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Abstract. Peaks over threshold (POT) techniques are com-
monly used in practice to model tail behaviour of univariate
variables. The resulting models can be used to aid in risk as-
sessments, providing estimates of relevant quantities such as
return levels and periods. An important consideration during
such modelling procedures involves the choice of threshold;
this selection represents a bias-variance trade-off and is fun-
damental for ensuring reliable model fits. Despite the crucial
nature of this problem, most applications of the POT frame-
work select the threshold in an arbitrary manner and do not
consider the sensitivity of the model to this choice. Recent
works have called for a more robust approach for selecting
thresholds, and a small number of automated methods have
been proposed. However, these methods come with limita-
tions, and currently, there does not appear to be a “one size
fits all” technique for threshold selection. In this work, we in-
troduce a novel threshold selection approach that addresses
some of the limitations of existing techniques, which we
have termed the TAil-Informed threshoLd Selection (TAILS)
method. In particular, our approach ensures that the fitted
model captures the tail behaviour at the most extreme obser-
vations, at the cost of some additional uncertainty. We apply
our method to a global data set of coastal observations, where
we illustrate the robustness of our approach and compare
it to an existing threshold selection technique and an arbi-
trary threshold choice. Our novel approach is shown to select

thresholds that are greater than the existing technique. We
assess the resulting model fits using a right-sided Anderson-
Darling test, and find that our method outperforms the exist-
ing and arbitrary methods on average. We present and dis-
cuss, in the context of uncertainty, the results from two tide
gauge records; Apalachicola, US, and Fishguard, UK. In con-
clusion, the novel method proposed in this study improves
the estimation of the tail behaviour of observed coastal water
levels, and we encourage researchers from other disciplines
to experiment using this method with their own data sets.

1 Introduction

Natural hazards such as flooding, earthquakes and wildfires
devastate communities and livelihoods around the world. Ex-
treme value analysis (EVA) applied to the historical records
of such events provides a useful tool for describing the fre-
quency and intensity of these processes, and can be used by
practitioners, community leaders, and engineers to prepare
in advance for catastrophic events. Example applications in-
clude flood risk assessment (D’Arcy et al., 2023), nuclear
regulation (Murphy-Barltrop and Wadsworth, 2024), ocean
engineering (Jonathan et al., 2014), and structural design
analysis (Coles and Tawn, 1994). Furthermore, stakeholders
with assets spread across large geographical regions utilise
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these tools to understand hazards across regional, continen-
tal, and global scales (Keef et al., 2013; Quinn et al., 2019;
Wing et al., 2020).

Coastal flood events, driven by high tides, surges, or
waves, are commonly recorded at tide gauge stations, which
cover large proportions of the populated global coastline.
When characterising extreme sea level events, these tide
gauge records are a primary source of information available
to coastal managers. Due to the large number of sites in-
volved, automated techniques for the characterisation of ex-
treme events are preferable.

The earliest EVA techniques used the annual maximum
approach, whereby a theoretically motivated distribution is
fitted to the observed yearly maxima. However, this ap-
proach suffers from the drawback that only one observation
is recorded for each year, resulting in inefficient use of the
data. In practice, this can lead to an incomplete picture of the
upper tail and less accurate estimates of tail quantities, such
as return levels. Consequently, recent consensus has been
to move away from the annual maximum approach (Davi-
son and Smith, 1990; Coles, 2001; Scarrott and MacDonald,
2012; Pan and Rahman, 2022).

As a result, the peaks over threshold (POT) approach
has become the most popular technique for EVA modelling;
see Sect. 3 and Coles (2001) for further details. This ap-
proach involves fitting a statistical model to data above some
high threshold. However, the choice of this threshold is not
consequence-free, and inappropriate choices can result in
poor model fits and extrapolation into the tail. Traditional
approaches rely on visual assessments of parameter stability
above the appropriate threshold. Such approaches suffer from
subjectivity (Caballero-Megido et al., 2018) and the time in-
put required to apply such techniques to global tide gauge
records is not feasible. Consequently, many efforts have been
made to reduce the time burden incurred by manual thresh-
old selection. These include simplifications that allow large
amounts of data to be processed, but at the cost of accuracy,
e.g., using a static threshold, such as the 0.98 quantile or a
fixed number of exceedances per year (Hiles et al., 2019;
Collings et al., 2024). We refer to the approach of selecting a
static 0.98 quantile across all sites (or variables) as the Q98
approach henceforth. Note that the use of static thresholds,
such as the Q98, are common in two-step threshold selection
processes (e.g., Bernardara et al., 2012), and should not be
confused with the use of the static threshold as the threshold
above which to consider an exceedance. Other approaches
aim to automate much of the subjective decision-making pro-
cess while retaining a flexible method that can capture the
underlying behaviour of the physical processes (Solari et al.,
2017; Curceac et al., 2020; Murphy et al., 2025). However, as
discussed in Sect. 3, many of these techniques are not suffi-
ciently robust or flexible and can perform poorly in practice.

In this study, our aim is to build upon existing techniques
to provide a novel approach to automating threshold selec-
tion, which is applicable to a wide range of datasets whereby

the extremes are characterised by different drivers. As a mo-
tivating example, we apply our method to a global dataset
of 417 tide gauge records, demonstrating the performance of
our approach over a variety of locations and benchmarking
against other commonly used techniques.

The layout of this paper is as follows; in Sect. 2 we intro-
duce the dataset used in this study and in Sect. 3 we discuss
the common difficulties in using the POT approach across
such a large, varied dataset, as well as some of the methods
used to simplify the process. In Sect. 4, we describe our novel
approach to automating threshold selection and explain the
choices of tuning parameters. In Sect. 5, we present the re-
sults of applying our method to the global tide gauge dataset
described in Sect. 2. In Sect. 6, we discuss our results in the
context of uncertainty, bias, and the underlying physical pro-
cesses. Finally, in Sect. 7, we provide a conclusion to our
study.

