where the probability of
a hazard is increased (e.g. a wildfire increasing the probability of
landslides, regional subsidence increasing the probability of
flooding);

(4) decreased probability relationship, where the probability of
a hazard is decreased (e.g. urbanization catalysing
storm-triggered flooding, storms impeding urban fire-triggered
structural collapse).

https://doi.org/10.5194/nhess-25-747-2025
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Table 1. Continued.

Term category Reference Term

Definition

Multi- Zschau (2017) Multi-risk

Risk in a multi-hazard framework where hazard interactions
are considered on the vulnerability level.

Multi- Komendantova  Multi-risk

et al. (2014)

A comprehensive risk defined from interactions between all
possible hazards and vulnerabilities.

IPCC SREX
(Seneviratne et
al., 2012),
IPCC (2012)

Compound/other Compound

event

In climate science, compound events can be

(1) two or more extreme events occurring simultaneously
or successively,

(2) combinations of extreme events with underlying
conditions that amplify the impacts of the events, or

(3) combinations of events that are not themselves extreme
but lead to an extreme event or impact when combined. The
contributing events can be of similar (clustered multiple
events) or different types. Examples of compound events
resulting from events of different types are varied — for
instance, high sea level coinciding with tropical cyclone
landfall, or cold and dry conditions (e.g. the Mongolian dzud),
or the impact of hot events and droughts and wildfire, or a
combined risk of flooding from sea-level surges and
precipitation-induced high river discharge (Svensson and
Jones, 2002; van den Brink et al., 2005). Compound events can
even result from “contrasting extremes”, for example, the
projected occurrence of both droughts and heavy precipitation
events in future climates in some regions.

Hewitt and
Burton (1971)

Compound/other Compound

event

Several elements acting together above their respective
damage threshold, for instance, wind, hail, and lightning
damage in a severe storm. Many of the most severe
meteorological hazards are compound or become disastrous
through involvement in a multiple hazard situation.

Leonard et
al. (2014)

Compound/other Compound

event

Emphasizes three key characteristics of a compound event:
(1) the extremeness of the impact rather than variables or
events it depends on, (2) the requirement of multiple variables
or events on which the impact depends, and (3) the role of
statistical dependence. Consider a coastal flood where the
flood level depends on a rainfall event and an elevated ocean
level. The coastal flood is a compound event because (1) the
impact metric, a flood level, is considered to be extreme; (2)
the impact depends on multiple variables, the rainfall and
ocean boundary; and (3) the ocean level can have a statistical
dependence with rainfall due to influences such as storm surge,
wind setup, or seasonality.

Zscheischler et
al. (2018)

Compound/other Compound

event

Compound weather and climate events are the combination
of multiple drivers and/or hazards that contribute to societal
or environmental risk. Drivers include processes, variables, and
phenomena in the climate and weather domain that may span
over multiple spatial and temporal scales. Hazards are usually
the immediate physical precursors to negative impacts (such as
floods, heatwaves, and wildfire) but can occasionally have
positive outcomes (for example, greening in the Alps during
the 2003 heatwave in Europe).
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Table 1. Continued.

Term category Reference Term Definition
Compound/other Zscheischleret ~ Compound event Compound weather and climate events have been organized
al. (2020) interaction types into four type classes:

(1) preconditioned, where a hazard causes or leads to an
amplified impact because of a precondition;

(2) multivariate, where co-occurrence of multiple climate
drivers and/or hazards in the same geographical region causes
an impact;

(3) temporally compounding (sequential), where the
succession of hazards that affect a given geographical region
leads to or amplifies an impact compared with a single hazard;
(4) spatially compounding, where events of spatially
co-occurring hazards cause an impact.

Compound/other Raymond et Connected extreme  The concept of connected extreme weather and climate
al. (2020) event events further recognizes that compound event impacts are

often substantially and non-linearly influenced by non-physical
factors such as exposure and vulnerability, cutting across
sectors and scales (from personal to society-wide). These
“societal mechanisms” can tie together the impacts of two or
more climate extremes. It is the creation or strengthening of
the connections between events, in the impact space and
involving anthropogenic systems, that leads to our
terminology of connected events as being distinct from
compound events, and also from interacting-risk or
multi-risk frameworks that focus on combinations of

physical hazards.
Compound/other Pescaroli and Compound risk Risk from
Alexander (1) extremes that occur simultaneously or successively,
(2018) (2) extremes combined with background conditions that

amplify their overall impact, or
(3) extremes that result from combinations of average events.

Compound/other De Ruiter et Dependent hazards  Include triggering and cascading disasters, such as
al. (2020) (triggering/cascad-  landslides triggered by a flood or fires caused in the aftermath
ing) of an earthquake (Daniell et al., 2017). Cascading events are

commonly defined as a primary hazard triggering a secondary
hazard (Pescaroli and Alexander, 2015)

Compound/other Kappes et Cascading/triggering The triggering of one hazard by another, eventually leading
al. (2010); hazards to subsequent hazard events. This is referred to as a cascade,
Kappes et domino effect, follow-on event, knock-on effect, or
al. (2012) triggering effect.

Compound/other UNDRR Cascading hazard Cascading hazard processes refer to a primary impact
(2019) (trigger) such as heavy rainfall, seismic activity, or

unexpectedly rapid snowmelt, followed by a chain of
consequences that can cause secondary impacts.

Compound/other Mishra et Cascading/compound A cascading (compound) event occurs due to the

al. (2021) extreme event combination of two or more individual extreme events
occurring successively (simultaneously). Examples of
cascading events are (a) a severe drought event followed by an
extreme flood (drought—flood regime) and (b) an extreme
drought followed by wildfire (drought—wildfire regimes),
which can be further compounded by flooding events. The
compound event can also be a combination of human-related
and natural disasters (Mishra et al., 2021).
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Term category Reference Term

Definition

Compound/other Cutter (2018) Compound/
cascading/
triggering

hazard

Natural scientists working in the hazards arena inherently
understand the compounding physical processes and
interactions that trigger a natural hazard event such as an
earthquake and follow-on sequences of other events that occur
as a direct or indirect result of the initial triggering event.
Compounding interactions can trigger a secondary hazard
(e.g. lightning causing a wildfire) or increase the probability of
a hazard (e.g. wildfire destroying slope vegetation and when
rain events occur mudflows ensue). Compounding
interactions are both spatially and temporally coincident
and can amplify the effects, especially if they occur over
relatively short time periods and overlap geographically.
Compounding processes, compounding events, or
compounding hazards are synonyms for describing these
types of processes or outcomes. Cascading hazards occur as a
direct or indirect result of an initial hazard. One characteristic
feature of cascading natural events is proximity in time and
space, suggesting that there are sufficient forces or energy in
the initial event to trigger the subsequent events in the physical
system.

Pescaroli and
Alexander
(2015)

Compound/other Cascading

disasters

Extreme events, in which cascading effects increase in
progression over time and generate unexpected secondary
events of strong impact. These tend to be at least as serious as
the original event and contribute significantly to the overall
duration of the disaster’s effects. In cascading disasters, one or
more secondary events can be identified and distinguished
from the original source of the disaster.

Consecutive
disasters

De Ruiter et
al. (2020)

Compound/other

Two or more disasters that occur in succession, and whose
direct impacts overlap spatially before recovery from a
previous event is considered to be completed. This can include
a broad range of multi-hazard types, such as compound
events (Zscheischler et al., 2018) and cascading events
(Pescaroli and Alexander, 2015). Consecutive disasters can
occur due to dependency between natural hazards (e.g.
triggering events) or when independent hazards occur in the
same space—time window.

Pescaroli and
Alexander
(2018)

Compound/other Interacting/
interconnected

risk

Risk from physical dynamics that develop through the
existence of a widespread network of causes and effects tends
to overlap with compound risk in the hazard domain. Focus
on the area in which hazard interacts with vulnerability to
create disaster risk.

Pescaroli and
Alexander
(2018)

Compound/other Cascading risk

Risk from toppling dominoes or systematic accidents.
Associated mostly with the anthropogenic domain and the
vulnerability component of risk.

characteristics: (1) the extremeness of the impact rather than
the climate or weather event, (2) the multivariate nature of
the event, and (3) statistical dependence between variables
or events that cause the impact.

Thus, according to this definition, the classification of
compound flood events necessitates an extreme impact. In
the context of flooding, the IPCC SREX may recognize, for
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example, the simultaneous overtopping of riverine channels
and surfacing of groundwater as compounding. However, un-
less the impact is extreme, it would not pass as a compound
flood according to Leonard et al. (2014). This interpretation
also requires definitive dependence between the extremes in
question. Therefore, a fluke spatiotemporal overlap of ex-
treme rainfall due to an atmospheric river in a region with
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elevated river levels from recent snowmelt would not be con-
sidered a compound flood as the two events are fully inde-
pendent. In contrast, an intense multivariate storm event in-
volving dependent extreme storm surge and intense rainfall
is deemed a compound event.

More recently, Zscheischler et al. (2018) proposed a
broader definition that is specific to compound weather/cli-
mate events, as follows: the combination of multiple drivers
and/or hazards that contributes to societal or environmental
risk.

Under this definition, the extremeness of individual drivers
and/or hazards is not considered; however, their combination
must still exhibit some extent of impact to contribute to over-
all risk. Furthermore, compound events are strictly limited
to the combination of natural (weather/climate) drivers and
hazards. Thus, anthropogenic hazards (e.g. dam failure and
deforestation) are not included within their scope of com-
pound events. To date, the definition proposed by Zscheis-
chler et al. (2018) offers strong potential for a unified dis-
cussion of compound climate events across scientific dis-
ciplines. In the past few years, numerous compound flood
studies have accordingly adopted their definition framework
(Hao and Singh, 2020; Ridder et al., 2020; Bevacqua et al.,
2021; Zhang et al., 2021a; Xu et al., 2022).

Finally, for the scope of this review, we adopt the IPCC
definitions of “hazard” and “compound event” (IPCC, 2012;
Seneviratne et al., 2012) and thus consider compound events
as a combination of two or more co-occurring or consecu-
tive drivers (natural or anthropogenic), which together have
a greater impact than either of the individual events. Nei-
ther the individual driver nor their combinations must ex-
plicitly be considered extreme. Potential driver interaction
types within this compound event framework include the
temporal and/or spatially overlapping combination of mul-
tiple hazards (often from shared modulators, e.g. storm event
prompts simultaneously rainfall and storm surge), the direct
triggering or cascading of one hazard by another (e.g. heavy
rainfall on top of existing bankfull river discharge), and the
random or by-chance spatial/temporal overlapping of inde-
pendent hazards (e.g. atmospheric river rainfall during peak
spring snowmelt).

3 Flood processes and mechanisms

Having considered the compound event definitions, our sec-
ond objective is to briefly discuss the key physical processes
contributing to flooding and the individual drivers/hazards
recognized in this review. In this review we focus on coastal
regions. Here, flooding mainly arises from three main flood
drivers, namely (i) fluvial, (ii) pluvial, and (iii) coastal. In this
section we start by discussing these three drivers and their
mechanisms individually (Sect. 3.1). It is these three drivers,
in different combinations, that most often result in com-
pound flood events. Schematic diagrams illustrating the vary-
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ing flood processes associated with these three main drivers
are shown in Fig. 1. However, flooding can also arise from
three less frequent auxiliary flood drivers, that is (iv) ground-
water, (v) damming and dam failure, and (vi) tsunamis. These
additional flood drivers are also briefly discussed (Sect. 3.2).
Finally, we also highlight several precursor events and envi-
ronmental conditions that can influence the magnitude and/or
occurrence of flooding (Sect. 3.3).

3.1 Main drivers of flooding in coastal regions

Fluvial flooding (Fig. 1a), also known as river (or riverine)
flooding, is induced by the accumulation of large volumes
of excessive rainfall and snowmelt. Intense precipitation dur-
ing extreme meteorological events (e.g. TCs/ETCs and atmo-
spheric rivers) and weather seasons (e.g. monsoons) can in-
undate rivers quickly (Gori et al., 2020b). Elevated volumes
of water cause the level in rivers, creeks, and streams to rise
above their channel banks and spill out into the adjacent low-
lying area known as the floodplain. Thus, fluvial flooding de-
pends on topography, hydrometeorological conditions, and
catchment characteristics (e.g. size, shape, slope, land cover,
and soil properties) (Harrison et al., 2022). The peak of river
flooding can have a time lag of hours to weeks between the
rainfall over a catchment and the exceedance of downstream
channels (Valle-Levinson et al., 2020). In the spring, fluvial
flooding can also be driven by snowmelt (or glacial melt) as
large reservoirs of melting freshwater flow into downstream
river channels (Melone, 1985; Benestad and Haugen, 2007).
Freshwater fluvial flooding occurs worldwide but is more fre-
quent in high-latitude (e.g. Canada and northern Europe) and
high-elevation (e.g. Hindu Kush and Andes Mountains) re-
gions.

Pluvial flooding (Fig. 1b) is the result of intense rainfall
(flash flooding) or long-sustained moderate rainfall. As the
rain reaches the ground, flooding occurs when the soil be-
comes fully saturated and can no longer absorb water (satu-
ration excess) and/or the infiltration capacity is overwhelmed
(infiltration excess) (Bronstert et al., 2023), causing ponding
and surface runoff (overland flooding) that flows down ter-
rain and into rivers (in practice, the boundary between plu-
vial and fluvial flooding is not well defined and is usually
based on catchment area rather than physical process). Urban
flooding is closely linked with pluvial flooding where exces-
sive runoff in areas of human development has insufficient
drainage, often due to impervious surfaces such as concrete
and asphalt (Gallien et al., 2018; Bronstert et al., 2023). Ur-
ban flooding also ties in with sewer and stormwater flooding
in which pluvial surface runoff infiltrates waste management
infrastructure and exceeds drainage system capacity (Mark et
al., 2004; Archetti et al., 2011; Gallien et al., 2018; Meyers
etal., 2021).

Coastal flooding (Fig. 1c) mainly occurs from one or
more combinations of high astronomical tides, storm surge,
and wave action (runup, setup, swell, seiche), superim-
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posed on relative mean sea level (Pugh, 1987; Haigh and
Nicholls, 2017). Each of these components of total sea level
contributes differently to flooding, but we have chosen to
group them together for simplicity. Coastal flooding primar-
ily refers to flooding at the interface of land and ocean; how-
ever, it is sometimes also used when discussing instances of
flooding by these mechanisms (e.g. seiche) along the shore-
line of lakes (Stevens and Lawrence, 1997). Tides are the reg-
ular and predictable rise and fall of the sea level caused by
the gravitational attraction and rotation of the Earth, Moon,
and Sun. Tides exhibit diurnal, semi-diurnal, or mixed diur-
nal cycles and experience shifts in amplitude on fortnightly,
bimonthly, and interannual timescales (Pugh, 1987; Haigh
et al., 2020). Storm surges are driven by storm events with
low atmospheric pressure that cause sea levels to rise and
strong winds that force water towards the coastline. Storms
also generate waves, locally or remotely (e.g. swell), via the
interaction of wind on a water’s surface due to boundary
friction and energy transfer. Waves mostly contribute to en-
hanced coastal flooding via setup (the increase in mean water
level due to the presence of breaking waves) and runup (the
maximum vertical extent of wave uprush on a beach or struc-
ture) (Phillips, 1966). Mean sea level is the average height
of the sea after filtering out the short-term variations associ-
ated with tides, storm surges, and waves. Increases in relative
mean sea level arise as a result of vertical land movements
(i.e. isostatic SLR) and changes in ocean volume (i.e. eu-
static SLR) from thermal expansion of water, mass loss from
glaciers and polar ice sheets, and changes in terrestrial water
storage (Oppenheimer et al., 2019).

