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Abstract. Atoll islands are threatened by multiple climate
change impacts, such as sea-level rise, extreme sea-level
events, ocean warming, and acidification. A recent approach
to assessing climate change risk to these islands is to use
multi-criteria expert judgment methods. These approaches
can serve as a basis for the development of Bayesian Net-
works (BNs) integrating expert knowledge and uncertainties
to perform climate risk assessments. Here, we use the multi-
criteria expert-based assessment of Duvat et al. (2021), who
assessed future risk to habitability for four Indian and Pacific
Oceans’ atoll islands, in order to discuss the advantages and
limitations of the BN model. Advantages of the approach in-
clude the explicit treatment of uncertainties and the possibil-
ity to query expert knowledge in a non-trivial manner. For ex-
ample, expert knowledge can be used to assess risks to hab-
itability and future uncertainties and to explore inverse prob-
lems such as which drivers can exceed specific risk thresh-
olds. Our work suggests that BN, though requiring a certain
level of implementation expertise, could be used to assess
climate change risk and support climate adaptation.

1 Introduction

Atoll islands are highly vulnerable to climate change. This
vulnerability is mainly due to their low-lying elevation and
limited land resources (Mycoo et al., 2022). The Intergov-
ernmental Panel on Climate Change (IPCC) mentions in the
Sixth Assessment Report (IPCC, 2022) that these islands are
increasingly affected by multiple changes, including sea level
rise, increased temperatures, impacts of tropical cyclones,

droughts, storm surges, coral bleaching, and changes in rain-
fall. Impacts related to these changes have already been ob-
served, such as flooding, coastal erosion, and loss of coral
reefs and ecosystem services. Multiple studies have shown
that these impacts vary between island types and regions
(Duvat et al., 2021) and can be exacerbated by compound
effects (Wadey et al., 2017) and human activities (Rey et al.,
2017).

Multiple projected changes, such as increased tempera-
ture, extreme sea levels, and degradation of ecosystems, are
expected to exacerbate sea-related hazards in atoll settings
(Mycoo et al., 2022). For example, Vitousek et al. (2017)
suggest that changes in wave climate combined with sea-
level rise will increase the risk of flooding, especially in
the tropical Pacific and Indian Oceans. In some regions, in-
creased drought intensity could result in freshwater insecu-
rities (Karnauskas et al., 2016; Schewe et al., 2014). Loss
of coastal ecosystems and associated services resulting from
the combination of global climate change and local anthro-
pogenic disturbances will likely increase land loss, nega-
tively impacting food and water supply as well as economic
activities (Pratchett et al., 2008). In addition, other processes
such as soil and groundwater salinization, changes in rain-
fall patterns, and increased temperatures are also expected to
compromise resource availability and disrupt economic ac-
tivities (Mycoo et al., 2022). This could challenge the ability
of populations and ecosystems to recover and adapt in atoll
settings.

In this context, integrated risk assessments become in-
creasingly necessary to develop adaptation plans. However,
such holistic assessments are complex mainly due to knowl-
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edge gaps, limited data, and uncertainties around climate
change. Moreover, the complex interplay between climatic
and non-climatic drivers turns on feedback loops and cumu-
lative and cascading impacts (Simpson et al., 2021; Wes-
tra and Zscheischler, 2023) that are difficult to understand
and predict. Recognizing this complexity, many previous in-
tegrated assessments assessed present-day or future climate
risk following a three-step approach. In a first step, a con-
ceptual model identifying the different components of the
studied system and their interlinkages was developed. Then,
knowledge was collected using a multicriteria analysis to
characterize the severity and confidence level of each risk
factor. These factors, such as sea level rise, population pres-
sure, or extreme events, are the drivers that can negatively
affect the components defined in the first step. In a final step,
this knowledge was aggregated. In the area of coastal risk
assessments, the “Coastal Vulnerability Index” of Gornitz
et al. (1991) is a foundational example of such approaches.
More recent examples include the burning embers (Zommers
et al., 2020) for climate risk assessments used in the Work-
ing Group 2 reports of the IPCC and the integrated system
approach to assessing future climate risk to atoll islands de-
veloped by Duvat et al. (2021).

Other approaches, such as Bayesian Networks (BNs), have
shown potential to address complex systems and uncertain-
ties. A BN is a probabilistic graphical model that allows for
representing and quantifying interactions between multiple
variables. In coastal systems, BNs have been widely applied
to understand physical processes such as coastal cliff erosion
(Hapke and Plant, 2010), dune erosion due to extreme events
(den Heijer et al., 2012), and surf zone processes (Plant and
Holland, 2011). These models have also been successfully
used for hazard assessment and risk management. With this
aim, BNs have been developed to predict multiple coastal
hazards (Narayan et al., 2015; Poelhekke et al., 2016), to as-
sess hurricane damages (van Verseveld et al., 2015), and to
evaluate the effectiveness of risk reduction measures (Banan-
Dallalian et al., 2023; Ferreira et al., 2019; Jäger et al., 2018;
Plomaritis et al., 2018; Sanuy et al., 2018). In small islands,
there are few applications of BNs to assess hazards (Pear-
son et al., 2017) and the effectiveness of adaptation strategies
(Sahin et al., 2021) (Table 2).

