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Abstract. With the acceleration of urbanization, the disas-
ter of urban flooding has had a serious impact on urban
socio-economic activities and has become one of the im-
portant factors restricting social development in China. Ac-
curate and timely identification of urban flooding extents is
crucial for decision-making. Traditional remote sensing tech-
nologies are often limited by environmental factors, making
them less suitable for application in complex urban terrains.
With the increase in urbanization and the development of
emerging technologies, video imagery has become a signif-
icant data source with great potential for urban flood iden-
tification. However, existing research has primarily focused
on flood extent identification in daytime scenarios, often ne-
glecting the nighttime, a period of high flood occurrence. In
this study, we propose an efficient model (NWseg) to identify
flood extents in nighttime scenes. Initially, we constructed
a nighttime flood inundation dataset consisting of 4000 im-
ages. Subsequently, MobilenetV2 and ResNet101 networks
were used to replace the DeepLabv3+ backbone network and
compared with the NWseg model. Next, the NWseg model
was compared with ResNet50-FCN, LRASPP, and U-Net
models to evaluate the performance of different models in
nighttime urban flooding extent identification. Finally, we
verified the applicability and performance differences of each

model in specific environments. Overall, this study success-
fully demonstrates the effectiveness of the NWseg model for
nighttime urban flooding extent identification, providing new
insights for nighttime flood monitoring in cities.

1 Introduction

In recent years, extreme rainfall events have been occurring
frequently in the context of complex climate change (Burn
and Whitfield, 2023; Kim et al., 2024). Concurrently, with
the acceleration of urbanization processes, the proportion of
impervious surfaces has been continuously expanding, re-
sulting in serious urban flooding issues in many cities world-
wide (Ghosh et al., 2024; Liu et al., 2023; Kundzewicz et al.,
2019). Urban flooding often coincides with multiple com-
pounded disasters and may even trigger secondary disasters,
posing serious threats to the safety of urban residents, the
normal operation of city functions, and sustainable devel-
opment. This exacerbates the vulnerability of urban socio-
economic systems (Gu et al., 2025; Visser, 2014; Zheng et
al., 2014). Therefore, achieving real-time and effective iden-
tification of urban flooding extent has become a critical issue
that urgently needs to be addressed.
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Remote sensing technology has made significant advance-
ments in the field of urban flood identification, providing
new perspectives for flood disaster identification through
high spatial, temporal, and spectral resolution data (Bofana
et al., 2022). However, despite its excellent performance at
the macro scale, remote sensing technology has limitations in
urban area monitoring. Due to the limitations in temporal res-
olution and the impact of cloud cover and atmospheric vari-
ations, remote sensing technology struggles to capture the
dynamic changes of urban flooding, making real-time identi-
fication of rapidly evolving flood events challenging (Mason
et al., 2012). In addition, the complexity of the urban envi-
ronment, especially the dynamic changes of small-scale wa-
ter bodies and localized waterlogging, further increases the
difficulty of remote sensing technology in urban flooding ex-
tent identification. Therefore, an intelligent and real-time ur-
ban flood monitoring method is urgently needed to achieve
more precise flood identification.

With technological advancements, the emerging fields of
deep learning and computer vision have matured and en-
gaged in interdisciplinary collaborations, achieving signifi-
cant performance that offers new technical approaches for ur-
ban flood identification (Choi and Yoo, 2023). Particularly in
image segmentation, deep learning’s advantages in extract-
ing global features and contextual information make it highly
promising for inundation detection (Liu et al., 2020). Simul-
taneously, the increasing level of urbanization has led to the
widespread deployment of video surveillance devices across
urban areas, particularly in highly urbanized areas (Muhadi
et al., 2024; Hao et al., 2022). During rainfall, these cameras
can fully record the flooding process, providing real-time re-
flections of road inundation changes (Wang et al., 2024a).
Therefore, combining deep learning with traffic cameras can
effectively identify the extent of urban flooding.