3.2 Other drivers of flooding

In Sect. 3.1 we considered the three main flood drivers, which
most frequently contribute to compound flooding in coastal
regions. However, other less frequent drivers can also play
an important role in compound floods and are briefly sum-
marized below. Groundwater flooding is the rise of the water
table to the ground surface or an elevation above human de-
velopment (Holt, 2019). This occurs during an increase in
the volume of water entering an underlying aquifer. This can
be the result of prolonged rainfall and snowmelt but in the
case of unconfined coastal aquifers can also be driven by
SLR and saltwater intrusion (Plane et al., 2019; Befus et al.,
2020; Rahimi et al., 2020). Groundwater flooding is often
observed along shorelines that are equal to or below sea level
(Plane et al., 2019; Befus et al., 2020; Rahimi et al., 2020),
in regions with high ground-surface connectivity (Jane et al.,
2020), and in areas experiencing ground subsidence (down-
ward vertical shift of Earth’s surface from processes such
as compaction and groundwater extraction) (Rozell, 2021).
As coastal groundwater flooding is the result of long-term
changes, it is slow to dissipate and usually persists longer
than floods driven by fluvial and pluvial processes (Rozell,
2021).
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Damming and dam failure (whether occurring naturally or
from anthropogenic activities) can result in flooding from a
rapid release or build-up of large volumes of water. Natural
damming including beaver dams, ice jams, volcanic dams,
morainal dams, and landslide dams can inhibit flow and
cause backwater flooding (and even lake formation) (Costa,
1985). Anthropogenic damming is the intentional inundation
(via impoundment) of a hydrological network for purposes
of resource management (Baxter, 1977). Natural dam fail-
ures such as glacial outbursts and landslide dam overtopping
can release vast quantities of water that overwhelm and in-
undate downstream landscapes (Costa, 1985). The failure of
human-engineered water control infrastructure (e.g. dams,
levees, dykes, water supply systems) can also cause sub-
stantial downstream flooding, often posing a greater threat
due to the close proximity to human development (e.g. 2017
Oroville Dam crisis (Koskinas et al., 2019) and 2023 Derna
dam collapses (ReliefWeb, 2023)).

Tsunamis are a series of impulsive waves generated by
the sudden displacement of large volumes of water due to
undersea earthquakes and landslides, shifts in the tectonic
plates, and underwater volcanic eruptions (IOTIC, 2020).
While large-magnitude tsunami events occur infrequently
compared to other flood drivers, they still have the potential
to cause catastrophic flooding in coastal regions. Tsunamis
are also unique in their potential to drive coastal flooding at
oceanic scales, sometimes spanning multiple countries and
continents (e.g. 2004 Indian Ocean tsunami (Lavigne et al.,
2009; Leone et al., 2011) and 2022 Hunga Tonga tsunami
(Manneela and Kumar, 2022; Borrero et al., 2023)).

3.3 Precursor events and environmental conditions

In addition to the aforementioned six flood drivers, we also
bring to attention five important precursor events and en-
vironmental conditions that can strongly influence flooding
and whether or not it occurs. First, high anomalous and an-
tecedent soil moisture conditions commonly exacerbate sur-
face flooding due to reduced soil drainage capacity and in-
filtration (Ganguli et al., 2019; Stein et al., 2019). Elevated
freshwater volumes from snowmelt may escalate fluvial and
groundwater flooding (Melone, 1985; Benestad and Haugen,
2007; Vormoor et al., 2015). Extreme temp/heat increases
precipitable atmospheric water content via elevated relative
humidity, as well as amplifies the rate of snowmelt, thus
intensifying both pluvial and fluvial flooding, respectively
(Berghuijs et al., 2019; Bermudez et al., 2021). Wildfires
can worsen pluvial and fluvial flooding by modifying soil
properties such that ash deposits and burnt hydrophobic soils
cause rapid surface flows and channelization (Bayazyt and
Kog, 2022; Jong-Levinger et al., 2022; Belongia et al., 2023;
Xu et al., 2023). Finally, drought is known to potentially in-
tensify pluvial flooding when long-term water deficiencies
dry out and harden the soil, in turn reducing ground infil-
tration and amplifying surface flows (Katwala, 2022). Pro-
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longed drought, wildfire, and extreme heat each lead to veg-
etation loss, resulting in reduced surface roughness and con-
sequently more intense overland flow. We note that many of
these precursors and conditions have partially overlapping
influences on flooding as they are inherently interlinked by
shared climatic and meteorological forcings.

4 Literature database methodology

Our third objective is to develop a database of the exten-
sive English-written scientific literature on compound flood
research. In this section we describe how the database was
compiled, and then we review and discuss the database con-
tents in objectives four (Sect. 5) and five (Sect. 6).

A combination of systematic review and content analysis
was used to collect scientific literature and filter for publi-
cations relevant to the scope and themes of this paper. Pub-
lished journal articles, academic theses, conference proceed-
ings (but not conference abstracts), and government and sci-
entific reports up to and including the year 2022 were sourced
using the Web of Science, Semantic Scholar, Google Scholar,
and Dimensions Al database search engines. Papers were fil-
tered by topic, title, abstract, and full text (when possible),
entering different combinations of key search terms as shown
in Table 2. Potential valid articles were also identified from
the bibliographies of compound flood papers using literature
mapping tools, including Connected Papers, Citation Gecko,
Local Citation Network, and Open Knowledge Maps. Re-
search literature was then screened for relevance based on
the set of criteria defined below. See Fig. Al for a PRISMA
flow diagram of literature curation.

To be included in this review, applicable papers must

1. focus primarily on compound flooding and not simply
mention it fleetingly in the abstract or conclusion when
in fact addressing univariate flooding;

2. involve multivariate statistical analysis, numerical mod-
elling (hydrological and/or hydrodynamic), and/or dis-
cussion of two or more flood drivers, precursors events,
or environmental conditions, of which at least one be-
ing one of the main three flood drivers (fluvial, pluvial,
coastal); and

3. take place in coastal regions (i.e. near an ocean, sea, in-
let, estuary, or lake)

Papers deemed appropriate were added to the literature re-
view database and categorized by

1. case study geographic scope;
2. case study scenario;

3. flood drivers, precursor events, and/or environmental
conditions considered;
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4. research approach (numerical modelling, statistical
modelling/analysis, or both); and

5. study application (earth system processes, risk assess-
ment, impact assessment, forecasting, planning and
management, and methodological advancement).

To fully clarify the scope of this review, we again em-
phasize that this review is focused on compound flood lit-
erature in coastal (ocean/lake) and estuarine environments.
Some may argue that all coastal flooding (or really flooding
in general) involves a combination of multiple drivers. While
this is not untrue, the majority of historical flood and coastal
flood literature has not explicitly focussed on the compound-
ing interactions between the different components of flood-
ing and how those interactions influence flooding as a whole.
For this reason, general coastal flood literature that does not
explicitly examine the interactions of different flood mecha-
nisms on total flooding is excluded. Additionally, while com-
pound flood literature must examine flooding in coastal and
estuarine regions, it does not necessarily require the con-
sideration of coastal drivers to be included (e.g. compound
fluvial-pluvial flooding at the coast). Finally, we highlight
that historical literature that does not use the phrase “com-
pound flood” may still be included as it would have satisfied
the other keyword search terms listed in Table 2.

Keeping in line with the compound event definition frame-
work outlined in Sect. 2 and the individual flood mecha-
nisms detailed in Sect. 3, this review recognizes compound
flooding as a combination of two or more of the six flood
drivers (fluvial, pluvial, coastal, groundwater, damming/dam
failure, and tsunami) and five precursor events and environ-
mental conditions (soil moisture, snow, temp/heat, fire, and
drought). In this paper, the coastal driver category will encap-
sulate processes at lake coasts in addition to oceanic coasts,
as lakes exhibit wind-driven oscillating waves (seiche) that
contribute to compound flooding similarly to oceanic tide
and storm surge. Not considered in the review are studies
that assess the co-occurrence or consecutive occurrence of
flood characteristics that are not unique to a particular flood
driver variable (e.g. flow velocity, flood volume, flood dura-
tion, flood intensity, flood depth/height). Additionally, this
review does not recognize the confluence or convergence
of river channels within the same river network as com-
pound flooding. While there is considerable literature on
this subject (e.g. Bender et al., 2016), fluvial-fluvial com-
pounding predominantly occurs inland and therefore is not
included within the scope of this paper, which we again em-
phasize focuses on coastal regions. This review does, how-
ever, recognize the compounding of like-type flood drivers
in the case of pluvial-pluvial temporal clustering as well as
coastal—coastal between different coastal components (e.g.
tide—surge, surge—waves, or tide—waves).

While this review aims to provide an overview of exist-
ing research on compound flooding, it is necessary to recog-
nize the limitations of the literature review database. Most
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Table 2. Literature database keywords and Boolean search terms. Asterisks act as multi-character wildcards used to capture alternative
phrasing of truncated root words (e.g. “flood*” returns “flood-s”, “flood-ed”, and “flood-ing”).

Search terms

“compound* flood*”

“joint* flood*”

“coincid* flood*”

“comb* flood*”

“multivariate flood*”

“multi* flood*”

“multi-hazard” AND “flood*”

“cascading” AND “flood*”

“trigger™” AND “flood*”

“concurrent” AND “flood*”

“precondition” AND “flood*”

“antecedent” AND “flood*”

“*connected” AND “flood*”

“consecutive” AND “flood*”

“simultaneous” AND “flood*”

(“cooccur*” OR “co-occurr®*”’) AND “flood*”

(“interrelat®” OR “interact*””) AND “flood*”

(“joint probability” OR “joint occurrence”) AND “flood*”

(“river” OR “discharge”) AND (“precipitation” OR “rain”’) AND “flood*”
(“precipitation” OR “rain”’) AND (“surge” OR “tide” OR “wave”) AND “flood*”
(“river” OR “discharge”) AND (“surge” OR “tide” OR “wave”) AND “flood*”
“fluvial” AND “pluvial” AND “flood*”

“fluvial” AND “coastal” AND “flood*”

“pluvial” AND “coastal” AND “flood*”

“fluvial” AND “pluvial” AND “coastal” AND “flood*”

notably, this review only considers English-written scien-
tific literature and thus may not fully represent the perspec-
tives and findings of all research communities. Throughout
the literature database development process, a small number
(< 5) of non-English compound flood studies were identified
but omitted to preserve a consistent methodology. Similarly,
~ 10 coastal compound flood papers were identified but in-
accessible from the publisher. The final literature database
used in this study is extensive but not exhaustive, as some
compound flood literature may have been overlooked or ex-
cluded based on the drivers, precursor events, and environ-
mental conditions in the review’s scope.

From these literature search and database curation
methodologies, we obtained a total of 279 compound
flood publications. A detailed overview of the com-
pound flood literature database (Green, 2024) is pre-
sented in the Appendix (Table Al) and available online at
https://doi.org/10.5281/zenodo.14274658.

5 Review of literature database

The fourth objective of the review is to identify and re-
flect on trends in the characteristics of compound flood re-
search. We discuss general bibliometric characteristics of
compound flood literature including publications over time
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(Sect. 5.1), the geographic scope of compound flood case
studies (Sect. 5.2), and the key scientific journals and/or in-
stitutions (Sect. 5.3). We then review the flood drivers con-
sidered (Sect. 5.4), the analytical approaches applied in the
studies (Sect. 5.4), and their various research applications
(Sect. 5.5).

5.1 Publications by year

As mentioned previously, we identified 279 publications on
compound flooding up to and including the year 2022. The
number of publications per year identified in the review is
shown in Fig. 2. Up until the year 2000 there were very
few compound flood studies (17) (Rossiter, 1961; Myers,
1970; Ho and Myers, 1975; Prandle and Wolf, 1978; Mantz
and Wakeling, 1979; Walden et al., 1982; Loganathan et al.,
1987; Chou, 1989; Vongvisessomjai and Rojanakamthorn,
1989; Flick, 1991; Tawn, 1992; Acreman, 1994; Coles and
Tawn, 1994; Dixon and Tawn, 1994; Jones, 1998; Coles et
al., 1999; Rodriguez et al., 1999), with the earliest being
Rossiter (1961). Since then, there has been a considerable
increase in compound-flood-related papers. The past 3 years
(2020-2022) in particular have spawned a considerable num-
ber of compound flood papers (133), nearly half (48 %).
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Figure 2. Histogram showing compound flood literature review database publications over time from 1960 to 2022.

5.2 Publications by geographic region

The number of compound-flood-related papers, organized by
the geographical region on which the study focuses, are dis-
played in Fig. 3a and spatially mapped in Fig. 3b. Although
there has been increasing focus on the compound nature of
flooding, the spatial scope of compound flood research is
largely limited to a few geographic regions. Nearly half the
publications are directed at compound flooding along the US
coastlines (114, 40 %). The spatial distribution of US-related
studies is visualized in Fig. 3c. Following the US, some of the
next most frequently studied regions are the UK (36, 13 %),
China (20, 7.1 %), global (12, 4.3 %), Europe (12, 4.3 %),
Australia (9, 3.2 %), the Netherlands (8, 2.8 %), Canada (8,
2.8 %), and Taiwan (7, 2.5 %). Additional geographic regions
assessed in < 7 studies are presented in Fig. 3a.

5.3 Publications by journals and institutions

A total of 115 unique scientific journals and institutions
(i.e. universities and government agencies) have published
compound flood research (i.e. articles, reports, proceedings,
and theses). More than half (141, 51 %) of the compound
flood literature is published in 15 academic research journals
(Fig. 4), with the top five most frequent journals being Natu-
ral Hazards and Earth System Sciences (26, 9.3 %), Journal
of Hydrology (14, 5.0 %), Hydrology and Earth System Sci-
ences (11,3.9 %), Water Resources Research (10, 3.6 %), and
Water (10, 3.6 %). Although a considerable volume of com-
pound flood research is published by a select few journals
and institutions, a total of 71 journals and institutions have
only published a single compound flood study. We suspect
that this will change in the years to come as the field of com-
pound flood hazards gains further attention.

https://doi.org/10.5194/nhess-25-747-2025

5.4 Review of flood drivers considered

Across the 279 studies in the review database, a total of 11
unique compound flood drivers, precursor events, and envi-
ronmental conditions were identified. These are listed in Ta-
ble 3 and visualized in Fig. 5. Due to the highly complex in-
teractions between terrestrial, oceanic, and atmospheric sys-
tems, most studies choose to limit the scope of their research
to a select few flood-driving mechanisms. For instance, some
focus on TC/ETC and extreme precipitation events, while
others address elevated river discharge in tandem with storm
surge. Looking at the combination of drivers analysed, 44
(16 %) studies considered exactly the three main components
of compound flooding (fluvial, pluvial, coastal); note that
analysis of three drivers does not necessarily dictate trivari-
ate analysis (e.g. fluvial-pluvial-coastal) but can also de-
scribe two separate bivariate analyses (e.g. fluvial-coastal
and pluvial-fluvial) that together include three drivers. The
remainder of the studies largely considered combinations
of the main drivers (often as bivariate analyses), with the
most prominent being fluvial-coastal (84, 30 %), pluvial-
coastal (80, 29 %), and coastal-coastal (38, 14 %) (e.g. surge
and tide) (Fig. 5). These results are to be expected as com-
pounding is most prevalent at the coast. A select few exam-
ples of unique and less frequently studied compound flood
driver combinations include pluvial-snow (Lawrence et al.,
2014), pluvial-fire (Cannon et al., 2008; Bayazyt and Koc,
2022; Jong-Levinger et al., 2022), coastal-tsunami (Kowa-
lik and Proshutinsky, 2010; Zhang et al., 2011), pluvial-
temp/heat (Benestad and Haugen, 2007), pluvial-drought
(Ridder et al., 2020), pluvial-coastal-damming/dam failure
(Kim and Sanders, 2016), and coastal-groundwater (Habel
et al., 2020).