BNs explicitly integrate uncertainties, suggesting their po-
tential to address climate change-related issues (Sperotto et
al., 2017). Some applications include impact assessments of
sea-level rise (Gutierrez et al., 2011; Yates and Le Cozannet,
2012) and coral reef degradation (Baldock et al., 2019), and
evaluations of adaptation strategies (Hafezi et al., 2020; Phan
et al., 2020). Despite their growing application to climate
change-related issues, only a few focused on integrated cli-
mate risk assessments (Catenacci and Giupponi, 2013). For
small island contexts, applications remain limited, and to our
best knowledge, integrated risk assessments using Bayesian
networks are not available or have not yet been conducted.

In this paper, we develop a BN model based on Duvat et
al. (2021) to assess the climate risk to the habitability of four
atoll islands in the Pacific and Indian Oceans (Fig. 1) under
the Representative Concentration Pathways (RCP) 2.6 and
8.5 for the years 2050 and 2090. We aim to explore the po-
tential and limitations of the BN for integrated climate risk
assessments. Our objective is to focus on the methodolog-
ical aspects and not on the collection of expert knowledge
or the structuration of the problem. Therefore, we use the
conceptual diagram of Duvat et al. (2021) as a BN struc-
ture on the one hand, and their expert-based assessment to
inform the conditional probabilities in the network on the
other hand. We converted expert judgments into probabilities
(Sect. 2.4.2) using beta distributions, which were then incor-
porated into the model as prior knowledge. The BN analysis
(Sect. 3) focuses on risk assessment, identification of major
risk factors, identification of thresholds, and evaluation of the
possible impact of risk reduction scenarios. To study these
elements, we addressed the following research questions:

– Risk assessment: What is the probability of risk to hab-
itability given an RCP scenario and a time horizon? This
question is addressed in Sect. 4.1.

– Identification of critical thresholds: What levels of risk
could lead to adaptation limits? This question is ad-
dressed in Sect. 4.2.

– Identification of the major risk factors: Which risk fac-
tors are present when the risk to island habitability is
high? This question is addressed in Sect. 4.3.

– Evaluation of risk reduction scenarios: To what extent is
the risk to habitability reduced if we act on the risk fac-
tors that contribute the most? This question is addressed
in Sect. 4.4.

In the next sections, we present the framework and provide
the fundamentals of BNs. This is followed by the description
of BN development and the results of the BN analysis. Fi-
nally, we discuss the sensitivity test results and the potential
and limits of the method.

To improve the readability of the content, Table 1 provides
definitions of key terms.

2 Data and Methods

The proposed methodological framework is shown in Fig. 2.
Based on Duvat et al. (2021), we present the BN model aimed
at assessing the climate risk to the habitability of atoll islands
and adaptation effectiveness under the RCP 2.6 and RCP 8.5
in 2050 and 2090. The network structure is based on the con-
ceptual model of atoll habitability from Duvat et al. (2021).
The geographical settings are presented in Sect. 2.2. The ex-
pert judgments and associated scores (our input data) are
presented in Sect. 2.3 (the full risk assessment database is
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Table 1. Terminology used in this study.

Key term Definition

Risk Defined as the potential for adverse consequences to atoll socio-ecosystems
from climate change, following the IPCC (2022) definition.

Habitability pillars Defined here as the essential dimensions of habitability in small islands:
available land, freshwater supply, food supply, settlements and infrastructure,
and economic activities, following Duvat et al. (2021).

Risk factors/Risk
criteria

Defined here as the main factors contributing to the risk to the habitability
pillars, following Duvat et al. (2021). We used 14 risk factors identified by
Duvat et al. (2021), including coastal erosion, flooding, fresh groundwater
salinization, reduced reef fisheries production, loss of settlements, and
reduction in tourism revenue. In our study, the risk factors are variables within
our Bayesian network.

Risk level Risk level refers here to a scale describing the future additional risk from risk
factors (from “Undetectable” to “Very high”).

Probability of risk level Defined here as the probability that a given risk level will occur under specific
conditions. The probability of risk level is calculated by the Bayesian network
and reflects the uncertainty about the future risk.

Figure 1. Location of the atoll islands of interest: Malé (4°11′ N, 73°30′ E) and Nolhivaranfaru (6°41′ N, 73°07′ E) in the Indian Ocean, and
Fogafale (8°31′ S, 179°12′ E) and Tabiteuea (1°25′ N, 173°06′ E) in the Pacific Ocean. © Google Earth.
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Table 2. List of reviewed studies of Bayesian network applications in small islands.

