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Abstract. Storm surge is one of the most destructive ma-
rine disasters, characterized by abnormal and temporary rises
in water levels during intense storms, leading to extreme in-
land flooding in the coastal area. storm surge risk assessment
and evacuation planning, play a crucial role in saving lives
and mitigating disasters. Conventional risk assessment strug-
gles to meet the demands of refined risk evaluation research
for small-scale elements, such as roads, and current evacu-
ation plans are generally based on broader regional scales,
failing to provide effective road-level evacuation planning
for evacuees. This study developed five typical typhoon sce-
narios for the coupled ADCIRC-SWAN model to simulate
storm surge inundation. Combining these simulations with
road network, storm surge risk assessment was conducted in
the Daya Bay Petrochemical Industrial Zone, a vulnerable
low-lying coastal region of Huizhou City, China. Based on
the risk assessment, a combination of the Deep Q-Network
(DQN) model and raster environment was employed to de-
velop real-time evacuation plans during storm surge events.
To address the DQN model’s convergence challenges, com-
pressed search space and navigational reward methods were
proposed. 1000 starting points were randomly selected for
route planning, and the results indicate that the proposed
method is highly effective in devising optimal evacuation
routes with minimal deviation, offering valuable guidance for
evacuees during real-world storm surges.

1 Introduction

A storm surge is an abnormal and temporary rise of water
that occurs during intense storms. This sudden rise in sea
level can lead to extreme inland flooding in coastal commu-
nities (Wang et al., 2021b). Storm surge is one of the most
dangerous and destructive natural hazards to life and prop-
erty along the coastline and kilometers inland in the world
(CRED, 2015). In the US, coastal flooding from storm surge
was responsible for 49 % of storm-related fatalities during
the period from 1994 to 2003 (Rappaport, 2014). When Hur-
ricane Katrina struck the southeastern United States in 2005,
an estimated 1577 people died, causing USD 108 billion in
property losses (Knabb et al., 2006). The storm surge from
Super Typhoon “Haiyan”, hitting the Philippines in 2013,
led to more than 7000 persons losing their lives (Mas et al.,
2015). In China, from 1998 to 2020, the average annual eco-
nomic losses resulting from storm surge flooding each year
is approximately RMB 10.17 billion, which is equivalent to
96 % of the total direct economic losses from all types of
marine disasters (Ministry of Natural Resources of the Peo-
ple’s Republic of China, 2022). Recent studies indicated a
potential escalation in the number of individuals at risk from
storm surge flooding, along with associated property dam-
age and loss of life (Merkens et al., 2016; Oppenheimer et
al., 2019; Snaiki et al., 2020). Physical barriers, while par-
allel to the shoreline, are insufficient to prevent all potential
damages to urban settlements and infrastructure during storm
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surge events. With increasing potential victims and economic
losses, it is of paramount importance to perform risk assess-
ments and develop evacuation plans to mitigate the risk asso-
ciated with storm surge.

Storm surge risk assessment, based on simulated inunda-
tion scenarios, can provide predictive and analytical informa-
tion on the danger of storm surge disasters in a region (Wang
et al., 2021a). The risk assessment approach aims to quan-
tify the damage and risk into value, where the value is the
interaction between the geographic coverage of the hazard,
the exposure of elements to the hazard, and the vulnerabil-
ity of exposed elements (Granger, 2003; Kron, 2005; Lavell
et al., 2012; Koks et al., 2015). In recent years, various storm
surge risk assessment models have been established in var-
ious countries, and some case studies have been conducted
(e.g. Zerger, 2002; Benavente et al., 2006; Lin et al., 2010).
In the study of storm surge risk assessment, a comprehensive
assessment of storm surge risk was obtained by using numer-
ical models to simulate the inundation scenarios and consid-
ering the damage of different types of vulnerable elements.
The Advanced Circulation (ADCIRC, Luettich et al., 1992)
model, designed to address two- and three-dimensional hy-
drodynamic free surface circulation challenges, has been
widely applied to simulate tide- and wind-driven circula-
tions. The Simulating Waves Nearshore (SWAN, Booij et al.,
1999) model is a numerical wave model, which computes
the wave action density spectrum by solving the wave action
balance equation. By employing a bidirectional coupling ap-
proach, the ADCIRC+SWAN model is a widely used model
to simulate coastal storm surges and tidal floods induced by
tropical cyclones, and has shown good performance in previ-
ous studies (e.g. Dietrich et al., 2011; Suh et al., 2015; Wang
et al., 2018).

The research on emergency evacuation originated in the
early 20th century, and its core task is the development of
evacuation plans, including the identification of disaster shel-
ters and the planning of evacuation routes (Alsnih and Sto-
pher, 2004). Conventional shortest-path algorithms, such as
Dijkstra’s and A* algorithms, have been enhanced and em-
ployed in evacuation planning (Samah et al., 2015; Astri,
2020, e.g.,). Additionally, heuristic approaches, including the
PSO algorithm, genetic algorithm, and ant colony algorithm
have been introduced to identify optimal routes within intri-
cate environments (e.g., Li et al., 2020; Goerigk et al., 2014;
Forcael et al., 2014). In recent years, reinforcement learning
(RL), has been a hot topic in the field of machine learning,
and the basic idea is to learn the optimal strategy by maximiz-
ing the cumulative reward obtained from the interaction be-
tween the intelligent agent and the environment (Sutton and
Barto, 2018). In the increasingly complex real-world tasks,
deep learning (DL) can be utilized to better learn the abstract
features of large-scale input data, which can then be used to
optimize the RL’s strategy learning process. In 2013, Mnih
et al. (2013) proposed the Deep Q-Network (DQN), which
was applied to solve visual-based control decision problems.
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Since then, the field of deep reinforcement learning (DRL)
has experienced rapid development, arising numerous effi-
cient algorithms, such as Deep Deterministic Policy Gradi-
ent (DDPG, Lillicrap et al., 2015), Asynchronous Advantage
Actor-Critic (A3C, Mnih et al., 2016), and Proximal Policy
Optimization (PPO, Schulman et al., 2017). DRL, based on
Markov decision processes and deep neural networks, offers
an effective solution for the optimization of evacuation route
planning. Yu et al. (2017) utilized DRL model to develop a
navigation system for an agent in a maze. Zhang et al. (2021)
created a scenario with obstacles in a room and addressed
the problem of emergency evacuation within the room us-
ing DRL. Ni et al. (2022) simulated buildings in a fire sce-
nario and used an improved double deep Q network to solve
evacuation route planning. The merit of DRL algorithms in
emergency evacuation stems from their capacity to function
without a priori comprehension of the entire environment.