Existing research has demonstrated that deep learning ex-
cels in segmenting inundated areas. Sarp et al. (2020) applied
the Mask R-CNN model to automatically detect and segment
floodwaters in urban, suburban, and natural scenes, achieving
99 % accuracy in the detection phase and 93 % in the seg-
mentation phase. Sazara et al. (2019) used a deep learning
approach to detect standing water on urban roads, in which
a pre-trained VGG-16 network was used in the classification
phase and a full convolutional neural network was used in
the segmentation task, and compared it with the traditional
classifier and extraction algorithms with manually-designed
features, and the results showed that the deep learning ap-
proach has a more obvious advantage in both the recogni-
tion and segmentation of standing water. Wang et al. (2024a)
used a deep convolutional neural network (DCNN) for ur-
ban flood extent recognition based on video images acquired
from surveillance cameras. Zeng et al. (2024) proposed a
DeepLabv3+ based flood image recognition method, which
effectively improves the model performance through image
enhancement and the introduction of the super-resolution
generative adversarial network. However, current research

Nat. Hazards Earth Syst. Sci., 25, 4361-4373, 2025

J. Wan et al.: Identification of nighttime urban flood inundation extent using deep learning

focuses on daytime scenes, and the existing datasets lack di-
versity to cover flooding scenes at night or under complex
weather conditions. Meanwhile, some algorithms underper-
form when processing images in low-light or adverse condi-
tions, making flood extent identification at night or in chal-
lenging weather a technical challenge. This limitation under-
scores the urgent need for accurate nighttime flood extent
identification and the necessity for algorithm improvements
and dataset expansion.

To address the above challenges, this study proposes an
efficient method for nighttime urban flood extent identifi-
cation. First, an urban flood inundation dataset for night-
time scenes is constructed to provide sufficient sample sup-
port for model training. Subsequently, a NWseg model for
nighttime image segmentation is proposed, which combines
a Content-Light Splitter with a Dual-Feature Integrator to en-
hance the model’s performance in identifying flooding extent
in low-light environments. Meanwhile, given that the data are
mainly sourced from urban road surveillance systems, the
method is particularly suitable for street (Street) and local
area (District) scale flood detection. Finally, the robustness
and performance advantages of the NWseg model in night-
time urban flood recognition are verified through experimen-
tal comparison with mainstream segmentation models. This
study not only promotes the development of nighttime ur-
ban flood recognition technology but also provides theoreti-
cal support and practical experience for future deep learning
research in low-light environments using in nighttime low-
light environments.

Totally, the main contributions of this paper are as follows:

1. Contributed a method for nighttime urban flooding ex-
tent identification based on urban surveillance cameras,
aiming at realizing efficient assessment of nighttime ur-
ban flooding areas and filling the gaps of research in this
field at this stage.

2. To support the generalization ability of the model in
complex nighttime environments, this study constructs
a nighttime flood inundation dataset covering a variety
of nighttime scenarios (e.g., different weather, illumina-
tion intensity, and urban structure), which provides di-
verse sample resources required for training and testing.

3. Replace the original DeepLabv3+ model network back-
bone with MobilenetV2 and ResNet101 networks and
verify the effect of different network backbones on the
performance of the Deeplabv3+ model.

4. An urban flood identification model NWseg for night-
time scenarios is proposed, and the significant advan-
tages of the model in terms of robustness, effectiveness,
and practicality are verified by comparing with other
existing models, which advances the research and de-
velopment of nighttime urban flooding extent identifi-
cation.
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2 Model
2.1 Nighttime Urban Segmentation Model

Flood segmentation faces significant challenges in nighttime
scenes. Insufficient illumination and interference from com-
plex artificial light sources, such as streetlights and head-
lights, result in blurring of texture, edge, and color informa-
tion in flooded regions, further exacerbating the difficulty of
the segmentation task and severely affecting the robustness
and accuracy of the model. To address this challenge, this
study proposed a flood extent recognition model specifically
designed for low-light nighttime scenes — the NWseg model,
which aims to alleviate the impact of low illumination and
complex lighting conditions on segmentation performance.
As shown in Fig. 1, the NWseg model consists of two key
modules: Content-Light Splitter (CLS) and Dual-Feature In-
tegrator (DFI).