Type of
application

Study Model objectives Conceptual model variables

Variables
considered

Climate change-related
variables

Impact
assessment

Baldock et al.
(2019)

To assess the impact of reef degradation and
climate changes on the shoreline

Hydrological,
morphological

Sea-level rise, reef
health

Uusitalo et al.
(2012)

To assess the impact of environmental factors
on coastal fish production

Ecological,
environmental

Not considered

Callaghan et al.
(2018)

To predict wave propagation in coral reefs Hydrological,
morphological,
climatic

Sea-level rise

Pearson et al.
(2017)

To estimate wave-induced flooding of
reef-fronted coastlines

Hydrological,
Morphological

Not considered

Risk
management

Hafezi et al.
(2020)

To evaluate adaptation strategies for coral reef
ecosystems

Anthropic,
environmental,
climatic

Rainfall pattern, sea
surface temperature,
sea-level rise, storm
frequency, ocean
warming, and
acidification

Sahin et al.
(2021)

To assess how ecosystem-based adaptations to
climate change influence community wellbeing

Anthropic,
environmental,
socio-
economic

Temperature, reef
health

Sahin et al.
(2019)

To predict coastal erosion and assess
adaptation measures

Hydrological,
geological,
morphological

Sea-level rise

available in the supplement provided by Duvat et al., 2021).
Thus, the key methodological inputs in this manuscript are
the translation of scores and confidence levels assessed by
Duvat et al. (2021) into probabilities on the one hand, and
the development of the Bayesian network on the other hand.

2.1 Bayesian networks

A Bayesian network (BN) is a probabilistic graphical model
representing probabilistic associations between random vari-
ables. The BN is defined by a structure and conditional prob-
ability tables (CPT). The structure is defined by nodes and
arcs, representing the variables and the relationships between
these variables, respectively (Fig. 3). The arrow indicates the
influence direction from the parent node to the child node.
Each node in the network is associated with a probability
table. When a node has no parents, it is associated with a
probability table containing a marginal probability distribu-
tion, since it is not conditioned on any other variables. When
a node has parents, it is associated with a conditional prob-
ability table (CPT), which contains a conditional probability
distribution that depends on the states of its parent nodes.

We focus on discrete BN, in which the product of the lo-
cal probability distributions of each node results in the joint
probability distribution function of all the variables X = {
X1, . . .Xn in the graph Eq. (1):

P (X1, . . .Xn)=
∏n

i=1
p(Xi |pa(Xi)) , (1)

Where pa(Xi) are the parent nodes of Xi (Pearl, 1988). In this
equation, p(Xi |pa(Xi)) denotes the local conditional proba-
bility distribution of the variable Xi , given its parent nodes in
the BN. The joint probability function links all the variables
in the BN, therefore, any change can be propagated through
the network. This means that the BN can be used in a for-
ward mode where the changes are propagated from the child
to parent nodes, but also in an inverse mode, from the par-
ents to child nodes. This flexibility is very useful to explore
multiple combinations of events.

Bayesian inference relies on Bayes’ theorem to compute
posterior probabilities. According to Bayes’ theorem, the
probability p of an event R given the evidence O is given
by Eq. (2):

p
(
Ri |Oj

)
=

p(Oj |Ri
)p(Ri)

p(Oj )
, (2)
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Figure 2. Methodological framework.

Figure 3. Example of a BN structure composed of five nodes (right) and a CPT (left) containing the local conditional distribution of the
variable Coastal erosion given its parents RCP and Time.

The first term of the numerator is the likelihood, which is
the probability of seeing the evidence given the event. The
second term is the prior probability, which is the probability
of the event before the evidence. The denominator, known
as the normalization factor, is the marginal probability of the
evidence.

2.2 Study islands

Duvat et al. (2021) and the present study focused on four con-
trasting atoll islands of the Pacific and Indian Oceans (Fig. 1)
Malé (Maldives), Fogafale (Tuvalu), Nolhivaranfaru (Mal-
dives), and Tabiteuea (Kiribati). These islands were chosen
to cover a contrasted range of geographical settings (Table 3).
For example, they include the highly urbanized and densely

populated island of Malé in the Maldives and the rural and
mostly non-armored island of Tabiteuea in Kiribati.

The main climate change drivers affecting these islands in-
clude changes in atmospheric temperatures and rainfall pat-
terns, sea-level rise, increasing sea surface temperature, coral
bleaching, and ocean acidification. Other significant drivers
are increased distant-source wave height, increased intensity
of the most intense tropical cyclones and El Niño/La Niña
events, and increased intensity and frequency of marine heat
waves (Duvat et al., 2021).

2.3 Expert judgment and assessment database

Duvat et al. (2021) assessed the climate-related risk to future
atoll habitability under two RCP scenarios. The assessment
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Table 3. Description of the atoll islands of interest.

Atoll Island Archetype Economic activities Implications for hazards Sources

Male, North Kaafu
Atoll, Maldives,
Central Indian Ocean
(4°11′ N, 73°30′ E)

Urban, densely
developed, and entirely
protected by
engineered structures

Tourism, fisheries, and
agriculture (∼ 2 % in
2014)

Low coastal erosion susceptibility due to the
engineered structures. Flooding can occur due
to extreme wave conditions and high sea levels.
Malé is also susceptible to pluvial flooding
given high urbanization, coastal engineering,
and inadequate drainage systems. The risk of
deterioration of coastal protection, partial loss
of some areas, and flooding may increase this
century due to the combination of sea level rise
with increased wave height.

Duvat et al.
(2021), Wadey
et al. (2017)

Fogafale, Funafuti
Atoll, Tuvalu, Western
Pacific Ocean (8°31′ S,
179°12′ E)

Urban, highly modified
by human activities.
Limited coastal
protection

Fisheries Coastal erosion in some shoreline sections.
High flooding susceptibility due to the
low-lying elevation, local human disturbances,
and inefficient protection structures. The most
developed and populated zones are in
vulnerable areas. High risk of coastal erosion,
flooding, and reduction in reef fish production
are projected through to 2090.

