
Nat. Hazards Earth Syst. Sci., 25, 625–646, 2025
https://doi.org/10.5194/nhess-25-625-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

A quantitative module of avalanche hazard – comparing forecaster
assessments of storm and persistent slab avalanche problems with
information derived from distributed snowpack simulations
Florian Herla1, Pascal Haegeli1, Simon Horton2, and Patrick Mair3

1Department of Geography, School of Resource & Environmental Management, and Centre for Natural Hazards Research,
Simon Fraser University, Burnaby, BC, Canada
2Avalanche Canada, Revelstoke, BC, Canada
3Department of Psychology, Harvard University, Cambridge, MA, USA

Correspondence: Florian Herla (fherla@sfu.ca)

Received: 23 March 2024 – Discussion started: 23 April 2024
Revised: 12 November 2024 – Accepted: 26 November 2024 – Published: 11 February 2025

Abstract. Avalanche forecasting is a human judgment pro-
cess with the goal of describing the nature and severity of
avalanche hazard based on the concept of distinct avalanche
problems. Snowpack simulations can help improve forecast
consistency and quality by extending qualitative frameworks
of avalanche hazard with quantitative links between weather,
snowpack, and hazard characteristics. Building on existing
research on modeling avalanche problem information, we
present the first spatial modeling framework for extracting
the characteristics of storm and persistent slab avalanche
problems from distributed snowpack simulations. The group-
ing of simulated layers based on regional burial dates allows
us to track them across space and time and calculate insight-
ful spatial distributions of avalanche problem characteristics.

We applied our approach to 10 winter seasons in Glacier
National Park, Canada, and compared the numerical predic-
tions to human hazard assessments. Despite good agreement
in the seasonal summary statistics, the comparison of the
daily assessments of avalanche problems revealed consid-
erable differences between the two data sources. The best
agreements were found in the presence and absence of storm
slab avalanche problems and the likelihood and expected
size assessments of persistent slab avalanche problems. Even
though we are unable to conclusively determine whether the
human or model data set represents reality more accurately
when they disagree, our analysis indicates that the current
model predictions can add value to the forecasting process
by offering an independent perspective. For example, the nu-

merical predictions can provide a valuable tool for assist-
ing avalanche forecasters in the difficult decision to remove
persistent slab avalanche problems. The value of the spa-
tial approach is further highlighted by the observation that
avalanche danger ratings were better explained by a com-
bination of various percentiles of simulated instability and
failure depth than by simple averages or proportions. Our
study contributes to a growing body of research that aims to
enhance the operational value of snowpack simulations and
provides insight into how snowpack simulations can help ad-
dress some of the operational challenges of human avalanche
hazard assessments.

1 Introduction

Avalanche forecasting is a human judgment process where
a wide range of observations is synthesized into an over-
all picture of the nature and severity of avalanche haz-
ard (LaChapelle, 1980; McClung, 2002a, b). The North
American Conceptual Model of Avalanche Hazard (CMAH;
Statham et al., 2018a) and similar standards in Europe
(EAWS, 2023b) set the foundation for a common language
and qualitative framework for assessing avalanche hazard
based on the concept of avalanche problems. While multiple
problems can be present at any given time or location, each
avalanche problem is characterized by a set of descriptors:
(1) the avalanche problem type, which represents an over-
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arching classification that sets expectations for typical pat-
terns; (2) the location of the problem in the terrain; (3) the
likelihood of avalanches of the identified problem type; and
(4) their expected destructive size. Avalanche forecasters
then typically synthesize the avalanche problem information
into an overall assessment of the severity of avalanche hazard
using a five-level ordinal danger scale (Statham et al., 2010;
EAWS, 2023a).

Substantial research has recently leveraged data-driven ap-
proaches to design decision support tools for avalanche fore-
casters ranging from predictions of avalanche danger rat-
ings (Pérez-Guillén et al., 2022) to snow instability (Mayer
et al., 2022) and avalanche activity (Hendrick et al., 2023;
Viallon-Galinier et al., 2023; Mayer et al., 2023). One of the
key requirements for employing machine learning methods
is the availability of large data sets that include the full range
of possible events and, ideally, measurable target variables
(Guikema, 2020).

Operational experience and recent research has shown that
there are considerable differences in how the avalanche dan-
ger rating, the CMAH, and the concept of avalanche prob-
lems are applied by avalanche forecasters (Lazar et al., 2016;
Statham et al., 2018b; Techel et al., 2018; Clark, 2019; Hor-
ton et al., 2020c; Hordowick, 2022). Since these inconsis-
tencies can lead to serious miscommunication among fore-
casters themselves and with the recreational backcountry
community, there is a need for improving the consistency
and quality of the operational use of these cornerstones of
avalanche hazard assessments. While the use of predictive
models is a possible approach for addressing these chal-
lenges, training such models on the existing data sets runs the
risk of perpetuating biases and inconsistencies that are con-
tained in the human assessments. Horton et al. (2020c) con-
cluded that a more prescriptive approach might be needed to
numerically predict avalanche problem characteristics in an
objective way.

Snowpack simulations that numerically link weather,
snowpack, and hazard have great potential to present
avalanche forecasters with an independent and reproducible
perspective on the possible characteristics of the expected
avalanche problems. Extensive research in snowpack model-
ing for avalanche forecasting dates back over 2 decades and
has led to a variety of operational modeling chains (Morin
et al., 2020). While data overload issues and validity con-
cerns have traditionally been the primary hurdles preventing
the operational use of snowpack models in Canada (Morin
et al., 2020; Herla et al., 2021), several recent studies have
focused on making the simulated data more accessible and
operationally more relevant by designing visualization tools
that better support human sensemaking (Horton et al., 2020b;
Nowak et al., 2020; Nowak and Bartram, 2022) and by devel-
oping algorithms that process snowpack simulations numer-
ically to display relevant summaries in familiar ways (Herla
et al., 2021, 2022). A large body of research provides in-
sights into the validation of snowpack simulations from a va-

riety of different angles (Schirmer et al., 2010; Bellaire and
Jamieson, 2013; Schmucki et al., 2014; Magnusson et al.,
2015; Vernay et al., 2015; Quéno et al., 2016; Bellaire et al.,
2017; Revuelto et al., 2018; Calonne et al., 2020; Menard
et al., 2021; Viallon-Galinier et al., 2020; Morin et al., 2020).
Recently, Horton and Haegeli (2022) and Herla et al. (2024b)
validated the simulations on a large scale for their capabil-
ities of representing both new snow amounts and critical
avalanche layers, two of the most important aspects for the
practitioner community.

While these studies help forecasters better understand
and integrate the simulated snowpack information into their
workflows, they do not address the existing challenges in
the human analysis process that synthesizes the information
into a comprehensive hazard assessment. To address this is-
sue, Reuter et al. (2021) recently established a prescriptive
approach for modeling avalanche problem types from simu-
lated snowpack information based on the current understand-
ing of snow instability. In addition, Mayer et al. (2023) de-
veloped data-driven models for predicting the probability and
size of dry snow avalanches in the vicinity of weather stations
used for snow stratigraphy simulations based on verified data
sets of natural avalanche activity and stability tests related
to human-triggered avalanches. Both of these studies clearly
demonstrate the potential of snowpack models for providing
avalanche problem information.