Nat. Hazards Earth Syst. Sci., 25, 747-816, 2025
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Figure 3. (a) Histogram showing the geographic frequency of compound flood case study regions and geographic maps showing the fre-
quency of compound flood case study sites (b) across the world (excluding global studies) and (c) throughout the United States (including

Alaska; Hawaii; Puerto Rico; and Washington, DC).

5.5 Review of research approaches

Across the database, the compound flood studies have tended
to apply approaches that generally fall into two categories:
(1) physical (process-based) numerical modelling and/or
(2) statistical modelling and analysis (similar findings to that
of Tilloy et al., 2019). The number of studies applying each
approach is illustrated in Fig. 6. In total, 102 (36 %) studies

Nat. Hazards Earth Syst. Sci., 25, 747-816, 2025

used only numerical modelling approaches, 95 (34 %) stud-
ies used only statistical approaches, and 80 (29 %) studies
applied hybrid methods involving a combination of numeri-
cal and statistical approaches. Within the main two approach
classes are many different methods for investigating com-
pound floods, each of which exhibits its own benefits and
limitations as discussed in Sect. 6. Lastly, 2 (< 1 %) studies
used neither of these approaches, instead completing qualita-

https://doi.org/10.5194/nhess-25-747-2025
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tive survey-based investigations related to the perception and
understanding of compound flooding by disaster managers
and the wider public (Curtis et al., 2022; Modrakowski et al.,
2022).
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5.6 Review of research applications

Across the database, the compound flood studies have tended
to relate to six main application themes, as illustrated in
Fig. 7. Assessing the individual research application cat-
egories non-exclusively, 130 (47 %) studies consider earth

Nat. Hazards Earth Syst. Sci., 25, 747-816, 2025
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Table 3. List of unique flood drivers, precursor events, and environmental conditions (plus terms and variables) observed in compound flood

research from the literature review database.

Number of studies in
which considered

Flood drivers, precursors
events, and environmental

Other corresponding terms and variables

conditions

Coastal 259 (93 %) tide, astronomical tide, storm tide, surge, storm surge, swell,
storm swell, waves, sea surface height, sea level, ocean level,
seawater level, total sea level, non-tidal residuals, NTRs, H, S,
T, W

Pluvial 154 (55 %) precipitation, flash flood, rainfall, rainfall-runoff, rainfall
anomalies, rainfall extremes, surface runoff, surface inundation,
P

Fluvial 143 (51 %) river discharge, riverine discharge, riverine flow, streamflow,
streamflow discharge, river level, fluvial discharge, channel dis-
charge, channel flow, Q, R

Groundwater 5(1.8%) water table, groundwater level, groundwater head

Soil moisture 5 (1.8 %) soil saturation, soil moisture extremes, soil moisture anomalies,
antecedent soil moisture

Fire 3(1.1 %) wildfire, forest fire

Damming/dam failure 2 (0.72 %) dam, levee, barrier, wall, reservoir; dam breach, dam failure,
dyke breach, dyke failure, levee breach, levee failure, reservoir
breach, reservoir failure

Temp/heat 2 (0.72 %) temperature extremes, temperature anomalies, extreme heat

Snow 2 (0.72 %) snowmelt, snowfall, glacial melt, freshwater melt

Tsunami 2 (0.72 %) -

Drought 1(0.36 %) -

system processes, 129 (46 %) risk assessment, 11 (3.9 %)
impact assessment, 21 (7.5 %) forecasting, 28 (10 %) plan-
ning and management, and 80 (29 %) methodological ad-
vancement (Fig. 7). These applications are discussed in
more detail in Sect. 6.7. Reflecting on the exclusive multi-
classification of applications, the three most common clas-
sifications are earth system processes (74, 27 %), risk as-
sessment (50, 18 %), and methodological advancement (31,
11 %), which together account for over half of the literature
database entries (Fig. 7). This is to be expected as they are the
broadest of application categories but also the primary ob-
jective of most research. Other prominent research applica-
tion classification categories include earth system processes
and risk assessment (30, 11 %), methodological advancement
and risk assessment (22, 7.9 %), earth system processes and
methodological advancement (19, 6.8 %), and planning and
management and risk assessment (12, 4.3 %) (Fig. 7).

Nat. Hazards Earth Syst. Sci., 25, 747-816, 2025

6 Discussion

Our fifth objective is to synthesize the key findings (e.g.
dependence hotspots and driver dominance), considerations
(e.g. uncertainty and climate change), and standard practices
(e.g. application cases and analytical methods) of the com-
pound flood research from across the database. First, we ex-
amine the global and regional hotspots of compound flood-
ing, outlining where and when different driver pairs exhibit
significant dependence (Sect. 6.1). Next, we discuss the ten-
dency for certain drivers to dominate the compound flooding
process and examine how this changes spatially as influenced
by landscape characteristics (Sect. 6.2). We then consider
compound flooding in the context of urban and coastal in-
frastructure and how these environments are particularly sus-
ceptible to the compounding drivers as it is a common con-
sideration throughout the literature (Sect. 6.3). Next, we as-
sess how climate change is expected to affect the frequency,
variability, and severity of compound flooding in the future
(Sect. 6.4). Then, we reflect on the different approaches that
have been used in the literature to analyse compound flood-
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Figure 6. Pie chart showing the proportion of compound flood liter-
ature review database studies that implement numerical modelling,
statistical modelling/analysis, hybrid (both) methods, and neither of
the two approaches.

ing (Sect. 6.5). Finally, we investigate the range of different
applications considered across the literature (Sect. 6.6).

6.1 Compound flood hotspots and spatiotemporal
dependence patterns

Our review highlights that knowledge of compound flood-
ing hotspots, spatiotemporal patterns, and multivariate de-
pendence characteristics has advanced considerably in recent

https://doi.org/10.5194/nhess-25-747-2025

years. However, the ways in which global meteorological and
climate modulators affect the propensity of compound flood-
ing in one region over another are not fully understood, and
few studies consider the nonstationarity of multivariate flood
variable dependence. Nonetheless, large-scale patterns in the
seasonal and interannual occurrence of compound events
have become apparent in several regions (Wu et al., 2018;
Ganguli and Merz, 2019a, b; Ridder et al., 2020; Lai et al.,
2021a; Lai et al., 2021b; Camus et al., 2022; Stephens and
Wu, 2022).

Existing compound event literature has identified certain
areas around the world that are especially prone to compound
flooding, namely southern Asia, where monsoon floods and
cyclones cause widespread damage; the Gulf Coast and East
Coast of the United States, where hurricanes induce storm
surge and intense rainfall, which exacerbate pluvial and/or
fluvial flooding; global low-lying delta regions (e.g. Ganges,
Irrawaddy, Mekong, Mississippi, Rhine, and Pearl), where
riverine and coastal waters together induce severe flooding;
northern and western Europe, which are prone to river flood-
ing plus extreme precipitation and surge from storm events;
and coastal areas of East Asia, Southeast Asia, and Ocea-
nia, where TCs/ETCs drive joint fluvial and coastal flood-
ing (Apel et al., 2016; Ikeuchi et al., 2017; Bevacqua et al.,
2020a; Couasnon et al., 2020; Eilander et al., 2020; Camus
et al., 2021; Lai et al., 2021a). Below we further detail the
spatiotemporal patterns in compound flooding and driver in-
terdependence by region.

Nat. Hazards Earth Syst. Sci., 25, 747-816, 2025
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North America. The coasts of North America are the most
studied in terms of compound flooding globally. Compound
flooding predominantly occurs along the mid-eastern US
coastline and the Gulf of Mexico due to TCs/ETCs that gen-
erate heavy rainfall and extreme sea levels (Ridder et al.,
2020; Camus et al., 2021; Najafi et al., 2021; Camus et al.,
2022). Joint pluvial-fluvial extremes account for the major-
ity of compound flood events and occur frequently with low
return periods (< 0.5 years) over the entire contiguous US,
particularly along the coasts (Ridder et al., 2020). Coastal—
fluvial drivers too exhibit positive dependence on both coasts
(Ridder et al., 2020). Dependence is also measured between
flood drivers along Canada’s coasts, albeit less frequent rel-
ative to the US (Jalili Pirani and Najafi, 2020). Throughout
the Great Lakes, consistent significant positive dependence is
found between pluvial—coastal drivers. On the North Amer-
ican east coast, pluvial-fluvial extremes are frequent in late
spring and early summer during the Atlantic hurricane sea-
son (Ridder et al., 2020; Nasr et al., 2021). This region ex-
hibits strong correlations between pluvial-coastal (Wahl et
al., 2015; Lai et al., 2021a) and fluvial-coastal (Moftakhari
et al., 2017) drivers (Camus et al., 2021; Nasr et al., 2021).
Lastly, the North American west coast features positive de-
pendence for fluvial-coastal (Ward et al., 2018) and pluvial—
coastal (Lai et al., 2021a) pairs during the winter ETC season
(Nasr et al., 2021).

Central and South America. Current knowledge of com-
pound flood events in Central and South America is lacking
due to a void of localized research. Global studies on com-
pound flooding indicate that fluvial-pluvial extremes are the
most frequent cause of compound flooding in South America
and largely occur in the eastern half of the continent (partic-
ularly Brazil) during austral summer/late autumn (Ridder et
al., 2020). Similarly, there is a positive dependence between
fluvial—coastal flood drivers on the southeast coast of Brazil,

Nat. Hazards Earth Syst. Sci., 25, 747-816, 2025

with large clustering in the highly populated states of Sdo
Paulo and Rio de Janeiro (Ward et al., 2018; Couasnon et al.,
2020; Ridder et al., 2020). On the west coast, co-occurring
fluvial-coastal extremes are located in the southern portion
of Chile in austral summer (Couasnon et al., 2020; Ridder et
al., 2020).

Europe. Across Europe, large-scale low-pressure systems
are a prominent modulator of compound floods (Ridder et
al., 2020), with most (~90 %) events (Camus et al., 2021)
occurring in the winter ETC season (Ridder et al., 2020; Lai
etal., 2021a; Camus et al., 2022). The main hotspots of com-
pound flooding are the west coast of the UK, the northwest
coast of the Iberian Peninsula, around the Strait of Gibral-
tar, coasts along the North Sea, and the eastern portion of the
Baltic Sea (Ward et al., 2018; Couasnon et al., 2020; Ridder
etal., 2020; Camus et al., 2021). Concomitant pluvial-fluvial
and pluvial-coastal extremes are most prominent in western
Europe (Couasnon et al., 2020; Ridder et al., 2020; Camus
et al., 2021; Lai et al., 2021a). In Ireland and the UK, joint
occurrences of high skew surges and high river discharge are
more common on the west and southwest coasts compared
to the east coast (Svensson and Jones, 2002, 2004; Ward et
al., 2018; Hendry et al., 2019; Camus et al., 2021). Pluvial-
fluvial drivers also show strong positive correlations in south-
ern Italy, the east coast of Tirkiye, the eastern Mediter-
ranean, the coasts along the North Sea, and parts of the
Baltics. Compound rainfall and river discharge occur primar-
ily in the early summer to late autumn. For fluvial-coastal
and pluvial—coastal driver dependence, there are strong cor-
relations along the Iberian coasts, the Strait of Gibraltar, and
the UK west coast (Svensson and Jones, 2003; Svensson and
Jones, 2004; Ward et al., 2018; Camus et al., 2021; Lai et
al., 2021a). Lastly, positive pairwise dependence of tempo-
rally compounding pluvial-pluvial (“wet—wet”) conditions is

https://doi.org/10.5194/nhess-25-747-2025
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prominent along the coastal Mediterranean (De Michele et
al., 2020).

Africa. Research in Africa is sparse relative to the other
continents; however, a few compound flood patterns have
been ascertained along the northern, southern, and eastern
coasts. Portions of northern Africa show significant positive
pluvial-fluvial correlation along the southern Mediterranean
and eastern Atlantic coasts including Libya, Tunisia, Alge-
ria, and especially Morocco (Camus et al., 2021). Morocco
has the greatest compound flood potential in northern Africa
as it also demonstrates strong dependence for coastal-pluvial
(Zellou and Rabhali, 2019) and coastal—fluvial extremes (Ca-
mus et al., 2021). Analysis of rain gauges across northern
Africa also reveals a select few sites in Algeria with pluvial—
pluvial (wet—wet) pairwise dependence (De Michele et al.,
2020). In southern and eastern Africa, both South Africa and
Mozambique experience compound flooding from seasonal
TCs during austral summer (Bischiniotis et al., 2018; Ward et
al., 2018; Couasnon et al., 2020; Ridder et al., 2020; Claassen
et al,, 2023). As a result, this region has strong depen-
dence relationships between the flood driver pairs coastal—
fluvial, coastal-pluvial, and pluvial-fluvial (Van Berchum et
al., 2020; Eilander et al., 2023; Kupfer et al., 2022). Lastly,
Madagascar has significant positive coastal-fluvial depen-
dence (Couasnon et al., 2020; Ridder et al., 2020) also due to
its exposure to TCs (Claassen et al., 2023).

Asia. Compound flood spatiotemporal distributions are
highly varied throughout Asia but tend to be most frequent
in the south, southeast, and east. Strong correlations for
fluvial-coastal extremes are seen at the coasts of India and
Bangladesh (Bay of Bengal), Indonesia (North Natuna Sea),
Vietnam (East Sea), Philippines (West/East Philippine seas),
Malaysia, China, Taiwan, and Japan (Sea of Japan) (Ikeuchi
et al., 2017; Ward et al., 2018; Couasnon et al., 2020; Rid-
der et al., 2020; Leijnse et al., 2021; Pandey et al., 2021;
Sampurno et al., 2022b). Similarly, there is positive depen-
dence for pluvial-fluvial drivers in India, Bangladesh, and
Japan (Ganguli et al., 2019; Ridder et al., 2020; Khatun et al.,
2022; Claassen et al., 2023). Co-occurring pluvial-coastal
extremes are most prominent in the wet monsoon season in
East Asia (particularly China, Taiwan, and Japan) (Lai et al.,
2021a; Lai et al., 2021b), Southeast Asia (Lu et al., 2022) and
South Asia (Vongvisessomjai and Rojanakamthorn, 1989;
Shahapure et al., 2010; Mohanty et al., 2020). Most com-
pound flood events within Asia occur from summer to late
autumn, corresponding with the TC/ETC seasonality in the
western Pacific.

