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Abstract. Landslide inventories are crucial for the assess-
ment of landslide susceptibility and hazard. An analysis of
old landslides can reveal periods of intensified landslide ac-
tivity, but the features of these landslides may have dimin-
ished over time, particularly in the context of human impact.
However, landslide features are often preserved well under
forest cover and are thus valuable for compiling or updating
landslide inventories. However, the mapping of these fea-
tures remains challenging. Light detection and ranging (li-
dar) analysis and its derivatives are essential in landslide re-
search, particularly in landslide identification and mapping.
Unlike the expert-based analysis of lidar derivatives, the
use of object-based approaches to map landslides from lidar
data (semi)automatically requires further studies. This study
adopts geographic-object-based image analysis based solely
on lidar derivatives for the inventory mapping of forest-
covered old landslides within a middle-mountain region in
Jena, Germany, and surrounding areas. A manually prepared
expert-based inventory map was used for model training and
validation. Lidar derivative data were processed using (a) a
default moving-window size (3 x 3; model I) and (b) an op-
timal window size (model II). Multi-resolution segmenta-
tion and support vector machine classification with distinct
rule sets were implemented for each model, followed by re-
finement and accuracy assessment against the inventory map
for model performance evaluation. The proposed approach
achieved a 70 % detection of existing landslides compared
with the inventory. Model II outperforms model I in accuracy,
as indicated by its superior performance in scarp area detec-
tion (15 % improvement) and significantly lower false posi-
tives (30 % reduction). However, although this method excel-

lently identifies and maps forest-covered old landslides, its
applicability is currently limited to large and medium land-
slides (area > 0.5 ha). Overall, our findings suggest that land-
slides worldwide with clear geomorphological signatures in
lidar data can be identified using this approach.

1 Introduction

Landslides are significant in landform evolution, and numer-
ous regions worldwide have considerable landslide hazard.
In certain areas, landslides frequently cause greater mortal-
ity and economic loss than other natural hazards, such as
earthquakes, volcanic eruptions and floods (Guzzetti et al.,
1999, 2021; Aksoy and Ercanoglu, 2012). Landslide haz-
ard is the probability of a landslide of a specific magnitude
occurring in a particular area within a defined time frame
(Guzzetti et al., 1999). Landslide hazard assessment neces-
sitates the creation of detailed landslide maps, with land-
slide inventory maps specifically recording the geographic
distribution of documented landslides based on their detec-
tion and delineation (Guzzetti et al., 1999). Such inventories
are traditionally developed through analyses of aerial pho-
tographs, supplemented by fieldwork and collection of his-
torical data (Guzzetti et al., 1999, 2012; Santangelo et al.,
2010). Albeit a standard geomorphological practice, the field
mapping of landslides, particularly older ones, is hindered
by factors such as landslide size, limitations in field per-
spectives, forest cover or erosion and anthropogenic modi-
fications. Compared with traditional field techniques, remote
methods using aerial photographs and high-resolution digi-
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tal elevation models (DEMs) provide more comprehensive
and accurate data, increasing mapping precision (Santangelo
et al., 2010; Guzzetti et al., 2012; Bell et al., 2012; Crawford,
2014; Schmaltz et al., 2016; Petschko et al., 2016; Bernat
Gazibara et al., 2019).

In recent decades, geographic-object-based image anal-
ysis (GEOBIA) has emerged as a powerful method for
semi- or fully automated landform mapping (e.g. Dragut
and Blaschke, 2006; Blaschke, 2010a; Schneevoigt et al.,
2010; Seijmonsbergen et al., 2011; Anders et al., 2011,
2013; Dragut and Eisank, 2012; Zylshal et al., 2013; Eisank
et al., 2014; Robb et al., 2015; Pedersen, 2016; Guilbert and
Moulin, 2017; Hossain and Chen, 2019). The integration of
GEOBIA into semi-automatic landslide mapping is a signif-
icant development in this field. Lahousse et al. (2011) de-
veloped a multiscale GEOBIA technique for landslide map-
ping, but it is limited to specific areas and landslide types.
Aksoy and Ercanoglu (2012) proposed a semi-automatic in-
ventory mapping method that uses fuzzy logic based on the-
matic data and spectral information. Feizizadeh and Blaschke
(2013) developed a rule-based classification approach utilis-
ing satellite data. Holbling et al. (2016) identified spatiotem-
poral landslide hotspots by analysing historical and recent
aerial photographs. Holbling et al. (2017) compared GEO-
BIA and manual mapping approaches and concluded that
GEOBIA-based semi-automatic mapping encounters diffi-
culties in areas where landslides are covered by vegetation.
Karantanellis et al. (2020, 2021) stated that landslide mod-
elling based on unmanned aerial vehicles (UAVs) enables de-
tailed, automated landslide characterisation, with high adapt-
ability to specific sites. They also found that UAVs en-
able time- and cost-efficient data collection, whereas ma-
chine learning algorithms are effective for local-scale sub-
zone landslide mapping when integrated into GEOBIA. Dias
et al. (2023) showed that applying GEOBIA-based methods
to high-resolution satellite imagery can successfully identify
shallow landslides and debris flows with over 70 % accuracy.
Karantanellis and Holbling (2025) further emphasised the
utility of high-resolution digital data, in combination with
GEOBIA-based methods, for improving landslide mapping
and assessment accuracy.

Limited studies have explored the use of GEOBIA for
landslide mapping in forested regions, particularly in the un-
derexamined context of old landslide inventories. Plank and
Martinis (2016) used an object-based and change detection
approach with DEM and synthetic-aperture radar (SAR) im-
agery to map landslides in vegetated areas by integrating pre-
event optical and post-event very-high-resolution polarimet-
ric SAR data. However, their study focused only on fresh
landslides, not old landslides under forest cover. Compre-
hensive inventory mapping is required to address this lim-
itation. Eeckhaut et al. (2006, 2012) studied landslides oc-
curring beneath forest cover, achieving a detection rate of
approximately 70 % using lidar data alone. Their investiga-
tion encompassed multiple levels, but the moving-window
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size of land surface variables (LSVs) for landslide compo-
nents (e.g. landslide scarp and body) were not adequately ad-
dressed; both components were treated using the same win-
dow size. Knevels et al. (2019) used open-source software to
map forest landslides using GEOBIA. Using high-resolution
lidar data, they attained a 69 % detection rate relative to man-
ual mapping. Despite using default window sizes, the authors
acknowledged the potential of identifying the optimal win-
dow size for different landslide portions, possibly enhanc-
ing model performance. In summary, previous researchers
used default window sizes to calculate LSVs, underscoring
the need to explore optimal moving-window approaches to
enhance landslide mapping.