Storm surge risk assessment and evacuation route planning
can provide decision-making support for local governments
in disaster prevention and reduction, and provide timely and
effective emergency evacuation guidance for affected area
residents. This study focused on the low-elevation coastal
regions of the Daya Bay district, utilizing the coupled AD-
CIRC+SWAN numerical model to simulate storm surge sce-
narios, and subsequently conducting a comprehensive risk
assessment of the road network. Based on the risk assess-
ment, a DRL model was utilized to provide intelligent evac-
uation route planning for evacuees. The main contributions
of this work are summarized as follows:

— By analyzing historical typhoon data, five typical ty-
phoon intensities affecting the study area were identi-
fied. Using the coupled ADCIRC+SWAN model, the
storm surge inundation process in the study area under
the five typhoon scenarios was simulated.

— Developing a refined road risk assessment model for
storm surges, taking into account the extent of inunda-
tion, inundation depth, and type of road, to analyze the
traffic conditions and conduct a fine-grained risk assess-
ment of the road network in the study area.

— Reframing the route planning problem in a raster en-
vironment as a continuous decision-making problem,
and using a DRL algorithm to plan evacuation routes
on road networks, which can provide real-time and ef-
fective evacuation guidance based on the limited envi-
ronment around evacuees.

— To address the challenges faced by the DQN model in
a large raster environment for route planning, this study
proposed compressed search space and navigational re-
wards methods to optimize the traditional DQN model,
enabling it to better suit evacuation route planning.
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Figure 1. The Daya Bay. The study area is in red. Basemap sources:
Esri.

2 Study Area

Daya Bay district is located in the southern region of
Huizhou City, Guangdong Province. It has a total land area of
293km? and a population of 0.45 million, which is concen-
trated most highly in coastal areas, in 2021. The Daya Bay
Petrochemical Industrial Zone, situated in the north-eastern
part of Daya Bay, was listed as a national petrochemical in-
dustrial base. It has formed an annual production capacity
of 22 milliont of oil refining and 2.2 milliont of ethylene
in 2021, which ranks first in China in terms of the scale of
petrochemical-refining integration. Industrial facilities and
critical infrastructure in this area are vulnerable to storm
surge-driven coastal flooding during typhoon events, leading
to devastating losses of life and property. In the context of
substantial sea-level rise and urban extent along low-lying
coastal areas, most communities across the Daya Bay district
will likely face higher storm surge flooding risk in the future.
It is crucial and essential to create the storm surge risk maps
for raising awareness about areas at risk and making evacua-
tion plans to minimize the loss and damage. The study area
is shown in Fig. 1.

3 Methodology

The risk assessment and evacuation route planning for storm
surge play a crucial role in saving lives and mitigating dis-
asters. The significance of this work lies in the ability to
simulate storm surge flooding for risk assessments and to
find routes to the nearest disaster on the road network. In
this study, the method used to perform risk assessment and
evacuation route plan consists of following four sections: (1)
storm surge simulation; (2) road risk assessment; (3) evac-
uation route planning; (4) optimization of the DQN. Please
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Figure 2. The overview of the work.

refer to Fig. 2 for an overview and the sections for more in-
formation.

3.1 Storm surge simulation

Given the difficulty in obtaining measured typhoon data, a
widely adopted method is to construct a theoretical wind field
model using the wind gradient formula (Jelesnianski, 1965;
Willoughby and Rahn, 2004). In this study, the Jelesnian-
ski hurricane model (Jelesnianski, 1965) was used to provide
wind forcing. This approach requires the specification of four
critical parameters: the cyclone trajectory T, the minimum
central pressure P, the maximum wind velocity Vpax, and
the maximum wind radius Rpax. The Rpax may be approx-
imated through several empirical equations (Vickery et al.,
2000; Cheung et al., 2007), as delineated below:

Runas_1 = exp(2.635 — 0.00005086A P + 0.03948996) (1)
Rmax_2 =1119 x AP*0.806 o
Rmax_3 = R — 0.4 x (P. —900) +0.01 x (P, — 900)2 3)
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where A P indicates the pressure difference between the min-
imum central pressure P, and ambient pressure, and in this
study, the ambient pressure is 1010 hPa; 6 represents the lati-
tude of the storm’s center; Ry is an empirical constant usually
taking the value range of [30, 60], and we take the Ry = 50.
The {Rmax_1, Rmax_2, Rmax_3} are all estimates of Rpax and
the final Rpyax we adopted was their average, i.e.

Rmax_l + Rmax_Z + Rmax_3

Rmax = 3 (4)

Given a pressure difference A P, the maximum wind velocity
Vmax can be estimated by a empirical equation(Atkinson and
Holliday, 1977):

Vimax = 3.7237 x A P0-6063 (5)

According to the Tropical Cyclone Dataset of the China
Meteorological Administration (CMA, Ying et al., 2014; Lu
et al., 2021), from 1949 to 2022, Huizhou was impacted by
tropical cyclones of typhoon intensity or greater, account for
58.9 % of all events, with central pressures ranging from 900
to 960 hPa. Among these cyclones, 57.7 % moved a westerly
or northwesterly path. In this study, the trajectory of Super
Typhoon “Mangkhut” (No. 1822) was selected to construct
a simulated wind field for storm surge inundation simula-
tions for its northwestward movement and its status as the
strongest cyclone in the Asia-Pacific region in recent years.
Employing the trajectory of “Mangkhut” is significant, as
it potentially introduces the maximum storm surge inunda-
tion to the study area. As shown in Fig. 3, the trajectory of
“Mangkhut” spanned a vast geographical area, originating in
the tropical Pacific region, traversing the Philippine Sea, and
culminating in landfall along the southern coast of China.
Based on Jelesnianski model, five typhoon scenarios were
constructed as demonstrated in Table 1.