The present study expands on these ideas with two main
contributions. First, we present a spatial approach to extract-
ing the characteristics of storm and persistent slab avalanche
problems from distributed snowpack simulations that traces
individual snowpack layers across space and time and allows
the calculation of insightful spatial distributions of avalanche
problem characteristics. We tailor the output of our numeri-
cal predictions to the needs of the North American avalanche
community by mirroring concepts included in the CMAH
and make the output tangible and relevant by summarizing
the simulated information in the familiar format of hazard
charts. Second, we examine the agreement between simula-
tions and human assessments for persistent and storm slab
avalanche problem situations. We start out with seasonal
patterns to compare our results to Reuter et al. (2021) and
Mayer et al. (2023), but we primarily focus on the compar-
ison of daily assessments to simultaneously explore the ca-
pabilities of the model chain and gain further insight into the
strengths and weaknesses of human avalanche hazard assess-
ments. This paper contributes to a growing body of research
that aims to enhance the operational value of snowpack sim-
ulations and provides insight into how snowpack simulations
can help address some of the operational challenges of ap-
plying avalanche problems.
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2 Data

The data sets used in this study consist of snowpack simu-
lations and operational avalanche hazard assessments from
avalanche forecasters in western Canada over 10 winter sea-
sons (2013–2022), similar to Herla et al. (2024b).

The study focuses on the public avalanche forecast re-
gion of Glacier National Park that is located in the Columbia
Mountains of British Columbia, Canada. Glacier National
Park experiences a transitional snow climate with substan-
tial amounts of new snow interspersed with frequent peri-
ods of critical layer formation (Haegeli and McClung, 2007;
Shandro and Haegeli, 2018). Numerous snowpack modeling
studies have been carried out at Glacier National Park (e.g.,
Bellaire and Jamieson, 2013; Horton et al., 2020c), which
is known for high-quality avalanche hazard assessments and
observations.

For our simulations, we feed the Canadian numerical
weather prediction model HRDPS (High Resolution Deter-
ministic Prediction System) (2.5 km resolution; Milbrandt
et al., 2016) into the detailed snow cover model SNOWPACK
(Bartelt et al., 2002; Lehning et al., 2002b, a) to simulate
the snow stratigraphy at 100 grid point locations within the
boundaries of Glacier National Park. All simulated snow pro-
files were valid between 16:00–17:00 LT (local time), rep-
resenting flat field conditions. For a detailed description of
the snowpack simulations used for this study, the interested
reader is referred to Herla et al. (2024b). Informal conver-
sations with forecasters suggest that the hazard assessments
are most supported by observations for the treeline eleva-
tion band. Since previous research found most agreement be-
tween simulations and assessments also for the treeline ele-
vation band (Herla et al., 2024b), we limit the data set for the
present study to grid points between 1800–2100 m a.s.l.

Avalanche hazard assessments used in this study were is-
sued by public avalanche forecasters every day of the winter
season. The assessments represent forecasters’ best knowl-
edge of the current conditions (i.e., nowcasts) and were
issued in the afternoon for the treeline elevation band in
Glacier National Park. Applying the CMAH (Statham et al.,
2018a), forecasters partition the avalanche hazard into differ-
ent avalanche problems and characterize each problem by its
type, the likelihood of avalanches, and destructive avalanche
size resulting from each avalanche problem. Forecasters ex-
press the likelihood of avalanches on a five-level ordinal
scale ranging from unlikely, possible, likely, and very likely
to almost certain with half steps. The expected destructive
size of avalanches is also expressed on a five-level ordinal
scale ranging from Size 1 to Size 5 with half sizes (Cana-
dian Avalanche Association, 2024; Statham et al., 2018a). It
is common practice in Canada to visualize the assessments of
different avalanche problems in a hazard chart that allows for
quickly understanding the conditions within a specific loca-
tion (Fig. 1, taken from Statham et al., 2018a). In addition to
the avalanche problem information, the hazard assessments

Figure 1. The hazard chart as part of the CMAH allows us to
quickly understand the severity of distinct avalanche problems.
Taken from Statham et al. (2018a).

contain danger ratings that summarize the hazard from all
avalanche problems using the five-level ordinal North Amer-
ican Public Avalanche Danger Scale (Statham et al., 2010),
which ranges from low, moderate, considerable, and high to
extreme.

3 Methodology

Our entire analysis is conducted in the R language and envi-
ronment for statistical computing (R Core Team, 2023) using
the open-source software package sarp.snowprofile
(Horton et al., 2020a) and consists of three distinct steps.
First, individual layers from distributed snowpack simula-
tions are grouped based on date considerations in order to
track individual layers across time and maintain knowledge
about regional layers across space (Sect. 3.1). Second, we
extract avalanche problem information from the snowpack
simulations (Sect. 3.2). Finally third, we compare the simu-
lated information to the human assessment data (Sect. 3.3).
Figure 2 illustrates how these individual steps are related.

3.1 Grouping of layers from distributed simulations
based on date considerations

Since persistent weak layers and crusts can cause multiple
avalanche cycles, avalanche forecasters typically establish a
mental model of where these layers exist and then track the
evolution of these layers over time. To facilitate both track-
ing and communication of these layers, avalanche forecasters
in Canada name these layers with date tags and their grain
type(s) (e.g., “17 January surface hoar layer”). Reported date
tags mostly represent the beginning of snowfall periods that
bury layers that were exposed to processes happening at the
snow surface before the snowfall and therefore likely contain
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Figure 2. A flowchart illustrating the methodological steps of this study.

weak grain types. Sometimes the date tags can also represent
rain events that form a crust at the snow surface1.

Since the snowpack builds up chronologically over the
winter season, the concept of date tags represents a means to
reference specific layers within the snow stratigraphy, simi-
larly to providing the vertical coordinate of a layer (e.g., its
depth). However, the referencing of layers based on dates
is more robust because the vertical coordinate of a spe-
cific layer will vary substantially between different locations
(Schweizer et al., 2007; Herla et al., 2021) and over time (due
to snowpack settlement).

Herla et al. (2024b) recently applied the concept of layer
date tags to group unstable layers from distributed snowpack
simulations to determine the spatial prevalence of instabil-
ity from different layers. In the present study, we apply the
concept to our entire data set of layers from one forecast re-
gion and elevation band independently of their stability, grain
type, or other properties. First, we create a list of all possi-
ble date tags for the season based on (a) layers that were ex-
plicitly tracked by forecasters and (b) simulated precipitation
patterns across the region. Analogously to forecaster prac-
tice, each date tag represents a date when the snow surface
got buried by new snow. We then label all simulated snow-

1Please note that other processes leading to crust formation, such
as insolation, are not captured by the date tags as presented in this
study. In this case, the present approach groups crust layers with
other layers based on their burial date.

pack layers that got deposited by the same storm and were
exposed to the same subsequent dry period with one date tag
based on its formation date. Figure 3 illustrates the concept
by showing all date tags for the 2019 season and coloring all
layers from one profile location according to their date tags.
The interested reader is referred to Herla et al. (2024b) for
more detailed descriptions of exact rules and thresholds.

The present approach is well suited to group the layers of
large-scale simulations across space and time in a compu-
tationally efficient way. Notably, the approach allows us to
take into account stable and unstable layers alike, while tra-
ditionally, weak layer detection routines only target unstable
layers. We exploit that detail in the next step when extracting
avalanche problem information from the individual groups of
layers.