Determining the optimal window sizes for different LSV's
relative to specific landforms is critical in semi-automatic
landform detection using digital data; a detailed review of
scale-related issues is available in Dragut and Eisank (2011).
Seijmonsbergen et al. (2011) demonstrated that using mul-
tiple window sizes for LSVs can enhance semi-automatic
landform detection. They found that different landscape fea-
tures are best detected using different window sizes, but they
manually selected these sizes to compare with expert-based
mapped features. Pawluszek et al. (2018) investigated the
impact of scaling window sizes on the automatic detection
of landslides using digital terrain model (DTM) data. After
DTM rescaling, the landslide modelling accuracy improved
relative to that of the original (non-rescaled) DTM. Sirbu
et al. (2019) developed an automated approach to select-
ing the optimal window size of each LSV relative to land-
slide scarps, significantly improving detection accuracy in
two study sites in comparison with that under the default se-
lection of window sizes. However, landslide bodies were not
examined in this study. No standard or operational method
has been developed to achieve this goal despite the consider-
able progress in automated landslide mapping.

This study investigates the potential of using GEOBIA and
high-resolution DTM data for the semi-automatic mapping
of forest-covered old landslides (mainly focus on the deep-
seated “rotational” landslides) in middle-mountain regions
in Jena, Germany. Specifically, the effectiveness of using li-
dar data and their derivatives for the semi-automated inven-
tory mapping of forest-covered landslides is assessed, par-
ticularly the role of optimised window sizes. The central re-
search question is as follows: How can DTM derivatives and
optimised window sizes enhance the reliability of GEOBIA-
based semi-automatic landslide mapping in forested envi-
ronments? Thus, the influence of optimal window sizes for
LSVs on the accuracy of semi-automatic landslide map-
ping is first determined. This is then compared with results
achieved using default window sizes. By addressing these as-
pects, this study seeks to advance the understanding of, and
improve practices in, landslide mapping within forested en-
vironments.
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2 Study area

The study area is in the eastern part of Thuringia, near the
city of Jena, Germany (Fig. 1). It is approximately 150 km?
in size and encompasses two elevation zones. The first zone
is a low-elevation area that includes most of the Saale River
valley and parts of the Roda River catchment. The other is
an elevated zone consisting of a plateau, low mountains and
adjacent slopes at elevations reaching 400 m above sea level
(ma.s.l.) (Zangana et al., 2023a). Moreover, the study area
is situated within the Thuringian Basin and has two pre-
dominant geological formations. The Muschelkalk Forma-
tion (limestone) predominates in the higher-altitude regions,
whereas the Buntsandstein Formation (red sandstone) dom-
inates in the lower-altitude areas (Fohlisch, 2002; Seidel,
1992).

The preconditioning factors influencing landslide occur-
rence in the study area are geological and structural charac-
teristics, particularly the stratigraphic contact between lime-
stone and underlying sandstone. This lithological configura-
tion, when combined with the steep slope geometry of the
cuesta escarpments, plays a pivotal role in the slope insta-
bility. Such structural settings are known to favour rotational
landslides, particularly in cuesta landscapes, where differen-
tial weathering and erosion of layered sedimentary rocks pro-
mote mass movement. According to Achilles et al. (2016),
the landslides may have been triggered during the Holocene,
likely beginning at the end of the Weichselian glaciation,
due to increased precipitation, glacial meltwater infiltration,
and associated hydrological changes. While the exact age of
these landslides remains uncertain, especially when relying
solely on LiDAR-derived DTMs, the widespread presence of
dense forest cover over many large landslide bodies suggests
limited recent activity and supports the possibility of an older
origin (Zangana et al., 2024). Most of the mapped landslides
occur on hillslopes in the eastern part of the Saale River
basin, predominantly facing north and northwest. However,
to the best of our knowledge, there are no recent studies or
official records documenting damage or economic losses cor-
related with older deep-seated landslides in the region.

The annual mean temperature is 9-11°C, the summer
mean is approximately 16—18 °C and the winter mean is 0-
2°C. The mean annual rainfall is 600-800 mm (TMUEN,
2017). Land use is dominated by residences, industries and
infrastructure in the valley floors and some gentle slopes.
Forests cover steep slopes and high plateaus. Farmlands are
primarily located along the floodplains of the Saale River
and its tributaries, whereas grasslands and pastures are more
sparsely distributed, mainly in the northern portion of the
study area (landnutzung). The soil types in this area include
rendzinas (Leptosols), which are on the Muschelkalk Forma-
tion, predominantly within the plateau area, and pararendz-
inas (Pelosols), which are in the Buntsandstein area and on
the slopes. However, the Holocene floodplain and flat areas
of the region are covered by gley—Vega soil types (Gleysols).
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Cambisols are found in areas dominated by sandstone, sand-
stone/siltstone and claystone sequences of the lower and mid-
dle Buntsandstein, while podsols (Podzols) are present in
some southern parts of the study area (Rau et al., 2000; Zan-
gana et al., 2023b).

3 Methodology
3.1 Data

Landslide mapping is based on lidar-DTM data with a
1 m x 1 mresolution provided by the Thuringian State Office
for Soil Management and Geoinformation (TLUBN, 2019;
Zangana et al., 2023a). Different LSVs, namely, slope, topo-
graphic openness (TO), curvature (plan and profile), terrain
roughness index (TRI) and topographic position index (TPI),
were generated using an original DTM. A landslide inventory
map (reference map) was created using manual on-screen
mapping in ArcMap 10.7. Traditional and multi-directional
hillshade were used as the primary visual base, following
the method described by Schulz (2004). Hillshades and slope
maps were visually evaluated for landslide features such as
scarps and bodies by systematically panning through the im-
agery at scales ranging from 1 : 1000 to 1 : 200 and mapped
accordingly at this scale to ensure the correct delineation of
landslide boundaries. However, additional LSVs (e.g. curva-
ture, TO, TPI, and TRI) were employed as supplementary
layers to facilitate interpretation and boundary delineation,
particularly in regions where hillshade and slope alone were
inadequate for fully resolving the geomorphic manifestation
of landslides. Furthermore, as in the method applied by Zan-
gana et al. (2023b), we incorporated a LSVs-composite map
visualisation that improved the detection of morphological
features of landslides. Scarps and bodies were mapped sepa-
rately wherever they could be clearly distinguished. In a few
instances, scarp features could not be identified with confi-
dence from the available data. Approximately 10 % of the
mapped landslides were validated in the field. The inven-
tory primarily includes deep-seated (rotational) landslides
(34 landslides), along with a few shallow landslides (6 land-
slides).

