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Abstract. Heavy-rainfall events and associated natural haz-
ards pose a major threat to rail transport and infrastructure.
In this study, the correlation between heavy-rainfall events
and three associated natural hazards was investigated using
geographic information system (GIS) analyses and random-
effects logistic models. The spatiotemporal linkage of a dam-
age database from Deutsche Bahn (DB) Netz AG and the cat-
alogue of radar-based heavy-rainfall events (CatRaRE) from
the German Weather Service (DWD) revealed that almost ev-
ery part of the German rail network was affected by at least
one heavy-rainfall event between 2011 and 2021, with 23 %
of the flood events, 14 % of the gravitational mass move-
ments, and 2 % of the tree fall events occurring after a heavy-
rainfall event. The random-effects logistic regression models
showed that a heavy-rainfall event significantly increases the
odds of occurrence of a flood (tree fall) by a factor of 22.7
(3.62). We find no evidence of an effect on gravitational mass
movements. The heavy-rainfall index and the 21 d antecedent
precipitation index were determined to be the characteristics
of the heavy-rainfall events with the strongest impact on all
three natural hazards. The results underline the importance
of gaining more precise knowledge about the impact of cli-
mate triggers on natural hazard-related disturbances in order
to make rail transport more resilient.

1 Introduction

Heavy-rainfall events are one of the most important triggers
of flash floods, which can have catastrophic effects on the af-
fected regions. A prominent recent example is the flood dis-
aster in western Europe in July 2021, with over 200 fatalities
(Kreienkamp et al., 2021). During the period of 12 to 15 July

2021, extreme rainfall occurred in Germany and the Benelux
countries (Junghänel et al., 2021; Tradowsky et al., 2023).
The resulting flash floods caused considerable damage to in-
frastructure such as houses (Korswagen et al., 2022), com-
munication facilities, roads, and railway lines (Szymczak et
al., 2022), making the event the deadliest European flooding
event in nearly 3 decades and the costliest on record (Aon,
2021). Damage to critical infrastructure such as power supply
and transportation is of particular concern, as efficient infras-
tructure is important to ensure that affected regions can be
reached and supplied with essential goods even in the event
of a disaster.

Fortunately, not every heavy-rainfall event has such catas-
trophic effects as the example from July 2021. Nevertheless,
at the local level, secondary processes triggered by heavy
rainfall, such as landslides, flooding, and scouring, can cause
significant economic damage (e.g., Kjekstad and Highland,
2009; Lehmkuhl and Stauch, 2022), especially when trans-
port infrastructure is affected (Klose et al., 2014; Winter
et al., 2016). If such events occur along transport networks
and disrupt traffic and transport, they are documented by the
infrastructure operators. However, these damage databases
rarely establish a cause–effect relationship; i.e., there is usu-
ally no precise information on which climatic or other pa-
rameter triggered the damaging event. This is because re-
active natural hazard management, i.e., damage repair and
rapid restoration of operations, is a higher priority for op-
erators than detailed documentation of the triggering event.
Nevertheless, it should not be forgotten that a proactive ap-
proach, which includes a detailed analysis of the cause–effect
relationship between climatic triggers and resulting natural
events, contributes significantly to increasing the long-term
resilience of transport infrastructure to natural hazards.
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Within the framework of proactive natural hazard manage-
ment, it is possible to identify regions that are particularly at
risk, e.g., by developing hazard indication maps, or to de-
termine climatic thresholds for the triggering of certain pro-
cesses. Particularly in view of the current climate change sit-
uation, the management of climatically induced natural haz-
ards is becoming increasingly important in the transportation
sector (Koks et al., 2019). Which natural hazards are partic-
ularly relevant depends on the region and the mode of trans-
port. In addition to the climatic conditions of the respective
region, special features specific to the mode of transport must
also be considered. For example, line closures in rail trans-
port have a significantly higher impact than in road transport
due to the lower number of alternative routes, and short-term
bypasses of rail lines are associated with a higher logistical
and personnel effort (Rachoy and Scheikl, 2006). Likewise,
the risk of damage is higher due to the more complex in-
frastructure, rail-bound driving, longer braking distance, and
train length (Mattson and Jenelius, 2015).

In German railroad operations, tree falls, gravitational
mass movements, and flood events are particularly common
natural hazards that cause operational disruptions (Fabella
and Szymczak, 2021). These events can be triggered by a va-
riety or a combination of different factors, but heavy-rainfall
events are possible triggers for all of these processes, as
could be observed, for example, during the event in July
2021. As an increase in the intensity of daily and especially
sub-daily extremes can be expected in a warmer climate
(e.g., Lengfeld et al., 2020; Zeder and Fischer, 2020); spe-
cial attention should be paid by transport operators to precip-
itation extremes and associated hazards. In our study, we in-
vestigate the relationship between heavy-rainfall events and
associated natural hazards, such as floods, gravitational mass
movements, and tree falls, and their impact on the Germany-
wide rail network. For this purpose, we first perform a spa-
tiotemporal linkage of a damage database of DB Netz AG
(part of Deutsche Bahn, Germany’s largest railroad com-
pany) and the catalogue of radar-based heavy-rainfall events
(CatRaRE) from the German Weather Service (DWD). This
analysis should bring any spatial or temporal bias in the
heavy-rainfall events and the investigated natural hazards to
light. Secondly, we set up random-effects logistic regression
models to explore (1) whether the odds of the occurrence
of natural hazards increase significantly with proximity to
a heavy-rainfall event and (2) which characteristics of the
heavy-rainfall events have the strongest impact on the oc-
currence of the natural hazards. The logistic regression, al-
though customarily used in data science as a forecasting tool,
was used in this study in order to fully explore and shed light
on the nuances of the complex relationship between heavy
rainfall and natural hazards.

2 Materials and methods

2.1 Datasets

2.1.1 CatRaRE of the German Weather Service (DWD)

In Germany, the DWD has developed the CatRaRE, a cata-
logue of heavy-rainfall events collected via radar to provide
a comprehensive overview of all heavy-rainfall events that
have occurred in Germany since 2001 (Lengfeld et al., 2021).
Each event is described by various parameters such as time,
duration, location, mean and maximum precipitation, and
severity indices, as well as meteorological, geographical and
demographic information. Strictly speaking, the CatRaRE
consists of two catalogues: T5 and W3 (Lengfeld et al.,
2021). As no standardized guideline for defining heavy rain-
fall exists, events for the catalogue were extracted by calcu-
lating either (1) their intensity, with warning level W3 (events
with 25–40 L m−2 in 1 h or 35–60 L m−2 in 6 h) of the offi-
cial DWD warning levels used as a threshold (W3 catalogue),
or (2) their return period, taking local conditions into ac-
count (T5 catalogue). We decided to use the W3 catalogue for
our analysis, as it is more suitable for Germany-wide studies
because of the uniform threshold for heavy-rainfall events
(Lengfeld et al., 2021). As event data from the database of
DB Netz AG are only available for the years 2011–2021,
only heavy-rainfall events from these years were included in
our analysis. A total of 14 275 heavy-rainfall events occurred
in these 11 years. Not all of these events are relevant to our
study since only 7722 events spatially intersect the German
rail network. Throughout the study period, the proportion of
events that spatially intersect the rail network remains con-
stant per year at around 50 %. The largest number of events
affecting the rail network occurred in 2018 (1160) and the
lowest in 2012 (454) (Fig. 1a). According to Lengfeld et
al. (2021), 2018 belongs to the years with the highest num-
ber of heavy-rainfall events over the entire observation pe-
riod (2001–2021). The monthly distribution shows a clear
seasonal pattern, with the majority of events (5682, 73.6 %)
occurring in summer (JJA; see Fig. 1b). In addition, many
events occurred in May and September, while heavy-rainfall
events were rare during winter. This is consistent with the
distribution over the entire period of 2001–2021, as May–
August are the most eventful months here (Lengfeld et al.,
2021).

The spatial distribution of all heavy-rainfall events that
spatially intersected the German rail network is shown in
Fig. 2. The spatial references used for this analysis were the
track sections defined by the GIS layer geo-strecke provided
by DB Netz AG, resulting in a total of 15 939 track sections.
The events are distributed over all regions of Germany, with
a focus on southern Germany (the federal states of Bavaria
and Baden-Wuerttemberg). Over the 11-year period, there
are very few track sections (437) that were not affected by at
least one heavy-rainfall event, while most of the pre-alpine
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Figure 1. Monthly and yearly distribution of heavy-rainfall events (data source – CatRaRE) that spatially intersected the German rail network,
and gravitational mass movement, flood, and tree fall events along the German rail network that were recorded by the damage database of
DB Netz AG. The darker areas of the bars in panels (c–h) include the events where a heavy-rainfall event occurred up to 2 d prior to the
event.

railway lines in southern Germany were affected by more
than 30 events. However, the Starkregenindex (SRI), an index
describing the speed at which rainfall accumulates within a
specified duration of time, of these events is in general lower.
The highest mean SRI values are recorded in the northern
part of Germany, mainly in the federal state of Lower Sax-
ony.

2.1.2 Damage database for the German rail network

The event data of the natural hazards along the German rail
network were extracted from the damage database of DB
Netz AG. In the database, each disruption along the rail in-
frastructure is documented with a time stamp, the event lo-
cation, and a short event description. As this database and
data collection are not restricted to natural-hazard-specific
incidents, the events relevant to this study were filtered us-
ing an extended text search with event-specific search terms

and then checked manually for correctness and double no-
tification. This procedure cannot verify that all events were
actually extracted from the database (completeness) and that
there are no false negatives, as the textual descriptions do not
follow a fully consistent categorization and thus all keywords
may not have been correctly identified. However, the two-
step extraction with subsequent manual control of the data
ensures the correctness of the data insofar as there are no
false positives, and no events are contained in the database
export due to incorrect assignment. The distribution of false
negatives is assumed to be fairly even throughout the study
period due to the invariant methods of data collection and
filtering.