Using the Jelesnianski hurricane model (Jelesnianski,
1965) to provide wind forcing, and combining the coupled
ADCIRC+SWAN model with topographic data, bathymet-
ric data, and barrier data to simulate the storm surge inun-
dation in the study area. The computational domain is dis-
cretized using an unstructured triangular mesh, with the mesh
shown in as shown in Fig. 4. The predominant tidal type in
the northern China’ South Sea is the 8 major tidal compo-
nents of semidiurnal and diurnal frequencies (M2, S2, N2,
K2, K1, O1, P1, Q1). The elevation data of the land grid
was obtained from the digital elevation model (DEM) data
of Huizhou acquired in 2015. The storm surge barriers data
in study area were obtained from the actual measured barrier
engineering data and elevation measurement data. The AD-
CIRC+SWAN model was evaluated using real historical dis-
aster events. (Detailed validation results between observed
and simulated water levels is provided in Appendix A).
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3.2 Road risk assessment

In this study, a fine-grained road risk assessment was con-
ducted by comprehensively combining exposure, vulnerabil-
ity, and hazard. The maximum possible extent of inundation
under the storm surge scenario was determined to identify
the roads that would be affected. To conduct hazard assess-
ment, the roads were categorized into different vulnerabil-
ity levels based on their traffic conditions. The evaluation of
storm surge-related hazards is conducted by quantifying the
extent of damage sustained by road infrastructures at vary-
ing inundation depths. The work of Huizinga et al. (2017) in
2017 provided a reference for the correlation between inuda-
tion depth and facility damage rate (Huizinga et al., 2017).
Among all examined vulnerable elements, transportation fa-
cilities exhibited the highest damage rate due to their sen-
sitivity to flooding and their importance in urban functions,
as shown in Fig. 5. Based on the correlation, this study con-
ducts a storm surge hazard assessment, dividing the inunda-
tion depth into five hazard levels, as illustrated in Table 2.

In the construction of transportation facilities, roads are
categorized based on criteria such as significance, capac-
ity, and function, as follows: (1) Primary roads, also known
as arterial roads, include highways, national and provincial
roads. These roads typically have the highest design stan-
dards and firmer constructions. Consequently, their vulner-
ability is lowest, and they can maintain service even un-
der extreme weather conditions. (2) Secondary roads typi-
cally serve to link pivotal urban areas, facilitating intra-city
transportation. Although designed to lower standards than
primary roads, they are still required to accommodate sub-
stantial traffic volumes and meet stringent safety demands.
(3) Tertiary roads, encompassing rural pathways and minor
unnamed thoroughfares, typically represent the extremities
of the transportation network. These roads are designed and
constructed to the lowest standards, primarily serving resi-
dents in rural areas. The vulnerability of the three categories
of roads in ascending order is as: primary roads < secondary
roads < tertiary roads. When considering the roads affected
by the maximum inundation extent, combining the vulnera-
bility of roads with the hazard level, a refined road risk as-
sessment matrix was proposed, as shown in Table 3.

3.3 Evacuation route planning

Although the road network in the study area exhibits full
connectivity, its complexity hampers the construction of the
topological structure. To apply DRL algorithm for evacua-
tion route planning, this study utilized a raster environmental
modeling; raster data can be perceived as images stored in
matrices, with a concise structure that facilitates subsequent
computational processing. The study area, a rectangular re-
gion of 9km x 15km, is divided into a cell of 16 m x 16 m.
Identifying potential shelters for swift evacuation is essen-
tial, especially in suburban areas where dedicated disaster

https://doi.org/10.5194/nhess-25-4767-2025
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Figure 3. The trajectory of “Mangkhut”. Basemap sources: Esri.

Table 1. Typhoon scenarios parameter.

®o
°
."o.o.mo. °o ®

130°E 135°E 140°E 145°E 150°E

130°E 135°E 140°E 145°E 150°E

Typhoon Minimum central

Maximum wind ~ Maximum wind  Trajectory

scenarios pressure P velocity Vimax radius Rmax

(hPa) (ms™1) (km)
Scenariol 910 57 31 “Mangkhut”
Scenario2 920 53 33 “Mangkhut”
Scenario3 930 49 35 “Mangkhut”
Scenario4 940 45 38  “Mangkhut”
Scenario5 950 41 45  “Mangkhut”

Table 2. Correlation between inundation depth and hazard level.

Inundation depth (cm)  Hazard level

0-15 1
15-50 2
50-120 3
120-300 4
300-00 5
Table 3. Road risk assessment matrix.
Risk Road categories

level Primary roads Secondary roads

Tertiary roads

1 very low very low
2 low low

3 moderate moderate
4 moderate high

5 high very high

very low
moderate
high

very high
very high

https://doi.org/10.5194/nhess-25-4767-2025

shelter facilities are limited. This study employed three crite-
ria: structural stability, waterproofing, and capacity to assess
potential shelters. Hospitals are inherently designed to with-
stand various natural disasters. Hospitals, inherently resilient
to natural disasters, are prioritized due to their Class II wa-
terproofing and Class I seismic resistance as per GB50011-
2021 and GB50345-2021. Schools, with Class III water-
proofing and enhanced seismic construction (GB50011-2021
and GB50223-2021), are also considered suitable. By inte-
grating local population density, traffic, and disaster risks,
this research has identified several potential shelters. Their
spatial distribution is depicted in Fig. 6, which clearly marks
the positions of each recommended shelter within the road
network. For route planning, since shelters are not typically
located on roads, proximity to a shelter is defined by reach-
ing road cells within a “shelter range” of 128 m, equating to
access to the shelter itself.