3.2 Extracting avalanche problem information from
snowpack simulations

To extract the avalanche problem characteristics (i.e., type,
location, likelihood of avalanches, and their expected size)
from the simulations, we start by selecting all region-
ally grouped layers from a given location on a given day
(Sect. 3.1, Fig. 2). Since our simulations represent flat field
conditions and the study domain is limited to one forecast re-
gion and elevation band, the location characteristic remains
constant throughout this exercise. In a larger-scale applica-
tion, though, the location would span different regions, ele-
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Figure 3. The evolution of a snow stratigraphy over the course of a winter season. The succession of storms and dry periods is illustrated by
date tags (dashed vertical lines) that can be used to efficiently track layers across space and over time. Adjacent layers of the same color have
been assigned to the same date tags.

vation bands, and even aspects. In the following paragraphs
we describe how we model avalanche problem characteris-
tics for each layer at each model grid point separately be-
fore aggregating these individual evaluations by date tags,
by problem types, and finally by all grid points within the
relevant location.

Our study focuses on storm and persistent slab avalanche
problems (including deep persistent slab avalanche prob-
lems) because these problem types can be derived solely
from simulated snow profiles. Problem types that cause dif-
ferent avalanches (i.e., wet slab, loose dry, loose wet, cornice,
and glide avalanche problems) or require additional weather
data (i.e., wind slab avalanche problem) are not included
in this study. To differentiate between storm and persistent
problems, we take into account that forecasters typically is-
sue a storm snow problem for the first few days of the storm,
even if a persistent weak layer was buried by the storm and
represents the main weakness (Klassen, 2014; Hordowick,
2022). Although our strategy mainly relies on grain type –
a persistent layer contributes to a persistent problem, and a
new snow layer contributes to a storm problem – we assign
all persistent layers that have been buried for less than 5 d to
a storm problem instead of a persistent problem.

According to the CMAH, the likelihood of avalanches
emerges from a combination of the spatial distribution2 of
the avalanche problem within the location bin and the as-
sociated sensitivity to triggering avalanches (Statham et al.,
2018a). For one isolated model grid point, the likelihood of

2Please note that the term “spatial distribution” is used slightly
differently in North America and Europe. European forecasters pri-
marily use the term “frequency distribution” and only refer to spatial
distribution when they know the exact locations in the terrain (e.g.,
on a map view). Since this paper builds on the CMAH, we use the
term spatial distribution throughout this paper.

avalanches simplifies to solely the sensitivity of triggering.
To assess the sensitivity of a single layer we use the random
forest classifier punstable developed by Mayer et al. (2022) to
characterize dry snow instability for artificial triggering. This
model was trained with a high-quality data set of observed
snow profiles recorded around Davos, Switzerland. Based on
the observed instability of the weakest layer in each profile,
the model learned to predict the probability of layer instabil-
ity (0≤ punstable ≤ 1) from six simulated predictor variables.
These predictor variables include both weak layer and slab
characteristics, namely the viscous deformation rate, the crit-
ical cut length, the sphericity and grain size of the weak layer,
the skier penetration depth, and the cohesion of the slab. As
suggested by Mayer et al. (2022), we considered layers with
punstable ≥ 0.77 as critical avalanche layers with poor stabil-
ity.

Avalanche size is a function of the lateral and longitu-
dinal extent of the initial slab, release depth, and entrain-
ment along the path (McClung, 2009). While recent research
examined the influence of snow mechanical properties like
tensile strength and crack propagation speeds on snow in-
stability and avalanche size (e.g., Reuter and Schweizer,
2018; Trottet et al., 2022), there are currently no parametriza-
tions available that can derive avalanche size from large-scale
snowpack simulations. We therefore follow the footsteps of
McClung (2009) and Mayer et al. (2023) and simply use
layer depth to characterize the destructive potential of sim-
ulated avalanche problems. Since the ordinal scale for rating
avalanche size is nonlinear (Campbell et al., 2016; Statham
et al., 2018a) and also the relationship between failure depth
and avalanche size has been reported as nonlinear (McClung,
2009; Mayer et al., 2023), we display failure depth on a non-
linear axis in all figures of this study by using thresholds sug-
gested by McClung (2009).

https://doi.org/10.5194/nhess-25-625-2025 Nat. Hazards Earth Syst. Sci., 25, 625–646, 2025



630 F. Herla et al.: Comparing simulated and reported avalanche problem information

Figure 4. Numerical hazard charts derived from snowpack simulations that are similar to the ones produced by forecasters (Fig. 1). As
described in the text, the data can be subset by avalanche problem types and date tags such that each data point corresponds to one grid point
location showing the weakest instability (punstable) and the relevant failure depth for the given subset. (a) Storm snow and persistent weak
layer problems and (b) the subset for a specific date tag (25 October, the green layer close to the ground in Fig. 3).

After computing the characteristic avalanche problem
type, likelihood of associated avalanches (approximated
by punstable), and avalanche size (approximated by antici-
pated failure depth) for each layer at each grid point with
the approaches described above, we then aggregate the infor-
mation at each grid point by date tag. Hence, the likelihood
of avalanches from each group of layers with a specific date
tag is modeled by the layer with the highest punstable value,
and the release depth corresponds to either the depth of the
identified layer (i.e., stable case) or the deepest unstable layer
(i.e., if one or more layers are classified as unstable, with
punstable ≥ 0.77). At this point, we know the numerical coun-
terparts for all avalanche problem characteristics for each
grid point and each date tag, and we can then apply the same
strategy to aggregate this information into a single assess-
ment per avalanche problem type at each grid point. Again,
the likelihood of avalanches from each problem type is mod-
eled by the layer with the highest punstable value, and the
release depth corresponds to either the depth of the identi-
fied layer or the deepest unstable layer (i.e., punstable ≥ 0.77).
The derived avalanche problem information from all grid
points in the model domain can now be visualized similarly
to the hazard charts known from the CMAH. The informa-
tion characterizes either the contribution from each problem
type (Fig. 4a) or the contribution from a subset of layers with
a specific date tag (Fig. 4b). Data points that are located close
to the upper right corner correspond to deeply buried layers
that are expected to be triggered easily. Since every data point
corresponds to one grid point, the number of potential trig-
gering spots (i.e., spatial distribution in the CMAH) can be
gauged from the distribution of the point cloud on the chart.
A detailed discussion of the numerical hazard chart and its
feature of selecting specific date tags is presented in Sect. 5.2.

To aggregate avalanche problem characteristics over a spa-
tial domain, we compute medians3 as well as other per-
centiles4 of punstable and depth across all individual model
grid points (i.e., 10th, 25th, 50th, 75th, and 90th percentiles),
taking advantage of our regionally grouped layers that pre-
serve knowledge of stable layers in a meaningful way. While
all data points contribute to the computation of the ex-
pected punstable (50th percentile), only data points with poor
stability (i.e., punstable ≥ 0.77q) are considered for the com-
putation of the expected failure depth (50th percentile) and
the other percentiles5. Taking into account knowledge about
both stable and unstable layers allows us to present the spatial
distribution of instability in a more comprehensive way and
expands on previous approaches, which focused on unstable
layers only and were therefore limited to using the propor-
tion of unstable grid points to summarize spatial information
(like, e.g., Herla et al., 2024b; Mayer et al., 2023).