3.2 GEOBIA-based landslide inventory mapping

We used the software eCognition 10.3 and developed a struc-
tured workflow to design a rule set for semi-automatic land-
slide mapping. This workflow enabled landslide identifica-
tion using two distinct models. Model I (MI) used the de-
fault window size to calculate the LSVs as a pre-processing
step for segmentation and classification, whereas model II
(MII) used the optimal window size. The final results were
exported as shapefiles to ArcGIS 10.7. The overall method-
ological framework, consisting of three main stages, is illus-
trated in Fig. 2.

Nat. Hazards Earth Syst. Sci., 25, 4787-4806, 2025
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Figure 1. Study area. (a) Map: An orthophoto of the study area is overlaid on a hillshade DTM, with the landslide inventories delineated by
white polygons. (b) Photo (taken by Ikram Zangana on 24 February 2019): The photo faces the southeast direction, showing the hillslopes
of Kerenberge, Hausberg and Jenzig, along with a forested area and part of Jena City. Key locations are marked (1, 2 and 3), and the white
dashed lines indicate the lithological boundaries, with Muschelkalk (mu) limestone above and Buntsandstein (bu) sandstone below. The
orthophoto and the hillshade-DTM in (a) were obtained from TLUBN (2019) and other datasets are sourced from Esri (2017).

3.2.1 STAGE I: Data preparation

This stage was divided into two main steps. Step 1: A land-
slide inventory map was manually prepared using DTM hill-
shade data and a visual analysis of all relevant LSVs. This
inventory map served as a reference for model development
and as a baseline with which the final GEOBIA results were
compared for accuracy assessment (AA). Step 2: ArcGIS
10.7 and R 4.3.2 were used to generate LSVs using differ-
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ent window sizes. For MI, the default window sizes in Ar-
cGIS were applied based on standard raster calculation meth-
ods and commonly published values. For MII, we adopted
an advanced approach involving the automatic detection of
optimal window sizes for each LSV for alignment between
landslide-prone and non-landslide areas (Sirbu et al., 2019).

For model training samples were collected from land-
slide scarps (MI: 6.09 ha; MII: 1.32), landslide bodies (MI:
36.20 ha; MII: 27.2 ha) non-scarp areas (MI: 9.42 ha; MII:

https://doi.org/10.5194/nhess-25-4787-2025
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STAGE I: Data
preparation

1) Inventory map

Optimal moving
window

2) LSVs:
Slope, Curvature, TO, TRI & TPI

STAGE II: Segmentation &
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Figure 2. Flowchart of method used for mapping of landslide scarps and bodies. First, data are prepared using default and optimal win-
dow sizes. Then, segmentation and classification are conducted via MRS and SVM. Finally, refinement and accuracy assessment (AA) are

performed by comparing the reference map with the GEOBIA results.

4.07ha), non-body areas (MI: 53.95ha; MII: 41.21 ha).
These values represent the total sampled area used for each
model (MI and MII). Classification was then performed
using unsupervised methods and support vector machines
(SVMs; for further details, see Tzotsos and Argialas, 2008;
Hong et al., 2017). An algorithm was trained using these
samples and then used to classify the data accordingly. For
optimal results, this stage was repeated multiple times while
adjusting the training samples iteratively to enhance accuracy
in comparison with the inventory map.

3.2.2 STAGE II: Segmentation and classification

Segmentation and classification were performed using eCog-
nition at two hierarchical levels. Segmentation was con-
ducted using multi-resolution segmentation (MRS; Baatz and
Schipe, 2000) after trial-and-error across different scales
(Dragut et al., 2010; Li et al., 2015) for distinct landslide
components (landslide scarps and bodies). Specifically, land-
slide scarps and bodies were segmented and identified using
separate projects and rule sets. MRS with scale parameters of
50 and 20 for landslide scarps using shape of 0.1 and com-
pactness of 0.5 and MRS with scale parameters of 70 and 30
for landslide bodies using shape of 0.1 and compactness of
0.5 achieved the best fit and were thus applied to MI and MII,
respectively.

3.2.3 STAGE III: Refinement and accuracy assessment
(AA)

This stage consisted of two main steps: GEOBIA-based
refinement and accuracy assessment (AA). The first, a

https://doi.org/10.5194/nhess-25-4787-2025

GEOBIA-based refinement aimed to enhance the initial
SVM classification from Stage II by incorporating addi-
tional object-based rules. Based on the outcomes of Stage
II, an additional stage (Stage III) was developed using expert
knowledge and implemented as a rule set within the eCog-
nition framework. This GEOBIA-based refinement lever-
ages expert-driven interpretation in combination with object-
level spatial and contextual information to enhance classi-
fication accuracy. Previous studies have demonstrated the
value of combining machine learning with rule-based ap-
proaches for improving thematic mapping quality (Johnson
and Xie, 2011; Eisank et al., 2014; Zylshal et al., 2016; Rob-
son et al., 2020).

The refinement process focused on iteratively improving
the true positive rate (TPr) while reducing both the false
positive rate (FPr) and false negative rate (FNr). This was
achieved by assessing a comprehensive set of object-based
features derived from morphometric (e.g., slope, curvature,
TPI), geometric (e.g., area, shape index, length-to-width ra-
tio), and contextual attributes (e.g., distance to landslide-
related objects, and the relative border to neighbor metric).
The latter measures the proportion of an object’s boundary
shared with a predefined class, helping to identify embed-
ded or adjacent features for reclassification. For example, a
relative border value of 1 indicates complete enclosure by a
reference class, while lower values suggest partial adjacency
(for a further and comprehensive overview of the ruleset de-
veloped, see Tables A1-B2 in the Appendices).

Refinements were conducted using eCognition’s interac-
tive visualization tools, enabling semi-automated object fil-
tering and targeted adjustments based on spatial inconsisten-
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cies. Objects were assessed through iterative cycles of visual
inspection, attribute filtering, and validation against the ref-
erence inventory using both number- and area-based accu-
racy metrics. Key decisions included merging or expanding
TP-classified regions and reclassifying ambiguous objects
based on rules such as (1) adjacency to existing TP objects,
(2) sharing > 80 % boundary with TPs, and (3) being fully
surrounded by TP zones. Importantly, no expansion was al-
lowed into areas clearly identified as non-landslide terrain.
This process was repeated until no further improvements
were observed. The landslide scarps and bodies were anal-
ysed separately, so different criteria and parameters were ap-
plied to each of them during the development of the rule set
in eCognition. In other words, the landslide scarp area was
treated separately from the landslide body area.