In the following, the three resulting sub-databases for
flood events, gravitational mass movements, and tree falls
are briefly described. The flood dataset contains in total
1269 events for the period of 1 January 2011–31 Decem-
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Figure 2. Spatial intersection of heavy-rainfall events from the CatRaRE and the German rail network for the time period of 2011–2021.
(a) Number of events per track section. (b) Mean SRI values (Starkregenindex, for definition refer to Table 1) for all events per track section.
The SRI is calculated for every heavy-rainfall event and ranges from 0 to 12. Note that in this figure the mean values for several events are
shown, limiting the resulting SRI values to the range of 2 to 8. Data sources – geo-strecke 10/2019 DB Netz AG (rail network), GeoBasis-
DE/BKG 2023 (federal states), and Deutscher Wetterdienst (heavy-rainfall events).

ber 2021, which include, but are not further categorized into,
river floods or local flash floods. The most eventful years
were 2021 (241), 2017 (137), 2011 (131), and 2018 (129),
while the least eventful years were 2012 (55) and 2015 (28)
(Fig. 1c). Flood events occurred mainly between May and
August, with a high concentration in June and July, but also
in January (Fig. 1d). In contrast, they were rare between
September and December. The gravitational mass movement
dataset includes a total of 418 events for the period of 1
January 2013–31 December 2021, with the most eventful
years being 2013 (72), 2021 (64), and 2016 (59) and the
least eventful being 2018 and 2020 (36 each) and 2017 (26)
(Fig. 1e). The monthly distribution showed a concentration
of events between May and July and a second, smaller peak
between January and March (Fig. 1f). The tree fall dataset
includes a total of 14 461 events for the period of 1 January
2017–16 December 2020. The most eventful year was 2017
(4319), and the least eventful was 2020 (3301) (Fig. 1g).
However, as the last 15 d of the year are missing in 2020, it is
also possible that 2019 is the least eventful year (3310). The
seasonal distribution of tree fall events is not as pronounced
as that of the other two processes. Tree fall events occurred

mainly between January and March, as well as between June
and October (Fig. 1h).

2.1.3 Explanatory control variables

Additional climatological and hydrometeorological variables
related to the natural hazards investigated were used to serve
as explanatory control variables and to check for other re-
lationships in the statistical regression analysis. These vari-
ables were derived from publicly available datasets provided
by the DWD. Daily precipitation values were used from grid-
ded observational datasets of precipitation provided by the
HYRAS dataset (Razafimaharo et al., 2020): HYRAS stands
for hydrometeorological raster data. This dataset is based on
precipitation measurements for Germany and its neighbor-
ing countries and interpolates them into 5 km× 5 km grids,
taking into account topographic and other effects. Daily val-
ues of soil moisture were used from a 1 km× 1 km grid de-
veloped by the DWD for agrometeorological applications.
These values are interpolated from soil moisture at 60 cm in
depth under grass at a fixed selection of stations (Löpmeier,
1994). Also included was the hazard indication map for slope
and embankment landslides along the German rail tracks that
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is provided by the German Centre for Rail Traffic Research
at the Federal Railway Authority, which is modeled based on
the geology, morphology, and land use characteristics of the
area surrounding the rail tracks (Kallmeier et al., 2018).

2.2 Methods

2.2.1 Intersection of heavy-rainfall events and events
from the damage database

The analysis of the spatial and temporal relationship between
the heavy-rainfall events and damage events along the Ger-
man rail network was carried out by combining the CatRaRE
polygon data provided by the DWD and the compiled rail-
way damage database. First, the spatial intersection was car-
ried out using the GIS software ArcMap version 10.8.1. In
ArcMap, the floods, gravitational mass movements, and tree
falls, which are available as point information, were com-
bined with the CatRaRE heavy-rainfall events (W3 cata-
logue) between 2011 and 2021, which are available as area
polygons, using the tool spatial join. In the process, mul-
tiple join features (heavy-rainfall events) were assigned to
each target feature (damage event (join one to many)). This
creates a database in which all spatially overlapping heavy-
rainfall events are assigned to the damage events. Thus, there
are event locations where more than 50 heavy-rainfall events
from 2011 to 2021 can be found.

A heavy-rainfall event can only be considered a trigger for
a damage event if the heavy-rainfall event occurs directly or
shortly before the damage event. As a heavy-rainfall event
is usually an event of short duration and high intensity, in
general the time lag between trigger and effect is rather short
(e.g., shown for shallow landslides by Zêzere et al., 2015,
and for landslides during summer by Rupp, 2022). However,
heavy-rainfall events often occur during weather conditions
that lead to clusters of rainfall events, so the occurrence of
several heavy-rainfall events in succession can also be a pos-
sible cause (e.g., shown for deep landslides by Bevacqua et
al., 2021, and for tree fall by Locosselli et al., 2021). As there
is no generally accepted threshold, we have chosen in our
study to consider all heavy-rainfall events that occurred up to
2 d before the damage event. This considers possible inaccu-
racies in the DB damage database, as the date in the damage
database represents the time when the event was recorded.
This does not necessarily coincide with the actual occurrence
of the event, as, for example, events that occur at night are of-
ten not recorded until the following day during the first train
journey of the day. Furthermore, the selected time period was
supported by an analysis of the natural breaks in the dataset.
The selection of the events was conducted by temporal in-
tersection using the function datediff in ArcMap. Since both
the damage events and the heavy-rainfall events have a day-
accurate time stamp, the difference in days between the start
of the heavy-rainfall event and the occurrence of the damage
event was identified.

2.2.2 Extraction of explanatory control variables

The corresponding values from the explanatory control vari-
ables daily precipitation, daily soil moisture, and hazard class
of landslide risk were extracted from the gridded data at the
location and, when applicable, for the date of the event occur-
rence using the Geospatial Data Abstraction Library (GDAL)
and One Git library to Rule (OGR) in Python.

2.2.3 Statistical analysis and modeling

For the statistical investigation, a panel data analysis, as well
as a cross-sectional analysis, was carried out. The panel data
analysis was conducted to test whether the odds of the occur-
rence of natural hazards are affected by a heavy-rainfall event
and whether the odds increase with proximity to a heavy-
rainfall event. Panel data allow us to consider observations
over several points in time, which is crucial for measuring
the temporal proximity to a heavy-rainfall event at a route
segment. Therefore, it is possible to compare the effects of
heavy-rainfall events that occur at different times before a
natural hazard event, e.g., 2 d before, 1 d before, or on the
same day. The cross-sectional analysis was conducted to ex-
amine which characteristics of a heavy-rainfall event have
the strongest effect on natural hazard occurrence. In cross-
sectional analyses, each observation is only considered at a
single point in time.

Panel data analysis

For the panel data analysis, the dataset was created with the
route segments as the cross-sectional unit and the day as the
time series unit. A route segment is defined as a section of the
German rail network between two adjacent operating points.
The total length of the German rail network owned by DB
is 56 939 km of tracks and was divided into 9679 route seg-
ments for our dataset. The segments differ in length between
140 m and 12.7 km, with an average length of 3.4 km. Route
segments were chosen as the cross-sectional unit as they are
the smallest operational unit used by DB that can represent
the complete rail network. On the other hand, the number of
route segments still allows for a tractable dataset size that
does not inflate the calculation times in the statistical anal-
ysis compared to, for example, taking 5 m segments across
the entire network. The period under consideration was the
years between 2011 and 2021 for each route segment, and
we tested whether a heavy-rainfall event had occurred or not.
To calculate 30 d antecedent precipitation (one of the control
variables) for each day and route segment, we began with the
period starting on 1 February 2011, so the complete dataset is
available for 3987 d (i.e., time series units), resulting in a to-
tal of 38 590 173 route segment–day combinations, hereafter
referred to as observations. The number of observations used
in the following models varies depending on the available
time period of the natural hazard event datasets.
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Each observation was spatially combined with the
CatRaRE and the explanatory control variables based on the
coordinates of the segment’s starting point. The segment is
considered to have been affected by a heavy-rainfall event
on a given day if a heavy-rainfall event from the CatRaRE
database occurred on that day or up to a maximum of 2 d
previously. This is then indicated by a binary variable. The
flood, gravitational mass movement, and tree fall events from
the DB damage database were matched to route segments
based on their reported route number and kilometer. A nat-
ural hazard event can affect more than one route segment.
A binary variable was then created for each natural hazard
event, which takes the value of 1 if the respective event was
reported on the route segment on that day and 0 otherwise.

To test if the odds of the occurrence of natural hazards
increase with proximity to a heavy-rainfall event, a random-
effects logistic regression (logit) model was used. Although
the logit approach is conventionally used in forecasting, it
can also be applied to questions of inference, as in this case,
where it is used to elucidate the effect of heavy rain on the
occurrence of natural hazards. Taking p = Pr(Y = 1) to be
the probability that a natural hazard event occurs (where Y is
a flood, gravitational mass movement, or tree fall), the rela-
tionship between this probability p and a heavy-rainfall event
(HR) was modeled using a logit link function, such that

logit(p)= ln
(

p

1−p

)
= β0+β1 HR+β2

′x

+β3
′z+β4

′ (HR · x) , (1)

where x is a vector of explanatory control variables, z is a
vector of seasonal and yearly dummy variables, and (HR · x)
is the interaction between heavy rainfall and the control vari-
ables. The parameters β0, β1, β2

′
2, β3

′, and β4
′ are the cor-

responding scalar and vector coefficients. The vector of con-
trols x contains the following variables:

x =


Daily precipitation

30d accumulated precipitation
Daily soil moisture
(Daily soil moisture)2

 .
To account for the potential non-linear effect of soil mois-
ture on the incidence of natural hazards due to the non-linear
relationship between soil water content and soil matrix po-
tential (Rawls et al., 1993; Zhu et al., 2022; Vichta et al.,
2024), we include the square of daily soil moisture in x. Sea-
son and year dummy variables are included as the vector z

to control for seasonal effects and effects caused by particu-
lar years with climactic extremes, as well as to account for
the fact that the number of natural hazards varies greatly in
different years and seasons. To test whether there are interac-
tion effects between the control variables and heavy-rainfall
events, the following interaction terms are added to Eq. (1):
daily precipitation ·HR, 30 d accumulated precipitation ·HR,
daily soil moisture ·HR, and (daily soilmoisture)2 · HR.

The logit function in Eq. (1) is simply the natural log of the
odds, that is, the natural log of the probability that a natural
hazard event occurs (p) divided by the probability that it does
not occur (1−p). The basis of interpretation of the model lies
in its exponential form, which results in the odds on the left-
hand side of the equation:

p

1−p
= eβ0 · eβ1HR

· eβ2
′x
· eβ3

′z
· eβ4

′(HR·x).