To sum up, the present study uses concepts from Reuter
et al. (2021), Mayer et al. (2022), and Herla et al. (2024b)
to extract avalanche problem characteristics from the simu-
lations. Reuter et al. (2021) demonstrated a prescriptive ap-
proach to modeling avalanche problem types primarily in-
formed by physical science principles. Prompted by the find-
ings and conclusions of Horton et al. (2020c) about existing
inconsistencies in the Canadian hazard assessments, we fol-
lowed the footsteps of Reuter et al. (2021) and designed a
prescriptive model-driven approach instead of a data-driven
one. Instead of using the process-based stability indices em-
ployed in Reuter et al. (2021), though, we applied the ran-
dom forest classifier punstable by Mayer et al. (2022), which

3Diamond shapes in Fig. 4a and b and black lines in Fig. 5c–f.
4Gray shading in Fig. 5c–f.
5Note that an expected depth is therefore only computed when

there is at least one unstable grid point.
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Figure 5. Season summary 2018/2019 of human hazard assessments and modeled hazard characteristics for Glacier National Park. (a) Re-
ported danger rating and (b) avalanche problems at treeline elevation. (c, d) Reported likelihood of avalanches from persistent (red) and
storm slab avalanche problems (yellow). In addition, modeled distribution of punstable with the envelope of the 10th–90th percentiles (light
gray shading), the interquartile range (dark gray shading), and the expected value (black line). (e, f) Analogous to the previous two panels
but showing the reported size of avalanches and the modeled failure depth. (g) Modeled interquartile range and median air temperature in
units of degrees Celsius. (h) Modeled median height of new snow within 24 h in units of centimeters (HN24).

resulted from a data-driven study using a high-quality data
set from Switzerland. We decided to use punstable instead of
the even more recent models proposed by Mayer et al. (2023)
that predict the probability of natural dry snow avalanche ac-
tivity and their expected size by modifying punstable in order
to build on Herla et al. (2024b), who found encouraging re-
sults when applying punstable to a Canadian data set.

3.3 Comparing human assessments to simulations

After extracting and aggregating avalanche problem infor-
mation from the simulations, this information can be com-
pared to the human avalanche hazard assessment data set.
We focused our analysis on the following hazard characteris-
tics: (i) the presence or absence of the problem in either data
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set with an additional focus on times when the problem was
added and removed by forecasters, (ii) trends, and (iii) ab-
solute magnitudes of the likelihood of avalanches and their
expected size for each avalanche problem type. We used the
expected punstable and the expected failure depth to approx-
imate those characteristics from the simulations (Sect. 3.2).
Furthermore, we computed the trends as the strongest trend
within a moving 5 d window, where the trend could span
a single or multiple days. Finally, (iv) we contrasted the
expected punstable and the expected failure depth of both
avalanche problem types against the reported danger rat-
ing. Since the danger rating synthesizes hazard character-
istics from all avalanche problems on a given day, we re-
duced the data set for this comparison to days when only
storm or persistent slab avalanche problems were present
but no others. Figure 5 illustrates all hazard characteristics
from the two data sets for the 2019 season: the assigned
danger rating and days with reported avalanche problems
are shown in Fig. 5a and b, respectively; the assessed likeli-
hood of avalanches from persistent and storm slab avalanche
problems is contrasted against the distribution of simu-
lated punstable in Fig. 5c and d, respectively; and the reported
expected size of avalanches is contrasted against the distribu-
tion of the simulated depth in Fig. 5e and f.

To build on previous studies from Reuter et al. (2021) and
Mayer et al. (2023), we first examined seasonal patterns be-
tween the two data sets before analyzing their daily agree-
ment in more detail. For this, we computed the seasonal fre-
quency of storm and persistent slab avalanche problems with
the approach presented by Reuter et al. (2021). Next, we ex-
plored the multi-seasonal distribution of punstable and layer
depth on the hazard chart stratified by different avalanche
danger ratings in a similar way to Mayer et al. (2023). Fi-
nally, we explored the daily agreement between simulated
and human assessments by computing multi-seasonal dis-
tributions of the simulated expected hazard characteristics
grouped by forecaster assessments. To examine daily agree-
ment in more detail and make use of the rich information
provided by the simulations, we also employed conditional
inference trees (CTrees) (Hothorn et al., 2006), a type of
classification tree that uses a statistical criterion for finding
splits. CTrees recursively partition the distribution of a re-
sponse variable based on the statistically most significant
splits along a set of explanatory variables. While the top
node of a CTree represents the most significant split that di-
vides the entire sample, the resulting subsamples are recur-
sively split into smaller subsamples until the algorithm can-
not find any significant splits in the response variable any-
more. The resulting terminal nodes describe subsets of the
data set with distinct distributions of the response variable
that can be linked to specific combinations and thresholds of
the explanatory variables. For the present analysis, we used
the CTree function in the R package “partykit” (Hothorn and
Zeileis, 2015). We fitted CTrees for both assessed and mod-
eled hazard characteristics as response variables that used

explanatory variables from the other data set. The follow-
ing lists all variables included in the CTree analysis, first the
reported variables from the human assessments:

– danger rating

– problem type (i.e., storm and persistent)

– problem status (i.e., present, absent)

– expected likelihood of associated avalanches

– expected size of associated avalanches

– trend of problem status (i.e., problem got added or re-
moved or status remained constant)

– trends of expected likelihood and size.

Second are the variables extracted from the simulations:

– problem type (i.e., storm and persistent)

– expected punstable of problem type and other percentiles
(i.e., 10th, 25th, 50th, 75th, and 90th)

– proportion of unstable grid points with punstable ≥ 0.77

– expected depth of problem type and different percentiles
(i.e., 10th, 25th, 50th, 75th, and 90th)

– trends of expected punstable and depth.

4 Results

4.1 Seasonal patterns

Our 10-year data set contained 1289 d of forecaster assess-
ments that assigned a total of 780 persistent slab avalanche
problem days and 572 storm slab avalanche problem days.
Using a threshold for the expected punstable ≥ 0.77 to clas-
sify a problem as modeled, the simulations identified consid-
erably fewer days with avalanche problems, namely 558 and
328 persistent and storm slab avalanche problem days, re-
spectively. While this offset is evident in all seasons to
some degree, the agreement varies between individual sea-
sons (Fig. 6a and b). Overall, the relative frequency be-
tween the two avalanche problems is similar between both
data sources (Fig. 6c and d). These results are in line with
Reuter et al. (2021), whose modeling approach also sug-
gested fewer problems than actually assessed but also found
good agreement in the relative frequency of avalanche prob-
lems (Fig. 9d–f in Reuter et al., 2021).

Stratifying the predictions of the numerical hazard chart
by the assessed danger rating of the day reveals a steady in-
crease in the median expected values of both failure depth
and punstable (Fig. 7a–d). While the contour maps and their
marginal distributions for different danger ratings overlap,
the maps for low and high occupy distinct areas on the chart.
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Figure 6. (a, c) The number of days per season with assessed and modeled persistent weak layer and storm snow problems in Glacier
National Park. Solid colors refer to human assessments and hatched colors to model results. (b, d) The relative frequency of assessed and
modeled problems. A threshold of the average punstable ≥ 0.77 was used to label a problem as modeled.

The patterns for low and moderate as well as considerable
and high show most similarity, particularly since the contour
maps are focused on a smaller area for higher danger ratings.
The pattern for moderate covers most space on the chart and
is therefore most strongly characterized by variability.

In addition to the expected punstable (i.e., 50th percentile),
we explored other variants that describe the distribution
of punstable, such as the 90th percentile of punstable or the
proportion of unstable grid points (with punstable ≥ 0.77)
(Fig. A1). While the general patterns remain similar, this
comparison illustrates that not one single descriptor best dis-
criminates between the different danger ratings but that a
combination might be required (also see CTree analysis fur-
ther below). Notably, the 90th percentile of punstable best
discriminates between the danger rating low and the others.
While it is located close to the threshold of 0.77 for low, it is
substantially higher for all other danger ratings.