Duvat et al.
(2021),
Yamano et al.
(2007)

Tabiteuea, North
Tarawa, Kiribati,
Western Pacific Ocean
(1°25′ N, 173°06′ E)

Rural, mostly natural,
with nearly entirely
natural sand shorelines.
Limited coastal
protection

Fisheries and
agriculture

Susceptibility of flooding risk due to the
potential combination of state of
POD/ENSO/annual tidal extremes/spring tides
and meteo-ocean events. Populated zones are
in vulnerable areas. Moderate to high coastal
erosion and flooding are expected through
2090. Other potential risks include a reduction
in reef fish production and biomass of tuna.

Duvat et al.
(2021)

Nolhivaranfaru,
Maldives (6°41′ N,
73°07′ E)

Rural, mostly natural,
with extensive
vegetation cover

Fisheries and
agriculture

Nolhivaranfaru is relatively stable in land area.
High susceptibility to flooding due to its
low-lying elevation (1 m). Groundwater
aquifers on the island are susceptible to
pollution from poor sanitation and saltwater
intrusion. Moderate to high flooding is
expected through 2090.

Duvat et al.
(2021)

relied on a comprehensive literature review, available dataset
analysis, and expert judgment. First, based on peer-reviewed
scientific papers and recent IPCC reports, the authors identi-
fied five major Habitability Pillars (HPs): availability of suf-
ficient land; supply of safe freshwater; supply of nutritious
food from local and/or imported sources; access to safe set-
tlements and infrastructure; and access to sustainable eco-
nomic activities (Fig. 4). Then, they defined a set of Risk
Criteria (RC) considered as the major factors contributing to
the risk to Habitability Pillars in the study islands. For exam-
ple, coastal erosion and flooding were identified as the main
factors contributing to the risk to land.

After that, Duvat et al. (2021) scored from 1 to 5 each risk
criterion based on the expected severity of additional climate
risk under both RCP and time horizons. For example, if the
risk of coastal erosion was expected to be low, the risk level
was scored as 1. Conversely, if a low-lying island was ex-
pected to experience a high risk of flooding, the risk level was
scored as 5. The authors provide a detailed rationale for each
score in their supplement (Duvat et al., 2021). The overall

risk to habitability was calculated by aggregating the scores
of risk criteria and habitability pillars. Six risk levels were
considered: undetectable (corresponding to no additional cli-
mate risk in the future compared to today’s risk level), very
low, low, moderate, high, and very high (corresponding to
very high additional risk in the future compared to today’s
risk level). Moreover, each risk level was associated with a
confidence level (very low to very high) based on evidence
and the level of agreement (see Duvat et al., 2021 for details
on the method).

In this work, we use the risk assessment database, includ-
ing the scores and confidence levels, as input data for the BN
model. Data pre-processing is detailed in the following sec-
tions.

2.4 BN development

2.4.1 Network structure

The network structure (Fig. 5) is based on the conceptual
model of atoll island habitability from Duvat et al. (2021).
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Figure 4. Variables assessed by Duvat et al. (2021). The authors evaluated each Risk criterion based on the estimation of additional climate
risk compared to today’s risk level for the two RCP scenarios and time horizons. The risk for each habitability pillar results from the
aggregation of risk criteria scores. The overall risk to island habitability results from the aggregation of the scores obtained for the five
habitability pillars.

Table 4. Variables in the BN model and the discretization applied
to each node. The states of the nodes correspond to the aggregation
of risk levels.

Node States

RCP RCP 2.6 and
RCP 8.5

Time horizon 2050 and 2090

Risk criteria 0 to 5

Habitability Pillars HP1: 0 to 15
HP2: 0 to 15
HP3: 0 to 20
HP4: 0 to 20
HP5: 0 to 10

Risk to Atoll Island Habitability 0 to 100

It is a simplified representation of the relationships between
the main factors contributing to risk to habitability in atolls. It
comprises two parent nodes representing the RCP scenarios
and the time horizons, influencing the thirteen Risk Criteria
(RC). The RCs are linked to their corresponding Habitability
Pillar (HP) and the five pillars are associated with the risk
to island habitability. The BN structure is the same for all
islands.

2.4.2 Conditional probability tables

We populated the conditional probability tables with the risk
levels and associated confidence levels provided by the ex-
perts. To do this, we translated the expert judgments into con-
ditional probabilities using Beta distributions. We selected
the Beta distribution (Ferrari and Cribari-Neto, 2004) due to
its flexibility, as its possible shapes cover a range of possibil-
ities that span all potential cases that we considered in this
study (Fig. 6). Specifically, we anticipate the mode of the
distribution to correspond to the primary score provided by
Duvat et al. (2021), with other scores associated with prob-
abilities that decrease as they diverge from the main score.
Additionally, as the confidence in the assessment decreases,
we expect the probability distribution to become flatter. The
Beta distribution effectively captures these characteristics, as
illustrated in Fig. 6. To represent the maximum confidence
level (5) we used a Dirac distribution to put all the probabil-
ity on the assessed risk level.