Taking HR to be a binary variable with a value of 1
when heavy rainfall occurred in the last 2 d and 0 otherwise,
then the odds ratio (OR) between the heavy-rainfall and no-
rainfall events becomes

OR=

(
p

1−p |HR= 1
)

(
p

1−p |HR= 0
) = eβ1 · eβ4

′x . (1.1)

If indeed a heavy-rainfall event increases the odds of a nat-
ural hazard event occurring, then the numerator of the odds
ratio should be greater than the denominator; hence the odds
ratio should exceed 1. Note that the odds ratio will depend
on the value of the control variables that are interacting with
HR.

To test if the odds of a natural hazard event increase the
closer it occurs to days with heavy-rainfall events, a second
logistic regression model similar to Eq. (1) was also esti-
mated:

logit(p)= ln
(

p

1−p

)
= β0+β1

′DHR+β2
′x+β3

′z, (2)

where DHR takes the form of a vector of dummy variables
representing the number of days after the heavy rainfall oc-
curred,

DHR=

 d0 = Day of heavy rainfall
d1 = 1d after heavy rainfall
d2 = 2d after heavy rainfall

 ,
and β1

′
=
[
β10 β11 β12

]
are the corresponding param-

eter coefficients. Since interaction effects are already tested
in the first model, interaction terms have been removed in
this model for simplicity. The assumption that the odds of
an event increase the closer it is in time to a heavy-rainfall
event is confirmed when the odds ratios follow the order
OR0 > OR1 > OR2, where

ORj =

(
p

1−p |di

)
(

p
1−p |d−1

) = eβ1j , j = 0, 1, 2.,

with d−1 as the reference category representing no heavy
rainfall in the last 2 d.

Given the panel structure of the data, observations from
the same route segment may be correlated with each other. To
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overcome this issue, the models described in Eqs. (1) and (2)
were extended to include a random variable µi representing
the unobserved individual heterogeneity of each route seg-
ment i. The final models are therefore

logit(pit)= ln
(

pit

1−pit

)
= β0+β1 HRit+β2

′xit

+β3
′zit+β4

′ (HR · xit)+µi, (3.1)

logit(pit)= ln
(

pit

1−pit

)
= β0+β1

′DHRit+β2
′xit

+β3
′zit+µi, (3.2)

where the subscript t identifies the days in the sample that
differ based on the type of natural hazard (4011 d for floods,
3280 d for gravitational mass movement, and 1461 d for tree
fall). The parameters of the random-effects models are esti-
mated using maximum likelihood. Given that all the explana-
tory variables in the models (HRit, DHRit, and xit) are exoge-
nous meteorological factors, the individual-specific compo-
nent µi is expected to be uncorrelated with all the regressors
in the models. The variable µi therefore represents the ran-
dom effect for route segment i, which is typically assumed
to be independently and identically distributed across route
segments following a normal distribution N(0,σ 2

µ). Higher
variance σ 2

µ indicates a higher correlation between two ob-
servations within the same route segment.

Cross-sectional analysis

Since heavy-rainfall events differ considerably in intensity,
duration, and other features, a cross-sectional analysis was
used to test which of these characteristics influence the occur-
rence of a natural hazard event. The cross-sectional dataset
contains only those route segments hit by at least one heavy-
rainfall event between 2011 and 2021. This resulted in a to-
tal number of 9339 route segments, of which 8589 were af-
fected more than once during the 11-year period, on aver-
age about 5 times. Each combination of route segment and
heavy-rainfall event is considered a separate observation in
the cross-sectional dataset. From the panel dataset, we can
determine whether a natural hazard event occurred during
and up to 2 d after a heavy-rainfall event on this specific route
segment. For each heavy-rainfall event, several characteris-
tics are available in the CatRaRE, of which a selection was
used in this study (Table 1).

Considering a similar logistic model as in the panel analy-
sis, the relationship between the characteristics of the heavy-
rainfall events and the probability (pi) that a natural hazard
occurs in observation i is assumed to take the form

logit(pi)= ln
(

pi

1−pi

)
= β0+β1

′Ci +β2
′zi, (4)

where Ci =
[
ci1 . . . ci9

]
is a vector of the eight afore-

mentioned characteristics from the CatRaRE in Table 1, in

addition to a variable for the slope and embankment land-
slide hazard index from the German Centre for Rail Traf-
fic Research. The vector zi is a vector of year and season
control variables, and β1 =

[
β11 . . . β19

]
are the cor-

responding parameter coefficients. Since the variables in Ci

are continuous, the interpretation of the odds ratios is based
on a 1-unit increase in the value of the variable of interest:

ORj =

(
p

1−p |cj + 1
)

(
p

1−p |cj

) = eβ1j , j = 1, 2, . . .,9.

The maximum likelihood method was used to estimate the
parameters in this cross-sectional logistic model (4).

3 Results

3.1 Spatial intersection of heavy-rainfall events and
natural hazards

Of the 1269 flooding events, a total of 296 events (23 %) can
be spatially and temporally linked to a heavy-rainfall event.
A total of 184 (62 %) of the flooding events linked to heavy
rainfall occur in June and July, with July being the front-
runner (111 events) (Fig. 1d). There are also a large number
of coupled events in May and August, while the number is
below 10 events in the other months. The lowest numbers are
in March and December (zero each) and January and Novem-
ber (two each). The distribution over the years varies between
4 (2015) and 78 (2021) events. Besides 2021, the most fre-
quent overlaps occur in 2016 and 2017. Of the 418 gravita-
tional mass movement events, a total of 59 events (14 %) can
be spatially and temporally linked to a heavy-rainfall event,
most of them (48 % or 81 %) between May and July (Fig. 1f).
The distribution among the years varies between 0 (2011,
2012, 2015) and 13 (2021) events. Besides 2021, the most
frequent intersections occur in 2013, 2016, 2018, and 2019.
Of the 14 461 tree fall events, a total of 312 (2 %) events can
be spatially and temporally linked to a heavy-rainfall event.
A total of 163 of the tree falls (35 %) linked to heavy rainfall
occur in June and July, with June being the front-runner (108
events) (Fig. 1h). There are also a large number of coupled
events in May (40) and August (46), followed by Septem-
ber (21) and February (20). The lowest numbers occur in
November (one) and January (two). The distribution across
years varies between 57 (2019) and 118 (2017) events.

A comparative analysis of all three natural hazards shows
that in all three processes, the hazard events in summer are
mainly coupled with heavy-rainfall events (Fig. 3). In con-
trast, the hazard events in winter are predominantly not cou-
pled with heavy-rainfall events.

https://doi.org/10.5194/nhess-25-683-2025 Nat. Hazards Earth Syst. Sci., 25, 683–707, 2025



690 S. Szymczak et al.: Heavy-rainfall events along the German rail network

Table 1. Abbreviations and descriptions of the characteristics of heavy-rainfall events in the CatRaRE that were used for the analysis in this
study.

Abbreviation Description

H Duration [h] of the heavy-rainfall event.

RRmean Mean precipitation [mm] of all RADKLIM pixels within the event zone.

SRImean Mean of the heavy-rainfall index (in German, Starkregenindex): an index describing the speed at which
rainfall accumulates within a specified duration of time. Mean of all RADKLIM-pixels within the
event zone (range [0,12]).

V3_AVG Mean of the 21 d antecedent precipitation index within the event zone.

ETA A measure of the extremeness of the heavy-rainfall event as a function of the return period as well as
the area affected by an event.

VSGL_GRAD Mean degree of sealing [%]: percentage of sealed area, including road infrastructure, within the event
zone.

STRM_AVG Mean elevation [m above sea level] within the event zone.

TPI_AVG Mean of the topographic position index, a 2 km circular neighborhood [m] in the event zone within
Germany.

Figure 3. Seasonal distribution of natural hazard events reported for
the German rail network with and without heavy-rainfall events. All
three natural hazard processes are shown together in the figure, as
the distribution looks similar for each process when viewed individ-
ually.

3.2 Influence of heavy-rainfall events on the occurrence
of natural hazard events

Table 2 provides the estimated odds ratios of the random-
effects logit models in Eq. (3) for the three different natu-
ral hazard events. The dataset of the entire period contains
a total of 38 590 173 observations, but this number is lower
for gravitational mass movements and tree falls because of
the shorter available time period of the natural hazard event
datasets. To evaluate model performance, several model cri-

teria were calculated and are presented in Table 2. Several
values are provided to evaluate the goodness of fit for the
models; the log likelihood is a function of the sample size
and the higher the value, the better. The ρ value shows the
contribution of the random effect to the total variance. The
Akaike information criterion (AIC) is an estimator of the pre-
diction error and the lower the AIC, the better a model fits the
data it was generated from. The full regression tables with all
explanatory variables and the evaluation of the model quality
of the chosen model can be found in Appendix A. From this
point forward, we will only be interpreting and discussing
the results that are robust across the different models.

The exponentiated coefficients of heavy rain in Table 2 for
the hazards flood and tree fall are greater than 1 and are sta-
tistically significant at 0.1 %. For gravitational mass move-
ments, the coefficient is not statistically different from 1. To
further evaluate the magnitude of these effects, one must take
into account the estimates of the interactions with the mete-
orological control variables. Since interaction terms are in-
cluded in the model, the effect of heavy rain will depend
on the level of precipitation, accumulated precipitation, and
daily soil moisture. In Table 3, we take the mean and me-
dian values of these meteorological control variables over all
the time periods investigated and calculate the odds ratio of
heavy rain based on Eq. (1.1). The large difference in mag-
nitudes between the main coefficient of heavy rain in Table
2 and the odds ratio of heavy rain in Table 3, particularly for
tree fall and gravitational mass movements, is primarily due
to the exponentiated coefficient of the interaction between
heavy rain and daily soil moisture. This coefficient is slightly
greater than 1 for gravitational mass movements and is less
than 1 for tree fall. When raised to the power of the mean or
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Table 2. Results of the random-effects logit model for incidence of a natural hazard after a heavy-rainfall event. The number of observations is
lower for gravitational mass movements and tree fall events than for floods because of the shorter time period under consideration. Significant
values are shown in bold font.