Oceania. Within Oceania, compound flood events have
been primarily observed in Australia and to a lesser degree
New Zealand. In Australia, the highest frequency of com-
pound flood events is along the northern coastlines (bearing
the brunt of TCs; Claassen et al., 2023) followed by the east
and west coasts, all of which predominantly occur during TC
season in austral summer. Examining dependence, these pat-
terns are consistent for nearly all flood driver pair combi-
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nations, with strong positive correlation in all areas except
the southern coast (particularly Victoria) for pluvial—coastal,
fluvial—coastal, and pluvial-fluvial (Zheng et al., 2013; Ward
et al., 2018; Wu et al., 2018; Couasnon et al., 2020; Rid-
der et al., 2020; Lai et al., 2021a; Lai et al., 2021b). In
New Zealand, compound flood events from pluvial-coastal
and fluvial—coastal drivers have been observed as being sub-
stantial but are not strongly correlated (Stephens and Wu,
2022). Compound flooding likely affects small Pacific island
nations; however, they have been scarcely studied. To date,
there are only two localized studies (Chou, 1989; Habel et al.,
2020) on co-occurring flood extremes for the entirety of Mi-
cronesia, Melanesia, and Polynesia. Habel et al. (2020) con-
firmed the occurrence of coastal-groundwater and pluvial—
coastal flooding processes in Hawaii, and Chou (1989) quan-
tified the frequency of compound flooding from tide and
storm surge along Saipan in the Mariana Islands.

6.2 Dominant drivers of compound flooding

While compound flood events involve a combination of
drivers, often one of the components contributes more than
the other(s). Understanding how drivers dominate the flood-
ing process and how these change with space and time is
essential to improving compound flood forecasting and risk
assessment. Most compound flood events highlighted in the
literature contain regions that are pluvial-, fluvial-, coastal-
, groundwater-, or compound-dominated in nature. Only a
handful of studies examine driver dominance at a global scale
(Eilander et al., 2020; Lai et al., 2021b), but those that do re-
veal general patterns that also tend to be supported by more
localized research. First, estuaries tend to have a mixture
of dominant drivers. In a global assessment of 3433 estu-
aries, Eilander et al. (2020) classified 19.7 % as compound-
dominant, 69.2 % as fluvial-dominant, and 7.8 % as coastal-
dominant. Next, coastal-only environments (i.e. coastal areas
with little or no river interaction) have a much larger propor-
tion of coastal-dominant compound floods due to the direct
proximity of tide—surge processes and wave actions, as well
as groundwater-dominated floods where sea level (and salin-
ity differences) push the water table up. Excluding river pro-
cesses, Lai et al. (2021b) deduced that coastal (storm surge)
and pluvial flooding contributed 65 % and 35 % to the global
change in annual compound floods, respectively. Finally, ur-
ban coastal regions are expected to have a greater number of
pluvial-dominated compound floods.

Flood driver dominance can depend on topography
and channel morphology (i.e. depth, width, size, shape,
volume, slope, friction, and damping) (Filander et al.,
2020; Bermudez et al., 2021; Tanim and Goharian, 2021;
Familkhalili et al., 2022; Harrison et al., 2022), spatial extent
(i.e. location within hydrological network and distance to the
coast) (Moftakhari et al., 2019; Bermuddez et al., 2021; Del-
Rosal-Salido et al., 2021; Huang et al., 2021; Ye et al., 2021;
Gori and Lin, 2022; Judrez et al., 2022; Sampurno et al.,
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2022b; Sebastian, 2022; Zhang and Chen, 2022), elevation
(Huang et al., 2021; Liang and Zhou, 2022), ground-surface
connectivity (Jane et al., 2020), and meteorologic modulator
characteristics (i.e. storm event timing and intensity) (Tanim
and Goharian, 2021; Gori and Lin, 2022). Pluvial flooding
is the least frequently reported dominating driver and pri-
marily only occurs in areas disconnected from the river net-
work with no fluvial inundation (Apel et al., 2016; Ye et al.,
2021; Gori and Lin, 2022) or at higher elevations (Berghuijs
et al., 2019; Huang et al., 2021). Pluvial-dominated flood-
ing is also prevalent in urban zones when the capacity of
drainage systems is exceeded (Shi et al., 2022), areas with
high antecedent soil moisture (e.g. Europe as a whole) and/or
snowmelt (e.g. Scandinavia and northeast Europe) (Berghuijs
et al., 2019), and regions with strong connectivity of sur-
face and groundwater networks (Jane et al., 2020). Fluvial
processes dominate inland flooding in watershed catchments
from channelized fresh water in dynamic hydrological net-
works. Flooding can also be fluvial-dominant in coastal re-
gions fed by steep mountainous rivers that respond quickly to
rainfall and snowmelt (e.g. Zhejiang China; Liang and Zhou,
2022). Within primarily coastally influenced regions, driver
dominance can be further broken down into surge-, wave-
, and tide-dominated. Which of the components of extreme
sea level is the principal driver varies on continental to re-
gional scales depending on meteorological modulators and
characteristics of landmasses.

In the case of mixed fluvial and coastal flooding in es-
tuaries and deltas, identifying the dominant driver is more
challenging as it varies based on location and channel geo-
morphology. River—sea interactions are highly dynamic, and
the sensitivities of flood components can fluctuate greatly
within a single estuary or delta (Hoitink and Jay, 2016; Harri-
son et al., 2022). Common methods of classifying regions of
driver dominance usually involve using flow interaction in-
dices (Valle-Levinson et al., 2020; Juarez et al., 2022) and
compound hazard ratio indices (Shen et al., 2019; Valle-
Levinson et al., 2020; Jalili Pirani and Najafi, 2022b; Judrez
et al,, 2022). As expected, most researchers have found
that the lower estuary is tide- or surge-dominated, the mid-
dle estuary transition zone may be considered compound-
dominated, and the upper watershed region is discharge-
dominated (Moftakhari et al., 2019; Bermitdez et al., 2021;
Del-Rosal-Salido et al., 2021; Huang et al., 2021; Ye et al.,
2021; Gori and Lin, 2022; Juarez et al., 2022; Qiu et al.,
2022; Sampurno et al., 2022b; Sebastian, 2022; Zhang and
Chen, 2022). General patterns of driver dominance are differ-
ent across estuaries depending on the properties of watershed
drainage basins (i.e. topography and morphology) and the be-
haviour of storm events (i.e. path, orientation, intensity, du-
ration, and time lag between drivers). Numerous studies map
out regions dominated by each of the different flood drivers
(Chen et al., 2010; de Bruijn et al., 2014; Gori et al., 2020b;
Bilskie et al., 2021; Del-Rosal-Salido et al., 2021; Maymandi
et al., 2022), often zoned as coastal, hydrological (fluvial
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and/or pluvial), or transition/compound (combined drivers
determine the max water levels) based on numerical model
simulations using different scenarios. The exact scenario def-
initions, however, often vary between studies, making it dif-
ficult to compare results. Compound-dominant floods usu-
ally have greater surge extremes and quicker discharge due
in part to flatter topography (Eilander et al., 2022). In estu-
aries, channel convergence has been shown to influence tidal
propagation such that strongly dissipative and convergent es-
tuaries tend to be flood-tide-dominant, while weakly dissi-
pative estuaries are ebb-tide-dominated (Lanzoni and Semi-
nara, 1998). Large rivers are usually fluvial-dominant, while
smaller and less connected rivers are more likely to be influ-
enced by precipitation at the coast (Bevacqua et al., 2020a).
Similarly, increasing channel depth reduces the impact of flu-
vial processes while amplifying the effect of coastal drivers
on total water level (Familkhalili et al., 2022). Therefore,
channel deepening pushes the compound-dominated region
further upstream and shortens the length of fluvial-dominated
estuary. Flood dominance can also be significantly affected
by the magnitude and severity of storm events such that a sin-
gle location can be dominated by different drivers from dif-
ferent return period storms. Gori et al. (2022) observed surge-
dominated flooding at the coast for low-return-period events
but compound-dominated flooding for high (100-year) return
periods.

Fewer studies have examined the role of timing on
flood driver dominance. In the case of TC/ETC events,
there is a time lag such that it can be hypothesized that
coastal areas are first inundated by storm tide followed by
river discharge from upstream rainfall. Thus, at the begin-
ning of storm events flooding is likely coastal-dominated
(and/or pluvial-dominated) and later switches to being
compound-dominated and then finally fluvial-dominated
(and/or pluvial-dominated). For instance, the 1991 cyclone
that hit Chittagong, Bangladesh, had a 5 h difference between
peak surge and peak rainfall (Tanim and Goharian, 2021). As
a result, the flooding began as coastal-dominated and then
shifted towards being pluvial-dominated. The importance of
timing may also fluctuate depending on the size of the wa-
ter bodies in question. Dykstra and Dzwonkowski (2021)
found that slowing of river propagation in larger water-
sheds (> 5000km?) led to a greater time lag between storm
surge and river discharge, indicating a greater risk of fluvial—
coastal compounding in smaller watersheds where discharge
travels downstream faster. Likewise, differences observed in
the UK’s Humber and Dyfi estuaries explain why maximum
flood depth from fluvial-coastal compounding is less sensi-
tive to timing in the case of a larger estuary (Humber) sub-
ject to slow river discharge, compared with short intense dis-
charge in a smaller estuary (Dyfi) (Harrison et al., 2022).
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6.3 Urban and coastal infrastructure

Urban areas are identified in the literature database to be es-
pecially vulnerable to compound flooding, as the built en-
vironment can exacerbate the effects of flooding, and the
concentration of people and infrastructure can lead to sig-
nificant losses. In the coastal environment, hazard modelling
and risk assessment practices regularly consider the influence
of flood defence structure (i.e. barriers, sea walls, groynes,
breakwaters); however, other aspects of human activity (e.g.
coastal and floodplain development and modification, land
use/land cover change) and urban infrastructure (e.g. sewer
waste drainage systems, water management reservoirs) re-
ceive less attention. Furthermore, existing urban infrastruc-
ture planning and risk assessment practices generally do not
consider the ramifications of compounding flood drivers and
thus underperform or have a greater chance of failure from
compound flooding (Archetti et al., 2011; Jasim et al., 2020;
Najafi et al., 2021). For instance, in Jasim et al. (2020),
coastal earthen levees were simulated to experience 8.7 %
and 18.6 % reductions in the factor of safety for 2-year and
50-year recurrence intervals under compound pluvial-fluvial
flood conditions compared to fluvial-only flooding. Simi-
larly, Khanam et al. (2021) found that FEMA maps signifi-
cantly underestimate risk at several power grid substations in
coastal Connecticut by not accounting for compound flood
interactions. This section will discuss how compound floods
influence the performance of urban and coastal infrastructure
and how infrastructure in these settings can either amplify or
reduce the risks and impacts of compound floods.

It is well established that the risks and impacts of com-
pound flooding can be elevated in coastal and urban set-
tings. Private property and public utilities developed within
floodplains and along shorelines are more likely to be ex-
posed to multiple coinciding flood mechanisms. Over the
past century, changes in land use and land cover have made
the urban environment increasingly susceptible to flooding.
Urban areas experience increased precipitation as unstable
warm city air masses rise (i.e. urban heat island effect) and
then cool, forming rain clouds. This rain falls onto impervi-
ous surfaces (i.e. asphalt and concrete) and compacted soils
(from construction and agriculture), which prevent surface
water from seeping into the ground and percolating down
into underlying aquifers (Shahapure et al., 2010). Instead,
water finds its way into river channels and urban drainage
networks which act as highways and rapidly deliver vast
volumes of water to the coast. During TC events, rain-
fall and river discharge are more likely to temporally over-
lap with coastal storm surge due to the heightened mobil-
ity of water within the urban environment. It is this com-
bination of urban land cover and storm sewer drainage in-
frastructure that plays a substantial part in amplifying the
impacts of urban coastal compound floods (Meyers et al.,
2021). It has been well demonstrated that elevated water lev-
els at the coast from storm surge can significantly reduce
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the rates of urban drainage resulting in more severe flood-
ing (Bunya et al., 2010; Zellou and Rahali, 2019; Shi et al.,
2022). Accumulated surface runoff in cities is meant to flow
into rivers and ultimately the ocean, but high tides or waves
can either block or force this water back inland. It has also
been shown that poorly maintained and leaking stormwater
drainage systems can cause compound pluvial-groundwater
and fluvial-groundwater flooding where seawater travels in-
land via drainage systems (known as ‘“drainage backflow”
and “seawater intrusion”) and flood areas near (and some-
times far from) the coast (Habel et al., 2020; Qiang et al.,
2021; Sangsefidi et al., 2022; Sebastian, 2022). Furthermore,
human activity including coastal and riverine modifications
(i.e. dredging and straightening) (Mufioz et al., 2022b) in
favour of water utilities (e.g. hydroelectric) and transporta-
tion (e.g. marine shipping) also may increase the risks and
impacts of compound flooding as decreased channel fric-
tion causes heightened propagation. Changing the morphol-
ogy of coastal channels as often seen in urban ports can
amplify fluvial-coastal and pluvial—-coastal compound flood-
ing due to reduced dissipation of energy and thus increased
extreme peaks. Lastly, urban and coastal environments also
pose the rare but catastrophic potential of damming/dam-
failure-related compound flooding. For example, Typhoon
Rusa led to compound coastal-pluvial-damming/dam failure
flooding in the urban city of Gangneung (Kim and Sanders,
2016). The failure of two upstream dams in combination with
heavy rainfall and storm surge caused extensive damage to
major infrastructure and affected hundreds of households. A
very similar scenario occurred in Qianbujing Creek, Shang-
hai, during Typhoon Fitow, involving compound heavy rain-
fall, river discharge, and levee-break flooding (Yang et al.,
2021).

Urban infrastructure can also reduce the risks and im-
pacts of compound flooding if designed to be resilient and
forward-looking. Management and policy decisions regard-
ing urban infrastructure investment, maintenance, and out-
reach can play a large role in shaping compound event
risk through the lens of population exposure and vulnera-
bility (Raymond et al., 2020). Well-maintained and operated
coastal urban infrastructure from flood defence (e.g. storm
surge barriers, sea walls, levees, breakwaters, and groynes)
to flow management systems (e.g. dams, stormwater sew-
ers, sump pumps, dry wells) can act to minimize com-
pound flood risk when the dependence of multiple drivers
is adequately considered. Furthermore, sustainable urban
drainage systems (e.g. swales, infiltration trenches, reten-
tion basins, green roofs, and permeable paving) (EAA, 2017)
can reduce the likelihood of compound flooding as they can
create a time lag between peak pluvial, groundwater, and
coastal processes. Lastly, natural flood management prac-
tices (e.g. wetland/floodplain/lake restoration, riverbed mate-
rial re-naturalization, river re-meandering) (EAA, 2017) can
also serve to spread out the duration and reduce the acute
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impact of compounding involving fluvial and coastal drivers,
advancing the resiliency of urban and coastal environments.