The selection of a particular distribution involves some
subjectivity. To evaluate the impact of this subjectivity on
our results, we supplemented our primary set of distributions
with an alternative set that provides a more conservative in-
terpretation of the weights. This secondary set was used to
conduct a sensitivity analysis, the results of which are dis-
cussed in the discussion section. More details about the con-
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Figure 5. Bayesian network developed for Malé atoll Island.

Figure 6. Cumulative Beta distributions generated for each combination of risk and confidence levels. These distributions reflect the un-
certainty in the expert risk assessment. A wider spread in the distribution indicates a lower confidence level. We used these distributions to
populate the conditional probability tables. The support of the distribution was divided into 6 intervals, one for each risk level. The shaded
area indicates the probability corresponding to each risk level.

version of the scores and confidence levels into probabilities
are provided in the Supplement (Sect. S1.2).

We populated the conditional probabilities tables associ-
ated with the Habitability Pillars and the Risk to the Habit-
ability nodes in a deterministic way. We associated a proba-
bility of one with the aggregated risk level and a probability

of zero with the other levels. This approach allows us to re-
main consistent with the expert assessment and reduces com-
putation time when making inferences.
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2.4.3 BN model validation

We populated the BN model using expert knowledge and
the assessment database from Duvat et al. (2021). We ver-
ified that the model structure, discretization of variables, and
parametrization were consistent with expert knowledge and
existing literature on atoll socio-ecosystems. To validate the
model behaviour, we compared the most likely risk levels
estimated by both the sub-networks and the entire network
with the risk levels assessed by experts. This validation step
confirmed that the BN model correctly reflects the expert-
based evaluations. The validation process could be improved
by integrating quantitative data such as measurements or nu-
merical modeling results.

3 BN-based analysis

One of the main advantages of BNs is the possibility to inter-
rogate the model in multiple ways and directions. The ques-
tions asked to the BN model are called probabilistic queries.
These queries allow us to investigate multiple “what if” sce-
narios. To do this, we assume prior information and compute
the probabilities of the variable of interest. Queries can be
made in a direct way, this is, from the parent to the child, or
in inverse mode, from the child node to the parent node. In
this work, we focused on risk assessment, evaluation of risk
criteria contribution, adaptation effectiveness, and identifica-
tion of thresholds. We translated our research questions into
probabilistic queries as shown in Table 5.

We used the cpquery function from the bnlearn package
(Scutari, 2010) to perform the queries. The inference algo-
rithm used was the likelihood weighting method. We chose
this method because it better handles low probabilities.

4 Results

4.1 Risk assessment and validation

In this experiment, we interrogated the BN model about the
probability of risk to island habitability given an RCP sce-
nario and a time horizon. Figure 7 shows the probability of
risk to habitability under the RCP 2.6 and 8.5 scenarios in
2050 and 2090 for the four islands. In 2050, the risk to habit-
ability is similar in Malé, Tabiteuea, and Nolhivaranfaru. The
probability distribution is slightly shifted toward higher lev-
els for RCP 8.5 compared to RCP 2.6, the risk is low to mod-
erate in both scenarios. On the other hand, the risk to habit-
ability is higher for Fogafale compared to other islands, the
most likely outcome being moderate risk levels. The contrast
between RCP 2.6 and 8.5 is also more marked than in Malé
and Tabiteuea. In 2090, the risk to habitability shows more
contrast between the two RCP scenarios. In the RCP 2.6 sce-
nario, Malé, Tabiteuea, and Nolhivaranfaru are expected to
experience low to moderate risk, and Fogafale is likely to ex-

perience moderate to high risk. Under the RCP 8.5 scenario,
all islands may experience moderate to high-risk levels.

As expected, these results are consistent with the aggre-
gated risk to island habitability from Duvat et al. (2021) (yel-
low line), though small differences can be observed. These
differences are due to the fact that the aggregated risk in Du-
vat et al. (2021) results from the combination of their best
estimates and does not incorporate confidence levels. Con-
versely, our approach interprets confidence levels as proba-
bility distributions around these best estimates. As shown in
Fig. 6, these distributions can be skewed, resulting in slight
shifts in the aggregated risk levels. Figure 7 shows that these
differences are small, and arguably smaller than the uncer-
tainties resulting from the expert judgment itself. The re-
sults include a density curve to smooth the peaks in the his-
tograms. These peaks may be due to deterministic relation-
ships. We populated specific conditional probability tables in
a deterministic way, associating a probability of one with the
aggregated risk level and a probability of zero with the other
levels. The combinations matching the aggregated risk will
have a higher probability resulting in peaks in the distribu-
tion.

4.2 Identifying critical thresholds

This experiment aims to identify which risk levels could lead
to adaptation limits in some islands. Adaptation limits are
defined as “the point at which an actor’s objectives (or sys-
tems needs) cannot be secured from intolerable risks through
adaptive actions” (IPCC, 2022). These limits are related to
the purple zone on burning embers diagrams, which show
the changes in risk to humans and ecosystems as a function
of global mean temperature (Zommers et al., 2020). The pur-
ple zone in these diagrams indicates a very high risk that can
cause irreversible impacts and exceedance of adaptation lim-
its. The burning embers diagrams have four risk categories:
undetectable, low, moderate, and very high. In this work, we
used the six risk categories defined by Duvat et al. (2021) in
which very high risk to habitability is > 80.