Comparing the multi-seasonal patterns of the numerical
hazard chart against the human assessments reveals simi-
larities and differences. Most importantly, the medians of
the assessed likelihood and size of avalanches increase in
a similar manner to the numerical predictions of Fig. 7, al-
though they are arranged slightly differently due to the cat-
egorical nature of the human assessments. Furthermore, the
contour maps and their marginal distributions show a similar
degree of overlap for different danger ratings as the simu-
lated counterparts. Again, the extreme cases of the danger
rating occupy distinct areas on the chart. However, the pat-
terns of the human assessments for moderate and consider-
able are most similar, and the variability is larger for con-
siderable and high. Lastly, the visual patterns of the con-
tour maps appear distinctly different between the two data
sources. While the numerical contours are circular, the hu-
man assessment contours suggest a decreasing trend of the
likelihood of avalanches for increasing size. The numerical
predictions indeed show similar patterns for single days, par-

ticularly for layers assigned to different date tags (Fig. 4), but
these patterns smooth out when aggregating avalanche prob-
lem types and computing multi-seasonal summaries.

4.2 Daily agreement

While examining the 10 season summaries (like Fig. 5) qual-
itatively, we initially found more disagreement than agree-
ment. For many individual hazard cycles (i.e., a consecutive
period of elevated hazard caused by the development and dis-
appearance of an avalanche problem or the cycle of its char-
acteristics), the majority of hazard characteristics showed
substantial differences between the human and simulated as-
sessment data sets. For most cycles, only one or two char-
acteristics, such as either absolute magnitudes or trends of
different variables of interest, would agree between the two
data sets, while the other characteristics showed divergent
patterns. Hazard cycles with higher levels of agreement in
the majority of characteristics were rare. However, a more
detailed analysis of the time series that took operational con-
siderations into account revealed more valuable insight.

This paragraph highlights several examples from the
2019 season (Fig. 5). The operational forecasting program
started on 1 December and instantly reported a persistent
weak layer problem. At first sight, this assessment is at odds
with the distribution of punstable, which remained at its sea-
sonal minimum for about 1 week. However, the instability
was modeled to be high for the entire week before the fore-
casting program started and relaxed during the first 2 d of
operations. The human assessments during that period most
likely took a conservative approach and included the prob-
lem due to limited data availability at the beginning of the
season, but they acknowledged the dormant character of the
problem at the same time by publishing danger rating low.
Upon loading the persistent layer with several storm cycles
between 10 December and 5 January, both data sources agree
on the presence of both storm and persistent problems, show
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Figure 7. (a, c, e, g) Contour maps of the numerical hazard chart and (b, d, f, h) the human assessment hazard chart stratified by different
danger ratings from human assessments. The colored square labels highlight the median values of the contour maps and are identical within
the left and right columns of the panels. The violins show the marginal distributions of the contours. While the expected punstable and the
expected depth represent continuous numbers, the assessed likelihood and size are expressed on five-level ordinal scales with half steps,
which causes the contours to appear binned around the grid intersections.
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comparable trends in hazard characteristics, and suggest a
correlation between modeled instability and reported dan-
ger rating. A short storm cycle starting on 10 January led
to storm and persistent problems in the human assessment
data set. However, since no new snow was modeled during
that time period, the modeled hazard characteristics devi-
ated from the assessments for several days. Another brief
2 d storm problem starting on 19 January was captured by
the instability predictions, and the resulting persistent prob-
lem was anticipated by the simulations 2 d earlier than in the
assessments. Despite these two problems, the danger rating
remained mainly at moderate until the simulated depth of the
weakness increased substantially on 1 February, when the
danger rating also increased to high. After this short-lived
peak of instability, the danger rating, the reported likelihood
of avalanches from persistent problems, and punstable de-
creased in concert. After the initial 2 d of decreasing hazard,
the distribution of punstable started to span a wider range, sug-
gesting more variable conditions for triggering. The persis-
tent problem was removed by the forecasters on 15 February,
a week after the modeled interquartile range of punstable val-
ues had decreased below the threshold of 0.77. In the subse-
quent weeks, several short and mid-level peaks of modeled
instability around the threshold of 0.77 were not reflected in
the human assessments. Each of the peaks was caused by lit-
tle snowfall amounts below daily averages of 10 cm. A final
hazard cycle of the season between 16 and 23 March was en-
tirely missed by the simulations. Forecasters issued loose wet
avalanche problems, and temperatures rose above the freez-
ing level. Although human assessments reported persistent
problems, modeled punstable values remained very low, high-
lighting that the random forecast classifier was trained for
dry snow conditions.

Our qualitative analysis of the seasonal summaries for the
other winters revealed the following findings. The modeled
instability predictions of persistent problems appear more
sensitive to recurrent snow loading than forecaster assess-
ments of the likelihood of avalanches. Particularly subtle
day-to-day variations seem to agree better with the reported
danger rating than the likelihood of persistent avalanches. In-
terestingly, the 2017 season contained a case when a heavy
prolonged snowfall that lasted for longer than 2 weeks led the
modeled instability of persistent layers to decrease consider-
ably, while the instability in storm snow remained high. Not
surprisingly, the forecaster assessments listed both problems
with peak likelihoods of triggering avalanches, and the dan-
ger rating fluctuated between considerable and high. Another
notable situation occurred in 2018 when a persistent weak
layer problem was dominating the bulletin for 9 weeks and
simultaneously kept the modeled instability in persistent lay-
ers well above the threshold. We also found several instances
when an increase in the range of the distribution of punstable
coincided with a decrease in the reported likelihood or dan-
ger rating. Although more nuanced, layer-specific informa-
tion, such as average snow profiles (Herla et al., 2022, 2024b)

or date tag subsets (Fig. 4b), was often helpful in better un-
derstanding times when persistent problems were added. We
also found that the distribution of punstable added value to the
process of understanding the different phases of individual
hazard cycles for both storm and persistent problems. Vi-
sualizations of the season summaries (like Fig. 5) that are
not printed in this paper are provided in the code repository
(Herla et al., 2024a).

Our quantitative analysis of the multi-seasonal distribu-
tions of modeled hazard characteristics using CTrees and
direct comparisons supports our qualitative findings. There
are distinct differences between storm and persistent slab
avalanche problems. The expected punstable discerns better
periods of the reported presence and absence of storm prob-
lems than persistent problems (Fig. 8a and b). For both prob-
lems, the distributions of the expected punstable are shifted
to significantly larger values when the problem is present
(Wilcoxon rank sum test: P < 0.001), but there is consider-
ably more overlap for persistent problems. The addition and
removal of storm snow problems are accompanied by mostly
increasing and decreasing trends in the expected punstable
(Wilcoxon rank sum test: P < 0.001; Fig. 8c), respectively.
In contrast, the distributions of the absolute expected punstable
and the trend of the expected punstable do not show any differ-
ences between days when a persistent problem was added or
removed (Wilcoxon rank sum test: P = 0.5; Fig. 8d). Com-
paring the distributions of the trend of the expected punstable
for different reported trends of the likelihood of avalanches
shows no significant patterns for either avalanche problem
type (Wilcoxon rank sum test: P > 0.17; Fig. 8e and f).
Lastly, the absolute values of the expected punstable and the
expected failure depth show meaningful patterns given their
reported counterparts (Fig. 8g–j), although there is substan-
tial overlap within the grouped distributions. Here, the trends
are more apparent for persistent problems and expected depth
with each modeled median consistently increasing for each
increase in the ordinal assessment variable (notched box
plots of Fig. 8h and j; for notches see Chambers et al., 2018,
p. 61) (Kendall’s τ : 0.16 and 0.17 for Fig. 8g and i and 0.17
and 0.32 for Fig. 8h and j, respectively).