Deep reinforcement learning is a new paradigm that fo-
cuses on formulating suitable policies and taking action to
achieve a specific goal. A DRL agent learns autonomously
through continuous interactions with a environment by per-
forming actions and receiving rewards without supervision.

Nat. Hazards Earth Syst. Sci., 25, 4767-4786, 2025
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Figure 4. The computational domain. The model’s computational
domain covers the central and northern China’ South Sea, as well
as part of the eastern Philippine Sea and some areas of the northwest
Pacific, extended from 106.0 to 128.0° E and from 13.0 to 28.0°N
The grid resolution on the open boundaries ranges from approxi-
mately 5 to 110km, while the grid resolution along the coast of
Huizhou is approximately 150 m. The mesh is optimized using lo-
cal truncation error analysis, with a minimum grid resolution of ap-
proximately 100 m. The model contained grids consisting of 74 328
units and 38 407 nodes.
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Figure 5. Relationship of inundation depth and transportation facil-
ities damage rate. As the inundation depth increases from 0 to 3 m,
the damage rate of the transportation facilities also increases. How-
ever, this curve also delineates a saturation threshold in the damage
rate when the inundation depth reaches 3 m. This suggests that once
road transport facilities reach a state of severe damage, further in-
creases in inundation depth cannot cause a higher damage.

The interaction model between the agent and environment
is illustrated in Fig. 7. The primary objective of the agent
is to maximize cumulative rewards, which can be advanta-
geous for evacuation route planning. In this study, the Deep
Q-Network was employed to maximize the cumulative re-
wards.

The route planning can be reformulated as a continuous
position state transition process based on Markov chains.
This approach discretizes the route into states and actions,
employing the Markov Decision Process (MDP) to address

Nat. Hazards Earth Syst. Sci., 25, 4767-4786, 2025

C. Liu et al.: Study of risk assessment and evacuation planning

the uncertainties inherent in navigation. Given a state space
S, an action space A, and a set of rewards R, the Markov
decision process (MDP, Bellman, 1957) and the Markov re-
ward process (MRP, Bertsekas, 2012) are defined as Eqs. (6)
and (7):

(s,s' € S,acA) (6)
R/ =R(ris1lsi =s,ar=a,s,41=5")

(s,s' €S,acA,reR) )

Ply=P(siy1=5"s: =5,a; = a)

where P“  represents the transition probablility from state s
to state s’ after performing action a, and R{ 5 is the reward
obtained after transition (s, a,s’). MDP can be regarded as
a continuous decision-making process, and the next action
to be performed is only dependent on the current state. It is
important to clarify the nature of the transition probability
in our model. In a general MDP, the state transition function
can be stochastic, representing inherent uncertainty in an en-
vironment’s dynamics. In contrast, the raster-based environ-
ment in this study is deterministic. Specifically, any action
taken from a given state (a grid cell) deterministically leads
to a single, known subsequent state (the adjacent cell). This
means the transition probability is 1 for the resulting state
and O for all others. As the environment’s transition model is
perfectly known, it does not need to be learned or estimated
from real data.

In the setting of raster environment, the route plan-
ning can be described as: the agent chooses the subse-
quent action based on the current state until it reaches
the destination. The location of the agent serves as the
state, and the state transition is memoryless, satisfying
the Markov property. Under the fixed-size raster envi-
ronment and the same-size cells setting, the basic state
space is S : {s1,82,...,SmuxnISi = (xi,yi),0<x; < M,0<
yi < N}, and the basic action space is potential moves to
the 8 adjacent cells A :{ay,az,...,agla; =(x,y),(x,y) €

{{=1,0, 1}2 — (0, 0)}}, while the following state transition is
available:
s'=s+a (s,5e€S;acA (8)

The route planning problem in raster environmrnt based on
the MDP is defined as follows:

PS“J/:P(s,_;,_Hs,:s,a,:a):P(st:s,a,:a)zl )
Y Pl = (10)
acA

Rg,s’ =R@i41ls: =s,a: =a,s;41 = s/)

= R(riy1ls; =s,a, = a)

= f(d(s,5¢) —d(s',s¢)) (11)

where d (s, s¢) is the Chebyshev distance between cell s and
the destination cell s.. In the study area, the destination is
represented by a cluster of shelter facilities, collectively con-
stituting the destination set D. Let d(s) = mind(s, Se), Se¢ €

https://doi.org/10.5194/nhess-25-4767-2025
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Figure 6. The spatial distribution of potential shelters in study area.
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Figure 7. The DRL model, adapted from Sutton and Barto (2018).
The environment is objective and refers to everything outside the
agent that interacts with him, and the knowledge of the agent is re-
inforced through the interaction agent-environment. State (s;) rep-
resents the current state of the agent, which contains the current
environmental feature, and the state space (S) represents the set of
all possible environmental states. Action (a;) represents the action
taken by the agent in state s; according to policy 7, and the action
space (A) comprises all possible actions that an agent can take in a
specific state. The feedback mechanism called reward r; | is intro-
duced to quantify the value of the state s; and the action a;.

D signifies the distance to the nearest shelter facility. We
defined the reward R?’S, as a function of the difference
d(s,se) —d(s',se), implying that the reward is related to the
agent’s proximity to the destination.

DQN is a value-based DRL algorithm where the output
for a given state s, is a vector of action values denoted as
0O(sy, -; 0), with 0 representing the parameters of the online
network. The agent’s policy is to perform the action associ-
ated with the highest value. A DQN is a multi-layered neural

https://doi.org/10.5194/nhess-25-4767-2025
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network that estimates the value of states and actions. State
value is the expected reward that the agent can obtain from
a state to give an estimate of how good a state is, and action
value is the expected reward that the agent can obtain from
a state after performing a specific action. DQN incorporates
an experience replay mechanism (Mnih et al., 2015), which
mitigates temporal correlations by randomly drawing from
a stored memory of past experiences. This approach allows
the agent to learn effectively from rare events. Additionally,
DOQN utilizes a separate target network (Mnih et al., 2015) to
estimate the Q. (s, a), thereby enhancing the stability of the
learning process. Under a policy 7, the value of a state s is
denoted as V; (s) and the value of a action a in the state s is
denoted as Q (s, a):