We explored the possibility for islands to reach adaptation
limits thresholds. To do this, we interrogated the model about
the probability of the risk to habitability under different risk
criteria levels. Figure 8 illustrates the outcomes for Malé and
Fogafale under RCP 8.5 in 2090. In Malé, the results suggest
that no risk criteria level could lead to exceeding the adap-
tation limits threshold (purple line). Conversely, in Fogafale,
severe risk criteria (levels 4 or 5) may lead to exceeding this
threshold. Even at low risk criteria, the risk to habitability
remains high. On this island, implementing adaptation mea-
sures that focus only on a specific risk reduction may not be
sufficient.

This analysis also allows for identifying the risk criteria
with the major contribution to the risk to habitability. This
is reflected by the magnitude of the distribution shift. In
Malé and Fogafale, variations on the risk level of loss of set-
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Table 5. Research questions and their translation into probability queries.

Research question Probabilistic query Section

What is the probability of risk to habitability given an
RCP scenario and a time horizon?

P (Risk to island habitability |RCP= 2.6/8.5 & Time
horizon= 2050/2090)

4.1

What levels of risk could lead to adaptation limits? P (Risk to island habitability |RCP= 2.6/8.5 & Time
horizon= 2050/2090 & Risk criteria= 0/1/2/3/4/5)

4.2

Which risk factors are present when the risk to island
habitability is high or very high?

P (Risk criteria |RCP= 2.6/8.5 & Time horizon= 2050/2090
& Risk to island habitability=High/Very high)

4.3

To what extent is the risk to habitability reduced if we
act on the risk factors that contribute the most?

In this experiment, we assume risk reduction scenarios in
which risk factors are reduced to moderate levels. For example,
flooding ≤ 2: P (Risk to island habitability |RCP= 2.6/8.5 &
Time horizon= 2050/2090 & Flooding= 0, 1, and 2)

4.4

Figure 7. Posterior probability distributions for the RCP 2.6 and 8.5 scenarios in 2050 and 2090 for each island. The yellow line represents
the aggregated risk to habitability assessed by Duvat et al. (2021). The black curve is a smoothed version of the histograms.

tlements generate a slight distribution shift and therefore a
slight impact on habitability. In contrast, increments in the
flooding risk level have a more important contribution. These
outcomes could be useful to identify major drivers and target
possible adaptation strategies. For example, for these islands,
flooding appears as the factor with a major contribution to the
risk to habitability. In these cases, flooding reduction mea-
sures could be privileged.

The results for the other atoll islands are presented in
Sect. S2.1.

4.3 Identification of major drivers of risks

As mentioned in Sect. 4.2, a very high risk to habitability
could be reached at specific risk criteria levels. In this sec-
tion, we use the BN to perform inverse analysis. We explore
the conditions that lead to a very high risk to habitability by
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Figure 8. Risk to Malé and Fogafale habitability under the RCP 8.5 in 2090. Each distribution represents the impact of different risk criteria
levels. For example, for a flooding risk of 1, the query is written as P (Risk to habitability |RCP= 8.5 & Time= 2090 & Flooding= 1). In
Malé, the adaptation limit (purple line) may not be exceeded under this scenario. In contrast, in Fogafale, severe risk criteria levels could lead
to reaching adaptation limits.

calculating the probability of each risk criteria level when the
risk to habitability is very high.

Figure 9 shows the results for Fogafale under RCP 8.5 sce-
nario in 2090. The probability distributions with and without
the constraint of very high risk to habitability are represented
by red and gray bars respectively. Under a very high risk to
habitability, the probability distributions shift towards levels
4 and 5, indicating a correlation with severe risk criteria. This
is the case for multiple variables including decrease in rain-
water harvesting and desalination, flooding, reduced fish-
eries production, and loss of settlements and transport con-
nectivity. The variations between the distributions with and
without the habitability constraint reflect the impact of the
risk to habitability node on the risk criteria nodes and vice-
versa. For example, when we constrain the risk to habitability
to very high levels, there is a significant shift in the probabil-
ity distribution of flooding. This reflects that a variation in
habitability will significantly impact flooding and inversely,
a variation in flooding will impact the risk to habitability.

In all atoll islands, we observe the same correlation be-
tween high risk to habitability with severe risk criteria. These
results are presented in Sect. S2.2.

4.4 Risk reduction scenarios

In this experiment, the objective is to assess how the risk to
habitability decreases when the key risk factors are reduced,
especially those previously identified as major contributors
to risk to habitability. To explore this, we assume different
risk reduction scenarios that could be achieved through adap-
tation, such as managed retreat and the implementation of
measures to reduce flooding and coastal erosion. The impact
of such reductions can be evaluated by calculating the proba-
bility of risk to habitability given a risk criterion level≤ 2 un-
der the RCP= 8.5 in 2090. In both islands, the results show
that reducing flooding has a major impact on the risk to hab-
itability Fig. 10. In Malé, reducing flooding to moderate lev-
els could reduce the risk to habitability from high to moder-
ate. These results suggest that an adaptation policy focused
on reducing flood risk can already provide substantial bene-
fits to preserve the habitability of Malé Island. Yet, focusing
only on flood risk would not be sufficient in all contexts. For
example, Fig. 10 shows that reducing multiple risks is neces-
sary for Fogafale to keep the risk to habitability at a moderate
level.