The second step, called AA, involved comparing the final
result of GEOBIA-based refinement (stage III, part 1) with
expert-based landslide data (i.e. the inventory map). This
comparison helped assess the efficacy of each model (MI and
MII) against the reference map. For a comprehensive investi-
gation, AA was conducted separately for landslide scarps and
bodies. As seen in Sect. 3.3, number-based AA, area-based
AA and calculation of additional metrics were adopted (Cai
et al., 2018; Simoes et al., 2023).

3.3 Accuracy assessment

Various metrics were used to evaluate the congruence be-
tween the GEOBIA mapping outcomes and the reference
map quantitatively. These comparisons were conducted inde-
pendently per model and per landslide component: landslides
scarps and bodies.

3.3.1 Thematic accuracy assessment

We assessed the results through number-based and area-
based accuracy assessment. First, following Cai et al. (2018),
we developed an R script to assess the accuracy of the model
results numerically. If the GEOBIA-detected polygon’s over-
lapping area exceeded 50 % of the area of the reference
landslide polygon, then it was considered a correctly iden-
tified landslide (Eeckhaut et al., 2012; Knevels et al., 2019).
The TP, FP and FN numbers and percentages were calcu-
lated according to MI and MII. Then, in addition to number-
based AA, area-based AA (hectares [ha]) was adopted to
obtain more detailed information about the absolute areas
correctly detected as landslides (i.e. TP), undetected land-
slide areas (i.e. FN) and areas incorrectly mapped as land-
slides (i.e. FP). To achieve this, we overlaid the inventory
map polygons (reference map) on the GEOBIA-based poly-
gons, which included these three components, to calculate
the percentage of each category and determine whether the
use of the optimal moving-window size in MII improved
the semi-automatic GEOBIA-based mapping results (Fig. 6).
The script for this analysis was developed and implemented
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in R using the GEOBIA results according to previously re-
ported key concepts and algorithms (for further details, see
Eisank et al., 2014; Cai et al., 2018).

3.3.2 Segmentation metrics

An R script developed using the segmetric package to cal-
culate the segmentation accuracy of the objects of interest
through various metrics (Simoes et al., 2023). As outlined
in Table 6, we analysed key metrics relevant to landslide
studies: area fit index (AFI), over-segmentation (OS), under-
segmentation (US), F-measure, recall and precision. These
metrics were based on area proportions, with values between
0 and 1 except for AFIL. A value closer to zero indicated a
better spatial match between the test and reference datasets
(Dias et al., 2023).

4 Results

This chapter presents the main results of this study, specif-
ically the optimisation results of window sizes for LSVs in
MII, the results of GEOBIA-based landslide detection and
the model performance evaluation results from different AA
approaches.

4.1 Optimisation of window sizes for LSVs in MII

Figure 3 shows the variation in the optimal window size for
each LSV across multiple runs, highlighting noticeable dif-
ferences between landslide scarps and bodies. Some LSVs
(e.g. TO, plan curvature and profile curvature) have consis-
tent window sizes, whereas others (e.g. slope and TRI) show
greater variability. Table 1 shows the final window sizes used
in the analysis for both landslide components in MII, along
with the default values used in MI for comparison. The opti-
mal window sizes differ not only between LSVs but also be-
tween scarps and bodies within the same LSV. Hence, sepa-
rate rule sets were developed in eCognition for each landslide
component. Segmentation, classification, refinement and AA
were then performed independently for the scarps and bod-
ies.

4.2 GEOBIA-based landslide modelling results

The GEOBIA-based landslide modelling results, specifically
those of landslide scarps and bodies for both models (MI
and MII), were compared with the inventory map to assess
their spatial correspondence (Figs. 4 and 5). Figure 4a shows
the MI results (default window sizes). The brown and yellow
polygons represent the model-detected landslide scarps and
bodies, and the blue and pink polygons indicate the landslide
scarps and bodies in the reference map for comparison. Fig-
ure 5a shows the same area but illustrates the MII results. In
both figures, the polygons within the black-dashed-line re-
gions are further discussed in Sect. 5. A visual inspection

https://doi.org/10.5194/nhess-25-4787-2025
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Table 1. LSVs and corresponding window sizes per model.

Models/LSVs Slope C_plan C_profile TO TRI TPI

I* Scarp and 3x3 3x3 — 3x3and 3x3 33x33
Body 25 x 25

T+ Scarp 11 x 11 Tx7 5x5 5x5 T7x7 11x11
Body 11x11 5x5 Tx7 7x7 9x9 13x13

* Default window size, ** optimal window size.

of these maps shows that MI covers a larger portion of the
landslide body areas compared with MII, but MII performs
better in detecting scarp zones. However, on-screen analy-
sis shows that MII is more precise than MI for each land-
slide component, as indicated by the brown and yellow poly-
gons (GEOBIA-based results) and the blue-(scarps) and pink
(bodies) polygons (reference map). This is particularly ev-
ident when considering the accuracy of landslide size and
FPr. These results are assessed more thoroughly in Fig. 6 and
Sect. 4.3.

The morphological characteristics of the landslides (scarps
and bodies) in the Jena region highlight notable distinctions
between these components, as summarized in Tables 2 and
3. The results show that scarps have slope mean values of
48 and 40.5° in MI and MII, respectively, whereas bodies
maintain a consistent slope mean value of approximately 20°
across both models. This suggests that scarp areas are more
sensitive to the optimized approach applied in MII, while
body areas remain relatively unchanged. Scarps exhibit posi-
tive values for plan curvature (C_plan), while bodies show
lower values. Similarly, for profile curvature (C_profile),
scarps display positive values, whereas bodies exhibit neg-
ative values, further emphasizing their distinct morphologi-
cal characteristics. The TRI mean values further differentiate
scarps and bodies, with scarps showing significantly higher
values (3.73 and 5.09 for MI and MII, respectively) com-
pared to bodies (0.95 and 1.93 for MI and MII, respectively).
Additionally, TPI values for scarp areas are higher in MII
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than in MI, while for body areas, the TPI values are notably
lower in MII compared to MI.