2 Data

The locations of the considered tide gauge stations are illus-
trated in Fig. 1. These data are obtained from the Global Ex-
treme Sea Level Analysis (GESLA) database (Haigh et al.,
2023), version 3.1, which is a minor update to version 3
to include the most recent years (2022–2024). The GESLA
database was collated from many organisations that collect
and publish tide gauge data. The water level records are pre-
pared using the quality control flags published by Haigh et al.
(2023) alongside the data set, and duplicate timestamps in
the records are also removed. The water level records that
contain over 40 years of good data (defined as at least 75 %
complete) are retained. This results in a total of 417 water
level records from around the world, which have an aver-
age record length of 66 years. The raw time series data are
provided on a range of time steps (10, 15, and 60 min), and
so are resampled to hourly resolution. A linear trend is cal-
culated and removed to account for mean sea level change.
Although some tide gauge stations show an accelerating sea
level change, a linear trend is judged to be sufficient to model
sea level change in this study. Daily maxima data are ob-
tained from the hourly records, and the data is subsequently
declustered using a 4 d storm window to ensure event inde-
pendence (Haigh et al., 2016; Sweet et al., 2020). Given the
range of oceans and coastlines covered, one would generally
expect to observe a wide variety of tail behaviours across the
records.

3 POT modelling

The POT approach, whereby a theoretically motivated dis-
tribution is fitted to the excesses of some high threshold
(see, e.g., Coles, 2001), is the most common technique for
assessing tail behaviour in environmental settings. Given
any random variable X and a threshold u, the results of
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Figure 1. Map of GESLA record locations with record lengths greater than 40 years. The two locations highlighted in red are Apalachicola,
US and Fishguard, UK, which are discussed in more detail in Sect. 5.4.

Balkema and de Haan (1974) and Pickands (1975) demon-
strate that under weak conditions, the excess variable Y :=
(X−u |X > u) can be approximated by a generalised Pareto
distribution (GPD) – so long as the threshold u is “suffi-
ciently large”. The GPD has the form

H(y;σ,ξ)= 1−
(

1+
ξy

σ

)−1/ξ

+

, y > 0, (1)

where z+ =max(0,z), σ > 0, and ξ ∈ R. We refer to σ

and ξ as the scale and shape parameters, respectively, and
we remark that the latter parameter quantifies important in-
formation about the form of tail phenomena; see Davison
and Smith (1990) for further discussion. A wide range of
statistical techniques have been proposed, including both
Bayesian and frequentist frameworks, to fit the model in
Eq. (1) (Dupuis, 1999; Behrens et al., 2004; Northrop et al.,
2017), although we note that maximum likelihood estimation
(MLE) remains the most common technique (e.g., Gomes
and Guillou, 2015). Consequently, we restrict attention to
MLE techniques throughout this paper.

In many practical contexts, Eq. (1) is used to obtain es-
timates of return levels for some return period N of inter-
est. Such values offer a straightforward interpretation: the N
year return level is the value xN that one would expect to
exceed once, on average, every N years. Return levels are
easily obtained by inverting Eq. (1) (see Coles, 2001), and
their estimates are often used to inform decision making. For
example, in the contexts of flood risk analysis and nuclear in-
frastructure design, regulators typically specify design levels
corresponding to return periods of N = 100 years (D’Arcy
et al., 2023) and N = 10 000 years (Murphy-Barltrop, 2023),
respectively.

The ambiguity of the statement “a sufficiently large thresh-
old u” requires careful consideration. This is a problem that

is commonly overlooked in many applications, and selecting
a threshold u is entirely non-trivial. In particular, this selec-
tion represents a bias-variance trade-off: selecting a threshold
too low will induce bias by including observations that do not
represent tail behaviour, while extremely high thresholds will
result in more variability due to lower sample sizes. Further-
more, the estimates of return levels are very sensitive to the
choice of threshold, and biased estimates can significantly
impact the cost and effectiveness of certain infrastructures,
such as flood defences (Zhao et al., 2024).

Owing to the importance of threshold choice, a plethora
of methods have been proposed which aim to balance the
aforementioned trade-off; see Belzile et al. (2023) for a re-
cent review of the literature. The standard and most-widely
used approach for threshold selection involves a visual as-
sessment of the stability of the GPD shape parameter across
a range of increasing thresholds (Coles, 2001). This approach
suffers from subjectivity in the choice of stable region. Fur-
thermore, visual assessment for individual sites is simply not
feasible (within a reasonable time scale) for large scale ap-
plications.

Automatic approaches seek to remove this subjectivity by
selecting a threshold based on some criterion or goodness-
of-fit metric; Wadsworth and Tawn (2012) and Northrop
and Coleman (2014) utilise penultimate models and hy-
pothesis testing; Bader et al. (2018) and Danielsson et al.
(2019) use goodness-of-fit diagnostics; Wadsworth (2016)
utilise a sequential assessment of a changepoint model; and
Northrop et al. (2017) create a measure of predictive per-
formance in a Bayesian framework. Tancredi et al. (2006)
avoid the prior selection of the threshold by employing a
Bayesian mixture model where the threshold is estimated
as part of the parameter estimation, allowing for straight-
forward estimation of threshold uncertainty. In the applied
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literature, Durocher et al. (2018) and Curceac et al. (2020)
compare several automated goodness-of-fit approaches for
selecting a threshold in the hydrological setting. Further-
more, Choulakian and Stephens (2001), Li et al. (2005) and
Solari et al. (2017) automate goodness-of-fit procedures and
apply these techniques to a range of precipitation and river
flow data sets.