6.4 Compound flooding and changing climate

Many studies in the database stress that future compound
flood risk is likely to increase from changes in the variabil-
ity, intensity, frequency, phasing, and seasonality of sea level,
precipitation, river discharge, and temperature driven by cli-
mate change (Zscheischler et al., 2020; Harrison et al., 2022).
Under a changing climate the interrelationships and depen-
dence between variables contributing to compound events are
likely to change, giving rise to greater uncertainty. A pro-
jected warmer atmosphere will bring more frequent and in-
tense storms and rainfall in many parts of the world (Bevac-
qua et al., 2019; Bevacqua et al., 2020b; Wasko et al., 2021;
Zhang et al., 2022), with some estimating a 25 % global in-
crease in compound floods by 2100 (RCP8.5) (Bevacqua et
al., 2020b). For example, the UK is expected to see increased
clustering and intensity of storms (particularly in the winter)
such as those seen in 2013/14 (Harrison et al., 2022; Jenkins
et al., 2023). The relative influence of rainfall on total flood-
ing is increasing due to the warming climate (Swain et al.,
2020; Burn and Whitfield, 2023), and long-term increases in
the frequency of compound coastal river flooding from inten-
sifying precipitation has already been observed throughout
the past century (Dykstra and Dzwonkowski, 2021). This is
particularly the case for the high latitudes (Bevacqua et al.,
2020b), including the US East Coast and Gulf Coast as well
as northern Europe, which face increasing risk from the joint
occurrence of rainfall and storm surge (Wahl et al., 2015; Be-
vacqua et al., 2019; Ghanbari et al., 2021; Gori et al., 2022),
having already seen a rise in the number of annual compound
events by one to four per decade (Lai et al., 2021b). Trends
of raising frequency of concurrent precipitation and storm
tide have additionally been observed at other coasts globally,
including Russia, Japan, Korea, China, Bangladesh, north-
west South America, southern Chile, northern Australia, and
New Zealand (Bevacqua et al., 2020b; Lai et al., 2021b).
SLR is additionally anticipated to substantially amplify the
likelihood of compound flooding at the coast (Wahl et al.,
2015; Ganguli et al., 2020; Bermudez et al., 2021; Ghan-
bari et al., 2021; Harrison et al., 2022), with global mean sea
level projected to increase 0.61-1.10m (RCP8.5) by 2100
(Church et al., 2013). This is already drastically affecting is-
land nations in Southeast Asia and the Pacific that are vul-
nerable to compound coastal flooding involving storm events
(Kuleshov et al., 2014; Hsiao et al., 2021; Leijnse et al.,
2021). Global coastal regions have become increasingly sen-
sitive to inundation from combined influences of SLR, surge,
tide, and waves (Dahl et al., 2017; Idier et al., 2019; Op-
penheimer et al., 2019; Sheng et al., 2022). This is evident
in coastal South and Southeast Asia where climate-induced
storminess and high-tide extremes increasingly drive more
extreme sea levels, in addition to sea-level rise (Xu et al.,
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2014; Wood et al., 2024). Tidal amplitude is also changing
globally (Pickering et al., 2017), and in some regions it is
driving a greater proportion of both extreme and nuisance
flooding (Pickering et al., 2017; Sweet et al., 2018; Haigh et
al., 2020; Shen et al., 2022). Total coastal flooding globally
is estimated to be 68 % caused by storm and tide with 32 %
attributed to relative SLR (RCP8.5) (Kirezci et al., 2020).
Furthermore, nonstationarity in compound flooding has been
well documented, with climate-induced shifts in the seasonal
timing of peak flood driver occurrence. Analysis of histori-
cal long-term flood driver trends throughout Europe has re-
vealed single-week to full-month shifts in mean flood occur-
rence date. Rainfall and river floods have shifted earlier along
the Atlantic, in the Baltics, and in western Italy and later in
eastern Europe, in southern France and Spain, and along the
North Sea (Bloschl et al., 2017; Tramblay et al., 2023). In the
case of mixed rainfall-snowmelt coastal catchments in the
Nordic countries, Vormoor et al. (2015) observed a shift for-
ward in the flood regime from spring—summer to fall-winter
as rainfall replaces snowmelt as the dominant driver due to
raising temperatures.

While compound flood frequency is generally thought to
increase globally, it is critical to understand that compound
flooding may also decrease in some select regions due to
changing local hydrometeorological and climatic forcings.
In the case of the upper Mahanadi River basin, Khatun et
al. (2022) projected lower compound flood hazards under fu-
ture climate scenarios involving preconditioned rainfall and
river discharge. Bevacqua et al. (2020b) project that the joint
probability of rainfall and storm surge will decrease in por-
tions of the subtropics, noting the most significant shift in the
Mediterranean and the Strait of Gibraltar (Bevacqua et al.,
2019) and potentially attributing changes to reduced regional
extreme sea levels. Lai et al. (2021b) have similar findings,
observing a decrease in annual compound flood events in the
southern Mediterranean and Japan. In contrast to that of Be-
vacqua et al. (2020b), Ganguli et al. (2020) project a lower
joint probability of storm surge and river discharge extremes
in northwest Europe, attributing changes to weakening driver
dependence. The conflicting findings of these two studies
highlight the limitations (e.g. sensitivity, internal variability,
and uncertainty) of using a small ensemble of climate mod-
els for projecting future compound flood joint probability.
Lastly, many of these trends towards decreased compounding
are the result of changes in sea-level pressure, coastal wind,
precipitable water content, and convection patterns that ei-
ther reduce the magnitude of individual flood drivers (often
precipitation in tropics) or the dependence between drivers.

In summary, across the studies reviewed, climate change is
shown to have a profound impact on the frequency, severity,
and timing of compound coastal flooding events (Sebastian,
2022). Furthermore, extreme total sea levels from the combi-
nation of SLR, surge, waves, tidal cycles, and changes in the
frequency and intensity of storms are very likely to increase
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over the next century in many regions of the world (Idier et
al., 2019; Oppenheimer et al., 2019).

6.5 Research approaches

As highlighted in Sect. 5.4, we identified two main categories
of approaches that have been used to assess compound flood-
ing, namely (1) physical (process-based) numerical mod-
elling and/or (2) statistical modelling/analysis. In both ap-
proach classes we observed a diversity of methods, similar
to the findings of Tilloy et al. (2019). Below, we discuss the
use of computational numerical methods for compound flood
modelling (Sect. 6.5.1), then provide an overview of the sta-
tistical and data-science-based techniques for analysing com-
pound flooding (Sect. 6.5.2), and finally reflect on the bene-
fits of hybrid (combined numerical-statistical) modelling ap-
proaches (Sect. 6.5.3).

6.5.1 Numerical modelling

Compound flood events are often examined by numerically
modelling the physics-based interactions of their processes
and mechanisms. Through the simulation of historical and
synthetic compound flood events, researchers can develop a
better understanding of present and future inundation mag-
nitude and extent. Given the highly complex nature of com-
pound flooding, numerical modelling often requires a com-
bination of hydrological, hydrodynamic, and atmospheric/-
climate models to represent all Earth system components
contributing to compound flooding. A range of different nu-
merical models are used in the literature, as we briefly dis-
cuss here. Further information on the hydrological, hydrody-
namic, and atmospheric models; frameworks; systems; and
toolsets used in the reviewed studies is provided in Table A2.

Hydrological models are used to simulate the movement,
storage, and transformation of water within the hydrological
cycle. These include land—atmosphere water exchange (pre-
cipitation and evapotranspiration), the flow of water through
the landscape (streamflow and rainfall-runoff), and the in-
filtration of water into the ground (groundwater recharge).
Hydrodynamic models use a series of governing equations
(e.g. shallow-water equations) to simulate the flow of wa-
ter in rivers, oceans, estuaries, and coastal areas. Coastal
hydrodynamic models replicate the propagation and advec-
tion of water based on a combination of tide, surge, and
waves. In the realm of compound flooding, hydrodynamic
models are vital for simulating the effects of complex river—
ocean interactions, storm surge, lake seiche, and flood infras-
tructure. Atmospheric models simulate various atmospheric
processes based on primitive dynamic equations explain-
ing radiation, convection, heat flux, gas exchange, kinemat-
ics of air masses, the behaviour of water vapour (precipita-
tion and clouds), and land/ocean—atmosphere interactions. In
compound flood research, numerical atmospheric modelling
is generally used to simulate synthetic or historical storm
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events (TCs/ETCs) and to generate meteorological inputs
(e.g. precipitation, atmospheric pressure, and wind velocity)
that force hydrological and hydrodynamic models.

Compound flood modelling often involves the use of cou-
pled or linked models. Individually, hydrological and hydro-
dynamic models are unable to capture the full dynamic in-
teractions between inland and coastal processes (Ye et al.,
2020). However, integrating the capabilities of both types of
models can serve to better simulate the movement and trans-
formation of water within a particular system as shortcom-
ings of one model can be complemented by the strengths
of another. Santiago-Collazo et al. (2019) define four tech-
niques for linking different types of models: one-way cou-
pled, two-way (or loosely) coupled, tightly coupled, and fully
coupled. One-way coupling involves using the output of one
model as the direct input for another model, such that data
only transfer in one direction. Alternatively, two-way cou-
pling describes a relationship in which the outputs of both
models transfer information to each other iteratively, creating
a two-way loop that influences the behaviour of both. Tight
coupling refers to the integration of two independent models
into a single model framework at the source code level. A
common example of tight coupling is the ADCIRC-SWAN
model. SWAN sends simulated waves to ADCIRC, and AD-
CIRC sends water levels and wind velocities back to SWAN.
Lastly, full coupling is the complete integration of all model
components such that physical processes are calculated si-
multaneously under the same framework using the same gov-
erning equations. We observed that most of the existing com-
pound flood indentation modelling implements simple one-
way or two-way coupling approaches (Santiago-Collazo et
al., 2019; Xu et al., 2022). Fully coupled numerical models
are rare in compound flood research, as most models only
specialize in one or two earth systems (i.e. meteorology, cli-
matology, hydrology, and oceanography).

6.5.2 Statistical approaches and dependence analysis

Across the studies we have reviewed, a wide variety of
statistical-based approaches have been employed to under-
stand trends, patterns, and relationships using observed data,
sometimes complemented by physically simulated data. This
predominantly involves the use of statistical models as an in-
direct measure of compound flooding potential to better un-
derstand the dependence between different flood drivers and
the likelihood of their joint occurrence.

Several broad statistical techniques are frequently used for
compound flood research. Some of the most prominent meth-
ods include varying forms of spatial and temporal analysis,
regression analysis, extreme value analysis, Bayesian proba-
bility, principal component analysis, index analysis, Markov
chains, and machine learning (ML). Spatial and temporal
analysis investigate correlations, covariance, trends, and pat-
terns in where and when compound flood events occur. This
can include identifying compound flood hotspots (Ganguli
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and Merz, 2019a; Ridder et al., 2020; Camus et al., 2021;
Lai et al., 2021b; Camus et al., 2022) and temporal clus-
tering (Haigh et al., 2016; Santos et al., 2017; Camus et
al., 2021; Banfi and De Michele, 2022; Manoj et al., 2022)
or examining the underlying spatiotemporal preconditions
and interactions of flood components (Camus et al., 2022;
Manoj et al., 2022). Regression analysis involves using sta-
tistical functions to identify relationships between indepen-
dent and dependent flood variables by fitting data to linear
and higher-order non-linear functions (Zhong et al., 2013;
Orton et al., 2015; Van Den Hurk et al., 2015; Serafin et al.,
2019; Bermudez et al., 2021; Ghanbari et al., 2021; Lai et
al., 2021b; Meyers et al., 2021; Mohammadi et al., 2021;
Robins et al., 2021; Santos et al., 2021b; Zhang et al., 2021b;
Jang and Chang, 2022; Sampurno et al., 2022a). Extreme
value analysis examines the tail distribution or threshold ex-
ceedances of extreme flood variables to better understand
joint probability, uncertainty, and severity (Dixon and Tawn,
1994; Kew et al., 2013; Orton et al., 2016; Vitousek et al.,
2017; Pasquier et al., 2019). Bayesian statistical approaches
can iteratively recalculate the likelihood of an event based
on new evidence. Bayesian frameworks are often used to up-
date predictions about compound flood hazards based on new
data and to understand the uncertainties associated with these
hazards (Orton et al., 2015; Bass and Bedient, 2018; Couas-
non et al., 2018; Bermudez et al., 2021; Mohammadi et al.,
2021; Steinschneider, 2021; Gori and Lin, 2022; Naseri and
Hummel, 2022). Principal component analysis is a method
of reducing the dimensionality of data by selecting the most
important variables and combining them into a smaller vol-
ume of composite variables. In compound flood research this
approach can be used to reduce the complexity of compound
flood data to identify the key factors contributing to com-
pound flood hazards (Camus et al., 2022). Index analysis
is a method of data interpretation in which statistical in-
dices simplify our understanding of the behaviour of mul-
tiple variables, a practice commonly used for flood risk and
impact analysis (Rueda et al., 2016; Valle-Levinson et al.,
2020; Tanir et al., 2021; Huang, 2022; Jalili Pirani and Na-
jafi, 2022b; Judrez et al., 2022; Khatun et al., 2022; Preisser
etal., 2022; Tao et al., 2022). Compound flood research takes
this further using various indices that also consider the syn-
ergy of multiple flood drivers (Tanir et al., 2021; Jalili Pi-
rani and Najafi, 2022a, b; Judrez et al., 2022; Khatun et al.,
2022; Preisser et al., 2022; Tao et al., 2022). Markov chains
use records of past variable states to describe the probabil-
ity of future states. With this approach, flood variable data
such as rainfall and river levels can be fit to stochastic mod-
els to simulate the probability of joint extreme states. Addi-
tionally, Markov chain Monte Carlo (MCMC) approaches in-
volving stochastic sampling of variables are sometimes also
applied in compound flood research (De Michele et al., 2020;
Ganguli et al., 2020; Jalili Pirani and Najafi, 2022a; Jong-
Levinger et al., 2022). Lastly, in recent years ML models in-
volving varying neural network structures have been trained
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using compound flood datasets to predict flood extremes or
map inundation extents (Karamouz et al., 2014; Bass and Be-
dient, 2018; Serafin et al., 2019; Muifloz et al., 2021; Santos
et al., 2021b; Huang, 2022; Sampurno et al., 2022a).

Understanding the dependence of compound flood vari-
ables is crucial as it tells us about their joint exceedance
probability (Ward et al., 2018; Xu et al., 2022). Failure to in-
vestigate driver dependence will lead to an underestimation
of flood probabilities. Varying forms of the joint probabil-
ity method (JPM) (Myers, 1970; Ho and Myers, 1975; Pugh
and Vassie, 1980), involving aspects of extreme value anal-
ysis, are commonly used to measure potential co-occurrence
and dependence between compound flood drivers. Over time
the analytical approaches have evolved but generally involve
three main steps for investigating dependence and frequency
of co-occurring events. First, the flood variable event sets
are sampled. The second step involves a simple calculation
of varying correlation coefficients from the driver data. The
third step consists of fitting a multivariate distribution func-
tion.

In preparation for the following steps, flood variable
datasets are created by sampling events (according to vary-
ing compound scenarios, i.e. AND, OR, Kendall) via block-
maxima or threshold-excess (peak-over-threshold, POT)
methods. Block-maxima sampling selects the maximum
events within a given temporal block (annual, seasonal,
daily), while the threshold-excess method selects events
above a defined extreme threshold value. Lucey and Gal-
lien (2022) suggest that block-maxima sampling has the
potential to underestimate water levels for extreme events
(in semi-arid climates); however, both block-maxima and
threshold-excess approaches likely have limitations depend-
ing on their implementation. Next, the correlation coeffi-
cient step typically implements different types of rank cor-
relation coefficients and tail coefficients. Correlation coeffi-
cients such as Kendall’s tau 7 and Spearman’s p can reveal
non-linear relationships between random variables based on
their ordinal associations. Alternatively, the lower (Ar) and
upper (Ly) tail coefficients help examine dependence be-
tween random variables at the extremes of their distributions.
While random variables may appear to show no correlation
at a standard significance level, the co-movement of their
tails may reveal dependence relationships that only occur at
the extremes. The joint probability distribution is then con-
structed from the sampled variable event datasets as the prob-
ability of all possible pairs across each input variable. The
joint probability distribution thus defines the probability of
two or more simultaneous events, where the variables are at
least partially dependent and thus influence each other’s oc-
currence (Hawkes, 2008). Similarly, event coincidence anal-
ysis can be used to examine the joint occurrence of vari-
ables. This approach relies on variable time series (observed
or modelled) and counts instances of coincidence, where two
or more variables or events co-occur within a defined time
window (Donges et al., 2016). Coincidence rate can then by
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calculated to assess the frequency of event coincidence over
time.