Vi (s) =Ex(Gils; =5) =) Pr(als)Qx(s,a) (12)
Ox(s,a) =E(Gils; =s,a; =a)
= f(d(s,se) —d(s +a,se)) +yVe(s+a) (13)

where G, is the total discounted reward from state s, and
y € [0, 1] is the discount factor.

o0
Gi=Ri+yRpa+...=) v R (14)
k=0

The goal of DQN is to find an optimal policy 7 * to maximize
the state value and action value. Under the optimal policy 7 *,
the optimal state value function V,(s) and the optimal action

Nat. Hazards Earth Syst. Sci., 25, 4767-4786, 2025
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value function Q.(s,a) can be obtained by:

Vi(s) = m;lePS“S, [R;Z‘s, +y Vi (s’)] (15)

0.(s,a)= X:PY o [ g T ymng*(s/’a/)] (16)

The DQN searches for the optimal policy to maximize the
largest long-term cumulative reward that the target is:

DQN -
Y, Q =714l +ym§1XQ(ct+1,a;;0, ) a7

And using the Mean squared error loss (RMSE) as loss func-
tion, the DQN can be trained by optimizing the following
loss:

Loss(6,) =E| (ri + ymaxQ (¢r41.ar+:1:6;)
1+

~ 0(erai;6)’ | (1s)

The update process is based on the Monte Carlo method.
By continuously interacting with the environment, the agent
observes immediate rewards and accumulates them to count
value information, which can then be transformed into a re-
gression problem.

3.4 Optimization of the DQN

Deep reinforcement learning is imperative for this research
due to the high-dimensional state space of the problem. The
agent’s state is not a simple coordinate but a rich, image-
like observation, rendering traditional tabular methods like
Q-learning computationally infeasible. More importantly, a
deep neural network provides powerful generalization, learn-
ing abstract environmental features — such as intersections
or flooded zones — rather than memorizing individual states.
This allows the agent to make intelligent decisions in novel
situations, a critical requirement for a practical navigation
system. Lastly, its end-to-end learning capability allows for
policy optimization directly from raw environmental data,
bypassing manual feature engineering.

The DQN model, when applied in a raster environment,
faces significant convergence challenges from two aspects:
(1) the extensive search space; (2) the issue of sparse rewards.
The search space is composed of the state space and the ac-
tion space. In this study, the rasterized environment consist-
ing of over 19000 cells with each cell possessing eight ac-
tions, resulting in a vast search space. Coupled with the issue
of sparse rewards, where the agent receives feedback only oc-
casionally, the model’s training process becomes even more
complex and the convergence becomes notably difficult.

To reduce of the search space, two innovative methods
were proposed: the masked action space and the masked state
space. Typically, a cell in the action space allows movement
in eight directions, but not all are relevant. By leveraging a
mask, the masked action space method efficiently narrows
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®

Figure 8. The action space transition. The red line represents the
state transition and the green line represents the action space transi-
tion.
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Figure 9. Action patterns for up and up-right. The blue solid line
denotes the last action, while the red dashed lines represent redun-
dant next actions. The green dashed lines signify the masked action
space.

down the available actions from 8 to an approximate average
of 3. This method focuses particularly on the transition of
the action space, emphasizing the interaction between action
and state transitions. The action space transition is dependent
on the state transition, as illustrated in Fig. 8, where A de-
notes the action space associated with state s. According to
Eq. (8), the action space of the current state relies on the pre-
ceding state and the last performed action, and the transition
of action space is defined as:

P, y=Pla1=dls;=s.a,=a)=n(s+a); (19)

where a € A;, a’ € Agq, Pac’a, represents the probability of
taking action a’ after taking action a in cell s. In raster-
based route planning, two exceptional scenarios arise: (1)
For a state transition s’ = s + a, an action a’ exists such that
s = s’ 4+ a’, then the action @’ is deemed redundant for state
s’. (2) Diagonal movement, which equates to a combina-
tion of horizontal and vertical movements, presents a unique
case. Specifically, given the following transitions: s +a = ¢/,
s'+a =s", and s +a’ =s", then a’ is redundant follow-
ing the initial transition s + a. Figure 9 depicts two of eight
compressed action spaces, namely action patterns. There are
a total of 8 action patterns, which can be saved in 8 binary
matrices.

Additionally, as route planning operates on the road net-
work, exploring areas devoid of roads is considered futile.
The compressed action space A(s’) for each state transition
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s +a can be calculated using the raster road network and the
action patterns:

A(s") =ToA_P(a)oR_N(s +a) (20)

where [ is the basic action space of size 3 x 3 with all ele-
ments equal to 1, R_N(s) is the road information of size 3 x 3
centered at cell s, the A_P(a) is the action pattern for a, and
the operator o is the Hadamard product. For each pair (s, a),
the A_P(a) oR_N(c+ a) is the mask of the action space. All
the masks were computed in parallel and saved in a table
prior to initiating training. Given a transition s’ = s +a, con-
sulting the table using the tuple (s, @), and the action space
of s’ can be obtained.

In large-scale route planning, focusing on a “premium re-
gion” — where the optimal route is most likely to be found — is
essential, rather than considering the entire network of roads.
A masked state space method was proposed to determine the
“premium region”. We employed a base path, derived from
a low-resolution raster image of the original map, to pro-
vide guidance in determining the “premium region”. This
base path is quickly identified using a breadth-first search
algorithm on the downsampled image. The low-resolution
image represents an equally scaled-down projection of the
original high-resolution image, and the cell size was set to
128 m x 128 m, which is 64 times larger than the cell size
of the high-resolution image (16 m x 16 m). Given the base
path b= {s1(r1, 1), $2(x2, ¥2), - 55 (¥, y0)} i the low-
resolution image, the “premium region” P=p; +p2+...+
Pn, wWhere p; is a rectangular region of x =x; x8—§ to
(xi+1)x8+dand y = y; x8—§to (y;+1)x8+65.5§ =96 mis
the tolerance range. In the example depicted in Fig. 10, based
on a red base path, the blue region in the high-resolution im-
age represents the “premium region”. By considering only
the road information situated in the “premium region” dur-
ing the route planning, the state space can be substantially
compressed, with a compression ratio below 0.4.