Recently, Murphy et al. (2025) proposed a novel thresh-
old selection technique building on the work of Varty et al.
(2021). This method, termed the expected quantile discrep-
ancy (EQD), aims to select a threshold u for which the
sample excesses are most consistent with a GPD model.
We briefly outline this method below. Let xu = (x1, . . .,xnu)

be the nu observed excesses of some candidate threshold
u, i.e., observations of Y . For each candidate threshold,
the EQD method assesses the expected deviation between
sample and theoretical quantiles at a set of fixed proba-
bilities Pm := {j/(m+ 1) : j = 1, . . .,m}, where m denotes
some large whole number that is fixed over candidate thresh-
olds. This assessment is done across a large number of boot-
strapped samples, say B, to incorporate sampling variability
and stabilise the threshold choice. More specifically, letting
xbu denote the bth bootstrapped sample of xu, with b = 1, . . . ,
B, Murphy et al. (2025) propose the metric

db(u) :=
1
m

m∑
j=1

∣∣∣∣∣ σ̂ buξ̂bu
[(

1−
j

m+ 1

)−ξ̂bu
− 1

]

−Q

(
j

m+ 1
;xbu

)∣∣∣∣ , (2)

where (σ̂ bu , ξ̂
b
u ) denote the GPD parameter estimates for

xbu, obtained using MLE, and Q(j/(m+ 1);xbu) denotes the
j/(m+1) empirical quantile of xbu. Considering Eq. (2) over
each bootstrapped sample, an overall measure of fit for u is
given by d(u)=

∑B
b=1db(u)/B. Finally, the selected thresh-

old, u∗, is the value that minimises d , i.e., u∗ := argmind(u).
Through an extensive simulation study, Murphy et al. (2025)
show that their approach convincingly outperforms the core
existing approaches for threshold selection. They further find
that existing techniques do not provide sufficient flexibility
or robustness to select appropriate threshold choices across a
wide range of datasets. Therefore, at the time of writing, the
EQD technique is the leading approach for automated thresh-
old selection.

In this article, we argue and demonstrate that while the
EQD approach appears to work well in a wide variety of
cases, it can suffer from drawbacks in certain contexts that
result in less than ideal threshold choices. Specifically, the
chosen thresholds can result in model fits that do not match
up well at the most extreme observations. We briefly explore
the reasons for why this may occur below.

To begin, consider two candidate thresholds u1 < u2 satis-
fying Pr(X > u1)= 0.5 (i.e., the median) and Pr(X > u2)=

0.99. Taking each threshold in turn, the EQD computes quan-

tiles from the (bootstrapped) conditional variables (X− u1 |

X > u1) and (X− u2 |X > u2) that correspond with the
probability set Pm, with Pm remaining fixed for both thresh-
olds. When considered on the scale of the data, however, this
results in very different quantile probabilities. Letting xu1,j

denote the (true) j/(m+1) quantile of (X−u1 |X > u1) for
any j = 1, . . . , m, we have

Pr(X ≤ xu1,j + u1)=1−Pr(X− u1 > xu1,j |X > u1)

Pr(X > u1) (3)
=1− [1− j/(m+ 1)]0.5=: qu1,j , (4)

with an analogous formula following for u2, i.e., qu2,j := 1−
[1−j/(m+1)]0.99. The resulting probability sets {qu1,j }

m
j=1

and {qu2,j }
m
j=1, with m= 100, are illustrated in Fig. 2. This

demonstrates clearly that the lower the threshold level u, the
lower the quantile probabilities evaluated by the EQD metric.
Thus, quantiles lying far into the tail of the data will carry
significantly less weight for lower thresholds than for higher
thresholds.

On a similar note, we remark that the metric described in
Eq. (2) is equally weighted across all probability levels. We
argue that this somewhat disagrees with intuition in the sense
that many practitioners mainly care about a models’ ability
to estimate very extreme return levels, and one only wants
observations in the tail to be driving this estimation. Includ-
ing non-extreme observations will bias the estimation pro-
cedure and therefore assessing quantile discrepancies mainly
for lower quantile levels, as will occur for lower candidate
thresholds, provides little to no intuition as to how the fitted
model will perform at the most extreme levels.

Taking these points into account, we propose an exten-
sion of the EQD procedure to improve the model fit to the
most extreme observations. Our proposed extension results
in models fits which more accurately capture the upper tail
of the data in contexts where the EQD method struggles.
Specifically, in the context of coastal modelling, we demon-
strate that the EQD approach selects thresholds that do not
appear appropriate for capturing the most extreme observa-
tions across many coastal sites; such issues do not arise for
our extended approach. Consider the example illustrated in
Fig. 3 for a tide gauge record located in Pensacola Bay, US,
which is in the Gulf of Mexico. This record was selected as
it is located in a region impacted by tropical cyclones, where
the uncertainty in the model fits using the historical records is
typically large. As demonstrated in the left panel of this fig-
ure, the model fit obtained using the EQD approach performs
poorly within the upper tail. For this particular example, this
indicates that the overall model fit is being driven mainly
by lower observations, biasing the fit in the upper tail. Such
findings were replicated across many coastal sites, indicating
that this is not an unusual phenomenon. We also illustrate the
model fit that arises from our proposed method (see Sect. 4)
in the right panel of Fig. 3. One can observe that even though
the updated model fit has a higher disrepency value d(u), the
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Figure 2. The probability sets {qu1,j }
m
j=1 and {qu2,j }

m
j=1 illustrated in red and black vertical lines, respectively. The left and right plots are

given on different intervals to illustrate the fact the quantile probabilities exist in entirely different subregions of [0,1].

Figure 3. QQ plots for the thresholds selected using the EQD (left) and TAILS (right) approaches; see Sect. 4 for more details of the TAILS
method. The sub captions in both cases gives the EQD score d(u) at the threshold chosen by both methods.

model quantiles appear better able to capture the upper tail in
the data.

These findings indicate that whilst the EQD approach out-
performs many existing techniques, it can, in some cases, re-
sult in model fits that fail to capture the most extreme obser-
vations. This drawback motivates novel developments, and
in this work we propose an adaptation of the EQD tech-
nique, which we term the TAil-Informed threshoLd Selection
(TAILS) method. Unlike the EQD approach, our technique
focuses exclusively on quantiles within a pre-defined upper
tail of the data, independent of the choice of threshold. Fur-
thermore, we demonstrate in Sect. 5 that TAILS results in im-
proved model fits across a wide range of tide gauge records.
Code for implementing the TAILS approach is freely avail-
able online at https://github.com/callumbarltrop/TAILS (last
access: 11 November 2025).