4.3 Accuracy assessment results
4.3.1 Thematic accuracy assessment

The thematic accuracy assessment is conducted using two
complementary approaches: object-based (number-based)
and area-based accuracy metrics. First, the number-based AA
results (Table 4) show a significant improvement in the scarp
zones for MII, with a higher TPr and significant reductions in
both FPs and FNs. In the landslide body areas, the FPs were
also significantly reduced, indicating an overall improvement
in classification accuracy under the optimised window size.
Next, the area-based AA results are summarised in Table 5,
with MII showing significant improvements over MI. As for
scarp detection, MII increases the TP area from 6.3-9.1 ha
and reduces the FNs accordingly, demonstrating better de-
tection performance than MI. Although the FPs remain rel-
atively high, they moderately decrease under MII. As for
landslide body detection, MII significantly reduces the FPs
from over 760 ha in MI to approximately 155 ha, indicating
a significant improvement in mapping accuracy. However, a
trade-off is observed, with the FNs increasing slightly. These
trends are also noticeable in Figs. 6 and 7, which shows a
significantly lower FP in MII (red polygons in Fig. 7) than in
MI (Fig. 6).
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Figure 4. Final map of semi-automatic landslide detection using MI, displayed over hillshade DTM (TLUBN, 2019) throughout study
area. Detected landslides are shown as coloured polygons (brown: scarps; yellow: bodies), while the inventory map is also displayed for
comparison. The insets outlined by black dotted lines are magnified and analysed in Fig. 8.

Table 2. The morphological characteristics of landslides (scarps and bodies) in Jena region as detected by GEOBIA, Model 1.

LSVs/value Scarp | Body

min max mean | min max mean
Slope (°) 349 61.5 48.2 14.88 25.69 20.28
C_plan —1.04 12.19 5.57 —0.032 0.128 0.048
TO3 x 3 —0.003 0.029 0.013 | —0.00085 0.00051 —0.00017
TO25 x 25 —0.001 0.099 0.049 | —0.00201 0.00373 0.00086
TRI 1.82 5.64 3.73 0.68 1.22 0.95
TPI 0.1 2.8 1.4 —0.07 0.05 —0.01

4.3.2 Segmentation metrics

The US values for both models are below 0.50 in landslide
scarp detection. Specifically, the US value drops from 0.84 in
MI to 0.60 in MII, demonstrating that the use of the optimal
window size in MII significantly improves the results (Ta-
ble 6). Likewise, the OS value for scarps decreases from 0.53
in MI to 0.33 in MII. Additionally, the precision value im-
proves in MII, confirming the effectiveness of the optimised
approach.

Nat. Hazards Earth Syst. Sci., 25, 4787-4806, 2025

5 Discussion

This study highlights the efficacy of integrating GEOBIA
with high-resolution DTM data for the inventory mapping
of forest-covered old landslides in middle-mountain regions.
The implementation of the optimal window size (MII) sub-
stantially enhances landslide detection accuracy while signif-
icantly reducing both the number and total area of FPs rela-
tive to the use of the default window size (MI). These results
align with those of Sirbu et al. (2019), who demonstrated
window size variability across different LSVs for landslide
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Figure 5. Final map of semi-automatic landslide detection using MII, displayed over hillshade DTM (TLUBN, 2019) throughout study
area. Detected landslides are shown as coloured polygons (brown: scarps; yellow: bodies), while the inventory map is also displayed for
comparison. The insets outlined by black dotted lines are magnified and analysed in Fig. 8.

Table 3. The morphological characteristics of landslides (scarps and bodies) in Jena region as detected by GEOBIA, Model II.

LSVs/value Scarp | Body

min max mean | min max mean
Slope (°) 334 47.7 40.5 159 27.9 21.9
C_plan 0.0001  0.0205 0.0107 —0.0044 0.0014 —0.0015
C_profile —0.0028 0.0040 0.0006 —0.0014  —0.0001 —0.0012
TO —0.0014 0.0086 0.0036 | —0.00186  0.00003 —0.00091
TRI 3.77 6.42 5.09 1.32 2.54 1.93
TPI 1.59 13.24 7.41 —3.83 0.11 —1.86

scarps. Our study broadens this understanding by analysing
both scarp and landslide body areas, revealing that window
sizes differ not only across LSVs but also between landslide
scarp and body areas within the same LSVs (Fig. 3 and Ta-
ble 1). Consequently, landslide scarps and bodies should be
detected separately within the model for an accurate analysis
of each landslide component.

In our study area, large forest-covered landslides
(> 0.5 ha) are more successfully detected than smaller land-
slides, as they mostly show a strong geomorphological sig-
nature (Fig. 8b). This is similar to previous findings (Kn-
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evels et al., 2019; Dias et al., 2023). However, MII has a
lower proportion of misclassified areas within the same in-
set (Sect. 4.3.1 and Fig. 7), highlighting its ability to delin-
eate landslide features accurately throughout the study area.
Additionally, some automatically delineated landslide poly-
gons extend beyond the boundaries of the inventoried actual
landslide areas (Figs. 4 and 5). These deviations can be at-
tributed to limitations in the segmentation and classification
algorithms, which may produce irregular or overly coarse ob-
jects, or potential misclassifications or errors in object merg-
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Figure 6. Area-based accuracy assessment of landslide body mapping using GEOBIA in Model I (True Positives (TP), False Positives (FP),
and False Negatives (FN)), displayed over hillshade DTM (TLUBN, 2019).

Table 4. Number-based comparison of True Positives (TPs), False Positives (FPs) and False Negatives (FNs) in landslides detection per
model.

Landslide Model TP (%) FP (%) FN (%)

S I 21 552 24 533 17 4438
carps N 25 658 5 166 13 342

I 17 425 21 525 23 575
Imr 21 525 8 200 19 475

Bodies

Inventory

38 (scarps) / 40 (bodies)

ing due to the use of a low threshold for object characteristics
during refinement and the final layout.

We should acknowledge that in one instance (see Fig. 8b),
a large mapped landslide may in fact consist of multiple
individual events. Due to uncertainty regarding the precise
boundaries between these possible landslides, we decided to
map the area as a single, large landslide in the inventory map.
However, this issue is partially addressed through the area-
based accuracy assessment presented in Sect. 4.3.1, which
minimizes the impact of such limitations on model valida-
tion. Future studies could improve the accuracy further by
labelling such ambiguous cases as “uncertain” or separating

Nat. Hazards Earth Syst. Sci., 25, 4787-4806, 2025

them from clearly defined landslides in the inventory. This
would help to better assess model performance and transfer-
ability.