The design of the CLS module is based on the Retinex
theory, which states that an image can be decomposed into
a pixel-by-pixel product between a light-independent re-
flectance component (reflectance) and a light-related illumi-
nation component (illumination) (Land, 1977). Based on this
principle, the CLS module decomposes the night image into
a “reflectance map” and an “illumination map”, which rep-
resent the inherent semantic information of the flood area
and the lighting distribution in the scene, respectively (Wei
et al., 2023). Subsequently, a semantic guidance mechanism
is introduced to optimize the semantic segmentation loss dur-
ing training (i.e., the difference between predicted pixel-level
class labels and true labels), enabling the reflectance map to
learn clearer boundaries and stronger semantic expression,
thereby achieving accurate identification of the true con-
tours of the flood areas. In addition, to addressing the inter-
ference from artificial light sources (such as car headlights
and traffic lights), NWseg further designs the DFI module
to enhance segmentation performance by adaptively fusing
reflectance and illumination features. The DFI module first
encodes the reflectance and illumination features and then
constructs an attention mechanism that learns the degree of
dependency between each pixel and the two feature types,
enabling adaptive feature-weighted fusion at the pixel level
(Li et al., 2024). This process adopts a pixel-wise weight-
ing strategy, effectively enhancing the model’s ability to rec-
ognize light-dominated categories. Finally, the DFI module
introduces a dual semantic supervision mechanism: it not
only applies semantic segmentation supervision to the fused
output but also imposes semantic loss on the illumination
channel separately, to enhance its independent discrimina-
tive ability and improve the model’s overall generalization
capability (Wei et al., 2023).

In summary, NWseg, through the collaborative design of
the CLS and DFI modules, demonstrates superior semantic
understanding and segmentation ability in complex night-
time lighting scenarios. It shows significant robustness and
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recognition advantages, particularly in high-reflection, low-
contrast, and locally overexposed areas.

2.2 Typical semantic segmentation model

DeepLabv3+ is an advanced model in the field of image seg-
mentation, which significantly improves the accuracy and de-
tail processing ability of image segmentation by introduc-
ing an encoder-decoder structure (Bai et al., 2023; Peng et
al., 2023). The encoder part is responsible for extracting
the high-level features of the image, while the decoder fo-
cuses on recovering the details of the image, thus realizing a
more fine-grained segmentation effect (Fu et al., 2021). The
model also employs the techniques of void convolution and
Atrous Spatial Pyramid Pooling (ASPP), which can effec-
tively capture the multi-scale information of the image and
improve the processing capability of complex scenes and ob-
ject boundaries (Wang et al., 2024b; Peng et al., 2024). Cav-
ity convolution enables the model to capture a larger range
of image information without increasing the computational
effort by introducing voids in the convolution kernel. It is
particularly helpful in capturing the relationships between
distant objects in an image (Yu et al., 2017). Atrous Spa-
tial Pyramid Pooling (ASPP), on the other hand, enhances
the recognition of objects of different sizes by using differ-
ent scales of null convolution to extract multiple levels of
image features, which helps the model to focus on both de-
tailed and global information (He et al., 2014). In addition,
DeepLabv3+ uses Xception as the backbone network, com-
bined with depth-separable convolution to improve computa-
tional efficiency. Depth separable convolution divides the tra-
ditional convolution operation into two steps: first, each im-
age feature is processed independently, and then the results
are combined (Zhang et al., 2023). This approach effectively
reduces computation and storage requirements, allowing the
model to operate more efficiently while maintaining high ac-
curacy. However, due to its relatively complex network struc-
ture, DeepLabv3+ is still slow in the inference stage.

To enhance the segmentation performance of DeepLabv3+
in urban flood scenes, this study designs a series of con-
trolled experiments, systematically modifying or removing
network components to verify the effectiveness of differ-
ent backbone networks (i.e., ablation studies) and com-
pares the results with the NWseg model. First, experiments
were conducted on the original, unmodified DeepLabv3+
network as a baseline model. Then, we replaced the orig-
inal DeepLabv3+ backbone network with the lightweight
MobilenetV2, constructing an improved model (denoted as
MobilenetV2-DeepLabv3+). MobilenetV?2 is structurally op-
timized to compress the feature information while retaining
the key information as much as possible, thus achieving a
lightweight model while maintaining high accuracy (Jin et
al., 2024). Finally, we replaced the backbone network of
DeepLabv3+ with the residual neural network ResNetl01
to form another improved model (denoted as ResNetl101-
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Comtent-Light
Splitter

Figure 1. NWseg model inference process.