The results for the other atoll islands are presented in
Sect. S2.3.
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Figure 9. Probability of risk criteria levels under the RCP 8.5 in 2090. The red bars represent the results when the risk to Fogafale habitability
is very high (query: P (Risk criteria |RCP= 8.5 & Time horizon = 2090 & Risk to Fogafale habitability=Very high)). The grey bars
represent the results without the habitability constraint (query: P (Risk criteria |RCP= 8.5 & Time horizon= 2090)). The results reflect
which risk criteria are associated with high risk to Fogafale habitability. These include flooding, loss of critical infrastructure, reduced reef
fisheries production and decrease in rainwater harvesting.

5 Discussion

The BN model was developed based on the conceptual model
and expert risk assessment provided by Duvat et al. (2021).
The model allowed for the integration of qualitative infor-
mation and uncertainties associated with expert judgments
(see Sect. S1.2). Expert judgments included various environ-
mental, economic, physical, and climatic variables that we
incorporated (explicitly or implicitly) into our BN model, al-
lowing for integrated analysis. The BN allowed us to analyse
multiple problems, including risk assessment, identification
of major risk factors, evaluation of risk reduction scenarios,
and identification of thresholds.

5.1 Risk to habitability assessment using the BN

BN allows us to derive a best estimate of the risk, but also
to quantify the confidence by providing the 17th and 83rd
percentile results (Fig. S9) interpreted as likely ranges (to re-
fer to a probability of at least 66 %) according to the IPCC
likelihood scale. By 2050, under RCP 2.6 and RCP 8.5 sce-
narios, the risk to habitability for Malé, Tabiteuea, and Nol-
hivaranfaru is likely to be low (Fig. 7). Conversely, in Fo-

gafale, a higher risk is more likely. This is due to its very
low elevation, limited coastal protection, and high exposure
of habitats and critical infrastructures (Duvat et al., 2021).
By 2090, the contrast between the RCP scenarios becomes
more important. This is attributed to the divergence of cli-
mate projections during the second half of the 21st century,
as well as the cumulative and cascading impacts of climate
change (Duvat et al., 2021). Under the RCP 2.6 in 2090, the
risk to habitability is likely to be low-to-moderate across all
islands except Fogafale. In contrast, under the RCP 8.5, the
risk to habitability is likely to increase from moderate to high
or very high levels. In Malé, Duvat et al. (2021) attributed
this increase to the expected increase of flooding and degra-
dation of coastal protection. In rural islands, the expected
high risk is associated with their high dependence on coastal
ecosystem services for food (e.g., reef fish abundance), water
supply (e.g., reduction of saltwater intrusion), land stabiliza-
tion (e.g., sediment supply and wave impact reduction), and
economic activities (e.g., tourism, fisheries, agriculture). Un-
der the RCP 8.5, ecosystems are expected to decline due to
the exceedance of critical thresholds, including the tempera-
ture threshold for tropical reef-building corals (Cooley et al.,
2022), as well as regional bleaching thresholds. According
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Figure 10. Probability distributions of the risk to habitability under different risk reduction scenarios for RCP 8.5 in 2090 in Malé and
Fogafale. The baseline scenario assumes no risk reduction (No-RR). The risk reduction scenarios considered in this analysis focus on
reducing flooding (FL), coastal erosion (CE), and loss of settlements (LS). In both atoll islands, risk reduction efforts focused on flooding
could significantly reduce the risk to habitability. In Malé, reducing flooding or coastal erosion could reduce the risk to habitability from a
high to a moderate level. However, in Fogafale, the reduction of multiple risks is needed to reach a moderate risk to habitability.

to Duvat et al. (2021), risk to habitability is expected to be
higher in rural islands due to their limited capacity to man-
age climate-related impacts through the implementation of
coastal adaptation, technology, and imports, compared to ur-
ban islands.

5.2 Complex queries within the BN

The BN method has the advantage of enabling users to make
complex requests. Typically, these complex requests involve
queries that assume specific priors and compute the probabil-
ities using the BN in reverse mode. In other words, the use of
BN here simplifies the investigation of “what if” scenarios.
The identification of major risk factors presented in Sect. 4.3
is an example of such inverse analysis, which could be useful
to target high-risk factors and thereby identify potential adap-
tation measures. Figure 9 shows that severe flooding and loss
of settlements are highly correlated with a very high risk to
habitability. We used this information to target risk reduction
scenarios that could potentially be achieved through adapta-
tion measures proposed in the experiment 4.4. This analysis
also highlights that a high risk to habitability can arise from

the interaction of multiple factors. Therefore, integrated risk
assessments and multi-risk adaptation strategies are needed.