4 The TAILS approach

In this section, we introduce the TAILS approach for GPD
threshold selection. To begin, let P := {pi : i = 1, . . .,m} de-
note a set of increasing quantile levels close to 1: the se-

lection of P is subsequently discussed. Given a candidate
threshold u, let xbu, b = 1, . . .,B, be defined as in Sect. 3 and
let πu = Pr(X ≤ u). We propose the following metric

d̃b(u) :=

∑m
i=11(πu < pi)

∣∣∣∣ σ̂ buξ̂bu
[(

1−pi
1−πu

)−ξ̂bu
− 1

]
−Q

(
1− 1−pj

1−πu
;xbu

)∣∣∣
m∑
j=i

1(πu < pi)

, (5)

withQ(· ; ·) and
(
σ̂ bu , ξ̂

b
u

)
defined as before. For each thresh-

old u, this metric ensures that the same quantile probabilities
are evaluated, when considered on the scale of the data. Fur-
thermore, observe that Eq. (5) accounts for cases when the
threshold probability, πu, exceeds a subset of P; in such in-
stances, the metric is only evaluated on probabilities greater
than the threshold non-exceedance probability, correspond-
ing to the region where the given GPD model is valid. In
other words, this ensures the fitted GPD is only evaluated
above the candidate threshold. Analogous to the original ap-
proach, an overall measure of fit for a candidate threshold u is
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given by d̃(u)=
∑B
b=1d̃b(u)/B, and the selected threshold,

u∗, is the value that minimises d̃ , i.e., u∗ := argmind̃(u).
The motivation behind Eq. (5) is to only evaluate quan-

tile differences within the tail of the data, independent of the
threshold candidate. This ensures that the threshold choice
is driven entirely by the model fit within the most extreme
observations. However, prior to applying the method, one
must select a probability set P . This choice is non-trivial, and
is crucial for ensuring the proposed method selects a sensi-
ble threshold. For instance, selecting probabilities very close
to one is meaningless in a practical setting, since the cor-
responding quantiles cannot be estimated empirically from
data of a finite sample size. On the other hand, selecting prob-
abilities too low will defeat the objective of our proposed
technique.

With this in mind, we term p1 the baseline probability,
i.e., the smallest probability in P . This corresponds to the
“baseline” observation frequency below which one treats any
events to be extreme relative to the sample size. Naturally,
this represents a subjective choice, and the best choice of
baseline probability is likely to be context dependent. In
practice, we recommend selecting p1 based on expert or
domain-specific knowledge; for example, what magnitude of
return period normally results in a relatively low-impact, but
significant event within a given context? Take coastal flood
risk mitigation and the occurrence of “nuisance” flooding
as an example. Nuisance flooding is defined as “low levels
of inundation that do not pose significant threats to public
safety or cause major property damage, but can disrupt rou-
tine day-to-day activities, put added strain on infrastructure
systems such as roadways and sewers, and cause minor prop-
erty damage” (Moftakhari et al., 2018). Although the exact
return period of these events varies by location, a study car-
ried out in the US demonstrated that these events generally
occur at sub-annual frequencies, and that the median across
their study sites was 0.5 years (Sweet et al., 2018). In this
study, we chose to use a return period of 0.25 years for p1, to
include events below the median obtained in the study above.
This choice was further supported by a sensitivity analysis,
the results of which are presented in the Appendix. Note that
this does not imply that the optimum threshold choice will
lie close to the baseline event, since this choice is driven ex-
clusively by the asymptotic rate of convergence to the GPD.

Alongside the baseline probability, we also set pm (the
largest probability in P) such that we ensure we observe 10
exceedances above the corresponding quantile, on average,
over the observation period. Extrapolating beyond this level
is unlikely to be meaningful, since we cannot estimate empir-
ical quantiles outside of the range of data. Furthermore, we
impose that all candidate thresholds (i.e., the values of u for
which Eq. 5 is evaluated) are less than the 1 year return level.
This upper threshold is used in similar automated threshold
selection studies, such as Durocher et al. (2018).

Finally, for the remaining probabilities in P , we set pj :=
p1+(j−1)(pm−p1)/(m−1), j = 2, . . . ,m−1, correspond-

ing to equally spaced values from the p1 to pm. For the num-
ber of quantile levels m, we follow Murphy et al. (2025)
and set m= 500; such a value presents a balance between
the number of probabilities evaluated and the amount of lin-
ear interpolation between observed quantile levels. Similar
to Murphy et al. (2025), we found that the choice of m made
very little difference to the thresholds selected; see the Ap-
pendix for more details.

5 Results

We now assess the performance of the TAILS approach us-
ing the dataset introduced in Sect. 2. In Sect. 5.1, we apply
both the EQD and TAILS approaches over all locations with
m= 500 andB = 100 to automatically select thresholds. The
same values for m and B were used by Murphy et al. (2025).
In Sect. 5.2, we plot these results spatially to determine if
there are any patterns present in the thresholds selected by
TAILS, or in the discrepancies between the selected thresh-
olds from the TAILS and EQD approaches. In Sect. 5.3, we
assess, with a right-sided Anderson-Darling (ADr) test, the
GPD model fits obtained using the selected thresholds from
each approach, as well as the model fits using the static Q98
threshold. Lastly, in Sect. 5.4, we show the distance met-
rics from the EQD and TAILS approaches for two tide gauge
records, and present the resulting return levels from the two
methods, as well as the results obtained using the Q98 thresh-
old.

5.1 Selected thresholds

Since the relative magnitudes of the data at different loca-
tions vary, we present the selected threshold probabilities
rather than the threshold magnitudes; these are illustrated in
Fig. 4. The TAILS approach clearly selects higher thresh-
olds compared to the EQD approach, as expected. The lowest
threshold selected by the TAILS and EQD methods is 0.903
and 0.501, respectively, and the highest threshold selected
by the TAILS and EQD methods is 0.993 and 0.991, respec-
tively. The lowest threshold selected by the EQD approach
is very close to the lower limit, which was the median (i.e.,
0.5).