Our CTree analyses of the hazard characteristics that did
not show strong trends in their multi-seasonal distributions
mainly uncovered inconsistencies between both data sources
and did not reveal any additional insightful findings. We
therefore limit our description to the CTrees that use the ex-
pected punstable and the reported danger rating as response
variables. To focus readers’ attention and highlight patterns
more clearly, we limit the visual representation of the CTrees
to a few levels. Deeper splits that showed insightful relations
are mentioned in the text only.

The CTree for the expected punstable (Fig. 9) highlights
a strong interaction between persistent and storm slab
avalanche problems (Node 1). The distributions of the ex-
pected punstable are shifted towards larger values for increas-
ing the reported likelihood of avalanches if only persistent
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Figure 8. Multi-seasonal distributions of numerical hazard characteristics grouped by categorical assessments of human forecasters for
(a, c, e, g, i) storm snow problems and (b, d, f, h, j) persistent weak layer problems.
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Figure 9. CTree for the expected punstable examining the interaction effects of explanatory variables extracted from human assessments.

problems are reported in the assessments (left branch with
Nodes 2–6). However, if both problems are reported, the ex-
pected punstable of persistent layers (Node 8) is yet signifi-
cantly larger, independently of the reported likelihood. Storm
snow problems are generally associated with smaller values
of the expected punstable and are influenced by the reported
likelihood more strongly than by the interaction with persis-
tent problems (Nodes 9–13).

The first CTree for the reported danger rating explores
its relation to simulated hazard characteristics (Fig. 10a).
The most significant splits of the CTree are driven by char-
acteristics that pertain to the likelihood of avalanches (i.e.,
percentiles of punstable and the proportion of unstable grid
points: Nodes 1, 2, and 5), followed by characteristics that
pertain to avalanche size (i.e., percentiles of layer depths:
Nodes 6 and 9). While the 90th percentile of punstable dis-
cerns low-hazard situations (Nodes 1–4), it is the proportion
of unstable grid points (with punstable ≥ 0.77) that initiates
the splits for higher-hazard situations (Node 5). This nicely
illustrates that hazard is driven by the weakest instabilities
combined with the spatial distribution of instability, but not
by stability, which would be expressed by the more stable
part of the distribution (i.e., lower percentiles of punstable).
At this point, the depth of the layers becomes important. The
90th percentile of expected failure depth explains the hazard
when less than 55 % of grid points are unstable. For depths
less than 30 cm the hazard is significantly lower than for
situations when avalanches could potentially release deeper
(Nodes 7–8). However, if the majority of grid points are un-
stable, the 10th percentile of expected failure depth identifies

the highest-hazard situations (Node 9). If avalanches are ex-
pected to release at at least 35 cm deep, the hazard is almost
exclusively rated as considerable or high (Node 11). Deeper
splits show that the hazard rating generally tends to be higher
for storm snow problems than for persistent problems (not
shown but discussed in detail in Sect. 5.1).

We recomputed the CTree for the reported danger rating
by using explanatory variables from the human assessments
(instead of the simulations) to illustrate similarities and dif-
ferences between the two data sources (Fig. 10b). In con-
trast to the previous CTree with the simulated predictors, the
most significant split is driven by the presence and absence of
avalanche problems (Nodes 1–2). As expected, the hazard is
mostly low when no problem is present (Node 3). A sole per-
sistent slab avalanche problem increases the hazard to mostly
moderate, while the reported likelihood of avalanches af-
fects the hazard level (Nodes 5–6). In situations with only
a storm snow problem or both problems being present, the
likelihood of avalanches being at “almost certain” discerns
most days with high hazard (Nodes 7, 11). Only at a third
level does the expected size of avalanches shift the hazard
between moderate and considerable (Nodes 8–10). Despite
the substantial importance of the presence and absence of
avalanche problems in this CTree, both CTree analyses for
the reported danger rating suggest that the reported likeli-
hood of avalanches is slightly more influential than their ex-
pected size. Furthermore, both CTrees suggest meaningful
combinations and thresholds of explanatory variables, while
the CTree using human assessment predictors is character-
ized by slightly less variability than the CTree using numer-
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Figure 10. CTrees for the reported danger rating examining the explanatory performance of (a) modeled hazard characteristics and (b) human
hazard assessments.

ical hazard characteristics (mean relative frequency of the
modes of the terminal nodes equals 0.66 versus 0.51, respec-
tively).

5 Discussion

The following discussion is structured around the two over-
arching research objectives. We first discuss the insights
and implications from our comparison between simulations
and human assessments before reviewing the benefits of the
proposed spatial modeling framework and reflecting on the

limitations. All sections speak to snowpack modelers and
avalanche forecasters alike.

5.1 Insights from the comparison between simulations
and human assessments

Reuter et al. (2021) use different process-based indices
for natural versus artificial triggering and dry versus wet
slab avalanches, whereas Mayer et al. (2023) and Hendrick
et al. (2023) derived data-driven models for natural dry slab
avalanche and natural wet slab avalanche activity, respec-
tively. Our study only uses one stability index, punstable as
developed by Mayer et al. (2022), to characterize dry snow
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instability in the context of artificial triggering. Although
this decision limits the scope of the present study concep-
tually, comparisons with the patterns found by Reuter et al.
(2021) and Mayer et al. (2023) show very encouraging simi-
larities. Reuter et al. (2021) focused their model validation on
a well-documented case of critical snow instability over the
course of 10 d as well as on seasonal comparisons against
avalanche observations and hazard assessments in Switzer-
land and Canada spanning multiple years. Although the ap-
proaches of characterizing snow instability differ between
Reuter et al. (2021) and the present study, seasonal compar-
isons of modeled storm and persistent slab avalanche prob-
lem days against hazard assessments from Glacier National
Park, Canada, show very similar patterns (Sect. 4.1 and Fig. 6
of this study; Fig. 9d–f in Reuter et al., 2021). Both model-
ing approaches suggest fewer avalanche problem days than
were actually issued but agree with the human assessments
on the relative frequency of the different problem types. This
is in line with direct comparisons between punstable and a
combination of process-based instability indices conducted
by Herla et al. (2024b), who found similar performances in
the characterization of weak layers.

Mayer et al. (2023) nicely illustrate how their data-driven
models for predicting the probability of natural dry slab
avalanche activity and their expected size can be used to
simulate avalanche problem characteristics. While they did
not distinguish between different avalanche problem types,
they used the hazard chart of the CMAH (Statham et al.,
2018a) to demonstrate that their model predictions are in
line with multi-seasonal patterns of verified danger ratings
from 21 years (Fig. 10 in Mayer et al., 2023). A compari-
son with Fig. 7a, c, e, and g of our study shows very similar
patterns. In both studies, the contours of the joint distribu-
tion of likelihood and size (or expected punstable and layer
depth) migrate nicely from the lower left to the upper right
corner with increasing danger ratings, and the medians show
clear and comparable trends. While the contours show a con-
siderable amount of spread for all danger rating levels, the
Canadian data set tends to show more overlap than the Swiss
one, which is likely caused by the fact that Canadian dan-
ger ratings are of lower quality since they represent opera-
tional nowcasts compared to the verified reanalysis ratings in
the Swiss data set (Mayer et al., 2023). Interestingly though,
the Swiss data set shows the biggest spread for considerable,
whereas the Canadian data set has it for moderate. Despite
the agreement on general patterns, a detailed comparison of
the absolute values along the likelihood axis of the contour
plots reveals some differences. Since Mayer et al. (2023)
derived the likelihood characteristic from the probability of
more than 50 % of grid points being unstable, their numerical
predictions span the entire range within [0, 1]. Our likelihood
estimates, on the other hand, are limited to a much smaller ef-
fective range, since we use the punstable output of the random
forecast classifier. However, this discrepancy can easily be
accounted for by shifting the base line of the hazard chart.