Other misclassifications occur in areas where the geomor-
phological signature or roughness resembles the characteris-
tics of landslide body or scarp candidates defined by the de-
veloped rule set. Both models incorrectly detect a scarp in the
same inset/window in Fig. 8d but in different locations. The
parameters in these areas are similar to those of actual land-
slide scarps, so distinguishing them solely based on DTM
data is difficult. The misclassified area is actually rock out-
crops, which are common in this region due to its local-scale
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Table 5. Comparison of True Positives (TPs), False Positives (FPs) and False Negatives (FNs) in landslides detection per model (area in

hectares).
Landslide = Model TP % FP % FN %
Scarns 1 6.3 30.6 93 59.6 143 693
P 1I 9.1 4338 80 470 116 562
Bodi I 1912 787 7692 800 518 21.3
ocies I 1619 666 1558 490 810 333
Inventory 243 (scarps) / 20.7 (bodies)
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Figure 7. Area-based accuracy assessment of landslide body mapping using GEOBIA in Model II (True Positives (TP), False Positives (FP),
and False Negatives (FN)), displayed over hillshade DTM (TLUBN, 2019).

variations in lithology, where different layers and materials
respond differently to weathering and erosion (see the geo-
logical map of the region in Zangana et al., 2023b). Most
landslide scarp FPs in our study can be attributed to this is-
sue. In addition, both models misclassify landslide scarps as
landslide bodies for two landslides from the inventory map
in the same location in Fig. 8d. Thus, the scarp and land-
slide body areas in these cases landslides from the inven-
tory map in the same location in Fig. 8d. Thus, the scarp
and landslide body areas in these cases are highly similar,
possibly due to landslide type/age and human activity, so the
rule set cannot easily differentiate them from the rest of the
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study area. However, the landslides are successfully mapped,
highlighting the need for detecting different landslides sepa-
rately. This shortcoming of our approach is similar to those
reported in previous studies on forest-covered landslides (Li
et al., 2015; Pawtuszek et al., 2019), demonstrating the chal-
lenges of performing inventory mapping without FPs using
DTM data alone (Eeckhaut et al., 2012; Bell et al., 2012;
Goetz et al., 2014; Knevels et al., 2019).

Furthermore, both models identify the same location in
Fig. 8e as a landslide candidate (as a landslide scarp or a
landslide body). The right-hand part of Fig. 8¢ in MII shows
a landslide that is excluded from the initial inventory due to

Nat. Hazards Earth Syst. Sci., 25, 4787-4806, 2025
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Figure 8. Detailed results of Model I (MI) and Model II (MII) for selected areas. The left column shows the landslide inventory overlaid on
the hillshade DTM (TLUBN, 2019). The middle and right columns display MI and MII results, respectively, corresponding to the inset areas
b—e shown in Figs. 4 and 5. These zoomed-in views highlight differences in model performance within representative subregions.

Table 6. Metrics used per landslide component per model.

Metric Scarp | Body

MI  MI| MI MI
AFI -0.37 —-1.25 | —10.21 —3.89
oS 0.53 0.33 0.18 0.18
F_measure 0.42 0.50 0.28 0.57
(SN 0.30 0.43 0.84 0.60
recall 0.36 0.48 0.80 0.77
precision 0.50 0.52 0.17 0.45

its dissimilarity with the other landslides and its small size.
In MII, the body area of this landslide is incorrectly mapped
over cropland, grassland and built-up areas. On the left-hand

Nat. Hazards Earth Syst. Sci., 25, 4787-4806, 2025

side of the same window (Fig. 8e, MI), the landslide body
is wider than the inventory map area that may correspond
to the inventory map but is excluded from the initial inven-
tory due to the insufficiency of the available information for
it to be classified as a large landslide. In the MI image in
Fig. 8d, the FP area extends over a wide region, particu-
larly into forested areas and erosional rims, demonstrating
that this model has lower landslide detection precision than
MII. Therefore, landslide size should be addressed in future
studies. Detecting landslides of different types and sizes at
various levels can enhance detection rates and further reduce
the FPr.

An analysis of the AA results reveals that MII outperforms
MI in detecting landslide components (bodies and scarps) in
terms of correctly identified areas and FP reduction. For in-
stance, MII reduces the FPr by approximately 30 % and 20 %
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for landslide scarps and landslide bodies, respectively (Ta-
ble 4). MII slightly underestimates the landslide body areas;
the TPr for landslide body detection decreases, offset by an
increase in the TPr for scarp areas. Although MI yields a
higher TPr for landslide body areas, its FPr is approximately
30 % higher than that of MII, highlighting the importance of
considering the FPr alongside the TPr and FNr for a com-
prehensive evaluation of model performance. MII has con-
siderable potential, effectively reducing the FPr while main-
taining a strong TPr. However, further research is needed to
enhance the applicability of this approach across various en-
vironments and datasets.

Our TPr is comparable to that of Eeckhaut et al. (2012),
who investigated the semi-automatic detection of landslides
using lidar data and identified 71 % of landslides using
object-based detection. In comparison, MII achieves TPr val-
ues of 65.8% and 72.5% for landslide scarps and land-
slide bodies, respectively. However, our approach demon-
strates significantly better accuracy through minimising of
FPs. Eeckhaut et al. (2012) identified 18 FP landslides in
an area affected by 38 deep-seated landslides (47 %), and
Martha et al. (2010) reported 73 FP landslides for 55 expert-
identified landslides (132 %). As shown in Tables 2 and 3, our
study identifies only 5 FP landslide scarps (20 % relative to
the TPs) and 7 FP landslide bodies (24 % relative to the TPs).
Therefore, MII detects landslides more efficiently than MI
and the abovementioned approaches. However, some stud-
ies (Martha et al., 2010; Eeckhaut et al., 2012; Knevels et
al., 2019) do not provide the number or total area of FPs or
only present them numerically, hindering a comprehensive
comparison of methods. Conversely, our evaluation is more
detailed, enabling a systematic assessment of model preci-
sion in identifying a specific number of TPs while minimis-
ing FPs.

Misclassification also occurs in areas with degraded geo-
morphological signatures (Fig. 8d and e). Landslide scarps
are often misidentified in regions with features resembling
those of scarp candidates. These errors may be attributed to
human-made structures, such as roads, pits, ridges and rock
toes. Similar false detections are observed in areas with par-
tially eroded or weathered limestone formations, particularly
in areas where they overlay sandstone. This misclassifica-
tion pattern aligns with commonly reported results (Eeckhaut
et al., 2012; Holbling et al., 2017; Knevels et al., 2019; Dias
et al., 2023).

Selecting the appropriate window sizes for the LSVs is
challenging (Fig. 3 and Table 1). The results show consider-
able variability across the 10 runs, with the optimal window
sizes often being larger for scarp zones than for body areas.
For example, the TPI and TRI significantly deviate between
the optimal and default window sizes, highlighting the need
to fine-tune window sizes based on the specific geomorpho-
metric characteristics of each landslide feature. By contrast,
the default window sizes used in MI often result in under- or
over-segmentation, especially in scarp zones, compromising
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detection accuracy. These results highlight the complexity of
adjusting window sizes for accurate scarp and body detec-
tion and emphasise the advantages of the tailored approach
of MII in overcoming these limitations.