Dependent variable

Flood Gravitational mass Tree
movement fall

Heavy rain in the last 3 d 34.29∗∗ 3.812 39.85∗∗∗
(41.71) (11.26) (29.91)

Precipitation at route segment [mm] 1.079∗∗∗ 1.052∗∗∗ 1.069∗∗∗
(0.00360) (0.00691) (0.00117)

Accumulated precipitation at route segment for 30 d [mm] 1.010∗∗∗ 1.014∗∗∗ 1.003∗∗∗
(0.000843) (0.00128) (0.000293)

Daily soil moisture at route segment [% nFK] 0.944∗∗∗ 0.957 0.931∗∗∗
(0.0138) (0.0233) (0.00316)

Daily soil moisture at route segment [% nFK] squared 1.000∗∗∗ 1.000∗ 1.001∗∗∗
(0.0000939) (0.000153) (0.0000226)

Heavy rain in the last 3 d× precipitation at route segment [mm] 0.943∗∗∗ 0.956∗∗∗ 0.942∗∗∗
(0.00346) (0.00792) (0.00257)

Heavy rain in the last 3 d× accumulated precipitation at route segment
for 30 d [mm]

0.999 0.996 0.997∗

(0.00125) (0.00280) (0.00137)

Heavy rain in the last 3 d× daily soil moisture at route segment [%
nFK]

1.002 1.061 0.959∗

(0.0298) (0.0742) (0.0196)

Heavy rain in the last 3 d× daily soil moisture at route segment [%
nFK] squared

0.9999 0.9995 1.0001

(0.000179) (0.000405) (0.000128)

Observations 38 590 173 31 795 515 14 141 019
Number of route segments 9679 9679 9679

Log likelihood −10 645.3 −4322.7 −87 853.1
ρ 0.430 0.531 0.375
AIC 21 338.6 8689.5 175 740.3

All values are exponentiated coefficients (odds ratios) with the standard errors in parentheses. All models include season and year controls. ∗ p < 0.05, ∗∗ p < 0.01,
and ∗∗∗ p < 0.001.

median value of soil moisture, which is at least 75, the result-
ing number is very large for mass movements and very small
for tree fall. Following Eq. (1.1), this number is multiplied
by the main coefficient, resulting in a substantial difference
in the magnitudes.

According to Table 3, when all meteorological control
variables are at their mean (median) values, the odds of a
flood event is on average 22.7 (25) times larger if heavy rain
occurred in the last 2 d than if no heavy rain occurred. The
odds of a tree fall event, on the other hand, are on average
3.6 (4) times larger when the meteorological factors are at
their means (medians). For gravitational mass movements,
the odds ratio is between 17 to 19 times larger; however,
since the main effect of heavy rain on gravitational mass

movement is not statistically significant, we will not inter-
pret these values.

To provide insight into the temporal relationship between
heavy-rainfall events and the resulting natural hazards, the
random-effects logit models were also calculated with the
vector dummy variables in Eq. (3.2) that represent the num-
ber of days after the heavy rainfall occurred (Table 4). Re-
garding the time lag, the odds of flood events are highest
when the heavy-rainfall event occurred on the same day as
the flood event and decrease with increasing temporal dis-
tance. All values are statistically significant. This means that
compared to a situation with no heavy rainfall occurring, a
heavy-rainfall event is close to 12 times more likely to cause
a flood on the same day, while it is 10 times more likely to
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cause a flood the day after and almost 5 times more likely to
cause a flood after 2 d.

For gravitational mass movement and tree fall events, the
relationship is weaker than for flood events and is even in-
significant for heavy-rainfall events occurring 2 d before the
natural hazard event. Interestingly, the highest odds ratios
can be observed for gravitational mass movements when the
heavy-rainfall event occurred 1 d before the natural hazard.
In particular, the odds of a gravitational mass movement are
close to 11 times higher 1 d after heavy rainfall compared to a
situation with no heavy rainfall and more than 3 times higher
on the day of heavy rainfall compared to no heavy rainfall.
After 2 d, the odds of a gravitational mass movement are no
longer different from a situation with no heavy rainfall. For
tree fall events, the odds ratio on the day of a heavy rainfall
is 0.333 and is statistically significant, meaning that the odds
of a tree fall event occurring on the same day as heavy rain-
fall are less than one-third that of a situation when no heavy
rainfall occurs. In contrast, 1 d after a heavy-rainfall event, a
tree fall event is 2.4 times more likely to occur than on days
with no heavy rainfall. After 2 d, the odds ratio is no longer
statistically different from 1. A possible explanation for this
observation is an operational one and lies in the way data for
tree fall is collected by Deutsche Bahn AG. Tree fall events
are reported by train operators only upon encountering the
trees en route. When a heavy storm or rainfall is expected,
often train journeys are canceled in advance to ensure the
safety of passengers and employees. Therefore, fewer trains
travel on days of heavy rain, making it less likely that a train
would encounter tree fall events on the same day. Most of the
events are reported after the storm has settled.

In Tables 2 and 4, the odds ratios of the control variables
precipitation and 30 d accumulated precipitation are statis-
tically significant and slightly greater than 1. The estimates
are relatively smaller in magnitude compared to those of the
heavy-rainfall variables, which is to be expected from the
continuous nature of the precipitation variables. In contrast,
the results for daily soil moisture are ambiguous and are not
robust to changes in the specification of the heavy-rainfall
variable.

The influence of the control variables precipitation, 30 d
accumulated precipitation, and daily soil moisture on the re-
lationship between heavy rainfall and the occurrence of a nat-
ural hazard event is depicted in Fig. 4. Using the predictive
margins approach (Williams, 2012) and applying the regres-
sion models in Table 2, the predicted probability of a natural
hazard event is calculated for each observation in the dataset
for the case of no heavy rainfall and for the case of a heavy-
rainfall event. The actual observed values of all the control
variables were used to calculate the predicted probabilities.
For observations with the same value of the meteorological
variable, the average of the predicted probabilities was then
taken. Therefore, for each value of, say, precipitation, two
points are obtained: the average probability with heavy rain

(points on the dashed line) and the average probability with-
out heavy rain (points on the solid line).

The curves and the probability of the situation “with
heavy-rainfall event” are above the curves of the “without
heavy-rainfall event” for all three types of natural hazards
and all three control variables, indicating that the probability
of a natural hazard occurring is always higher with a preced-
ing heavy-rainfall event. However, the curves have different
shapes. In several panels in Fig. 4, both curves show a slight
increase, and the distance between them remains about the
same in panels (a), (d), and (h). This means that the differ-
ence in the probability of occurrence is independent of the
amount of precipitation. In the cases of panels (b) and (e),
the distance becomes greater at higher values; i.e., the higher
the amount of accumulated precipitation, the more a heavy-
rainfall event increases the probability of occurrence of a
flood or gravitational mass movement. In the case of panel
(g), both curves slightly converge at high values, i.e., the
higher the amount of precipitation, the less a heavy-rainfall
event increases the probability of occurrence of a tree fall
event.

For panels (c) and (i), the curve of with heavy-rainfall
event has a U-shape. Thus, the probability of a natural haz-
ard occurring during a heavy-rainfall event is higher when
the soil moisture takes on extreme values than when it takes
on average values. There is evidence that both extremely dry
soil and extremely wet soil are determinants of floods (Vichta
et al., 2024), mainly due to the hydrophobic properties of soil
and oversaturation, respectively. Heavy rainfall in an envi-
ronment with very dry and hydrophobic soil or very wet and
oversaturated soil can therefore easily trigger a flood event,
and this is reflected clearly in the results. In moderate soil
moisture cases, where the soil can still absorb water brought
about by heavy rains, the effect of heavy rain is then less
pronounced. Similarly, it has been shown that drought stress
can cause tree mortality (Grote et al., 2016); meanwhile, soil
oversaturation can cause waterlogging stress in trees (Gill,
1970; Kreuzwieser and Rennenberg, 2014). With trees that
are already under stress and are vulnerable in very dry or
very wet soil conditions, a heavy-rainfall event could cause
additional stress and be more likely to trigger tree fall. Ac-
cording to the data, the effect of heavy rain on tree fall is
stronger for trees that are experiencing drought stress.

The arc shape in panel (f) suggests that the probability of
occurrence is highest at medium soil moisture values. How-
ever, since the main effect of heavy rain on gravitational mass
movement is insignificant, we will refrain from interpreting
this result.

3.3 Characteristics of heavy-rainfall events and their
influence on the occurrence of natural hazards

The previous section has shown that the occurrence of heavy-
rainfall events has a statistically significant influence on the
occurrence of natural hazards, particularly flood and tree fall
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Table 3. Odds ratios of heavy rain for the mean and median values of the precipitation, 30 d accumulated precipitation, and daily soil moisture
based on the estimates of the random-effects logit model in Table 2. Odds ratios are calculated according to Eq. (1.1).

Dependent variable

Flood Gravitational mass movement Tree fall

Number of observations 38 590 173 31 795 515 14 141 019

Means

Precipitation 1.926 1.922 1.856
30 d accumulated precipitation 57.76 57.82 55.29
Daily soil moisture 79.19 79.22 75.29

Odds ratio of heavy rain for the mean 22.70 17.90 3.616

Medians

Precipitation 0.100 0.100 0
30 d accumulated precipitation 49.60 49.70 47.50
Daily soil moisture 82 82 77

Odds ratio of heavy rain for the median 25.04 19.37 4.036

Table 4. Results of the random-effects logit model for incidence of a natural hazard that occurs different numbers of days after a heavy-rainfall
event. Significant values are shown in bold font.