Lastly, our median predictions of expected failure depth are
slightly larger than those reported by Mayer et al. (2023)
for danger ratings low to considerable and smaller for high,
which we attribute to differences in model setup (weather-
model-driven versus weather-station-driven) and the under-
lying hazard assessment approaches.

Although the seasonal and multi-seasonal comparisons
of simulated and reported avalanche problem characteris-
tics presented in this and other studies (Reuter et al., 2021;
Mayer et al., 2023) show encouraging agreement, our in-
depth comparison of their temporal evolution shows very
variable agreement. There are only a very few days when
most hazard characteristics from both data sources agree, but
most hazard cycles show some degree of agreement in select
characteristics, although these characteristics vary between
different cycles. Taking operational considerations into ac-
count helped explain the observed differences at times. This
general finding is in line with the results of Herla et al.
(2024b), who validated snowpack simulations for their ca-
pabilities to capture critical layers of operational concern.
While they found reasonable patterns overall, the agreement
in their seasonal validation was substantially higher than in
the validation using daily observations. Our analysis also
showed that the simulated characteristics of storm problems
seem better suited to determine their presence and absence,
while the numerical characteristics of persistent problems
could better inform the likelihood and size of persistent slab
avalanches.

While the human avalanche hazard assessments used in
this research aim to accurately represent the current condi-
tions based on the available information and snow science
considerations, they are ultimately subjective judgments for
the purpose of informing the public about the existing haz-
ard (McClung, 2002a, b; Statham et al., 2018a). As such, they
are influenced by several operational considerations, which is
different from the simulations that focus purely on physical
conditions. For example, forecasters may continue to issue a
persistent problem to highlight its lingering character even if
they do not expect associated avalanches on the specific day.
At other times, forecasters may remove the problem on these
low hazard days even if the problem is still present to prevent
message fatigue and have a chance to more strongly empha-
size the timing of the reawakening of the problem (Hordow-
ick, 2022). For these reasons, it is unrealistic to expect that
the numerical predictions align closely with all aspects of the
human assessments (Horton et al., 2020c).

Given these differences, our comparison poses the ques-
tion of which data source represents reality better when
they disagree. While model simulations have started to out-
perform observation networks in related geophysical fields
(Lundquist et al., 2019), completely misassessed avalanche
forecasts have been rare for a long time (LaChapelle, 1980).
Nonetheless, inherent uncertainty in the data sets available to
human forecasters and inconsistencies found in the assess-
ments support the notion that high-quality forecasts are rare
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too (LaChapelle, 1980; Schweizer, 2008). We therefore ar-
gue that the model predictions can also add value to situa-
tions where the present results show rather variable or even
poor agreement, at the very least as independent pieces of
information that provoke critical reflection on human assess-
ments.

One of the situations where simulated avalanche problem
characteristics could be particularly helpful for forecasters
is the removal of persistent slab avalanche problems. Both
Horton et al. (2020c) and Hordowick (2022) found that fore-
casters struggle with the decision to remove persistent slab
avalanche problems. We also found evidence of this issue
in our analysis where the timing of forecasters’ removal
of reported persistent problems was often much later and
was mostly uncorrelated to the simulated avalanche problem
characteristics. Hence, in these difficult-to-assess situations,
the simulations might provide valuable information about the
instability of the relevant weak layers. Another advantage of
the numerical predictions is that they depict the evolution of
instability and depth more continuously and at a finer res-
olution than the coarser, ordinal human assessments. This
presents forecasters with a more subtle perspective on the
evolution of the hazard characteristics.

Our CTree analysis revealed a strong degree of interac-
tion between storm and persistent slab avalanche problems,
which is consistent with the findings of Horton et al. (2020c).
Our results show that when there is no reported storm snow
avalanche problem, the reported likelihood of persistent slab
avalanches increases with increasing punstable (i.e., decreas-
ing stability) as expected. When a storm snow problem was
reported on the same day, however, punstable was usually
highest and did not correlate with the reported likelihood
of the persistent problem anymore. This is supported by our
qualitative analysis that found modeled instabilities of per-
sistent layers to be more sensitive to new snow loading than
the human assessments would suggest. However, the model
perceives concurrent instabilities in the storm snow to be
more stable (i.e., lower values of punstable), which is differ-
ent from forecasters who tend to assign higher likelihoods of
avalanches and higher danger ratings to storm slab avalanche
problems (Clark, 2019). This suggests that either punstable is
better suited for persistent layers (which it was developed
for) or forecasters generally overestimate the likelihood of
storm slab avalanches relative to persistent slab avalanches.
Despite these nuances, overall, punstable seems to characterize
the transition from rather stable to rather unstable conditions
well. The patterns from the present study are in line with
the previously reported threshold of punstable ≥ 0.77 (Mayer
et al., 2022) and the logistic regression in Mayer et al. (2023,
their Fig. 5b) that highlights a rapidly increasing probability
of natural dry slab avalanches for punstable ≥ 0.75–0.85.

Our qualitative and quantitative analyses both suggest that
the reported danger rating aligns better with the simulated
avalanche problem characteristics than the reported likeli-
hood of avalanches. Comparisons between modeled instabil-

ity and reported likelihood of avalanches showed a consid-
erable amount of unexplained variability. Nonetheless, the
modeled instabilities and layer depths were able to explain
the reported danger rating almost as well as the reported haz-
ard characteristics. Although punstable was only trained with
snowpack characteristics, the local danger rating was used to
filter only for stable and unstable profiles on low and high
hazard days, respectively, which may create a subtle correla-
tion. Interestingly, the reported characteristic with the most
explanatory power was the presence or absence of avalanche
problems and not the likelihood or size of avalanches. We hy-
pothesize that this observation is at least partially due to the
nature of the characteristic that represents a more high-level
assessment and, as a binary variable (presence/absence), is
easier to assess than a five-level ordinal scale. This was
originally highlighted by Atkins (2004), the conceptual cre-
ator of avalanche problem types, who argued that traditional
stability assessments are subject to substantial uncertainties
and cannot express all important aspects of the severity of
avalanche hazard, even if combined with expected avalanche
size.

A notable finding for snowpack modelers is that our CTree
analysis suggests that it is better to use detailed distribu-
tion information about instability and layer depth to describe
avalanche hazard over a spatial domain than just using their
average values. More specifically, the combination of the
90th percentile of punstable and the proportion of unstable grid
points (with punstable ≥ 0.77) together with the full envelope
of the depth distribution (10th to 90th percentiles) was deter-
mined by the CTree to explain the hazard best. For instability,
this finding can be re-interpreted as “the weakest instabilities
paired with the distribution of instability drive hazard”. How
stable individual grid points were (i.e., lower percentiles) did
not emerge as an important explanatory variable.

5.2 Benefits of the proposed spatial modeling approach

The modeling approach presented in this paper expands on
the methods presented by Reuter et al. (2021) and Mayer
et al. (2023) by extracting information from distributed simu-
lations in a way that preserves knowledge about layers across
space and time. The approach adopts concepts from the prac-
titioner community to make the output of numerical pre-
dictions of avalanche problems from large-scale simulations
more organized, transparent, and informative for forecasters.
By splitting the overall hazard into contributions from differ-
ent regional layers, the model predictions cater to the existing
sensemaking process of forecasters, which will allow them to
integrate the simulated information into their mental model
more easily.