Additionally, to tackle the issue of sparse rewards, we pro-
posed the navigational reward mechanism. This mechanism
offers a structured approach to categorize rewards into three
aspects: basic rewards, distance rewards, and risk rewards.
Basic rewards encourage the agent to reach the goal (shel-
ters) in the fewest steps as possible, with goal cells assigned
a substantial positive reward, while other cells receive a neg-
ative reward. Distance rewards guide the agent towards the
goal, providing a reward for moving closer and a punishment
otherwise. Risk rewards are negative incentives, designed to
deter the agent from high-risk roads whenever feasible. The
settings of navigational reward mechanism as illustrated in
Table 4. Such a multi-layered reward structure provides the
agent with more frequent and meaningful feedback, ensuring
a consistent learning trajectory and fostering faster conver-
gence.

The reward function detailed in Table 4 was designed
heuristically based on the principle of reward shaping (Ng
et al., 1999; Ibrahim et al., 2024), a common approach for
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Table 4. Settings of navigational reward.

Reward categories ~ Reward content Value
. destination reward +100
basic rewards

step reward -1

. distance reduction reward +2
distance rewards . .

distance increase reward -1

very low risk reward 0

low risk reward —4

risk rewards moderate risk reward -8

high risk reward —16

very high risk reward -32

The values presented are relative weights designed to structure the learning
objective. In practice, these rewards may be normalized or scaled during
training to ensure stable learning dynamics.

creating dense and informative signals to accelerate learning.
The specific values were calibrated empirically against the
environment’s scale. Our analysis indicated that a medium-
length evacuation route comprises approximately 100 steps,
which established the step reward as a baseline unit. The des-
tination reward (4100) was thus set to counteract the cumu-
lative penalty of a medium-length path, while risk penalties
were scaled significantly higher to prioritize safety over mi-
nor efficiency gains. This empirically-grounded calibration
proved highly effective in guiding the agent toward optimal
and safe evacuation routes.

The DQN agent’s policy is learned through direct inter-
action with the simulated environment. The training process
is driven by a multi-layered neural network that acts as a
function approximator. At each step, the network takes the
agent’s local observation as input — a multi-channel tensor of
size (2rop + 1,2r0p + 1,4) containing information on roads,
shelters, risks, and distances. The output is a vector of 8 Q-
values, predicting the expected cumulative reward for each
possible action. Here, the rop was set to 160 m, reflecting the
human field of vision in real-world scenarios. The network’s
weights are optimized by minimizing the Mean Squared Er-
ror between these predicted Q-values and target Q-values,
which are generated using the Bellman equation.

Each training episode begins with the agent at a randomly
chosen road cell 5o within a “premium region”, which is de-
fined by a base path from a low-resolution map. The episode
proceeds step-by-step until the agent reaches a shelter, which
serves as the terminal state. At each step, the agent’s action a;
is chosen probabilistically based on the outputted Q-values,
following an e-greedy policy:

1
P(a;ls) Zé'm‘i‘(l—e)

- FlQx(s,a;), max(Qx(s,a;))]
(ai,a;j € A@@,s)) 21)
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Figure 10. The low-resolution image and the high-resolution image. For each cell c(i, j) in the low-resolution image, uniquely corresponds
to arectangular area rec(i, j): i x M <x <ixM+ M, j x N <y < jx N+ N in the high-resolution image. The blue region in the high-

resolution image represents the “premium region”.
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Figure 11. The DQN training process with the masked action and state spaces compression, features three components: green sections
represent the classical DQN, blue sections correspond to compressed search space method, and orange sections indicate navigational reward.

where F(a,b) =1, if a = b; F(a,b) =0, otherwise. A(a, s)
denotes the action space. 0 < € < 1 dictates the degree to
which selection favors random exploration over the highest-
value action. During the early training stages, a larger € en-
courages agents to explore the unknown environment more
extensively. As the model converges, € should decrease to
facilitate agent focus on high-value states and actions. Under
the DQN framework, the training process is demonstrated in
Fig. 11.

4 Results and discussions
4.1 Results of road risk assessment

In this study, five distinct wind fields, each characterized
by a minimum central pressure of 910, 920, 930, 940, and
950 hPa were constructed using Jelesnianski model. These
wind fields were subsequently integrated into the coupled
ADCIRC-SWAN model to simulate the extent and depth of
storm surge inundation within the study area. Considering

Nat. Hazards Earth Syst. Sci., 25, 4767-4786, 2025

the maximum inundation extent to conduct exposure assess-
ment, and according to the Table 2, the storm surge hazard
assessment across the five wind scenarios is graphically rep-
resented in Fig. 12. The results indicate that the intensifica-
tion of typhoons correlates with more extensive and severe
inundation, elevating the associated hazard levels. For in-
stance, Fig. 12a illustrates a scenario where, at a central pres-
sure of 910 hPa, nearly half of the study area is submerged,
with a significant portion experiencing high-hazard condi-
tions. Figure 12c¢ delineates a pivotal moment; at 930 hPa,
the typhoon’s central pressure marks a significant decrease
in both the inundation’s extent and severity. In the last sce-
nario, as depicted in Fig. 12e, the inundation is confined to
the peripheral parts of the study area, exhibiting limited ca-
pacity to affect the inland road network. Consequently, the
last scenario was excluded from consideration in the sub-
sequent road risk assessment and evacuation route planning
processes.

This study focuses on the road risk assessment of storm
surge in the study area, which is located in a coastal sub-
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Figure 12. The hazard assessment for five typhoon scenarios. (a) Scenario 1. (b) Scenario 2. (¢) Scenario 3. (d) Scenario 4. (e) Scenario
5. Noted that, this study omitted factors such as surface drainage and ground infiltration. Consequently, the actual inundation depths are
expected to be lower than those simulated. Given this discrepancy, the risk level of 1 for inundation depths ranging from 0 to 15 cm can be
classified as negligible.

https://doi.org/10.5194/nhess-25-4767-2025 Nat. Hazards Earth Syst. Sci., 25, 4767-4786, 2025



4778

649 m.