5.2 Spatial analysis

Considering the quantile probabilities of the selected thresh-
olds of the TAILS approach in space, as shown in Fig. 5a,
we do not observe any obvious patterns emerging. With the
exception of a few outliers, the variability in space is gener-
ally small. Figure 5b illustrates differences between the quan-
tile probabilities of the selected thresholds of the TAILS and
EQD approaches. All thresholds selected using the TAILS
method are greater than the thresholds selected by the EQD,
and strong spatial patterns are present here, particularly at
tide gauge locations in north-eastern Europe. The tide gauge
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Figure 4. The results from applying the EQD and TAILS methods
to every GESLA record used in this study, showing the distributions
of quantile probabilities of the selected thresholds.

records with the largest increases are located in the Baltics,
showing changes of nearly 0.5. Spatial trends are also vis-
ible around Australia, with the TAILS approach selecting
higher threshold probabilities around the south of the country
compared with the north. Similar patterns appear evident for
northern Japan and the north-west US. Note that it is harder
to detect spatial patterns in other locations around the globe
(e.g., Africa, southern Asia, South America) due to the lack
of sampling locations.

In the Appendix (Fig. A4), we show the spatial variability
in the scale and location parameters of the GPD obtained us-
ing the TAILS approach, and the differences when compared
against the EQD method. Overall, we see that the TAILS ap-
proach obtains smaller scale parameters and larger shape pa-
rameters. This further illustrates the TAILS approach results
in heavier tails in the subsequent GPD model fits.

5.3 Right-sided Anderson-Darling (ADr) test

The ADr test statistic (Sinclair et al., 1990; Wasserstein and
Lazar, 2016; Solari et al., 2017) is used to measure the
goodness-of-fit of the exceedances over the thresholds se-
lected using both the EQD and TAILS methods, as well as
the model fits computed using the Q98 approach. The test
compares the theoretical quantiles against the empirical dis-
tribution, with more weight placed on the tails of the distribu-
tion (hence right-sided). The statistic quantifies the deviation
of the data from the specified distribution. A p-value is ob-
tained by bootstrapping the test statistic, with p indicating
the probability of observing such a deviation under the null
hypothesis that the threshold exceeding data follows a GPD.
The null hypothesis is typically rejected for p-values below
0.05, corresponding to a 5 % significance level.

A larger test statistic (equivalently, a lower p-value) in-
dicates more deviation from the model distribution being
tested, which in this case, is a GPD. As shown in Fig. 6a,
the EQD approach yields larger ADr test statistics than the
TAILS method. The range of test statistics computed using
the TAILS method are all less than 1, whereas the EQD ap-
proach has many values exceeding 1. This indicates the EQD
method could be selecting a threshold over which the ex-
ceedances are not well characterised by a GPD. This is fur-
ther corroborated by the p-values obtained for each method,
plotted in Fig. 6b. The median p-value across all model fits
obtained using the TAILS method is 0.615, compared with
0.312 for the EQD approach. The TAILS method also outper-
forms the Q98 approach, with a smaller test statistic average
and greater average p-value. While all the methods achieve
adequate fits for most of the dataset, in some of the cases
where the EQD and Q98 method lead to poor model fits (p-
value less than 0.05), the TAILS method can significantly
improve results. Of the 417 tide gauge records that were as-
sessed, 89 records had an ADr p-value of less than 0.05 when
using the EQD method. By comparison, using the TAILS ap-
proach, we obtain only 17 model fits with ADr p-values less
than 0.05.

5.4 Distance metrics and return levels

As a further illustration, consider the model fits for two sites;
Apalachicola in the US and Fishguard in the UK, both shown
in Fig. 7. The two sites have been selected based on the dif-
ferences in geographic location and the associated extreme
water level drivers, which lead to contrasting return level esti-
mates. Apalachicola, located on the western coast of Florida
in the Gulf of Mexico, is subjected to violent tropical cy-
clones, which drive huge storm surges due to the large and
shallow continental shelf (Chen et al., 2008; Zachry et al.,
2015). The GPD model fit that characterises the return levels
of the water level record therefore has a large positive shape
parameter, which displays a steep and exponentially increas-
ing return period curve. In contrast, Fishguard is located on
the southern side of Cardigan Bay, near the inlet of the Irish
Sea. The events driving extreme sea levels in this location
are a combination of strong extratropical storms and astro-
nomical tidal variation, which are characterised by a wholly
different return period curve (Amin, 1982; Olbert and Hart-
nett, 2010). The GPD model fit for this record has a negative
shape parameter, which means that the return levels plateau
as the return period increases.

In the top row of Fig. 7a and b, one can observe the EQD
and TAILS distances metrics (i.e., Eqs. 2 and 5) plotted as
a function of the threshold probability for both tide gauge
records. Clearly, the global minimums of both approaches are
starkly different, representing the different quantile estimates
evaluated by each approach. Figure 7c and d show the esti-
mated return levels and 95 % confidence intervals from each
of the TAILS, EQD and Q98 methods at Apalachicola and
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Figure 5. Spatial plots of (a) the quantile probabilities of selected thresholds using the TAILS methods, and (b) the difference in the quantile
probabilities of the selected thresholds between the TAILS and EQD approaches.

Figure 6. Box and whisker plots showing the results from applying an ADr test to all the exceedances over the thresholds selected using the
EQD and TAILS approaches, as well as using a static Q98 threshold.

Fishguard, respectively. In the case of Apalachicola, the min-
imum distance (Fig. 7a) obtained using the TAILS method
(0.012) is more than double the minimum distance obtained
using the EQD approach (0.005). Compare this with the re-
turn level estimates from each of the 3 methods presented
(Fig. 7c). Despite having a larger minimum distance, the
TAILS approach captures the empirical observations much

better than the EQD method. In fact, four of the historical
events even lie outside of the 95 % confidence interval for
the EQD method, highlighting the need for the TAILS exten-
sion.

Contrast this with the results from Fishguard, where the
minimum distances (Fig. 7b) obtained using each approach
are much more comparable; 0.005 for TAILS and 0.004

Nat. Hazards Earth Syst. Sci., 25, 4545–4562, 2025 https://doi.org/10.5194/nhess-25-4545-2025



T. P. Collings et al.: Automated tail-informed threshold selection for extreme coastal sea levels 4553

Figure 7. Model fits for two locations. Left column: Apalachicola, US (a, c). Right column: Fishguard, UK (b, d). The top row (a, b)
shows the TAILS and EQD distance metrics, plotted as a function of the threshold probability. The vertical dashed lines indicate the distance
minima, and therefore the selected threshold quantile probability. The bottom row (c, d) displays the return level plots for both methods,
alongside the empirical plot and model fit obtained by using the Q98 approach. The shaded areas indicate the 95 % confidence interval,
calculated using bootstrapping of the GPD parameters.

for the EQD approach. The resulting return level estimates
(Fig. 7d) are also similar, with very small differences in the
mean return levels between each of the three methods. The
key difference observed in Fig. 7d is the uncertainty bounds,
with the EQD method having better constrained uncertainty
in the higher return periods than the other two methods.