Finally, the risk reduction scenario analysis highlights the
potential of BNs as decision-support tools, as suggested by
multiple authors (Ferreira et al., 2019; Jäger et al., 2018;
Rachid et al., 2021). Duvat et al. (2021) evaluated climate
risk considering the current level of adaptation, classified
as moderate. Examples of currently implemented measures
are food imports and water desalination to counter local re-
sources decline, and hard protection to reduce flooding and
coastal erosion. In our BN analysis, we explored different
risk reduction scenarios that could potentially be achieved
through context-specific adaptation measures. Examples in-
clude accommodation, vertical adaptation, ecosystem-based
measures, and hard protections (Mycoo et al., 2022). How-
ever, we did not assess the effectiveness or the practicali-
ties of their local implementation. Instead, this risk reduc-
tion analysis could be useful to target potential adaptation
options. In future work, a wider range of local parameters
including the elevation of the atoll island, and exposure to
extreme events could be considered in the context of a wider
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framework involving social perception, economic feasibility,
co-benefits, and trade-offs.

5.3 Limitations

The presented method has limitations. The first one was the
translation of expert judgments into probabilities. To do this,
we selected specific beta distributions that best reflect the
expert knowledge (best estimate and confidence level). We
conducted several tests to select beta distributions dispersed
enough to represent the expert knowledge without overfit-
ting the model. However, the selection of a specific distribu-
tion introduces a degree of subjectivity (in addition to that
related to the nature of the data). To evaluate the impact of
our choices, we carried out a sensitivity test using an alter-
native set of beta distributions (detailed in the supplement).
For this alternative set, we associated a higher weight to the
confidence level. This is reflected by a higher probability as-
sociated with the risk level assessed by experts. For example,
an assessed risk level associated with low confidence was
represented by a probability of 30 % in the initial set, and a
probability of 40 % in the alternative set. The sensitivity test
shows slight differences between the two sets. The BN anal-
ysis using the alternative set of beta distributions results in
less dispersed distributions and slightly different median val-
ues. However, we obtained the same risk categories in both
cases, suggesting that the results are relatively robust against
the probabilistic interpretation of expert judgments.

Other limitations are related to (1) the BN structure, (2)
the discretization of the variables, and (3) inference meth-
ods. Regarding (1), we used a structure similar to that of Du-
vat et al. (2021), where the scores are essentially added to
compute an aggregated risk level. Duvat et al. (2021) did not
consider interactions between habitability pillars, and there-
fore, we did not include these interactions in the structure of
our BN. The habitability pillar Risk to land has an impact
on local freshwater and food land-based supply, settlements
and infrastructure, and economic activities. Not considering
these interactions could result in an underestimation of the
risk to habitability. In future work, we will consider these
relationships, but it must be considered that since BNs are
based on direct acyclic graphs, their structure cannot explic-
itly account for positive or negative feedback. This can be a
limitation in our approach if risk or adaptation problems with
large positive or negative feedback are considered. Concern-
ing (2), the discretization of continuous variables could be
another source of uncertainty. Depending on the states of the
variables, the discretization could lead to a loss of informa-
tion (Rohmer, 2020). For example, the use of too large or too
short categories may overlook subtle variations in the system,
reducing the accuracy and relevance of the results. The use
of hybrid BNs including continuous and discrete variables
(Beuzen et al., 2018) could be helpful to minimize these un-
certainties. Regarding (3), in our BN analysis, we used the
likelihood weighting method for inference. This method has

some limitations, including low precision for estimating low-
probability scenarios (Scutari, 2010), which were not in the
scope of this study. To improve computational efficiency, al-
ternative sampling methods will be considered in future re-
search work (Yuan and Druzdzel, 2006).

6 Conclusions

The objective of this work is to present a reproducible
methodological framework to develop a Bayesian network
model based on expert judgments. We used the model struc-
ture and expert knowledge of Duvat et al. (2021), who previ-
ously assessed the risk to habitability for 2050 and 2100 un-
der two contrasting RCP scenarios for four atoll islands in the
Indian and Pacific Oceans. We performed the same risk as-
sessment using a BN model. Our objectives were to integrate
uncertainties in the risk assessment and analyse the potential
and limitations of this approach. The BN reflects the expert
knowledge consistently and takes into account the associated
uncertainty. The model allowed us to analyze “what-if” sce-
narios that could be useful to assess the impact of climate
change and to identify potential risk reduction measures.

Bayesian networks are usually developed using data to
define their structure and conditional probability tables. In
cases when limited data is available, these models can be
fully parameterized using expert knowledge. We demonstrate
that when expert risk assessments are available, they can
serve as a basis for BNs. Our work gathers the detailed risk
assessment and meaningful relationships between variables
provided by the experts with the uncertainties integration and
analysis of multiple scenarios offered by BNs. Further work
will address the limitations of this approach, including the
BN structure, the discretization of variables, and inference
methods. However, this first attempt highlights the potential
of BNs as a complementary tool for integrated risk evaluation
in small islands and potentially in other adaptation problems
involving complex socio-ecosystems and expert judgment.

Appendix A: Acronyms

BN Bayesian network
DAG Directed acyclic graph
CPT Conditional probability table
CL Confidence level
HP Habitability pillar
RC Risk criteria
RTH Risk to habitability
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