In recent years, copulas have also been used to measure
dependence, gaining considerable attention for their abil-
ity to simplify the analysis of highly stochastic multivari-
ate processes. A total of 64 (23 %) studies were observed
using copula-based methods to assess dependence. Defined
in Sklar’s theorem (Sklar, 1959), a copula is a multivariate
cumulative distribution made by joining or “coupling” the
univariate marginal probability distributions of two or more
individual variables. This can be done using several depen-
dence structures, with common copula families being ellipti-
cal and Archimedean. In addition to measuring dependence,
copulas are used in compound flood research to assess the
non-linear relationships and uncertainties between extreme
flood variables (Salvadori and De Michele, 2004, 2007). By
fitting copula functions to multivariate flood data, it is possi-
ble to understand the strength and nature of the dependence
between these variables and to predict the likelihood of com-
pound flood events. To date, the majority of compound flood
research involves bivariate case studies. Nonetheless, several
studies have implemented trivariate approaches to simulta-
neously analyse three partially dependent variables (Hawkes
et al., 2002; Yang and Qian, 2019; Jalili Pirani and Najafi,
2020; Jane et al., 2020; Santos et al., 2021a; Jalili Pirani and
Najafi, 2022b; Latif and Simonovic, 2022b, a; Ming et al.,
2022; Zhang and Chen, 2022; Latif and Simonovic, 2023),
and others have taken more complex procedures integrat-
ing copulas with MCMC (Sadegh et al., 2018; Moftakhari
et al., 2019; De Michele et al., 2020; Ganguli et al., 2020)
and Bayesian network (Couasnon et al., 2018; Moftakhari et
al., 2019; Jalili Pirani and Najafi, 2022a; Naseri and Hum-
mel, 2022) approaches. For further detail on copula-based
multivariate flood analysis see Latif and Mustafa (2020).

6.5.3 Hybrid modelling and analysis approaches

Research methodologies involving a combined numerical
and statistical approach were observed in around one-third
of the compound flood studies (Fig. 6). In this review we
use “hybrid modelling” to refer to this combined numerical
(process-based) and statistical (data-driven) approach. We
note that there is currently no standard meaning around the
term “hybrid”, and thus our interpretation may conflict with
the perspectives of others. Some use “hybrid” when consid-
ering the linking of multiple numerical modelling compo-
nents or in the case of various ML statistical models. Others
use this term in reference to model frameworks involving a
combination of parametric and nonparametric components.
Nonetheless, these hybrid modelling approaches can comple-
ment each other or focus on multiple aspects of modelling
in a way that would not be possible when using numerical
or statistical approaches in isolation. For example, process-
based numerical modelling of compound flood hazards may
be ideal for physics-based inundation mapping and flood-
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plain delineation but can be very computationally expensive
(this has pushed the development of more computationally
efficient models such as SFINCS; Leijnse et al., 2021). Con-
versely, simplified statistical models are less computationally
expensive but typically make general assumptions about in-
put data that do not fully consider the physical processes at
play. In contrast, hybrid numerical-statistical modelling ap-
proaches offer the benefit of computationally efficient sur-
rogate statistical modelling while still maintaining a realistic
representation of the physical processes (Serafin et al., 2019).
Additionally, numerical modelling can also be severely in-
hibited by historical data availability. Hydrodynamic mod-
elling of astronomical tide and storm surge require atmo-
spheric pressure and wind velocity forcing data, while past
river level and rainfall data are dependent on the presence of
in situ tide and rain gauge monitors. In the event of absent
of poor spatiotemporal coverage, numerical hydrodynamic
models must rely on reanalysis datasets (i.e. assimilation of
observations and numerical weather prediction models). Sta-
tistical approaches to compound flood analysis, however, can
sometimes make do with limited data by interpolating or ex-
trapolating extreme hazard probabilities and distributions. In
the absence of historical data, one solution is to numerically
simulate synthetic events that are physically capable of oc-
curring, albeit not present in short-term observations (Serafin
et al., 2019). For instance, Bloemendaal et al. (2020) demon-
strate the synthetic resampling algorithm STORM’s ability
to generate 10000 years of TC activity based on 38 years of
historical data from IBTrACS. Many hybrid modelling ap-
proach compound flood studies statistically simulate storm
events that drive physical hydrodynamic and hydrological
models (Moftakhari et al., 2019; Serafin et al., 2019). Lim-
itations of this approach centre on the fact that statistically
generated event sets and reanalysis data may under-represent
extremes, exhibit inherent systematic modelling, and/or in-
adequately account for climate nonstationarity (Bengtsson et
al., 2004; Easterling et al., 2016; Bronnimann et al., 2019).

6.6 Research applications

As highlighted in Sect. 5.5, we identified that six main ap-
plications have been the focus of most compound flood stud-
ies in the database. Discussed in the following order, promi-
nent case study applications include earth system processes
(Sect. 6.6.1), risk assessment (Sect. 6.6.2), impact assess-
ment (Sect. 6.6.3), forecasting (Sect. 6.6.4), planning and
management (Sect. 6.6.5), and methodological advancement
(Sect. 6.6.6). Note that many of the compound flood studies
fall into multiple application categories.

6.6.1 Earth system processes
From the 279 literature database entries, 130 (47 %) seek to

better understand the processes, interactions, and behaviour
of earth systems associated with compound flooding. Re-
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search papers within the earth system processes application
theme examine a variety of topics including the role of var-
ious dynamic Earth systems on compound flooding, the en-
vironmental and landscape characteristics influencing flood
drivers, the relationships between and relative significance
of flood drivers, and the spatiotemporal distributions and fre-
quency of compound flood events. Many of the papers dis-
cussed in Sect. 6.1, 6.2, and 6.5 fall within this application
category.

Focusing on flood drivers relationships, there is a plethora
of research examining aspects of spatiotemporal distribution,
correlation, covariance, dominance, and dependence struc-
tures as demonstrated in the US (Serafin and Ruggiero, 2014;
Nasr et al., 2021; Judrez et al., 2022; Maymandi et al., 2022),
UK (Svensson and Jones, 2002, 2004; Haigh et al., 2016;
Santos et al., 2017; Hendry et al., 2019), Europe (Klerk et
al., 2015; Petroliagkis, 2018; Ganguli and Merz, 2019b; Ca-
mus et al., 2021), Australia (Zheng et al., 2013; Zheng et al.,
2014; Wu et al., 2018; Wu and Leonard, 2019), Canada (Jalili
Pirani and Najafi, 2020, 2022b), China (Qiu et al., 2022; Tao
et al., 2022; Zhang and Chen, 2022), South Africa (Kupfer
et al.,, 2022), India (Manoj et al., 2022), Indonesia (Sam-
purno et al., 2022b), New Zealand (Stephens and Wu, 2022),
and globally (Ward et al., 2018; Couasnon et al., 2020; Rid-
der et al., 2020; Lai et al., 2021a). Many have simulated or
projected how climate change (e.g. SLR and storm intensi-
fication) is expected to affect the future compounding inter-
actions of flood drivers (Wahl et al., 2015; Bevacqua et al.,
2019; Pasquier et al., 2019; Ganguli et al., 2020; Bermtidez
et al., 2021; Ghanbari et al., 2021).

There is also notable insight into the large-scale meteoro-
logical and climatological modulators and underlying earth
systems influencing the nature of compound flooding and the
behaviour of flood drivers. For instance, Camus et al. (2022),
Hendry et al. (2019), and Rueda et al. (2016) identify the
meteorological conditions associated with the compound oc-
currence of extreme flood drivers in the North Atlantic, the
UK, and Spain, respectively. Gori et al. (2020a) and Gori
et al. (2020b) determine the type of TC events likely to
cause compound pluvial—coastal flooding in North Carolina.
Stephens and Wu (2022) identify the weather types corre-
sponding with both univariate and coincident pluvial, fluvial,
and coastal extremes in New Zealand. Furthermore, Wu and
Leonard (2019) demonstrate how ENSO climate forcings im-
pact the dependence between rainfall and storm surge ex-
tremes.

Other common focuses of earth-system-processes-themed
literature include characterizing the physical mechanics and
environmental properties that shape how flood drivers in-
teract. Several papers including Vongvisessomjai and Ro-
janakamthorn (1989), Poulos et al. (2022), and Pietrafesa et
al. (2019) evaluate the timing and mechanisms behind down-
stream blocking and dampening that often explain fluvial—
coastal flooding. Similarly, Maymandi et al. (2022) mea-
sure the timing, extent, and intensity of storm surge, river
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discharge, and rainfall components to understand their rela-
tive importance. Likewise, Tanim and Goharian (2021) ob-
serve how changes in tidal phase alter the depth and dura-
tion of urban compound pluvial-coastal flooding. Harrison
et al. (2022) and Helaire et al. (2020) measure how estu-
ary characteristics (e.g. shape, size, width) influence fluvial—
coastal dynamics. Wolf (2009) considers how wind stress,
bottom friction, depth, bathymetry, and ocean current refrac-
tion change co-occurring surge and wave extremes (coastal—
coastal). Torres et al. (2015) and Gori et al. (2020b) exam-
ine the influence of hurricane landfall location, angle of ap-
proach, and forward speed on compound rainfall-runoff and
storm surge flooding (pluvial—coastal). Tao et al. (2022) ex-
plore compound fluvial-pluvial flood scenarios involving up-
stream and downstream water levels, as well as how intensity,
timing, duration, and dependence change based on synoptic
and topographic conditions.

Lastly, while the occurrence of compound flooding is well
recognized in coastal, estuarine, and delta environments, we
note that emerging research has enhanced the understanding
of compound flood processes in the context of coastal lake
environments (Saharia et al., 2021; Steinschneider, 2021;
Banfi and De Michele, 2022; Jalili Pirani and Najafi, 2022b).
For example, Banfi and De Michele (2022) determine that
flooding of Italy’s Lake Como is primarily (70 %) from
temporal compounding of rainfall (pluvial-pluvial). In Lake
Erie, Saharia et al. (2021) analyses compound flooding in-
volving river flow and lake seiche (fluvial-coastal), show-
ing for the first time how seiches can combine with hydro-
logical processes to exacerbate flooding. Finally, along Lake
Ontario, Steinschneider (2021) quantified the compounding
nature and variability of storm surge and total water level
(coastal—coastal).

6.6.2 Risk assessment

The overarching goal of most compound flood research is
to better understand risk, hence why 129 (46 %) studies in-
volve aspects of risk assessment. As defined by the UN-
DRR (2016), risk assessment is an approach for determining
the state of risk posed by a potential hazard taking into ac-
count conditions of exposure and vulnerability. Risk assess-
ment inherently plays a key role in several of the reviews’
other research application categories including hazard plan-
ning and management as well as impact assessment.

As the field of compound event sciences advances, it has
become increasingly clear that conventional univariate anal-
ysis cannot accurately capture the synergistic and non-linear
risk of compound processes (Kappes et al., 2010; Leonard et
al., 2014; Eshrati et al., 2015; Zscheischler and Seneviratne,
2017; Sadegh et al., 2018; Zscheischler et al., 2018; Ridder
et al., 2020). A plethora of studies have concluded that tra-
ditional hazard analysis, in which flood variable dependence
and synergy are not considered, underestimates the risk of
compound extremes (Bevacqua et al., 2017; Bilskie and Ha-

https://doi.org/10.5194/nhess-25-747-2025



J. Green et al.: Review article: A comprehensive review of compound flooding literature 775

gen, 2018; Kumbier et al., 2018; Hendry et al., 2019; Huang
et al., 2021; Eilander et al., 2022). Jang and Chang (2022)
determine that by not considering the multivariate nature
of pluvial—coastal flooding, Taiwan’s flood risk would be
severely misestimated, causing incorrect warning alarms and
inadequate protection. Khalil et al. (2022) assert that failing
to consider the interactions of multiple flood drivers would
reduce flood levels by 0.62 and 0.12 m in Jindalee and Bris-
bane. Similarly, Santos et al. (2021a) measured 15-35cm
higher water levels for 1 % annual exceedance probability
events when considering dependence for trivariate fluvial—
pluvial—coastal flooding in Sabine Lake, Texas.

There is a diversity of topics within the risk-themed com-
pound flood literature, but many papers involve simple re-
gional case studies or framework proposals (Najafi et al.,
2021; Ming et al., 2022; Naseri and Hummel, 2022; Pefia
et al., 2022). éepiené et al. (2022) examine the risk associ-
ated with combined fluvial-coastal flooding and how it will
change with SLR at the port city of Klaipéda. Bischiniotis
et al. (2018) assess the influence of antecedent soil mois-
ture on flood risk in sub-Saharan Africa, showing that pre-
cipitation alone cannot explain flood occurrence. Along the
coasts of Mozambique, Filander et al. (2023) demonstrate a
globally applicable compound flood risk framework, and Van
Berchum et al. (2020) present the novel Flood Risk Reduc-
tion Evaluation and Screening (FLORES) model. Bass and
Bedient (2018) create joint pluvial-coastal flooding proba-
bilistic risk models built upon TC risk products in Texas.
Lastly, a few studies examine the risk of potential loss of life
(PLL), such as de Bruijn et al. (2014), who present a Monte
Carlo-based analysis framework for fluvial-coastal interac-
tions in the Rhine-Meuse delta.

6.6.3 Impact assessment

Impact assessment is the least common compound flood
application with only 11 (4 %) relevant studies. This may
be because flood impact assessments have historically only
been designed to address a single type of flooding at a time
(Lang-Ritter et al., 2022). Additionally, flood loss modelling
has largely targeted riverine floods, with less attention given
to pluvial, coastal, or groundwater drivers. This is slowly
changing, and in recent years a small portion of research
has been dedicated to analysing the impacts of compound
flood events (Habel et al., 2020; Tanir et al., 2021; Lang-
Ritter et al., 2022; Preisser et al., 2022). Impact assessment
differs from risk assessment in that it looks at the realized
or impending outcomes of flood events rather than simply
the event likelihood as a product of exposure and vulnera-
bility. This involves identifying and analysing the physical
(e.g. building and infrastructure damage), social (e.g. loss
of essential services, household displacement, and commu-
nity cohesion), and economic (e.g. loss of income, damage
to business and industry, and disruption of transportation and
supply chain) impacts of flooding.
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Physical parameters for quantifying the empirical impact
of flooding in an affected area can include water depth, flow
velocity, inundation duration, water quality (contamination),
land use/land cover change, and infrastructure damage. For
example, Habel et al. (2020) look at the influence of com-
pound floods and SLR on urban infrastructure and identify
the roadways, drainage inlets, and cesspools that would fail
under compound extreme conditions.

Social and economic flood impacts are routinely measured
using multifaceted indices and damage models. Preisser et
al. (2022) and Tanir et al. (2021) assess the impacts of com-
pound flooding with SVI (social vulnerability index; 42 vari-
ables) and SOVI (socio-economic vulnerability index; 41
variables), respectively. Karamouz et al. (2017) apply a flood
damage estimator (FDE) model to quantify pluvial-coastal
flood damages to buildings structures in New York City. Sim-
ilarly, Ming et al. (2022) calculate the average annual loss in
value of residential buildings in the Thames River catchment
from compound high river flow, heavy rainfall, and extreme
surge.

6.6.4 Forecasting

A total of compound flood studies in the database focus on
flood forecasting. Flood forecasts are valuable emergency
management tools that provide information on the location,
timing, magnitude, and potential impact of impending flood
scenarios (Merz et al., 2020). Together with monitoring and
prediction, forecasts guide time-sensitive early warning sys-
tems and disaster reduction strategies to help communities
prepare for and respond to flooding. As compound-event-
based perspectives gain traction, there has been emerging
development of flood forecast models that consider the com-
pound interaction of multiple drivers.