6 Discussion

In this work, we have introduced an automated threshold se-
lection technique that addresses certain limitations of a lead-
ing existing approach. Using a global tide gauge dataset, both
methods have been rigorously compared in Sect. 5 alongside
a commonly used static threshold. We examined spatial pat-
terns in the model fits from the TAILS approach, along with
patterns in the differences between the TAILS and EQD ap-
proaches. Furthermore, we have tested the goodness-of-fit of
the resulting GPD model fits using an ADr test. Two tide
gauge records were investigated in more detail to highlight

the differences in the EQD and TAILS distance metrics, and
to demonstrate how the parameter uncertainty changes be-
tween the different approaches.

6.1 Comparisons to existing approaches

At all locations, the TAILS method selects higher thresholds
than the EQD approach. Particularly large increases are ob-
served in north east Europe, as well as South Australia. The
processes driving these increases are likely multifactorial. In
the Baltic Sea, for example, extreme sea level events are com-
plex phenomena, controlled by tides, antecedent meteorolog-
ical conditions (that can cause prefilling of the basin), seiches
and storm surges (Groll et al., 2025). The tidal range in the
Baltic Sea is very small (less than 10 cm in some locations),
and so any non-tidal variability in sea level is much larger
relative to the daily oscillation of the sea level due to tide.
This could have an impact on the EQD approach, although
it is unlikely to explain all the differences. Other regions in
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the world also have relatively small tidal ranges, such as the
Mediterranean and Gulf of Mexico, and yet these areas do
not show such large increases in the quantile probabilities
selected by the TAILS method compared to the EQD. As
shown in Appendix A4, the length of the record and the dis-
tribution of rare, extreme observations within the record can
have an impact on the threshold that is ultimately selected,
although the effect tends to be muted once the record length
is greater than 40 years. Other factors that could affect the
selected thresholds include the meteorological forcing type
(i.e. tropical cyclone vs. extratropical storm) and the dom-
inant driver of extreme water levels in a particular location
(e.g. storm surge, waves or tides), but determining the rela-
tive impacts of each component remains beyond the scope of
this study.

Regardless of why discrepancies occur, we demonstrate
that in most cases, the TAILS approach better captures the
most extreme observations compared to the existing EQD
technique and outperforms the static Q98 threshold when as-
sessed using an ADr test. The TAILS method guarantees that
the resulting model fits will be driven by data observed in the
tail, which is desirable for practical applications where esti-
mation of extreme quantities (e.g. return levels) is required.
We hope that these reasons, combined with the fact that auto-
mated procedures allow one to apply the POT method across
a large number of locations without the need for manual
checks on individual sites, will encourage practitioners to
adopt and utilise our approach.

6.2 Sensitivity to extreme observations and parameter
uncertainty

Focusing the model fit to the upper tail comes at the cost
of additional uncertainty since less data is available for in-
ference. As uncertainty quantification is a key focus of the
approach proposed by Murphy et al. (2025), the EQD tech-
nique will generally offer lower model uncertainty compared
to TAILS. In some applications, this may be more desirable
than capturing the most extreme observations. Thus, when
deciding whether to use EQD or TAILS, one must consider
the following question: is it more important that the model is
more certain and robust, or that the model better captures the
most extreme observations? We recommend that practition-
ers consider this question within the context of their applica-
tion before selecting a technique.

For the application demonstrated in this paper, acknowl-
edging and embracing uncertainty is key for any practitioner.
Take the example of Apalachicola, US given in Sect. 5.4.
This region is impacted by tropical cyclones, making the re-
turn level estimates made from the historical record very un-
certain. To illustrate this point, two major Category 4 hurri-
canes (Helene and Milton) made landfall on the west coast
of Florida in September and October 2024, after the GESLA
3.1 update was collated. Preliminary data recorded during
the event suggest that Hurricane Helene broke the highest

recorded water levels at three tide gauges located in Florida,
and Hurricane Milton set the second highest water level ever
recorded at the tide gauge located in Fort Myers, US (Pow-
ell, 2024a, b). Fitting distributions to these records pre and
post these events results in different mean return levels being
estimated, especially when considering the most extreme re-
turn periods (e.g., the 1 in 500 year event). We tested this and
found that, when using the TAILS approach, the mean return
level for the 1 in 500 year event increased by 55 cm if the tide
gauge record is extended beyond the GESLA 3.1 update, to
include these events. By recognising the uncertainty in the
underlying processes and the uncertainty inherent in the es-
timates made from observations, we can be more confident
that our models will be able to capture extreme events which
are yet to occur.

6.3 Incorporating threshold uncertainty

Our results indicate that in certain examples the Q98 ap-
proach outperforms the EQD; however, the benefits of a
data-driven approach cannot be understated. When relying
on TAILS or the EQD, not only is the threshold justified by
a goodness-of-fit measure but sampling variability has also
been taken into account. This leads to a well-justified thresh-
old choice and an easier characterisation of the uncertainty
in the resulting estimates. It also allows for the uncertainty
in the threshold choice to be incorporated when making in-
ference. As shown in Murphy et al. (2025), including this
additional uncertainty results in well-calibrated confidence
intervals. It should be noted that when estimating the confi-
dence intervals for the return level estimates shown in Fig. 7,
we did not account for the uncertainty in the threshold it-
self. However, the results of a sensitivity test against record
length, shown in the Appendix (Fig. A5), appear to show the
TAILS approach leads to lower threshold uncertainty. This is
encouraging and might help in the trade-off with additional
parameter uncertainty that is introduced using the TAILS
method. Overall, including this uncertainty may improve our
method’s ability to capture unobserved extreme events and
could provide a better understanding of the uncertainty in re-
turn level estimates beyond the observed data. This remains
a further avenue of research for our framework.