Compared with MI, MII is more effective in detecting
individual landslides as distinct polygons and separating
them from neighbouring landslides. Additionally, MII sig-
nificantly reduces the FP number and area, as shown in the
model comparison in Fig. 7. This highlights the robustness
of the optimal window size approach of MII, which is more
effective for landslide detection than default or manually se-
lected window sizes, which have been commonly used in
many studies for decades. Overall, this approach is a valu-
able advancement in improving semi-automatic landslide in-
ventory mapping, particularly in forested areas, where the
limited availability of optical data often hampers complete
inventory mapping (Eeckhaut et al., 2012; Li et al., 2015; Kn-
evels et al., 2019). Although Stage III was first developed in
the Jena region, the framework and rulesets can be applied to
other areas where landslides are well expressed in hillshade
and distinct from their surroundings. This condition is often
met for forest-covered landslides of varying ages, and may
also apply to younger landslides, with no or limited human
impact. While some refinement parameters may need local
adjustment, the method is not restricted to a specific land-
slide type or setting, and its broader applicability should be
further evaluated in future studies.

6 Conclusion

A GEOBIA-based approach is developed and used for
the semi-automatic mapping of landslide inventories in the
forested areas of the middle-mountain regions of Jena, Ger-
many. The proposed method effectively maps forest-covered
landslides, with a particular focus on medium and large
landslides (greater than 0.5 ha), but does not detect smaller
landslides. MII, which uses the optimal window size, maps
landslide scarps with higher accuracy than MI, which re-
lies on default window sizes. MII shows a significant (15 %)
improvement in scarp detection during number-based AA
while reducing the FPr by 30 %. However, this FPr reduc-
tion entails a trade-off, as the FNr increases by approximately
15 %. Nonetheless, MII remains highly effective for semi-
automatic landslide mapping in forest-covered areas.

High-resolution DTM derivatives serve as the base data
for landslide mapping using GEOBIA, which incorporates an
optimal window size to detect forest-covered old landslides
in middle-mountain regions. Our analysis shows that this ap-
proach may significantly improve the accuracy of landslide
mapping in areas with sparse or no vegetation and in regions
where landslides are newly formed or have recently altered
the terrain. This is due to the superior ability of DTM data
to show recent landslide features compared with historical
ones.
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This study emphasises the importance of calculating win-
dow sizes separately for different landslide components, as
landslide scarps and bodies require distinct window sizes for
accurate detection. This factor should be considered thor-
oughly before any calculation or modelling process involv-
ing landforms of interest. As landform detection depends on
the defined window size, our automated objective approach
is highly suited for future research and semi-automatic land-
form modelling. However, further evaluation is required to
ascertain the transferability of this method to other regions;
nonetheless, this method should be globally applicable to the
detection of landslides with well-defined geomorphological
features using high-resolution DTM data. As the pioneering
use of GEOBIA for landslide inventory mapping in the Jena
area, this study serves as a foundation for future research on
landslides in this region. Furthermore, it can be used as a
base map for hazard and risk assessments, especially as cli-
mate change may reactivate old landslides, as has occurred
in many areas across Germany and around the world.

Appendix A: Ruleset Model I

Table A1l. Landslide Scarps Refinement Steps.

Refinement Step  Actions Conditions/Criteria

Additional Notes

Refinement 1 Remove objects  IF SLOPE < 33 AND TRI < 2

Then — Merge objects

Remove IF TRI < 1.7

Expand objects  IF non-Scarp (Rel. Border to Scarp Candidate > 0.1 AND  Then — Merge objects

TRI > 2.5 AND SLOPE > 45)

Remove IF AREA < 1500 pixels AND Length/Width > 5

Refinement 2 Remove objects  IF TPI < —0.01 AND (SLOPE < 33 AND TRI < 2)

Then — Merge objects

Remove IF (TRI < 1 AND TPI < 1)

Remove IF Length/Width > 3 AND TRI < 1.8
Remove IF Rectangular fit < 0.1 AND Roundness > 2

Remove objects  IF (AREA > 20000 pixels AND TPI < 0.1)

OR AREA < 100 pixels

AND IF TPI < 0.02 OR Length/Width > 10
OR C_plan < 0

Refinement 3 Remove objects  IF SLOPE < 34 OR C_plan < —3

Remove IF TOP > 0.03 OR TOP < —0.004

Remove IF TPI < 0.1

Then — Merge objects

Nat. Hazards Earth Syst. Sci., 25, 4787-4806, 2025
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Table A2. Landslide Bodies Refinement Steps.
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Refinement Step ~ Actions

Conditions/Criteria

Additional Notes

Refinement 1 Expand objects

IF unclassIFied (SLOPE > 12 AND Rel. Border
to Body Candidate > 0.5)

IF non-Body (Rel. Border to Body Candidate > 0.5
AND Rel. Border to non-Body < 0.2)

Then — Merge objects

IF non-Body (Rel. Border to Body Candidate > 0.6)

IF non-Body (SLOPE > 10, C_plan < 0.1
AND Rel. Border to Body Candidate > 0.1)

Remove IF AREA < 5000 pixels

Expand objects

IF non-Body (Rel. Border to Body Candidate > 0.1
AND C_plan < 0.2 AND SLOPE > 12)

IF non-Body (Rel. Border to Body Candidate > 0.4,
C_plan < 0.3 AND SLOPE > 15)

IF non-Body (Rel. Border to Body Candidate > 0.7
AND C_plan < 0.3 AND SLOPE > 10)

Remove objects

IF Length/Width > 6.1 OR (Length/Width > 5
AND SLOPE < 15)

Then — Merge objects

Remove IF AREA < 15000 pixels

Refinement 2 Remove objects

IF SLOPE < 14 AND TRI < 0.6

Expand objects

Expand objects

IF unclassIFied (Rel. Border to Body Candidate > 0.5
AND SLOPE > 12)

IF non-Body (SLOPE > 10, C_plan < 0.1
AND Rel. Border to Body Candidate > 0.1)

Remove IF non-Body (Rel. Border to Body Candidate > 0.5
AND Rel. Border to non-Body < 0.2)

Then — Merge objects

Remove IF (TRI < 0.7 AND TPI < —0.05)
OR AREA < 15000 pixels

IF unclassIFied (Rel. Border to Body Candidate = 1)

Then — Merge objects

Expand objects

— Expand IF (TRI > 0.6 AND C_plan > 0.3)

Remove IF AREA < 46000 pixels

IF unclassIFied (Rel. Border to Body Candidate > 0.5,
C_plan > 0.1 AND TRI > 0.45)

OR IF Rel. Border to Body Candidate > 0.5
— Merge objects

Remove objects

IF (AREA < 150000 pixels AND C_plan < 0) OR SLOPE < 5

Refinement 3 Remove objects

IF SLOPE < 14

IF TPI < —0.1

IF C_plan < —0.04 OR C_plan > 0.2

Then — Merge objects
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Appendix B: Ruleset Model 11

Table B1. Model II Landslide Scarps Refinement Steps.