Several studies demonstrate the capabilities of integrated
near-real-time observation-based hydrological river and hy-
drodynamic coastal flood models forced by already estab-
lished meteorological forecasting systems (Stamey et al.,
2007; Mashriqui et al., 2010; Park et al., 2011; Blanton et al.,
2012; Dresback et al., 2013; Mashriqui et al., 2014; Blanton
et al., 2018; Tehranirad et al., 2020; Cifelli et al., 2021). For
instance, the fluvial-coastal flood forecasting system Hydro-
CoSMosS detailed in Tehranirad et al. (2020) can predict tidal
river interactions in San Francisco Bay. Over the Korean
Peninsula, Park et al. (2011) design a model for real-time
water level forecasting of pluvial—coastal inundation such as
seen during Typhoon Maemi.

Much of the existing compound flood forecasting re-
search has focused on advances in the development of mon-
itoring and early warning systems for the US East Coast
and Gulf of Mexico. Blanton et al. (2012) feature devel-
opment of the North Carolina Forecasting System (NCES),
which predicts fluvial-pluvial-coastal flood variables. Van
Cooten et al. (2011) showcase the Coastal and Inland
Flooding Observation and Warning Project’s (CI-FLOW)
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7d total water level forecasts and potential for near-real-
time fluvial-pluvial-coastal flood prediction. Dresback et
al. (2013) develop the coupled hydrological-hydrodynamic
model ASGS-STORM for forecasting joint fluvial-coastal
inundation. Multiple studies also concentrate on flood fore-
casting in the Chesapeake Bay and the tidally influenced Po-
tomac River. Stamey et al. (2007) introduce the Chesapeake
Bay Inundation Prediction System (CIPS), a prototype oper-
ational flood forecasting system for TC/ETC storm-induced
fluvial-coastal flooding. This is followed by Mashriqui et
al. (2010) and Mashriqui et al. (2014), who build a river—
estuary—ocean (REO) forecast system to fill gaps in existing
operational models.

Accurate forecast products are crucial to effective emer-
gency management practices and reliable early warning sys-
tems. Ensemble modelling has been implemented in two
compound forecasting studies as a means of minimizing un-
certainty. Blanton et al. (2018) develop a hurricane ensemble
hazard prediction framework and demonstrate the ability to
forecast pluvial-coastal flooding with a 7d lead simulation
of Hurricane Isabel. Similarly, Saleh et al. (2017) showcase
a 4d advance operational ensemble forecasting framework
for fluvial-coastal flooding in Newark Bay during Hurricane
Irene and Hurricane Sandy.

A small number of studies have also investigated the use
case of ML for forecasting compound flooding (Bass and
Bedient, 2018; Huang, 2022; Sampurno et al., 2022a). For
instance, Sampurno et al. (2022a) use a combined hydrody-
namic and ML approach to forecast fluvial-pluvial-coastal
flooding in Indonesia’s Kapuas River delta. Bass and Be-
dient (2018) take peak inundation levels from a coupled
hydrological-hydrodynamic model’s results to train an ar-
tificial neural network (ANN) and Kriging ML model for
rapid forecasting of TC-driven pluvial-coastal extremes in
Houston, Texas, as a result of Hurricane Allison and Hurri-
cane Ike. Finally, Huang (2022) constructs a recurrent neural
network (RNN) model that considers downstream geomor-
phological and hydrological characteristics to predict joint
pluvial—coastal flooding in Taiwan.

6.6.5 Planning and management

Within the literature database there are 28 (10 %) papers that
focus on different aspects of flood management and planning
from emergency response to risk mitigation strategies. The
UNDRR (2016) defines disaster management as the orga-
nization, planning, and application of measures for disaster
response and recovery. Subsequently, disaster risk manage-
ment is described as the use of disaster risk reduction strate-
gies and policies to prevent, reduce, and manage risk (UN-
DRR, 2016). Flood management strategies might involve
identifying areas for prioritized flood protection and build-
ing risk reduction structures such as building levees, dykes,
barriers, and sea walls or enacting changes in land use plan-
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ning and zoning policy to minimize habitation and activity in
floodplains.

Flood defence and water management structures have long
been in use; however, these features have predominantly been
designed for responding to a single flood driver (e.g. storm
surge) (Sebastian, 2022). Several studies examine the effec-
tiveness of flood defence structures protecting against com-
pound events. Christian et al. (2015) investigate the feasibil-
ity of a proposed storm surge barrier for mitigating pluvial—
coastal flooding in the Houston Ship Channel. Findings on
the magnitude of reductions in surface height and flood-
plain area help guide project development decision-making
by coastal and port authorities. Del-Rosal-Salido et al. (2021)
develop management maps to support decision-making and
long-term climate and SLR adaptation planning in Spain’s
Guadalete Estuary, identifying sites for potential flood barri-
ers.

During extreme flood events, unpredictable impacts on
utility and transportation infrastructure can exacerbate loss.
Thus, another key component of flood management is flex-
ible emergency response planning. Several articles address
these elements of response planning and identify evacuation
areas, routes, and emergency shelters in the event of com-
pound flooding. In their analysis of urban infrastructure fail-
ure from compound flooding in Hawaii, Habel et al. (2020)
locate road networks and urban spaces that are likely to be
impassable and estimate the effects of traffic on resident
evacuation. In the event of a typhoon landfall in the Ko-
rean Peninsula, Park et al. (2011) design an early warning
system for pluvial-coastal flooding that supports decision-
making and response from local officials by identifying areas
to evacuate. Blanton et al. (2018) also address emergency
planning, developing a hurricane-driven inundation evacu-
ation model that dynamically accounts for interactions of
compound drivers.

Effective communication and outreach are additional criti-
cal components of flood hazard planning and mitigation. This
includes educating the public about the types and consider-
ations of flooding; collaborating with hazard managers and
policy makers to address challenges in flood management;
and timely dissemination of information on flood risk, evac-
uation routes, and emergency shelters. In a unique narrative
paper, Curtis et al. (2022) interview emergency managers
and planners on compound flood risk perceptions and chal-
lenges in North Carolina, revealing inadequacies in commu-
nication mediums and the ability to convey compound flood
severity to the public. Similarly, hazard expert interviews in
Modrakowski et al. (2022) centre on the use of precautionary
risk management strategies in the Netherlands and examine
how the perception of compound flood events in part shapes
the flood management practices of local authorities. Inter-
estingly, the two studies produce different findings for indi-
vidual flood drivers, highlighting the regional differences in
flood mechanisms. Curtis et al. (2022) recorded a greater per-
ception of risk from fluvial- and coastal-dominant flooding
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as opposed to pluvial inundation. Conversely, Modrakowski
et al. (2022) found that pluvial flooding (specifically heavy
rainfall from cloudbursts) had a larger perceived risk, being
equal if not greater than fluvial and coastal. Societal intu-
itions, beliefs, and attitudes surrounding hazards are not often
considered, yet they can provide substantial value for shap-
ing the strategies and practices for more effective emergency
response and risk reduction.

6.6.6 Methodological advancement

The third most common application category is methodolog-
ical advancement with 80 (29 %) of the 279 studies aimed at
testing and developing methodologies for research on com-
pound floods. Methodological advancement is a broad ap-
plication category but most often describes research stud-
ies that investigate either (i) new setups and frameworks for
running numerical model simulations or (ii) novel statistical
modelling and analysis techniques for quantifying the like-
lihood of compounding extremes or behaviour of interact-
ing drivers. Papers classified as methodological advancement
seek to better understand and showcase the feasibility, de-
velopment, and/or performance of compound flood research
methods. See Table A2 for full model names and descrip-
tions.

In relation to advancements in numerical-based method-
ologies, many papers explicitly state their primary research
objective is the development of a compound flood mod-
elling system itself, such as Chen and Liu (2014) and Lee
et al. (2019), who test whether their respective SELFE and
HEC-HMS + Delft3D-FLOW model frameworks can suffi-
ciently replicate the fluvial-coastal flood conditions observed
during historical storm events. Bates et al. (2021) showcase
a sophisticated 30 m resolution large-scale LISFLOOD-FP
model of the contiguous US that incorporates pluvial, flu-
vial, and coastal processes under the same methodological
framework. Numerous papers focus on assessing the perfor-
mance of specific computational software applications for
simulating compound flooding. These primarily seek to pro-
vide insight for future development and use case applica-
tions. For instance, Bush et al. (2022) examine the bene-
fits and drawbacks between ADCIRC and linked ADCIRC
+ HEC-RAS simulations of fluvial-coastal flooding. Bil-
skie et al. (2021) demonstrate a new approach for delin-
eating coastal floodplains and simulating water levels using
ADCIRC s rain-on-mesh modules forced by antecedent rain-
fall, TC-driven rainfall, and storm surge. Ye et al. (2020) use
SCHISM to develop a 3D model that incorporates the baro-
clinic effects of storm surge and compare its performance
against 3D barotropic and 2D model alternatives. Numer-
ous studies incorporate sensitivity assessments, experiment-
ing with model parameters and settings, as well as examining
how they influence performance and uncertainty (Mclnnes
et al.,, 2002; Brown et al., 2007; Orton et al., 2012; Ol-
bert et al., 2017; Silva-Araya et al., 2018; Leijnse et al.,
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2021; Khalil et al., 2022; Lyddon et al., 2022). For exam-
ple, Khalil et al. (2022) investigate how model mesh resolu-
tion affects flood discharge rates, revealing that finer meshes
best replicate peak flows. Some studies introduce newly de-
veloped numerical models, such as Olbert et al. (2017), who
present the first instance of a dynamically linked and nested
POM + MSN_Flood framework for fluvial-pluvial-coastal
flooding. Others focus on the computational efficiency of
compound flood frameworks, such as Leijnse et al. (2021),
who assess the reduced physical solver SFINCS’s ability to
accurately simulate fluvial-pluvial-coastal interactions with
less computational resources.

Many of the literature database studies showcase innova-
tions in statistical approaches to compound flood research.
Sampurno et al. (2022a) assess the operational viability and
performance of three ML algorithms for a compound flood
forecasting system. Similarly, Mufioz et al. (2021) exam-
ine the capability of ML and data fusion-based approaches
for post-event mapping of compound floods from satellite
imagery. Mufioz et al. (2022a) demonstrate techniques for
employing data assimilation to reduce uncertainty in com-
pound flood modelling. Wu et al. (2021) experiment with
three methods of compound flood frequency analysis and
discuss the advantages and disadvantages of each approach.
Phillips et al. (2022) examine combinations of varying cop-
ula structures and statistical fitting frameworks to further ap-
proaches for measuring driver dependence. Thompson and
Frazier (2014) test out different means of deterministic and
probabilistic modelling for quantifying compound flood risk.
Lastly, some studies expand on existing methodologies to
overcome known limitations, such as Gouldby et al. (2017),
who develop a method of full multivariate probability anal-
ysis that overcomes drawbacks of the prevalent joint proba-
bility contour (JPC) method by directly quantifying response
variable extremes.

7 Knowledge gaps and improvements for future
research

Our final objective is to reflect on the knowledge gaps in
compound flood research and suggest potential directions
for research going forward. Based on our detailed review
we have five main recommendations moving forward, as fol-
lows.

Recommendation 1 — adopt consistent definitions, termi-
nology, and approaches. Definitions and use cases of com-
pound event, compound hazard, multi-hazard, and associated
terminology (Table 1) are highly inconsistent throughout the
literature (Kappes et al., 2012; Gallina et al., 2016; Tilloy et
al.,2019). This is well recognized by Tilloy et al. (2019), who
refer to the variety of terms as a “fragmentation of [the] lit-
erature”. Similarly, Pescaroli and Alexander (2018) draw at-
tention to trends in the “superficial” and “ambiguous” use of
hazard terms by academics and practitioners. This tendency
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to use differing concepts synonymously is blurring the state
of compound flood research (something we continuously ob-
served while completing this review). They warn of potential
confusion and duplication of research as a result of over-
lapping definitions. In summary, compound event and re-
lated terms have a wide range of overlapping and interlinked
definitions, and there is a considerable need for clarity. Re-
cent preliminary efforts by the collaborative MYRIAD-EU
project to develop a multi-hazard and multi-risk definitions
handbook appear promising for fostering a common under-
standing of hazard concepts across disciplines (Gill et al.,
2020). Similarly, there is early collaborative work on the de-
velopment of a compound flood practices manual and primer
document as part of the ASCE-MOP project (Shields et al.,
2023).

Recommendation 2 — expand the geographic coverage of
research. Geographically, much of the existing compound
flood research is too narrowly focused on a select few regions
(i.e. North America, Europe, Southeast Asia, the UK, China,
the Netherlands, Australia) (Fig. 3b). To date, there are no lo-
calized English-language studies, to our knowledge, on com-
pound flooding in any parts of South America, Central Amer-
ica, or the Middle East. South America regularly experiences
catastrophic flooding from both long-term heavy rainfall and
extreme river discharge (e.g. 2015/16 (ReliefWeb, 2016) and
2016/17 (ReliefWeb, 2017) South American floods); how-
ever, existing research in these regions has not considered
their combined interactions. Furthermore, there are very few
compound flood papers within the African subcontinent (Bis-
chiniotis et al., 2018; De Michele et al., 2020; Van Berchum
et al., 2020; Kupfer et al., 2022) (a region deserving of
greater attention given the projected extreme coastal hazard
exposure as a result of SLR, population growth, and coastal
urbanization; Neumann et al., 2015) due to a lack of data.
While there are a handful of global studies, localized research
on the interactions and dependence of flood variables is miss-
ing for many parts of the world. Future compound flood re-
search must be dedicated to improving our understanding
of these neglected regions, including strategic data collec-
tion and developing methodologies for assessing compound
flooding in data-sparse areas.

Recommendation 3 — pursue more inter-comparison and
collaborative compound flood projects. Current methodolo-
gies for analysing compound flooding are highly diverse, in-
hibiting quantitative comparisons between studies. Consid-
erable subjectivity is observed in compound event mecha-
nism and variable selection, temporal and spatial bounds,
hazard scenario design, conditional and joint probability, and
dependence measurement (Zscheischler et al., 2020). Stan-
dard approaches for compound flood risk analysis have yet
to be established (Kappes et al., 2012; Sebastian, 2022).
Furthermore, methods for analysing compound events vary
across scientific communities (Pietrafesa et al., 2019; Tilloy
et al., 2019). Discussions involving emergency managers and
stakeholders have revealed the leading barrier to the use of
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multi-hazard and multi-risk approaches was a lack of com-
mon methodologies and data (Komendantova et al., 2014).
Further highlighting this point, Tilloy et al. (2019) identi-
fied a staggering 79 unique uses of 19 different methods
for analysing compound events. There is a substantial need
for a standardized framework that addresses assorted analyt-
ical methods and considerations (Sebastian, 2022), includ-
ing flood variable choice and pairing, flood threshold defini-
tion, case study hazard design, spatiotemporal scales and res-
olutions, statistical model assumptions, numerical parameter
choice, and interpretation of results. Future water manage-
ment practices and coastal hazard mitigation strategies must
better reflect the perspectives of compound events. To aid
this we would recommend that the community develop ed-
ucational training resources to guide the next generation of
compound flood researchers. Furthermore, we suggest creat-
ing a compound flood inter-comparison project and associ-
ated working group, similar to that set up for the wave and
coastal modelling communities (e.g. COWCLIP, Hemer et
al., 2010, and CoastMIP, Hinkel et al., 2014) and hydrolog-
ical forecasting communities (e.g. HEPEX, Schaake et al.,
2007).