6.4 Incorporating more complex characteristics within
the TAILS approach

Throughout this work, we make the implicit assumption that
data are identically distributed, even though we acknowledge
that environmental processes such as sea levels are unlikely
to be stationary in an ever-changing climate. This choice was
motivated by practical implications; stationary models are
simpler to implement and best practices (i.e., using a POT
model) are well established. Moreover, when applying sim-
ple stationary models to such contexts, the TAILS approach
may be favoured as the generally higher threshold choices
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should help remove the influence of some covariate effects,
leading to more stationary time series. However, there is
no reason why one could not incorporate covariate depen-
dence into the threshold and parameters of a GPD (e.g., Davi-
son and Smith, 1990; Chavez-Demoulin and Davison, 2005)
when applying the TAILS or EQD approach. Failure to incor-
porate covariate effects may help to explain the reason for the
poor fit in the upper tail in e.g. Fig. 3 when using the EQD.
Accounting for this aspect in the EQD or TAILS approach
could allow for the use of lower thresholds without the loss
of accuracy for more extreme observations, providing a way
to balance between the two goals mentioned above, i.e., un-
certainty and accuracy in the upper-tail.

A wide range of modelling approaches have been pro-
posed for incorporating covariate effects into POT mod-
elling (e.g., Eastoe and Tawn, 2009; Sigauke and Bere, 2017;
Youngman, 2019; Mackay and Jonathan, 2020). Relevant co-
variates are those that impact the number of extreme events
that occur within a given year; for example, indices related
to the ENSO and NAO phenomena, which affect the likeli-
hood of temperature and precipitation extremes (Dong et al.,
2019), could be incorporated when specifying a model for
sea level data. Only minor modification would be needed to
apply the TAILS or EQD approaches here; specifically, we
would assess quantile discrepancies on a transformed scale,
rather than the observed scale (see Varty et al., 2021 for re-
lated discussion). However, we note that standard practices
for applying non-stationary POT models are not well estab-
lished, and it is not clear how one should select which covari-
ates to include, or how flexible a model is required. The de-
velopment of automated threshold selection approaches for
non-stationary data structures represents an important line of
future research.

We also remark that we assume a constant baseline event
for our approach. Future work could incorporate a variable
baseline event linked to the underlying forcing mechanisms
in an area. As discussed in Sect. 5.4, tide gauges around the
world are characterised by different patterns of extreme wa-
ter levels. It might be possible to link a dominant forcing
type to the baseline event, which could improve further the
performance of the TAILS approach.

Finally, we acknowledge that our automated selection
technique could be useful for improved threshold estimation
in the wider context of multivariate and spatial extremes.
With suitable adjustment, the TAILS technique could help
when implementing approaches employing the multivari-
ate regular variation framework (e.g., Tawn, 1990; de Car-
valho and Davison, 2014; Padoan et al., 2010), or alter-
native frameworks for variables exhibiting asymptotic in-
dependence (e.g., Ledford and Tawn, 1996; Heffernan and
Tawn, 2004; Wadsworth and Tawn, 2022). The data-driven
approach would allow for the threshold estimation uncer-
tainty to be propagated through to joint tail inferences. The
development of automated threshold selection approaches in
multivariate and spatial settings has been largely overlooked

in the literature, thus representing an natural avenue for fu-
ture work.

6.5 Selecting tuning parameters

TAILS requires a selection of several non-trivial tuning pa-
rameters; this includes the probability set P , m, and the limit
on candidate thresholds, which we define as the 1 year re-
turn level in Sect. 4. Our choices were motivated by the spe-
cific application at hand, and we consequently recommend
that practitioners experiment with these parameters to assess
whether such values have a practical effect on the resulting
model, using diagnostics such as QQ and return level plots
to guide this procedure. The code has been written in such a
way as to make it easily parallelised, allowing for fast testing
of multiple baseline and maximal probabilities across a vari-
ety of datasets. We encourage and invite fellow researchers
to utilise this method on other perils, such as rainfall or
river flow measurements. Exploring data-driven techniques
(e.g., cross validation) for selecting tuning parameters of au-
tomated threshold selection approaches remains an open area
for novel developments.

7 Conclusions

Accurately estimating the extreme tail behaviour of historical
observations is of great importance to researchers and prac-
titioners working in natural hazards. POT methods are reg-
ularly used in these fields for this purpose, but selecting the
threshold above which to consider an exceedance requires
careful consideration. In this paper, we present TAILS, a new
method for automating the threshold selection process build-
ing upon the recently published EQD method (Murphy et al.,
2025).

We apply two key innovations to improve upon the EQD
method in the context of extreme coastal sea levels. Firstly,
we fix the quantiles that we consider when computing the
distance metrics. This avoids oversampling the most extreme
quantiles when assessing higher thresholds. Secondly, we
limit the quantiles considered for our distance metric to be
only above a predetermined baseline probability. This means
that when optimising the distance metric to select a thresh-
old, we are only considering quantiles that we deem to be ex-
treme, and hence worth considering when selecting a thresh-
old. In this study, the baseline probability was decided using
the literature and a sensitivity test.

We show that the TAILS approach selects, on average,
higher thresholds than the EQD method. When the resulting
model fits are evaluated using an ADr test against the EQD
and the Q98 approaches, we show that the TAILS method
outperforms both with respect to the ADr test statistic and
the p-value. We also illustrate that the TAILS method typi-
cally results in larger uncertainty bounds, but argue that this
is not necessarily a negative when considering water level
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records located in highly variable regions experiencing trop-
ical cyclones.

Although a large number of records are assessed, this
study is limited as it only considers tide gauge data. We hope
that the method can be widely used to improve the estima-
tion of magnitudes and frequencies of other natural hazards.
The code has been written in such a way as to make it easily
accessible and interpretable so as to encourage uptake from
fellow researchers. We believe we have clearly demonstrated
the potential of the TAILS approach, alongside its advantages
compared to existing techniques.