709m

Figure 13. The road network and road categories in the study area.

urb characterized by winding and discontinuous roads. To
enhance the road network within the study area, additional
road data was collected using geographic information sys-
tem (GIS) technology, including minor and unnamed roads
that often represent fine branches and extensions of existing
roads and highways, which became an important basis for
classifying roads and evaluating their vulnerability. The road
network and road categories in the study area is shown in
Fig. 13.

As presented the Table 3, the road risk assessment for the
study area under the four scenarios is shown in Fig. 14, where
storm surge mainly threatened the secondary and tertiary
roads in the coastal road network, mainly concentrated in the
southern part of the Daya Bay petrochemical industrial zone
and the Daya Bay Golden Coast vicinity. In the scenarios
depicted in Fig. 14a and b, a storm surge causes widespread
flooding in the petrochemical industrial zone, rendering most
roads at high risk and impassable. In such situations, evacua-
tion routes should guide individuals north into primary roads
and then eastward to shelters. Similarly, the area surrounding
the Daya Bay Golden Coast faces a critical situation, neces-
sitating swift evacuation along secondary and tertiary roads
to the northwest or northeast towards shelters. Figure 14c
presents a pivotal scenario, demonstrating a significant re-
duction in the storm surge’s impact on the roads of petro-
chemical industrial zone. However, the Golden Coast vicin-
ity remains significantly affected, primarily due to the preva-
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lence of vulnerable tertiary roads. As depicted in Fig. 14d,
when the typhoon’s central pressure drops to 940 hPa, the
storm surge’s impact on the Golden Coast’s roads diminishes
substantially. Consequently, the typhoon’s minimum central
pressure at 930 and 940 hPa are critical thresholds for the
storm surge’s impact. Below 940 hPa, the roads in the Daya
Bay Golden Coast area are at high risk, and when the pres-
sure is below 930 hPa, the Daya Bay Petrochemical Industrial
Zone’s roads experience severe disruption.

4.2 Performance of DQN model for evacuation route
planning

The goal of this work is to enable real-time route planning to
the shelter from any given start based on the surrounding en-
vironment. The experiment utilized three simulated scenarios
(Scenario 2, 3, and 4) designated for training DQN model,
while Scenario 1 served as the test case. 1000 starting cells
were randomly selected in Scenario 1 to conduct route plan-
ning and the enumeration method is used to find the true opti-
mal routes. In Scenario 1, the generated routes covered about
71 % of the road network, with an average length of 4776 m.
Refer to Appendix B for exemplifications of the route plan-
ning.

To evaluate the overall model performance, five metrics
were introduced, including: (1) proportion of optimal routes,
(2) Dynamic time warping (DTW, Miiller, 2007) distance,
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Figure 14. The road risk assessment. (a) Scenario 1. (b) Scenario 2.

(3) Hausdorff distance (Huttenlocher et al., 1993), (4) over-
lap rate, and (5) destination distance. The proportion of op-
timal routes measures the degree of correspondence between
the generated routes and the optimal routes by calculating
the percentage of generated routes that completely coincide
with the optimal routes. The DTW evaluates the similarity
between two time series, and the DTW distance is used to
measure the average deviated distance of the generated route
from the optimal route. Given a optimal route p of length
lopt and a generated path Poen of length lgen, the DTW can be
discribed as a dynamic programming (DP):

Minimize(D - W) 22)

where D = {d(p, ¢q)} and d(p, g) is the Chebyshev distance
between the cell p € p,y and cell g € pye,. W={w(, j)}
and w(i, j) is the binary DP variable i, j € Z",i <lop, j <
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(d)

(c¢) Scenario 3. (d) Scenario 4.

lgen. The DTW distance is defined as:

D-W
dDTW(Poptv pgen) = Ta
n=Zw(i,j) (w(@i, j) € W) (23)

Consider a route as a set of locations, and utilize the Haus-
dorff distance diaus(Popt> Pgen) to measure the distance be-
tween two sets, which can be calculated by:
dHaus (popt’ pgen) = maX{SuPinfd (P, q)’ Supinfd (q ’ 17)}

(P € popu q¢c pgen) (24)
where sup is the supremum and inf is the infimum. The

Hausdorff distance measures the maximum deviated dis-
tance of the generated route. Let /,, denote the length of
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the longest common sub-route between the generated and
optimal routes, the overlap rate is defined as the ratio roy =
lov/lopt. The destination distance is a metric for assessing the
efficacy of evacuation route planning, reflecting the distance
between the endpoint of the generated route and the desig-
nated shelter.

Among generated routes, a route that deviates from the
optimal route is termed a deviated route. Figure 15 depicts
the proportion of optimal and deviated routes, as well as the
distribution of their starting points, where blue and orange
markers represent the optimal and deviated routes, respec-
tively.

The 1000 test cases evaluated the model’s performance
amidst severe storm surges and complex inundation envi-
ronments. Among the 1000 generated routes, 668 routes are
optimal with 332 routes deviated. Focusing on the deviated
routes, the DTW distance, the Hausdorff distance, the over-
lap rate, and the destination distance are illustrated as Fig. 16.
The mean length of 332 deviated routes is 5728 m, indicat-
ing that longer routes tend to exhibit greater deviations. In
Fig. 16a, the average DTW distance for deviated routes is a
mere 3.36 m, and the majority of these routes exhibit DTW
distances below this average, although a minority exceed
16 m. The average Hausdorff distance is 36.96 m. An analy-
sis combining Fig. 16a and b indicates that the routes exhibit
minor deviations from the optimal routes in the majority of
cases, with significant deviations occurring infrequently. In
Fig. 16¢, the average overlap rate is 0.88, with most cases ap-
proaching a perfect overlap of 1, demonstrating that the devi-
ated routes mostly remain consistent with the optimal routes.
Finally, in Fig. 16d, the destination distances were calculated
with an average value of 4.32 m. The majority of destination
distances fall within the 0—16 m range, although a few outlier
routes exceed 144 m, suggesting that deviated paths, despite
process discrepancies from the optimal routes, can still reach
the optimal shelter with high accuracy. The experimental re-
sults demonstrate that the proposed method exhibits strong
performance in generality, providing emergency evacuation
route planning for the entire study area.
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Figure 15. The optimal and deviated routes. (a) The proportion of optimal and deviated routes. (b) the distribution of 1000 starting points.