This approach also makes it easier for forecasters to iden-
tify times when the modeled predictions deviate from reality,
like when a specific hazard-driving weak layer is missed in
the simulations or a non-existing layer is modeled. In these
situations, the proposed modeling approach allows forecast-
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ers to keep using the simulations as an information source
for all other regional layers since they are each assessed sep-
arately. This is not supported by other approaches that do
not group layers based on date considerations, and it would
therefore require a sophisticated data assimilation or model
correction scheme to keep using the avalanche problem pre-
dictions in an informative way until the influence of the mis-
represented layer has vanished.

There are several additional advantages to the proposed
approach. Since we are grouping layers by date tags, we are
not limited to extracting unstable layers. Instead, we can, for
example, extract the most unstable layer at each grid point
that belongs to a specific date tag. This allows us to compute
the entire distribution of instability associated with each date
tag across all grid points, while other approaches are limited
to using the proportion of unstable grid points (Herla et al.,
2024b; Mayer et al., 2023). Our approach also allows the
tracking of layer characteristics during the transitions from
instability to stability and can continue to provide informa-
tion about the distribution of the depth of regional layers once
they have become dormant. While the approach of Reuter
et al. (2021) also supports this for individual layers at sin-
gle locations, the grouping by date tags enables the contin-
uous tracking for spatial simulations. Furthermore, the date
tag approach is computationally more efficient and can be
resourcefully applied to large-scale simulations. Finally, our
approach avoids the known limitation of Reuter et al. (2021)
that may miss the faceting of already-buried layers.

An additional feature that has not yet been implemented in
our avalanche problem assessment is the integration of step-
down potential. If an individual layer has become dormant,
it does not contribute to the expected failure depth. However,
forecasters might be interested in knowing whether the re-
lease of a shallower avalanche could trigger the layer. Our
approach can help support this feature by identifying times
and grid points when and where the triggering of a shallower
layer is likely.

5.3 Limitations

While our approach of extracting avalanche problem infor-
mation from spatial snowpack simulations offers a promis-
ing method, and the comparison against human hazard as-
sessments revealed useful insights, our contribution has to be
interpreted in light of several limitations. We have already
alluded to two of these limitations earlier. First is the poten-
tial inconsistencies and biases contained in the human haz-
ard assessments that prevent us from using it as a reliable
ground truth during times of disagreement. Hence, our anal-
ysis should not be viewed as a complete validation of the
simulations. Second, our choice of only focusing on modeled
snowpack data and only one stability index limited the anal-
ysis of this paper to only storm and persistent slab avalanche
problems. While the present analysis can be seen as a proof
of concept, further effort is needed to integrate other data

sources (e.g., wind fields), other stability indices6, and even-
tually other problem types into our analysis framework and
to compare the predictions to assessments from other fore-
cast regions and snow climates. Lastly, we want to acknowl-
edge the limitations caused by uncertainties in the simula-
tions. The quality of the numerical avalanche hazard char-
acteristics depends heavily on the correct representation of
the slab and the formation of the weak layer. Raleigh et al.
(2015) and Richter et al. (2020) report that precipitation is
the primary source of error for snowpack structure and stabil-
ity predictions, which was further confirmed by Horton and
Haegeli (2022), who examined differences in observed and
modeled snow amounts. Combined with our present findings
related to the sensitivity of the stability predictions in new
snow loading, we can confidently say that the precipitation
input is likely the main source of error in the present analy-
sis. The second source of error, the correct formation of the
weak layer, is governed by the interplay of several forcing
variables combined with the correct timing. Errors in weak
layer formation only need to happen during a short time win-
dow to negatively affect the stability predictions for several
weeks thereafter. The interested reader is referred to Herla
et al. (2024b) for a more in-depth discussion about model
performances in capturing critical layers of concern.

6 Conclusions

We presented a spatial approach to extract the characteristics
of storm and persistent slab avalanche problems from dis-
tributed snowpack simulations by grouping individual lay-
ers based on their regional burial dates. Our approach al-
lows for computationally efficient tracking of instabilities
across space and time to compute spatial distributions of haz-
ard characteristics that are consistent with existing avalanche
forecasting practices. We applied the approach to 10 winter
seasons in Glacier National Park, Canada, and compared the
numerical predictions to human hazard assessments to quan-
tify seasonal and daily agreement.

Although the seasonal summaries of the numerically pre-
dicted avalanche problems showed strong similarities with
human hazard assessments and agreed with the results of
existing research (Reuter et al., 2021; Mayer et al., 2023),
our comparisons of the daily characteristics of the avalanche
problems revealed considerable discrepancies. The best
agreements were found in the presence and absence of storm
slab avalanche problems and in the likelihood and expected
size assessments of persistent slab avalanche problems. How-

6For example, the skier stability index SK38 (Monti et al., 2016)
and the critical cut length rc (Richter et al., 2019) (both for artifi-
cial triggering of dry slab avalanches), the expected time to failure
(Conway and Wilbour, 1999) (for natural dry slab avalanche ac-
tivity), the liquid water content index (Mitterer et al., 2013), and
the random forest classifier by Hendrick et al. (2023) (for wet slab
avalanche activity).

https://doi.org/10.5194/nhess-25-625-2025 Nat. Hazards Earth Syst. Sci., 25, 625–646, 2025



642 F. Herla et al.: Comparing simulated and reported avalanche problem information

ever, our qualitative examination also suggested the numer-
ical predictions might have a better handle on the removal
of persistent slab avalanche problems, a known operational
challenge (Hordowick, 2022). Our analyses also revealed
that avalanche hazard was better explained by the combina-
tion of various percentiles of simulated instability and failure
depth than by simple averages or proportions, which high-
lights the value of having access to the full distribution infor-
mation. Lastly, the comparison of the two data sources with
respect to multiple hazard characteristics led us to build more
confidence in the reported danger rating than the reported
likelihood of avalanches.

While differences between human assessments and simu-
lated data sets are expected, an important caveat of our study
is that it is unclear which of the two data sets represents
the truth better. Interestingly, our analyses showed that both
data sets have their own strengths and weaknesses and can
contribute to a better understanding of the conditions. How-
ever, it is beyond the present comparison to explain in detail
why the two data sources disagree. To answer this question
and properly validate the numerical predictions (particularly
the temporal integrity of existing stability indices and their
underlying parametrizations), we need scientific-grade data
sets of complete avalanche hazard assessments, which is cur-
rently not available in Canada. Such a data set could also
be used to develop predictive data-driven models. Further-
more, future research should leverage existing data sets on
avalanche activity, such as remote detections and manual ob-
servations, to better identify times when model simulations
align with actual conditions.

To further strengthen avalanche forecasters’ familiarity
with the strengths and weaknesses of large-scale snowpack
simulations, we encourage the use of dashboards that facil-
itate real-time comparisons between human assessment and
model data sets. Understanding their current capabilities re-
quires careful study of context and the consideration of oper-
ational practices that differ from the purely physical compu-
tations of the simulations. Since assessing some hazard char-
acteristics is easier than others, there is potential for gauging
the current value of the simulations and integrating them into
the reasoning process accordingly. Even at times when fore-
casters disagree with the numerical predictions, they can be
a valuable independent information source that can trigger
critical reflection.
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Appendix A: Contour maps based on different variables
describing the distribution of punstable

Figure A1. Contour maps of the numerical hazard chart, using the expected punstable (i.e., 50th percentile) as in Fig. 7a, c, e, and g (left
column); the 90th percentile of punstable (middle column); and the proportion of unstable grid points with punstable ≥ 0.77 (right column).
The charts are stratified by their reported danger ratings from human assessments (different rows). The colored square labels highlight the
median values of the contour maps and are identical within each column. The violins show the marginal distributions of the contours.
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