Appendix A: Sensitivity tests and supporting figures

A1 Sensitivity test of baseline probability, p1

A range of baseline probabilities were tested across the
whole dataset, and the resulting threshold and model fits were
used to calculate a right-sided Anderson-Darling (ADr) test
statistic and the p-value (Sinclair et al., 1990; Solari et al.,
2017). For more details on the ADr test, see the main text.
The return periods that were tested for the baseline probabil-
ities were 0.083, 0.167, 0.25, 0.33, 0.5, 0.667, and 1.0 years.
These equate to the 1 in 1, 2, 3, 4, 6, 8 and 12 month events.

The results of this sensitivity test are shown in Fig. A1.
Figure A1a presents the ADr test statistic for the 7 return
periods tested. When looking at the median and interquar-
tile ranges of the ADr test statistics, the threshold selection
looks relatively insensitive to the return period chosen, with
very little differences between the 0.167, 0.25, 0.333, and
0.5 year return periods. When considering the ADr test p-
value in Fig. A1b, there is also only small differences be-
tween the 0.167, 0.25, 0.33 and 0.5 year return periods. We
take this, along with the value obtained from the literature
(presented in main article), as evidence that any one of these
values would suffice as the baseline probability, p1.

A2 Sensitivity test of number of quantile levels, m

Following Murphy et al. (2025), a sensitivity test to the
number of quantile levels, m was carried out. The val-
ues of m tested were 10, 50, 100, 200, 500, 1000 and
“n_exceedances”, which is equal to the number of ex-
ceedances over the baseline probability for each tide gauge
record. The range of m values that are used by the
“n_exceedances” are shown below in Fig. A2. The full range
spreads between 161 to 811, and the median is centred on
231.

The results of this sensitivity analysis are presented in
Fig. A3, showing that the method is quite insensitive to the
m value used. This is similar to the findings of Murphy et al.
(2025). We recommend using any value over 10, and choose
to use m= 500 in this study for consistency with Murphy
et al. (2025).

A3 Spatial patterns in the scale and shape parameters
of the GPD

In addition to the spatial plot of the quantile probabilities of
selected thresholds, shown in Fig. 5, we present here the spa-
tial patterns of the scale and shape parameters of the GPD.
The scale parameter obtained using the TAILS method is
shown in Fig. A4a and the shape parameter is shown in
Fig. A4c. The differences between the scale and shape pa-
rameters obtained using the TAILS method vs. the EQD ap-
proach are shown in Fig. A4b and d, respectively.

The scale parameters are generally quite small, with the
exception of German/Danish coastlines, which have values
around 0.3–0.4. Overall, we see a reduction in the scale
parameter obtained using the TAILS approach when com-
pared with the EQD. Some locations show increases, such
as along the German/Danish coast, Japan and North East
US. The shape parameters have more variability globally,
with strong positive values present along the US east coast
and Caribbean. Europe generally exhibits negative shape pa-
rameters, which are more common for areas impacted by
extratropical storms, although some outliers persist. When
comparing the differences between the TAILS and EQD ap-
proaches, we see increases in the shape parameter in the vast
majority of locations. This supports the observation that us-
ing the TAILS approach results in heavier tail estimates for
the GPD.

A4 Sensitivity test to the length of record and number
of extreme observations

A test was carried out to determine the sensitivity of the
TAILS method to the length of the record and the number
of extremes present in the record. Whole years from the tide
gauge records investigated in Sect. 5.4 (Apalachicola and
Fishguard) are randomly sampled using 200 bootstraps with
replacement to create synthetic records of length 10, 20, 30,
40, 50, 60, 70 and 80 years. The records are then declus-
tered using a 4 d storm window, and the TAILS threshold is
obtained. Comparisons are made against the EQD method
for reference. The number of extreme events in each boot-
strapped sample is obtained. An extreme event is defined as a
water level in the bootstrapped sampled record that is greater
than the 0.99 quantile of the original declustered record. The
distributions of the quantile probabilities of the TAILS and
EQD selected threshold are plotted as box plots below, in
Fig. A5a, b, c and d. Figure A5e and f show the number of
extreme events plotted against record length, with the colour
map of the markers illustrating the quantile probability of the
TAILS threshold.

The results of the test show that the TAILS method is
generally insensitive to the record length, once records are
greater than 30–40 years. Short records of less than 20 years
tend to have a lower selected threshold compared with longer
records. Shorter records also have greater variability, but this
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Figure A1. The results from the sensitivity test of different baseline probabilities.

Figure A2. The range ofm values used by “n_exceedances”, which
is equal to the number of exceedances over the baseline probability
for each tide gauge record.

reduces as the record length increases. This is in contrast to
the EQD approach, which generally has greater variability,
regardless of record length. At Fishguard, the record length
makes very little difference to the selected threshold when
using the EQD approach. In Fig. A5e and f, record length,
number of extreme events and the quantile probabilities of
the selected thresholds using the TAILS method are assessed.
These results show that there is no clear trend between the
number of extreme events present in a record and the thresh-
old selected.

Figure A3. The results of the sensitivity test using different m val-
ues. “n_exceedances” refers to the number of exceedances over the
baseline probability, at each tide gauge record.
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Figure A4. Spatial plots of the scale parameter (a) and the shape parameter (c) of the GPD when using the TAILS method. The difference in
scale parameter obtained using the TAILS approach vs. the EQD approach is shown in panel (b) and the difference in the shape parameter is
shown in panel (d).
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Figure A5. Sensitivity test of record length and the number of extreme events present in the record against the quantile probabilities of
the selected thresholds. The left column shows the results for Apalachicola, US, and the right column is Fishguard, UK. Panels (a) and (b)
compare record length against the EQD method. Panels (c) and (d) compare record length against the TAILS method. Panels (e) and (f) show
the results comparing record length against the number of extreme events present in the records, along with the quantile probabilities of the
selected thresholds using the TAILS approach.
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Code and data availability. The code for implementing the
TAILS approach is freely available online at https://github.com/
callumbarltrop/TAILS (https://doi.org/10.5281/zenodo.17361883,
Murphy-Barltrop and Collings, 2025), along with an example data
set. The GESLA 3.1 tide gauge database is available from the
corresponding author upon reasonable request.
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