5 Conclusions

This study presents a comprehensive approach to conduct the
storm risk assessment and evacuation route planning in the
Daya Bay Petrochemical Industrial Zone. It facilitates a thor-
ough understanding for local government regarding the spa-
tial distribution of road risks and aids residents in swiftly de-
vising optimal evacuation routes to shelters, contingent upon
their immediate surroundings. This approach significantly
bolsters efforts in storm surge disaster prevention, mitigation,
and contributes to the sustainable development of the region.

This study utilized the ADCIRC+SWAN model to simu-
late five storm surge scenarios, identifying maximum inunda-
tion levels within the study area. Integrating inundation data
with road network information facilitated a fine-grained risk
assessment, revealing high vulnerability in the petrochemi-
cal industrial zone and Golden Coast region’s road networks
to storm surges. The minimum central pressure of typhoons,
with key thresholds at 930 and 940 hPa, serves as a criti-
cal factor in determining the impact severity: roads in the
Golden Coast are at risk when the central pressure is below
940 hPa, while central pressure below 930 hPa significantly
disrupt the petrochemical zone’s roads. Focusing on evacu-
ation route planning, the study developed a high-resolution
raster environmental model to explore deep reinforcement
learning methods for large-scale raster environments. To ad-
dress DQN model’s convergence challenges, a compressed
search space and a navigational reward mechanism were in-
troduced, enhancing the DQN model’s capacity in route plan-
ning. In Scenario 1, 1000 starting points were randomly sam-
pled to generate evacuation routes, with nearly 70 % proving
optimal and the rest showing minimal deviation, averaging
a DTW distance of 3.36 m and an overlap rate of approxi-
mately 0.9.

This study demonstrates the efficacy of the proposed
method in assessing road risks and enhancing emergency
evacuation plans. It underscores the worth of leveraging ad-
vanced modeling techniques to improve emergency response
and preparedness in vulnerable areas. Yet, there are opportu-
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Figure 16. Model evaluation metrics for (a) DTW distance, (b) Hausdorff distance, (c¢) destination distance and (d) overlap rate with one

cell representing 16 m.

nities for refinement. Current road risk assessments consider
flooding and road types but could be improved to include
road width, population density and other factors to enhance
the effectiveness of road risk assessment. Looking ahead,
transitioning from raster to topological environments, poten-
tially through graph neural networks, presents a promising
path to overcome the limitations in training speed and large
data handling. Additionally, the current model’s exclusion
of infiltration and drainage dynamics may affect inundation
depth accuracy. Future research should integrate these factors
for more precise storm surge simulations. In summary, this
study represents a pivotal step in developing storm surge risk
assessment and real-time evacuation planning. The scope for
advancement is considerable, inviting ongoing research and
innovation in this critical domain.
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Appendix A: The validation of ADCIRC+SWAN model
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Figure Al. The validation of ADCIRC+SWAN model. The real historical typhoon events (2305, 2311, 2314) were used to validate water
levels. The black line represents the simulated water levels and the redline represents the observed water levels record by Nanao station and
Shekou station. (a) 2305 Doksuri (Nanao station). (b) 2305 Doksuri (Shekou station). (¢) 2311 Haikui (Nanao station). (d) 2311 Haikui
(Shekou station). (e) 2314 Koinu (Nanao station). (f) 2314 Koinu (Shekou station).
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Appendix B: Examples of evacuation route planning

Risk level
o o v v

M start @ shelter

— cyacuation route

Figure B1. Examples of evacuation route planning. In this study, the goal of evacuation route planning is to find the optimal route from arbi-
trary starting points to designated shelters. While the inclusion of planning routes from non-flooded areas to shelters may be not reasonable
in real-world applications, this approach effectively evaluate the model’s route planning capabilities.

https://doi.org/10.5194/nhess-25-4767-2025 Nat. Hazards Earth Syst. Sci., 25, 4767-4786, 2025



4784

Code availability. The numerical models used in this study include
the Advanced Circulation (ADCIRC, Luettich et al., 1992) model
and the Simulating Waves Nearshore (SWAN, Booij et al., 1999)
model. Both models are open-source. The ADCIRC model (ver-
sion V55) source code and documentation are available at its of-
ficial website: https://adcirc.org/ (last access: 16 November 2025).
The SWAN model (version 41.1) source code and documentation
are available from the Delft University of Technology at: https:
/lswanmodel.sourceforge.io/ (last access: 16 November 2025). The
deep reinforcement learning (DQN, Mnih et al., 2013) based evacu-
ation model code was developed by the authors specifically for this
case study. This code is not publicly available because it is highly
integrated with the study area’s specific environmental data and in-
volves sensitive regional information related to the Daya Bay Petro-
chemical Industrial Zone. The code may be made available from
the corresponding author upon reasonable request for academic and
non-commercial purposes.

Data availability. The best-track data for Typhoon Mangkhut used
in this study are publicly available from the China Meteorological
Administration (CMA, Ying et al., 2014; Lu et al., 2021) Tropi-
cal Cyclone Data Center (available at: http://tcdata.typhoon.org.cn/,
last access: 16 November 2025). The water level verification data
were obtained from the National Tidal Gauge Station of China. The
Digital Elevation Model (DEM) data and the road network data
were provided by the Huizhou Land and Resources Bureau. These
datasets (water level, DEM, and road network) are not publicly
available due to national and regional security regulations concern-
ing hydrological and geospatial information. Further details may be
discussed with the corresponding author upon reasonable request,
subject to data usage agreements.
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