Step Action Conditions/Criteria Notes

Initial Pre-processing Segmentation MRS 20 (Shape: 0.1, Compactness: 0.5)

Initial classIFication ~Remove plateau AND floodplain AREAs by

identIFying “Initial Scarp AREA” to retain
Landslide polygons AND buffers

Potential Scarp IdentIFication

Remove segments

IF mean SLOPE > 0.3, TPI > 0.65, TRI > 0.8

Expand AREA IF mean SLOPE > 0.7 AND Rel. Border to
Potential Scarp > 0.45
Or mean SLOPE > 25, TPI > 1.5,
mean TRI > 2.5
ClassIFication SVM (Scarp vs. Non-Scarp)
Refinement 1 Expand Scarps IF Rel. Border to Scarp > 0.85 AND mean SLOPE > 0.4

Or Rel. Border to Scarp > 0.3, mean TPI > 12,
mean SLOPE > 0.6

Remove Scarps

IF —29 < mean C_profile > 6.3 AND —5.2 < mean C_plan > 37

IF —0.04 < TOP > 0.14

IF mean SLOPE > 0.45 AND mean TPI < 0.14
or mean TRI < 1.14

Further Expand
Scarps

IF mean SLOPE > 0.65, mean TRI > 2.2,
mean TPI > 7, AND Rel. Border to Scarps > 0.2

For unclassIFied/non-Scarp: mean SLOPE > 0.4
AND Rel. Border to Scarps > 0.9

Remove Scarps

IF Rel. Border to Scarps < 0.4 AND AREA > 2000 pixels

Merge segments

Merge all segments

Refinement 2

Remove Scarps

IF AREA < 1000 pixels AND mean SLOPE < 0.74

Expand Scarps

IF mean SLOPE > 0.45, Rel. Border to Scarps > 0.25,
Rel. Border to non-Scarps < 0.01

Or mean SLOPE > 0.7, Rel. Border to Scarps > 0.3,
mean TRI < 2.15

Or mean SLOPE > 0.65, Rel. Border to Scarps > 0.1,
mean TRI < 2.1, Rel. Border to non-Scarps < 0.5,
AREA < 6800 pixels

Merge non-Scarps

IF mean SLOPE > 0.48, TRI > 1, mean TPI > 7

Further Expand
Scarps

IF mean SLOPE > 0.5, Rel. Border to Scarps > 0.3,
Rel. Border to non-Scarps > 0.43, TRI < 1.7

Remove Scarps

IF Rel. Border to non-Scarps > 0.85, AREA < 3000,
mean SLOPE < 0.7

AND IF mean TPI < 2.45, mean SLOPE < 0.65, AREA < 1600

Or mean SLOPE < 0.75, AREA < 8000, mean TPI > 10

Or mean SLOPE < 0.7, AREA < 10000, mean TOP < 0.028

Landslide Bodies
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Define as Potential Scarp
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Table B2. Model II Landslide Bodies Refinement Steps.

Step Action Conditions/Criteria Notes
Initial Pre-processing ~ Segmentation MRS 30 (Shape: 0.1, Compactness: 0.5)

Potential Body Segments Remove IF mean SLOPE > 0.2, TPI < 7, TRI > 0.5

ClassIFication SVM (Bodies vs. Non-Bodies)
Refinement 1 Expand Bodies IF Rel. Border to Body > 0.8 AND mean SLOPE > 0.25,

or Rel. Border > 0.9
Merge Body segments Merge all Body segments
Expand further IF Rel. Border to Body > 0.7, Rel. Border to non-Body < 0.3,

mean SLOPE > 0.25

Or Rel. Border to Body > 0.8, Rel. Border to non-Body < 0.3,
mean TRI > 0.35

Or Rel. Border to Body > 0.4, Rel. Border to unclassIFied < 0.01

Or Rel. Border to Body > 0.55, Rel. Border to non-body < 0.2,
mean TRI > 0.6

Or Rel. Border to Body > 0.6 AND mean TRI > 0.4

Or Rel. Border to Body > 0.15, mean TRI > 1, mean SLOPE > 0.4

Refinement 2 Merge Body segments Merge all Body segments
Expand Bodies IF Rel. Border to Body > 0.3, mean SLOPE > 0.2, mean TRI > 0.6
Remove Bodies IF —0.0022 < mean TOP > 0.003

Or AREA < 10000 pixels AND mean SLOPE > 0.25
Or AREA < 25000 pixels AND mean SLOPE < 0.25
Or AREA > 400000 pixels

Or mean C_plan < 0.0 AND/or mean C_profile < 0.0
AND AREA > 50000 or mean TPI > 1.3

Expand from unclassIFied/non-Body IF Rel. Border to Body > 0.99

Remove Body segments IF Rel. Border to non-Body > 0.99, or Rel. Border > 0.9
AND mean SLOPE < 0.29

Refinement 3 Remove Bodies IF mean SLOPE < 0.4 AND AREA < 15000 pixels
Or mean SLOPE < 0.3, AREA < 50000, mean TPI > 0.8
Or mean SLOPE < 0.42 AND mean TPI < —1.9

Or AREA < 40000 AND mean TPI > 1.4

Or mean C_profile < 0.0 AND mean TPI > 1, or mean SLOPE < 0.25

Or 15000 < AREA < 65000 AND Length/Width > 1.99

Or mean C_profile > —0.05

Or 15000 < AREA < 100000 AND 3.2 > Length/Width > 1.99

Or 25000 < AREA < 100000, or C_plan < —0.02,
or C_plan > 0.19 AND mean TPI < 1

Or St. Deviation of C_profile < 1.6

Expand Body AREA From unclassIFied segments IF Rel. Border to Body > 0.6,
mean SLOPE > 0.4, mean TRI > 1

Or Rel. Border to Body > 0.42 AND Rel. Border to unclassIFied = 0

Or from non-body AREAs IF Rel. Border to Body > 0.7

Remove Bodies IF AREA > 183000 pixels AND mean TRI > 0.81
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