Recommendation 4 — develop modelling frameworks that
holistically represent dynamic earth systems. While there
have been substantial advancements in compound flood re-
search over the past decade, the overall ability to identify,
model, quantify, and forecast compound flood events remains
a substantial challenge. These difficulties stem from the
highly complex and chaotic nature of hydrological, meteoro-
logical, and oceanographic systems (Sebastian, 2022). Con-
nections between flood modulators and drivers are spatiotem-
porally dynamic, and how those relationships are affected by
the changing climate is uncertain and ever-changing. Stand-
alone numerical models generally lack the ability to holisti-
cally simulate the dynamic interconnected systems necessary
to explain compound flooding (especially in the coastal set-
ting). The skill of compound flood forecasting systems and
numerical models has improved but still largely remains in-
adequate (Mashriqui et al., 2014; Pietrafesa et al., 2019).
Going forward, we recommend the adoption of standard-
ized modelling interfaces (e.g. Basic Model Interface; Hut-
ton et al., 2020) to facilitate coupling between numerical
models to develop holistic modelling frameworks that bet-
ter disentangle the complex earth system processes driving
compound floods. We additionally suggest the development
of ensemble forecast systems with ocean—land—atmosphere
coupling and compound flood modelling in mind (e.g. Saleh
et al., 2017; Blanton et al., 2018). Compound flood research
also serves to greatly benefit from the use of hybrid mod-
elling frameworks that couple numerical and statistical mod-
els. While this review discovered many studies that employed
hybrid numerical-statistical modelling methods, few explic-
itly outlined a standardized frameworks for linking the mod-
els. Thus, we additionally recommend further evaluation of
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hybrid frameworks as the linking of statistical and numerical
models has considerable room for improvement.

Recommendation 5 — plan, design, and manage urban and
coastal infrastructure with compound flooding in mind. We
advise reshaping the planning, design, and operation of ur-
ban and coastal infrastructure to fully recognize the depen-
dence and synergetic extremes of interacting flood drivers.
As we look to a future of increasing flood frequency, proac-
tive flood management is vital to lowering the vulnerability
and exposure of urban and coastal communities. This can
include investing in long-term resilient infrastructure (i.e.
> 100-year extremes), developing flood hazard maps that
consider compound flood return periods to aid planning (e.g.
update FEMA hazard maps), supporting development blue-
green and natural flood management (e.g. wetland protec-
tion, riverbank restoration, and leaky dams), enacting opera-
tional early warning systems (e.g. coupled ensemble forecast
systems, Saleh et al., 2017) and emergency response mea-
sures, and educating the public about the risks of inhabiting
coastal floodplains.

8 Conclusions

We have long known that high-impact hazard events in-
volve a combination of drivers; however, existing research
has largely been limited to single-factor or univariate anal-
ysis of climate extremes due to technical or methodological
constraints. Such is the case with flooding, as standard flood
hazard assessment practices have traditionally accounted for
the effects of the different drivers of flooding independently.
Only in recent years has flood research more closely exam-
ined the non-linear combination of these variables through
the lens of compound events.

This paper has presented a systematic review of the ex-
isting literature on compound flooding in coastal regions.
Analysis of 279 studies up to and including the year 2022
has revealed significantly increasing attention to compound
flood research in recent years. This review identified differ-
ent definitions and terminologies of compound flood events,
categories of compound flood drivers, numerical modelling
frameworks, and statistical analysis techniques. Further-
more, several compound flood hotspots have been identified
throughout the world, including the US East Coast and Gulf
of Mexico, northern Europe, East Asia, southern Asia, South-
east Asia, northern Australia, and global low-lying deltas
and estuaries. Research has shown that compound floods are
likely to have increasing frequency and severity in the future
as aresult of climate change and that societal risks of extreme
climate hazards are underestimated when the compound ef-
fects of climatic processes are not considered in combina-
tion. Compound flood research thus requires a more holis-
tic and integrated approach to risk analysis that reflects on
the complex interactions and nonstationarity of Earth sys-
tems. We must recognize the threats posed by the interac-
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tions between hazard drivers for accurate risk assessment.
Further research must also focus on identifying the dominant
drivers of flooding, the precursors that make certain regions
particularly susceptible to compound flooding, and the de-
pendence relationships between flood drivers, as well as in-
vestigate how all these aspects change spatiotemporally. Go-
ing forward, an improved understanding of compound flood-
ing processes and precursors is vital to coastal management,
hazard risk reduction, and community resilience in the face
of changing climates.
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Appendix A

[ Identification of literature via databases and registers ]

Database records identified:
Total (n = 34027)
Web of Science (n = 11800) Duplicate records removed:
Google Scholar (n = 793) Total (n = 11025)
Semantic Scholar (n = 15103)
Dimensions Al (n = 6331)

\4

Identification

Register records identified:
Total (n=0)

A

Records excluded*:

Records screened, retrieved, and
Total (n = 22719)

assessed for eligibility:
Total (n = 22998)

v

\4

Literature included in the review*:
Total (n = 279)
Journal Articles (n = 258)
Government Reports (n = 12)
Conference Proceedings (n =7)
Academic Theses (n = 2)

[eees | [ ) |

*The criteria for including or excluding literature records is defined in Section 4.

Figure A1. PRISMA 2020 flow diagram (Page et al., 2021) visualizing the review’s literature database curation process. This includes the
number of papers identified in literature databases using the search terms in Table 2, removed due to being a duplicate, screened against
scoping criteria as outlined in Sect. 4, excluded from consideration, and included in the review analysis.
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Table A2. Table of numerical models, frameworks, systems, and toolsets observed in literature database studies for simulating hydrologic,
hydrodynamic, oceanographic, and atmospheric systems that contribute to compound flooding.

Model acronym Full names Model type

ADCIRC Advanced CIRCulation Hydrodynamic model

AdH Adaptive Hydraulics Modeling System Coupled hydrodynamic model system

AHPS Advanced Hydrologic Prediction Service Coupled atmospheric and hydrological model system

ASGS ADCIRC Surge Guidance System Hydrodynamic model system

ASGS-STORM ASGS-Scalable, Terrestrial, Ocean, River, Coupled model system (ASGS, SWAN, HL-RDHM,
Meteorology DAH, NAM)

AutoRoute - Hydrological model

BreZo - Hydrodynamic model

CAESAR - Geomorphic evolution hydrological model

CAM Community Atmosphere Model Atmospheric model

CaMa-Flood Catchment-based Macro-scale Floodplain Hydrodynamic model

CESM Community Earth System Model Atmospheric model

CH3D Curvilinear-grid Hydrodynamics 3D model Hydrodynamic model

CI-FLOW Coastal and Inland Flooding Observation and Warning ~ Hydrological model
Project

CKF Climate Knowledge Facility System Coupled hydrological and hydrodynamic model system

CMIP5 Coupled Model Intercomparison Project 5 Coupled atmospheric and hydrodynamic model

system/framework

CMIP6 Coupled Model Intercomparison Project 6

COAWST Coupled-Ocean-Atmosphere-Wave-Sediment Coupled hydrodynamic and atmospheric model system
Transport Modeling System (ROMS, SWAN, WaveWatch III, InWave)

CORDEX Coordinated Regional Climate Downscaling Atmospheric model system
Experiment

COS-Flow Coupled Overland-Sewer Flow model Hydrodynamic model

CoSMoS Coastal Storm Modeling System Coupled hydrodynamic and atmospheric model system

CREST Coupled Routing and Excess Storage Hydrological model

CREST-SVAS Coupled Routing and Excess Storage Hydrological model
Soil-Vegetation—Atmosphere—Snow

D-Flow FM D-Flow Flexible Mesh Hydrodynamic model

DCSM Dutch Continental Shelf Model Hydrodynamic model

Delft3D-FM Delft3D Flexible Mesh Suite Toolset

Delft3D-FLOW - Hydrodynamic model

Delft3D-WAVE
Delft-FIAT
Delft-FLS
EC-Earth

ECHAMS
ECWAM
EFAS
ELCIRC
ESTRY
ESTOFS

ETSS

FES2012

FLO-2D

FloodMap

Flood Modeller/ISIS
FLORES

FLOW-3D

FVCOM

GCOM2D

Fast Impact Assessment Tool
DELFT Flooding System
European community Earth System Model

ECMWF Hamburg Model version 5

ECMWF Ocean Wave Model

European Flood Awareness System
Eulerian-Lagrangian CIRCulation

Extratropical Surge and Tide Operational Forecast
System

Extratropical Storm Surge model

Finite Element Solution model

Flood risk Reduction Evaluation and Screening

Finite Volume Community Ocean Model

Global Environmental Modelling Systems (GEMS) 2D
Coastal Ocean Model

Coupled hydrodynamic model (Delft3D, SWAN)
Toolset

Hydrodynamic model

Atmospheric, hydrological, and hydrodynamic model
system

Atmospheric model

Hydrodynamic model

Hydrological model

Hydrodynamic model

Hydrodynamic model

Hydrodynamic model

Hydrodynamic model
Hydrodynamic model
Hydrodynamic model
Hydrological and hydrodynamic model
Hydrodynamic model
Hydrodynamic model
Hydrodynamic model
Hydrodynamic model
Hydrodynamic model
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Model acronym

Full names

Model type

GeoFlood
GeoNet
GSSHA
GTSM
H*WIND
HADGEM
HBV
HEC-HMS

HEC-RAS

HiPIMS

HiRHAM
HL-RDHM

Holland wind model

HYCOM
HydroMT
HyMOD

Iber

ICPR
InVEST-UFRM

IOKA

LISFLOOD-FP
LOOFS

MATSIRO-GW

MIKE+
MIKE11
MIKE21
MISDc
MODFLOW
Mog2D
MPI-OM
MRI-CGCM2

MSN_Flood
NAM
NEMO
NWM
NYHOPS
ONDA
PCSWMM
POM
PQRUT
ProMalDes

RACMO2
RAMS
ReAFFIRM

Gridded Surface Subsurface Hydrologic Analysis
Global Tide and Surge Model

HRD Real-time Hurricane Wind Analysis System
Hadley Centre Global Environment Model
Hydrologiska Byrans Vattenbalansavdelning
Hydrologic Engineering Center’s Hydrologic
Modeling System

Hydrologic Engineering Center’s River Analysis
System

High-Performance Integrated hydrodynamic
Modelling System

High-resolution atmospheric model

Hydrology Laboratory — Research Distributed
Hydrologic Model

Holland wind model

HYbrid Coordinate Ocean Model

Hydro Model Tools

HYdrological MODel

Iberaula

Interconnected Channel and Pond Routing Model
Integrated Valuation of Ecosystem Services and
Tradeoffs — Urban Flood Risk Mitigation model
Oceanweather’s Interactive Kinematic Objective
Analysis System

Lake Ontario Operational Forecast System

Minimal Advanced Treatments of Surface Integration
and RunOff — Groundwater

Modello Idrologico SemiDistribuito in continuo
Modular Hydrologic Model

Max Planck Institute — Ocean/Sea-Ice Model
Meteorological Research Institute Coupled General
Circulation Model version 2

North American Mesoscale Forecast System
Nucleus for European Modelling of the Ocean
National Water Model

New York Harbor Observing and Prediction System
Personal Computer Storm Water Management Model
Princeton Ocean Model

Protection Measures against Inundation Decision
Support

Regional Atmospheric Climate Model version 2
Regional Atmospheric Modelling System
Real-time Assessment of Flash Flood Impacts
framework

Hydrological model

Toolset

Hydrological model

Hydrodynamic model

Atmospheric model

Coupled atmospheric and hydrodynamic model system
Hydrological model

Hydrological model

Hydrological model
Hydrological and hydrodynamic model

Atmospheric model
Hydrological model

Atmospheric model

Hydrodynamic model

Toolset

Hydrological model

Hydrodynamic model

Hydrological and hydrodynamic model
Toolset

Atmospheric model

Hydrodynamic model

Coupled hydrodynamic model system (FVCOM,
CICE)

Hydrological model

Hydrological and hydrodynamic model
Hydrodynamic model

Hydrodynamic model

Hydrological model

Hydrological model

Hydrodynamic model

Hydrodynamic model

Coupled atmospheric and hydrodynamic model

Hydrodynamic model

Atmospheric model

Hydrodynamic model

Hydrological model

Hydrodynamic model

Hydrodynamic model

Hydrological and hydrodynamic model
Hydrodynamic model

Hydrological model

Hydrodynamic model and toolset

Atmospheric model
Atmospheric model
Hydrological model
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Model acronym

Full names

Model type

RegCM3
RFMS

ROMS
RS3
RTC-Tools
RUC
SCHISM

sECOM
SELFE

SFAS
SFINCS
SHAWLWV

SIPSON

SLIM
SLOSH
SMS
SNAP
SPHY
SPLASH

STWAVE
SWAN
SWAT
SWMM
TELEMAC
TUFLOW
UIM
UnTRIM
Vflo

WAM
WAQUA
WGHM
WIFM
WRF
WW3/WaveWatch 111

XPSWMM

Regional Climate Model version 3
Rapid Forecasting and Mapping System

Regional Ocean Modelling System

Rocscience 3D Finite Element Analysis

Rapid Update Cycle

Semi-implicit Cross-scale Hydroscience Integrated
System Model

Stevens Estuarine and Coastal Ocean Model
Semi-implicit finite-element/volume
Eulerian-Lagrangian algorithm

Stevens Flood Advisory System

Super-Fast INundation of CoastS

Model for Simulation of Shallow Water Wave Growth,
Propagation, and Decay

Simulation of Interaction between Pipe flow and
Surface Overland flow in Networks
Second-generation Louvain-la-Neuve Ice-ocean Model
Sea, Lake, and Overland Surges from Hurricanes
Surface-water Modeling System

Stevens Northwest Atlantic Prediction model
Spatial Processes in HYdrology

Special Program to List Amplitudes of Surges from
Hurricanes

Steady-State Spectral Wave

Simulating Waves Nearshore

Soil & Water Assessment Tool

Storm Water Management Model
TELEMAC-MASCARET

Urban inundation model

Vieux FLOod

Wave model

WAter movement and water QUAlity modelling
WaterGAP Global Hydrological Model

WES Implicit Flooding Model

Weather Research and Forecasting Model
WAVE-height, WATer depth and Current Hindcasting
version 3

XP Solutions Storm Water Management Model

Atmospheric model

Coupled hydrodynamic model system (SLOSH and
CH3D)

Hydrodynamic model

Toolset

Hydrological model and toolset

Atmospheric model

Hydrodynamic model

Hydrodynamic model
Hydrodynamic model

Coupled hydrologic and hydrodynamic model system
Hydrodynamic model
Hydrodynamic model

Hydrodynamic model

Hydrodynamic model

Hydrodynamic model

Toolset

Hydrodynamic model

Hydrological model

Atmospheric and hydrodynamic model system

Hydrodynamic model
Hydrodynamic model
Toolset

Hydrological model
Hydrodynamic model
Hydrodynamic model
Hydrodynamic model
Hydrodynamic model
Hydrological model
Hydrodynamic model
Hydrodynamic model
Hydrological model
Hydrodynamic model
Atmospheric model
Hydrodynamic model framework

Hydrological and hydrodynamic model

Data availability. The full contents of the compound flood lit-
erature database developed in this review can be accessed at
https://doi.org/10.5281/zenodo.14274658 (Green, 2024).
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