Dependent variable

Flood Gravitational mass movement Tree fall

Days from heavy-rainfall event

Day of heavy rainfall 11.41∗∗∗ 3.584∗∗∗ 0.333∗∗∗
(1.869) (1.387) (0.0525)

1 d after heavy rainfall 9.529∗∗∗ 10.58∗∗∗ 2.411∗∗∗
(1.620) (2.842) (0.305)

2 d after heavy rainfall 4.757∗∗∗ 1.120 0.963
(1.082) (0.810) (0.195)

Precipitation at route segment [mm] 1.023∗∗∗ 1.021∗∗∗ 1.053∗∗∗
(0.00214) (0.00466) (0.00150)

Accumulated precipitation at route segment for 30 d [mm] 1.011∗∗∗ 1.014∗∗∗ 1.004∗∗∗
(0.000794) (0.00127) (0.000294)

Daily soil moisture at route segment [% nFK] 0.955∗∗∗ 0.982 0.928∗∗∗
(0.0120) (0.0228) (0.00316)

Daily soil moisture at route segment [% nFK] squared 1.000∗∗∗ 1.000 1.001∗∗∗
(0.0000791) (0.000146) (0.0000228)

Observations 38 590 173 31 795 515 14 141 019
Number of route segments 9679 9679 9679

Log likelihood −10 773.6 −4343.0 −88 178.9
ρ 0.437 0.536 0.376
AIC 21 591.2 8726.0 176 387.9

All values are exponentiated coefficients (odds ratios) with the standard errors in parentheses. All models include season and year controls and controls for
landslide hazard. ∗ p < 0.05, ∗∗ p < 0.01, and ∗∗∗ p < 0.001.
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Figure 4. The influence of the control variables precipitation, accumulated precipitation, and soil moisture on the probability of occurrence
of floods, gravitational mass movement, and tree fall events. Each panel compares the probability of occurrence for two cases: without
heavy-rainfall event and with heavy-rainfall event.

events. However, as heavy-rainfall events can be described
by various parameters, the aim of the cross-sectional anal-
ysis was to investigate which characteristics of the heavy-
rainfall events affect the odds of natural hazards occurring
and how these effects differ across the three processes. Ta-
ble 5 presents the resulting odds ratios of the estimated lo-
gistic regression model of the cross-sectional analysis when
the parameter in question is increased by 1 unit. The dura-
tion of the heavy-rainfall event and the mean precipitation
throughout the area affected by the heavy-rainfall event do
not seem to have a significant effect on the odds of occur-
rence of a natural hazard. However, the heavy-rainfall in-
dex (SRImean) does significantly increase the odds of all
three natural hazards. When the index increases by 1 unit,
the odds increase by a factor of 1.577 (floods), 1.716 (grav-

itational mass movements), and 1.389 (tree falls). The table
also reveals the significant effect of the 21 d antecedent pre-
cipitation index (API) on all three types of natural hazards.
A 1 mm increase in the API increases the odds by a factor
of 1.055 (flood), 1.075 (gravitational mass movements), and
1.025 (tree fall).

The geographical characteristics within the heavy-rainfall-
event zone that show a significant influence on the occur-
rence of natural hazards are the degree of soil sealing and
elevation. The degree of soil sealing has a negative effect on
tree fall events, and 1 % of increased soil sealing reduces the
odds by a factor of 0.936 (statistically significant at 0.1 %).
This could be due to the fact that more soil sealing means that
there are fewer trees in the area. The mean elevation within
the heavy-rainfall area reduces the odds of gravitational mass
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Table 5. Results of the cross-sectional logit model on the components of heavy-rainfall events and their effect on the odds ratios of the
probability of occurrence of floods, gravitational mass movement, and tree fall events. Note that the number of observations is reduced
compared to Tables 2 and 3, as the cross-sectional dataset contains only those route segments hit by at least one heavy-rainfall event between
2011 and 2021. Significant values are shown in bold font.

Dependent variable

Flood Gravitational mass Tree
movement fall

Duration of heavy rain [h] 1.000 1.002 1.000
(0.002) (0.005) (0.002)

Mean precipitation [mm] of all pixels within the event zone (RRmean) 1.015 1.007 1.002
(0.009) (0.021) (0.010)

Mean heavy-precipitation index of all pixels within the event zone (SRImean) 1.577∗∗∗ 1.716∗∗∗ 1.389∗∗∗
(0.103) (0.242) (0.089)

21 d antecedent precipitation index – mean within the event zone (V3_AVG) 1.055∗∗∗ 1.075∗∗∗ 1.025∗∗
(0.008) (0.017) (0.009)

Extremeness and mean throughout the event duration (Eta) 1.003 1.002 0.997
(0.002) (0.005) (0.002)

Degree of soil sealing [%] within the event area and mean (VSGL_GRAD) 0.978 0.984 0.936∗∗∗
(0.013) (0.021) (0.014)

Mean elevation [m a.s.l.] in the event zone (STRM_AVG) 1.000 0.998∗∗ 0.999
(0.0003) (0.001) (0.0004)

Topographic position index [m] – mean within the event zone (TPI_AVG) 1.049 1.016 0.982
(0.037) (0.105) (0.026)

Constant 0.0001∗∗∗ 0.00001 0.0002
(0.0001) (0.001) (0.009)

Observations 47 605 41 646 24 132
Log likelihood −1566.481 −348.888 −1326.230
AIC 3180.963 741.777 2688.459

All values are exponentiated coefficients (odds ratios) with standard errors in parentheses. Season and year controls are included in all regressions. ∗ p < 0.05, ∗∗
p < 0.01, and ∗∗∗ p < 0.001.

movement events by a factor of 0.998 (statistically significant
at 1 %). This unexpected observation may be due to the fact
that (1) the number of gravitational mass movement events
in the available dataset is very small and (2) railway lines are
unevenly distributed in Germany in terms of elevation, with
most lines being located in low-lying areas.

4 Discussion

4.1 Heavy-rainfall events and associated natural
hazards

The heavy-rainfall event in July 2021 was an exceptional
event in terms of intensity and spatial extent (Tradowsky
et al., 2023). Such devastating flash floods are therefore
not to be expected with every heavy-rainfall event occur-
ring in Germany. Nevertheless, less intense heavy-rainfall
events are not a rare phenomenon in Germany; they can oc-

cur anywhere and are seasonally concentrated in the sum-
mer months. About 50 % of all heavy-rainfall events between
2011 and 2021 can be spatially overlaid on the German rail
network, and almost the entire rail network has been affected
by a heavy-rainfall event at least once during this 11-year
period. Heavy-rainfall events and associated natural hazards
can therefore potentially affect the entire German rail net-
work. However, vulnerability varies greatly from region to
region and is determined, for example, by the route of the
line in relation to the topography (Braud et al., 2020). Routes
that follow valley courses or cross low mountain ranges are
particularly susceptible to associated processes such as gravi-
tational mass movements and local flooding. In order to make
rail transport more resilient to heavy rainfall, it is important
to gain more detailed knowledge about cause–effect relation-
ships between heavy-rainfall events and the disruptions that
they trigger.
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Often it is not the heavy-rainfall event itself that causes
damage to transport infrastructure but processes that are trig-
gered by it. Connections between heavy-rainfall events as a
triggering factor for further processes such as flooding (Ber-
net et al., 2019; Wake, 2013) and various types of gravita-
tional mass movements (Araújo et al., 2022; Huggel et al.,
2012; Kirschbaum et al., 2022; Tichavský et al., 2019) have
already been established in several studies. Similarly, the re-
gression models in our study show that when all meteorolog-
ical variables are at their means, heavy-rainfall events can in
the 2 d following the event significantly increase the odds of
occurrence of flood by a factor of 22.7 and tree fall events by
a factor of 3.62 (see Table 3). The odds ratios of flood events
decrease the more time has passed after the heavy-rainfall
event, while the odds ratios of tree fall events peak the day
after a heavy-rainfall event (Table 4). The increased odds of
gravitational mass movement events are only statistically sig-
nificant the day of and the day after a heavy-rainfall event but
are also strongly correlated with precipitation and accumu-
lated precipitation (Tables 2 and 4). It is therefore important
not to consider the occurrence of different natural hazards
individually but to establish connections between the pro-
cesses, for example, using climate impact chains (e.g., UBA,
2021) or a compound-hazard approach (e.g., Zscheischler et
al., 2020).

About one-quarter of all flood events could be coupled
with a heavy-rainfall event, and for the gravitational mass
movements, it was as high as 17 % (Fig. 1). The proportion
of tree fall events connected to heavy-rainfall events is very
low, which could be due to the fact that storms and strong
winds are considered the main trigger for this type of event
(e.g., Bíl et al., 2017; Gardiner et al., 2010). A large propor-
tion of the tree fall disturbances recorded in the DB dam-
age database has been caused by a few large autumn and
winter storms, such as Friederike in January 2018 (286 re-
ports) or Sabine in February 2020 (513 reports), which were
characterized by prolonged precipitation rather than heavy-
rainfall events. The influence of heavy rainfall on the increas-
ing risk of tree fall has been studied very little so far. Mo-
rimoto et al. (2021) found that heavy rainfall connected to
typhoons increases the probability of disturbances in forest
stands. Even if a spatial and temporal overlap of heavy rain-
fall with an event from the damage database could be deter-
mined, it must be emphasized once again at this point that the
heavy-rainfall event can only be considered a possible cause
for the event, and the actual causal trigger cannot be derived
from the DB damage database. With our study, the aim is
not to develop a predictive model of the natural hazards but
instead to provide empirical evidence for the potential rela-
tionship between heavy rainfall and the three natural hazard
processes. We also demonstrated how damage data from in-
frastructure operators can be merged with climate data from
weather services to establish a potential relationship. This
step represents an important contribution in terms of proac-
tive natural hazard management to identify the route sections

that are particularly affected by certain climatic parameters
and associated processes. Furthermore, this information can
be used to prioritize adaptation needs.

The parameters heavy-rainfall index (SRI) and antecedent
precipitation index (V3) are the properties of the heavy-
rainfall events that most strongly influence the occurrence
of all three natural hazard processes considered (Table 4,
Fig. 4). Thus, it is a combination of the pre-moisture con-
ditions of the soil due to previous rainfall events and the oc-
currence of a heavy-rainfall event that most clearly promotes
the occurrence of the processes. This is in concordance with,
for example, findings from Rupp (2022), who analyzed the
triggering factors for landslides with a seasonal resolution.
Antecedent precipitation is of great importance for the oc-
currence of landslides all year round but especially in win-
ter. Locosselli et al. (2021) found a similar seasonal variabil-
ity for the climate drivers for tree falls among urban trees in
Brazil. During the wet season, temperature has a direct influ-
ence on tree fall, while the effects of precipitation and wind
gusts can lag behind.

No information on the magnitude of the hazard events can
be obtained from the damage database. The duration of the
disturbance, which is given for flood and tree fall events only,
shows that for floods, 33 % of the events have a disturbance
duration of more than 1 d, but for tree falls, it is only 2 %
(Fabella and Szymczak, 2021). From the rather short disrup-
tion durations, it can be deduced that most of the events must
be smaller, as it is not possible to resume operations after a
short time in the case of a larger event. In the case of smaller
events, the local climate conditions, as represented, for exam-
ple, by SRI and V3, are most important. Hence, no significant
correlations could be observed with the larger-scale param-
eters such as mean precipitation, mean topographic position
index, and mean daily soil moisture. The role of the param-
eter degree of soil sealing (VSGL) on tree falls could be ex-
plained by the fact that areas with a high degree of sealing
tend to have fewer trees along the track that can potentially
cause disturbances, while more rural and less sealed areas
have more trees and therefore also have an increased risk of
tree fall events.

4.2 Data availability and quality

While the data quality of the CatRaRE is very high, it is diffi-
cult to validate the quality and completeness of the DB dam-
age database. Therefore, we must consider the possibility that
the relatively low numbers of damage reports that could be
linked to a heavy-rainfall event are only minimum values due
to the weaknesses of the data collection process. While the
DWD is responsible for meeting the meteorological needs of
all economic and social sectors in Germany, the DB damage
database is an internal product. The main task of a railroad
operator is to ensure safe railroad operations. The focus is
not on the detailed recording of the damage event with ex-
act process allocation, cause, etc. but rather on enabling a
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quick repair and ensuring the resumption of railroad oper-
ations. However, disruptions caused by natural hazards ac-
count for a substantial proportion of disruption events over-
all. In 2018, for example, weather-related disruptions were
the second-most-frequent cause of cancelations according to
DB data (Deutscher Bundestag, 2019). As climate change ad-
vances, it can be assumed that the number and extent of dis-
ruptive events are more likely to increase rather than decrease
in the future, unless targeted countermeasures are taken. It is
therefore essential to adapt rail transport and rail infrastruc-
ture to climate change. However, this requires reliable data
on past damage events in order to guarantee a statistically
robust consequence-based risk assessment and the targeted
development of measures for action in the future. We there-
fore recommend improving the documentation requirements
for the various modes of transport in order to create a reli-
able damage database in the long term. This should also in-
clude subdivision of natural hazard events according to the
underlying processes. For instance, river floods are typically
caused by (longer) precipitation runoff in larger areas of the
river watershed, while local flash floods are caused by the im-
mediate runoff of concentrated, intense heavy-rainfall events
(Penna et al., 2013). Gravitational mass movements should
be classified according to their volume and the type of trans-
ported materials, transportation processes, and triggers, as,
for example, heavy-rainfall events typically trigger shallow
landslides, while accumulated rainfall contributes more to
deeper landslides (Zêzere et al., 2015).

4.3 Future development of heavy-rainfall events and
associated hazards

In western and central Europe, extreme rainfall has already
increased in frequency and will, with high confidence, con-
tinue to increase further with climate change (Seneviratne
et al., 2021). However, modeling current and future trends
in heavy-rainfall events on a regional scale is a challeng-
ing task. Rybka et al. (2022) used a convection-permitting
regional climate model to estimate return levels dependent
on the rainfall duration and return period for Germany. They
found a 30 % mean increase in intensity for daily rainfall ex-
tremes for the end of the 21st century assuming a high-end
emission scenario, but the model shows no further increase
in intensity for sub-daily heavy-rainfall estimates. Although
the exact rate is a subject of debate, it can be assumed that
with rising temperatures, more water vapor can potentially
be retained in the atmosphere thus increasing the potential
for the occurrence of heavy-rainfall events (Lengfeld et al.,
2020; Zeder and Fischer, 2020). Several studies using obser-
vational data (e.g., Westra et al., 2013) or modeling exper-
iments (e.g., O’Gorman, 2015) successfully tested the hy-
pothesis that the intensity of daily extreme rainfall roughly
follows the Clausis–Clapeyron relationship, e.g., an increase
of roughly 7 % per 1 °C of ambient temperature increase
(Allen and Ingram, 2002; Trenberth, 1999). An increase in

daily (e.g., Westra et al., 2014; Fischer and Knutti, 2015) and
sub-daily precipitation (e.g., Lenderink and Meijgaard, 2010;
Guerreiro et al., 2018) extremes has already been observed in
several studies over many regions. Especially in the summer
months, with a combination of long dry periods interrupted
by single heavy-precipitation periods, it can be assumed that
these heavy-rainfall events can lead to an increase in associ-
ated processes, e.g., landslides (Tichavský et al., 2019).

The time span of the DB damage database is too short to
analyze trends in the occurrence of the three types of nat-
ural hazards. Access to high-quality data on past natural-
hazard-related disruptions in the transport sector is a major
limitation and is one of the reasons why there are only a
few scientific studies available on this issue (e.g., Braud et
al., 2020; Donnini et al., 2017; Fabella and Szymczak, 2021;
Gardiner et al., 2024). However, quantifying the impact of
natural hazards on the transport sector is of great importance,
especially with regard to climate change. A global study by
Koks et al. (2019) shows that already today about 27 % of all
road and rail assets are exposed to at least one natural haz-
ard. Climate change has a significant impact on forest sta-
bility (Seidl et al., 2017), and the frequency and magnitude
of several natural hazards are likely to increase with ongoing
climate change, as shown for gravitational mass movements
(e.g., Chiang and Chang, 2011; Gariano and Guzzetti, 2016)
or flash floods (e.g., Kundzewicz et al., 2013). It is there-
fore very likely that disturbances along transport routes due
to natural hazards will occur more frequently in the future.

5 Conclusions

Due to the heavy-rainfall event in July 2021 and the result-
ing flash floods and damage, awareness of vulnerability to
this natural hazard has increased significantly, and, among
other things, a large number of research activities have been
initiated. As the rail infrastructure was hit particularly hard,
we contribute to raising awareness in the rail sector and in
the transport sector in general with our study. We were able
to show that heavy-rainfall events have a significant influ-
ence on the occurrence of associated natural hazards. Fur-
thermore, we demonstrate an approach to link climate data
with damage data from a mode of transport in order to estab-
lish correlational interdependence. This can also be applied
to other climate impacts and other modes of transport and
represents an important component in the context of proac-
tive natural hazard management.

Appendix A

In this Appendix, we show the full results of the regres-
sion models, including all explanatory variables, seasonal
and year dummy variables, and interaction terms. This sec-
tion also addresses the question of overfitting in the models
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presented in the main text by presenting simpler models and
assessing the robustness of the results.

Tables A1, A2, and A3 present the estimation results for
the model in Table 2 for the natural hazards tree fall, flood,
and gravitational mass movement, respectively. Columns
(1)–(5) in each table are the results of a random-effects logis-
tic regression, beginning with a simple regression in column
(1) and successively adding control variables and interaction
terms in columns (2)–(4) until the final model is reached in
(5), the estimates of which are presented in the main text
(Table 2). Columns (1)–(5) provide some insight into how
sensitive the results are to changes in the selection of control
variables. The simple logistic regression in column (1) would
be less prone to overfitting due to having only one coeffi-
cient to estimate but would be very prone to omitted variable
bias. The omitted variable bias is evident from the fact that
in all three tables, the magnitude of the coefficient estimate
for heavy rainfall dramatically changes once the control vari-
ables precipitation, accumulated precipitation, and daily soil
moisture are added to the model (column 2), as well as when
interaction terms are added to the model (column 4).

Column (6) presents the results of a pooled logistic regres-
sion model, which is a regression of panel data where the
time dimension is not considered; i.e., the data is regarded
as cross-sectional. Column (6) addresses the concern that the
panel data analysis, due to its two-dimensional nature – with
the time dimension and the individual dimension (here route
segments) – has many fixed-effect parameters to estimate,
which may lead to overfitting. For all models that include
interaction terms, the odds ratios of heavy rain at the mean
values of the meteorological variables are reported at the bot-
tom of the table.

In Table A1, column (1) indicates that the odds of a tree
fall occurring are 4 times higher when there was heavy rain-
fall in the last 3 d versus no heavy rain. This effect, how-
ever, becomes less than 1 upon addition of the control vari-
ables precipitation, accumulated precipitation, and daily soil
moisture, as seen in columns (2) and (3). This means that
when keeping meteorological variables constant, the odds of
a tree fall event are lower during heavy rain versus when no
heavy rain occurs. In columns (4) and (5), the interactions
between heavy rain and the control variables are included,
and this causes an even bigger jump in the coefficient esti-
mate of heavy rain, indicating that heavy rain indeed has an
effect on the incidence of tree fall and that this effect varies
depending on the meteorological situation. The pooled logit
estimates in column (6) do not differ significantly from the
results of the full model in column (5), suggesting that the
unobserved individual heterogeneity of the route segments
does not play a crucial role in determining the relationship
between heavy rainfall and tree fall incidence. The odds ra-
tios computed based on the means of the meteorological vari-
ables in columns (4) to (6) are of similar magnitudes to the
coefficient of the simple logistic regression in column (1). If
a simpler model were selected to potentially avoid overfit-

ting, say the model in column (1), then the results would not
differ by very much. However, model (5) is preferred because
it overcomes the omitted variable bias and provides a more
nuanced picture of the complex relationship between heavy
rainfall and the incidence of tree fall.

For flood hazards (Table A2), the odds ratio of heavy rain
is close to or greater than 10 for all models, indicating that the
result is robust to the choice of controls. When comparing the
odds ratio in model (1) to the odds ratio at the means in mod-
els (4)–(6), one can observe that although they are similar in
magnitude, the value in model (1) is still somewhat larger.
This could suggest that for floods in particular, the omitted
variable bias is quite substantial and that including meteo-
rological controls is crucial. The smaller coefficient of the
pooled logit in column (6) compared to the full model in col-
umn (5) suggests that for flood events, unobserved individual
heterogeneity in the route segments (for example inclination)
may influence the effect of heavy rain on flood incidence.

For gravitational mass movements (Table A3), the odds
ratio in the simple regression in column (1) is of the same
magnitude as the odds ratios at the mean (at the bottom of
columns 2 to 6) once interactions are added. However, with
the addition of interaction terms, the statistical significance
of heavy rain disappears. One could perceive this as poten-
tially indicating overfitting, but the model in column (4) with
interactions is a simpler model with fewer parameters than
the model in column (3) without interactions. Model com-
plexity alone did not cause the coefficient of heavy rain to
lose its significance, which could suggest that it is instead
omitted variable bias that is at play here. Nevertheless, one
could argue that a simpler model, say that in column (1),
might still be preferable, particularly for gravitational mass
movements, which are at most risk of overfitting due to the
low number of events in the data. This will not change the in-
terpretation by very much, since the odds ratio in model (1)
and the odds ratios at the means in model (5) are similar
in magnitude. However, from these results alone, one can-
not conclude a statistically robust effect of heavy rainfall
on gravitational mass movements. More data are required to
make solid conclusions.

In Tables A1, A2, and A3, the model with the best fit,
i.e., the highest log likelihood and the lowest AIC, is the
model in column (5), which is the result presented in Table 2
of the main text.

Tables A4, A5, and A6 provide estimation results for the
model in Table 4 of the main text, where a dummy vari-
able for the day of the heavy rain, 1 d after heavy rain, and
2 d after heavy rain are the variables of interest. In these
tables, columns (1)–(3) have estimates of a random-effects
logit with successively additional control variables, while
column (4) has estimates of a pooled logit regression of the
full model. The results in column (3) of Tables A3, A4, and
A5 are the same as those presented in Table 4. Similar to
the previous tables, a considerable jump in the odds ratios
can be seen between columns (1) and (2), potentially due to
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Table A1. Tree fall: random-effects and pooled logistic regressions with successive inclusion of control variables.

Dependent variable: tree fall

Random-effects logit Pooled logit

(1) (2) (3) (4) (5) (6)

Heavy rain in the last 3 d 4.313∗∗∗ 0.651∗∗∗ 0.620∗∗∗ 31.53∗∗∗ 39.85∗∗∗ 29.22∗∗∗

(0.282) (0.0797) (0.0739) (23.67) (29.91) (21.51)

Precipitation at route segment [mm] 1.049∗∗∗ 1.047∗∗∗ 1.071∗∗∗ 1.069∗∗∗ 1.067∗∗∗

(0.00138) (0.00135) (0.00116) (0.00117) (0.00109)

Accumulated precipitation at route segment for 30 d [mm] 1.006∗∗∗ 1.004∗∗∗ 1.005∗∗∗ 1.003∗∗∗ 1.003∗∗∗

(0.000266) (0.000290) (0.000269) (0.000293) (0.000305)

Daily soil moisture at route segment [% nFK] 0.926∗∗∗ 0.927∗∗∗ 0.930∗∗∗ 0.931∗∗∗ 0.936∗∗∗

(0.00302) (0.00316) (0.00303) (0.00316) (0.00314)

Daily soil moisture at route segment [% nFK] squared 1.001∗∗∗ 1.001∗∗∗ 1.001∗∗∗ 1.001∗∗∗ 1.001∗∗∗

(0.0000219) (0.0000228) (0.0000218) (0.0000226) (0.0000225)

Spring 1.197∗∗∗ 1.189∗∗∗ 1.184∗∗∗

(0.0331) (0.0327) (0.0333)

Autumn 2.056∗∗∗ 1.971∗∗∗ 2.008∗∗∗

(0.0838) (0.0796) (0.0838)

Winter 1.231∗∗∗ 1.209∗∗∗ 1.228∗∗∗

(0.0396) (0.0388) (0.0409)

The year 2018 1.052 1.046 1.033
(0.0294) (0.0291) (0.0287)

The year 2019 0.942∗ 0.940∗ 0.926∗∗

(0.0274) (0.0273) (0.0267)

The year 2020 0.948 0.945∗ 0.936∗

(0.0266) (0.0263) (0.0261)

Heavy rain in the last 3 d× precipitation at route segment [mm] 0.940∗∗∗ 0.942∗∗∗ 0.943∗∗∗

(0.00257) (0.00257) (0.00250)

Heavy rain in the last 3 d× accumulated precipitation at route segment for 30 d [mm] 0.997∗ 0.997∗ 0.997∗

(0.00130) (0.00137) (0.00135)

Heavy rain in the last 3 d× daily soil moisture at route segment [% nFK] 0.967 0.959∗ 0.969
(0.0195) (0.0196) (0.0192)

Heavy rain, last 3 d× daily soil moisture at route segment [% nFK] squared 1.000 1.000 1.000
(0.000126) (0.000128) (0.000124)

Observations 14 141 019 14 141 019 14 141 019 14 141 019 14 141 019 14 141 019
Odds ratio of heavy rain at mean values of the meteorological variables 4.008 3.616 3.730

Log likelihood −90 610.2 −88 449.3 −88 238.6 −88 044.4 −87 853.1 −92 607.7
ρ 0.385 0.377 0.376 0.376 0.375
AIC 181 226.3 176 912.7 176 503.2 176 110.9 175 740.3 185 247.3

All values are exponentiated coefficients (odds ratios) with standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, and ∗∗∗ p < 0.001.

omitted variable bias. However, for floods and gravitational
mass movements, the direction of relative effects across time
remains the same for all models despite the differences in
magnitudes. For flood events (Table A5), the odds of hav-
ing a flood are highest on the same day as the heavy rainfall,
and decrease the further away in time the rainfall occurred.
For gravitational mass movements (Table A6), the odds are
highest 1 d after heavy rainfall occurred. In the case where
overfitting is a potential issue, such as for gravitational mass
movements, a simpler model, such as model (2), might be
preferred to the one presented in the main text (Table 4). This
would not change the result that the highest odds of a mass
movement event come 1 d after heavy rain.

For tree fall (Table A4), both the magnitude of the effect
and the direction across time change once control variables

are added. Without the control variables (column 1), the odds
of tree fall are highest on the same day as the occurrence of
heavy rainfall and decrease in the following days. However,
once the meteorological variables are added, the odds of a
tree fall event on the same day as the heavy rain are in fact
lower than the odds of when there is no heavy rain. This can
be seen in columns (2)–(4) of Table A4, where the odds ratios
on the day of heavy rain are less than 1. On the other hand,
1 d after heavy rain, the odds of a tree fall event are around
twice as high as on days without heavy rain, and the effect is
highest on this day.

In Tables A4, A5, and A6, the goodness-of-fit parameters
performed best in the full model in column (3), whose results
are presented in the main text.
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Table A2. Flood: random-effects and pooled logistic regressions with successive inclusion of control variables.

Dependent variable: floods

Random-effects logit Pooled logit

(1) (2) (3) (4) (5) (6)

Heavy rain in the last 3 d 76.61∗∗∗ 11.31∗∗∗ 9.245∗∗∗ 29.19∗∗ 34.29∗∗ 19.52∗

(5.545) (1.302) (1.105) (36.32) (41.71) (24.64)

Precipitation at route segment [mm] 1.027∗∗∗ 1.026∗∗∗ 1.082∗∗∗ 1.079∗∗∗ 1.078∗∗∗

(0.00152) (0.00157) (0.00357) (0.00360) (0.00347)

Accumulated precipitation at route segment for 30 d [mm] 1.014∗∗∗ 1.011∗∗∗ 1.013∗∗∗ 1.010∗∗∗ 1.008∗∗∗

(0.000628) (0.000787) (0.000703) (0.000843) (0.000782)

Daily soil moisture at route segment [% nFK] 0.950∗∗∗ 0.953∗∗∗ 0.948∗∗∗ 0.944∗∗∗ 0.952∗∗∗

(0.0115) (0.0120) (0.0140) (0.0138) (0.0137)

Daily soil moisture at route segment [% nFK] squared 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

(0.0000768) (0.0000796) (0.0000936) (0.0000939) (0.0000918)

Spring 1.867∗∗∗ 1.881∗∗∗ 1.706∗∗∗

(0.196) (0.204) (0.183)

Autumn 3.098∗∗∗ 2.812∗∗∗ 2.575∗∗∗

(0.409) (0.372) (0.322)

Winter 1.156 1.155 1.022
(0.152) (0.151) (0.133)

The year 2012 1.029 1.027 0.984
(0.203) (0.201) (0.190)

The year 2013 1.151 1.208 1.290
(0.189) (0.200) (0.213)

The year 2014 1.327 1.289 1.288
(0.242) (0.234) (0.230)

The year 2015 0.610∗ 0.610∗ 0.591∗

(0.144) (0.143) (0.138)

The year 2016 1.321 1.321 1.314
(0.233) (0.231) (0.230)

The year 2017 1.583∗∗ 1.569∗∗ 1.617∗∗

(0.265) (0.262) (0.269)

The year 2018 3.169∗∗∗ 3.111∗∗∗ 2.900∗∗∗

(0.554) (0.538) (0.490)

The year 2019 2.487∗∗∗ 2.479∗∗∗ 2.303∗∗∗

(0.434) (0.431) (0.389)

The year 2020 2.170∗∗∗ 2.208∗∗∗ 2.050∗∗∗

(0.365) (0.369) (0.335)

The year 2021 2.518∗∗∗ 2.719∗∗∗ 2.795∗∗∗

(0.391) (0.414) (0.422)

Heavy rain in the last 3 d× precipitation at route segment [mm] 0.942∗∗∗ 0.943∗∗∗ 0.944∗∗∗

(0.00343) (0.00346) (0.00332)

Heavy rain in the last 3 d× accumulated precipitation at route segment for 30 d [mm] 0.998 0.999 0.999
(0.00111) (0.00125) (0.00120)

Heavy rain in the last 3 d× daily soil moisture at route segment [% nFK] 1.006 1.002 1.017
(0.0300) (0.0298) (0.0310)

Heavy rain in the last 3 d× daily soil moisture at route segment [% nFK] squared 1.000 1.000 1.000
(0.000176) (0.000179) (0.000182)

Observations 38 590 173 38 590 173 38 590 173 38 590 173 38 590 173 38 590 173
Odds ratio of heavy rain at mean values of the meteorological variables 27.47 22.70 24.04

Log likelihood −11 514.0 −10 923.3 −10 780.6 −10 787.1 −10 645.3 −10 907.5
ρ 0.373 0.435 0.437 0.428 0.430
AIC 23 034.0 21 860.7 21 601.3 21 596.1 21 338.6 21 861.1

All values are exponentiated coefficients (odds ratios) with standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, and ∗∗∗ p < 0.001.
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Table A3. Gravitational mass movement: random-effects and pooled logistic regressions with successive inclusion of control variables.

Dependent variable: gravitational mass movements

Random-effects logit Pooled logit

(1) (2) (3) (4) (5) (6)

Heavy rain in the last 3 d 28.53∗∗∗ 5.298∗∗∗ 4.795∗∗∗ 9.206 3.812 3.188
(4.646) (1.281) (1.184) (26.63) (11.26) (9.426)

Precipitation at route segment [mm] 1.018∗∗∗ 1.018∗∗∗ 1.054∗∗∗ 1.052∗∗∗ 1.050∗∗∗

(0.00331) (0.00343) (0.00680) (0.00691) (0.00686)

Accumulated precipitation at route segment for 30 d [mm] 1.015∗∗∗ 1.014∗∗∗ 1.015∗∗∗ 1.014∗∗∗ 1.013∗∗∗

(0.00105) (0.00126) (0.00113) (0.00128) (0.00124)

Daily soil moisture at route segment [% nFK] 0.985 0.980 0.972 0.957 0.960
(0.0216) (0.0227) (0.0231) (0.0233) (0.0245)

Daily soil moisture at route segment [% nFK] squared 1.000 1.000 1.000 1.000∗ 1.000∗

(0.000137) (0.000145) (0.000149) (0.000153) (0.000161)

Spring 1.845∗∗∗ 1.922∗∗∗ 1.799∗∗∗

(0.300) (0.308) (0.287)

Autumn 1.648∗ 1.630∗ 1.488
(0.360) (0.349) (0.318)

Winter 0.819 0.844 0.778
(0.173) (0.179) (0.163)

The year 2014 0.796 0.747 0.747
(0.169) (0.157) (0.158)

The year 2015 1.054 1.007 0.948
(0.221) (0.208) (0.195)

The year 2016 1.059 0.999 0.990
(0.211) (0.197) (0.194)

The year 2017 0.434∗∗ 0.409∗∗∗ 0.398∗∗∗

(0.111) (0.104) (0.101)

The year 2018 0.822 0.763 0.765
(0.193) (0.177) (0.176)

The year 2019 0.893 0.846 0.796
(0.201) (0.188) (0.176)

The year 2020 0.751 0.706 0.683
(0.171) (0.159) (0.153)

The year 2021 0.986 1.000 0.992
(0.196) (0.192) (0.194)

Heavy rain in the last 3 d× precipitation at route segment [mm] 0.955∗∗∗ 0.956∗∗∗ 0.959∗∗∗

(0.00781) (0.00792) (0.00798)

Heavy rain in the last 3 d
,× accumulated precipitation at route segment for 30 d [mm] 0.994∗ 0.996 0.995

(0.00269) (0.00280) (0.00267)

Heavy rain in the last 3 d× daily soil moisture at route segment [% nFK] 1.036 1.061 1.070
(0.0707) (0.0742) (0.0749)

Heavy rain in the last 3 d× daily soil moisture at route segment [% nFK] squared 1.000 1.000 0.999
(0.000394) (0.000405) (0.000406)

Observations 31 795 515 31 795 515 31 795 515 31 795 515 31 795 515 31 795 515
Odds ratio of heavy rain at mean values of the meteorological variables 19.31 17.90 19.50

Log likelihood −4542.7 −4379.4 −4352.0 −4351.3 −4322.7 −4462.2
ρ 0.519 0.535 0.536 0.531 0.531
AIC 9091.4 8772.9 8740.0 8724.7 8689.5 8966.5

All values are exponentiated coefficients (odds ratios) with standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, and ∗∗∗ p < 0.001.

In summary, there is a trade-off between omitted variable
bias and overfitting in this empirical analysis, and the results
presented in the main text are the ones deemed most appro-
priate for the investigation of the relationship between heavy
rainfall and the incidence of natural hazards along railway

lines. In the cases most at risk of overfitting due to the low
number of events, particularly for gravitational mass move-
ments, the interpretation of the results would not change if a
simpler model were to be selected.
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Table A4. Tree fall: random-effects and pooled logistic regressions different numbers of days after a heavy-rainfall event.

Dependent variable: tree fall

Random-effects logit Pooled logit

(1) (2) (3) (4)

Days from heavy-rainfall event

Day of heavy rain 5.784∗∗∗ 0.339∗∗∗ 0.333∗∗∗ 0.310∗∗∗

(0.457) (0.0547) (0.0525) (0.0511)

1 d after heavy rain 4.223∗∗∗ 2.702∗∗∗ 2.411∗∗∗ 2.252∗∗∗

(0.514) (0.341) (0.305) (0.282)

2 d after heavy rain 1.569∗ 1.043 0.963 0.934
(0.315) (0.212) (0.195) (0.188)

Precipitation at route segment [mm] 1.054∗∗∗ 1.053∗∗∗ 1.050∗∗∗

(0.00152) (0.00150) (0.00147)

Accumulated precipitation at route segment for 30 d [mm] 1.006∗∗∗ 1.004∗∗∗ 1.003∗∗∗

(0.000271) (0.000294) (0.000303)

Daily soil moisture at route segment [% nFK] 0.926∗∗∗ 0.928∗∗∗ 0.933∗∗∗

(0.00302) (0.00316) (0.00313)

Daily soil moisture at route segment [% nFK] squared 1.001∗∗∗ 1.001∗∗∗ 1.001∗∗∗

(0.0000218) (0.0000228) (0.0000226)

Spring 1.194∗∗∗ 1.192∗∗∗

(0.0330) (0.0336)

Autumn 2.035∗∗∗ 2.083∗∗∗

(0.0829) (0.0878)

Winter 1.224∗∗∗ 1.246∗∗∗

(0.0395) (0.0417)

The year 2018 1.051 1.043
(0.0294) (0.0292)

The year 2019 0.944∗ 0.933∗

(0.0275) (0.0270)

The year 2020 0.948 0.939∗

(0.0266) (0.0264)

Observations 14 141 019 14 141 019 14 141 019 14 141 019
Log likelihood −90 585.0 −88 384.7 −88 178.9 −92 952.3
ρ 0.385 0.377 0.376
AIC 181 180.0 176 787.4 176 387.9 185 932.5

All values are exponentiated coefficients (odds ratios) with standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, and ∗∗∗ p < 0.001.
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Table A5. Flood: random-effects and pooled logistic regressions different numbers of days after a heavy-rainfall event.

Dependent variable: floods

Random-effects logit Pooled logit

(1) (2) (3) (4)

Days from heavy-rainfall event

Day of heavy rain 122.6∗∗∗ 13.55∗∗∗ 11.41∗∗∗ 11.85∗∗∗

(10.03) (2.159) (1.869) (1.851)

1 d after heavy rain 46.04∗∗∗ 12.23∗∗∗ 9.529∗∗∗ 9.827∗∗∗

(7.117) (2.058) (1.620) (1.651)

2 d after heavy rain 20.44∗∗∗ 5.821∗∗∗ 4.757∗∗∗ 4.897∗∗∗

(4.618) (1.328) (1.082) (1.108)

Precipitation at route segment [mm] 1.025∗∗∗ 1.023∗∗∗ 1.021∗∗∗

(0.00212) (0.00214) (0.00186)

Accumulated precipitation at route segment for 30 d [mm] 1.015∗∗∗ 1.011∗∗∗ 1.009∗∗∗

(0.000627) (0.000794) (0.000717)

Daily soil moisture at route segment [% nFK] 0.952∗∗∗ 0.955∗∗∗ 0.970∗

(0.0115) (0.0120) (0.0120)

Daily soil moisture at route segment [% nFK] squared 1.000∗∗∗ 1.000∗∗∗ 1.000∗∗∗

(0.0000763) (0.0000791) (0.0000784)

Spring 1.847∗∗∗ 1.654∗∗∗

(0.195) (0.174)

Autumn 3.058∗∗∗ 2.827∗∗∗

(0.404) (0.354)

Winter 1.150 1.019
(0.151) (0.134)

The year 2012 1.034 0.989
(0.204) (0.191)

The year 2013 1.151 1.184
(0.189) (0.192)

The year 2014 1.332 1.326
(0.243) (0.236)

The year 2015 0.615∗ 0.594∗

(0.145) (0.138)

The year 2016 1.333 1.310
(0.236) (0.230)

The year 2017 1.589∗∗ 1.639∗∗

(0.266) (0.272)

The year 2018 3.199∗∗∗ 2.982∗∗∗

(0.560) (0.507)

The year 2019 2.496∗∗∗ 2.321∗∗∗

(0.436) (0.392)

The year 2020 2.185∗∗∗ 2.005∗∗∗

(0.368) (0.328)

The year 2021 2.563∗∗∗ 2.614∗∗∗

(0.397) (0.398)

Observations 38 590 173 38 590 173 38 590 173 38 590 173
Log likelihood −11 457.4 −10 916.5 −10 773.6 −11 041.5
ρ 0.374 0.435 0.437
AIC 22 924.8 21 851.1 21 591.2 22 125.1

All values are exponentiated coefficients (odds ratios) with standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, and ∗∗∗ p < 0.001.

https://doi.org/10.5194/nhess-25-683-2025 Nat. Hazards Earth Syst. Sci., 25, 683–707, 2025



704 S. Szymczak et al.: Heavy-rainfall events along the German rail network

Table A6. Gravitational mass movement: random-effects and pooled logistic regressions different numbers of days after a heavy-rainfall
event.

Dependent variable: gravitational mass movements

Random-effects logit Pooled logit

(1) (2) (3) (4)

Days from heavy-rainfall event

Day of heavy rain 33.01∗∗∗ 3.973∗∗∗ 3.584∗∗∗ 3.414∗∗

(6.775) (1.521) (1.387) (1.316)

1 d after heavy rain 44.11∗∗∗ 11.71∗∗∗ 10.58∗∗∗ 10.16∗∗∗

(10.44) (3.067) (2.842) (2.760)

2 d after heavy rain 4.398∗ 1.205 1.120 1.101
(3.137) (0.869) (0.810) (0.796)

Precipitation at route segment [mm] 1.022∗∗∗ 1.021∗∗∗ 1.021∗∗∗

(0.00448) (0.00466) (0.00432)

Accumulated precipitation at route segment for 30 d [mm] 1.015∗∗∗ 1.014∗∗∗ 1.013∗∗∗

(0.00106) (0.00127) (0.00124)

Daily soil moisture at route segment [% nFK] 0.987 0.982 0.989
(0.0217) (0.0228) (0.0245)

Daily soil moisture at route segment [% nFK] squared 1.000 1.000 1.000
(0.000137) (0.000146) (0.000155)

Spring 1.829∗∗∗ 1.700∗∗∗

(0.297) (0.273)

Autumn 1.622∗ 1.502
(0.354) (0.327)

Winter 0.811 0.753
(0.172) (0.158)

The year 2014 0.788 0.804
(0.167) (0.172)

The year 2015 1.044 1.008
(0.218) (0.211)

The year 2016 1.053 1.061
(0.209) (0.209)

The year 2017 0.430∗∗∗ 0.427∗∗∗

(0.110) (0.108)

The year 2018 0.815 0.839
(0.191) (0.195)

The year 2019 0.887 0.855
(0.199) (0.190)

The year 2020 0.745 0.728
(0.169) (0.164)

The year 2021 0.970 0.992
(0.193) (0.200)

Observations 31 795 515 31 795 515 31 795 515 31 795 515
Log likelihood −4533.6 −4370.2 −4343.0 −4485.1
ρ 0.519 0.535 0.536
AIC 9077.1 8758.5 8726.0 9008.1

All values are exponentiated coefficients (odds ratios) with standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, and ∗∗∗ p < 0.001.
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