DeepLabv3+). ResNet101 adopts the residual connection
mechanism so that part of the feature information can by-
pass the intermediate layer and be transmitted directly, which
avoids the problems of “learning stagnation” or “training in-
stability”” during the training process (Wang et al., 2024b).

The Fully Convolutional Network (FCN) is a deep learn-
ing model that divides images into different regions by as-
signing a specific label to each pixel. Traditional deep learn-
ing models typically provide only an overall classification
result for an entire image. In contrast, FCNs improve upon
these models by replacing the fully connected layers with
convolutional operations, enabling the network to handle in-
put images of any size and produce detailed, pixel-level pre-
dictions (Yang et al., 2017). FCNs progressively compress
the spatial dimensions of the image to extract essential infor-
mation and then restore the original size to achieve precise
localization of different regions (Zhao et al., 2018). Addition-
ally, FCNs combine information from both shallow and deep
layers, further enhancing segmentation accuracy in complex
areas, such as flood boundaries. In this study, ResNet50 was
selected as the backbone network for FCN, referred to as
ResNet50-FCN. ResNet50 is a deep neural network that ef-
fectively alleviates the gradient vanishing problem during
training, improving stability and efficiency. By combining
the depth of ResNet50 with the flexibility of FCN, the pro-
posed model enhances the accurate detection of inundated
areas in complex environments.

LRASPP (Lightweight Refine Atrous Spatial Pyramid
Pooling) is a lightweight model designed for image segmen-
tation tasks. The model adopts MobileNetV3 as the back-
bone network for extracting the base features of an image
and fuses shallow features to enhance the retention of de-
tailed information. To further enhance the inference effi-
ciency, LRASPP reduces the number of convolutional op-
erations in the structural design and streamlines the feature
channels to effectively reduce the computational complexity.
Ultimately, the model restores the feature map to the same
size as the input image through the upsampling operation to
achieve accurate prediction of each pixel category (Tang et
al., 2024).

U-Net is a deep learning model commonly used for im-
age segmentation tasks, and its structure is mainly composed
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of two parts: encoder and decoder (Siddique et al., 2021).
The encoder is responsible for gradually reducing the image
size and extracting key features, while the decoder recovers
the detailed information by gradually enlarging the feature
map, thus realizing the accurate classification of each pixel.
In addition, to compensate for the information lost during
the process of reducing the image size, U-Net introduces a
jump-join mechanism, which passes the features extracted at
different stages in the encoder directly to the corresponding
decoder stage (Sengupta et al., 2025). This design enables
the model to better preserve the detailed features in the image
while maintaining overall semantic understanding (Yadaven-
dra et al., 2022).

We conducted comparative experiments on the FCN,
LRASPP, U-Net, and NWseg models, evaluating their perfor-
mance using metrics such as Precision, Recall, Mean Inter-
section over Union (MIoU), and F1 Score. All models were
initialized with pretrained weights for their backbone net-
works and trained on the nighttime urban flooding dataset.
The models were then evaluated on the test set, with relevant
metrics calculated to determine the most suitable model for
nighttime urban flood recognition.

3 Design of experiments
3.1 Construction of dataset

In this study, we employed web crawler technology us-
ing Google Chrome to construct a comprehensive night-
time urban waterlogging dataset by searching with the key-
word “nighttime urban flooding”. This dataset contains 4000
images that capture a wide range of nighttime waterlog-
ging scenes, varying in extent and shape. To enhance the
dataset’s robustness and comprehensiveness, we included
images of complex scenes, such as strong lighting conditions
and splashes caused by vehicles, ensuring its applicability
to diverse nighttime flooding situations. During the data se-
lection process, careful attention was given to the represen-
tativeness and balance of waterlogged areas across different
scales, ranging from localized ponding to large-scale flood
events, to ensure broad coverage of possible urban flooding
conditions (Du et al., 2025).

https://doi.org/10.5194/nhess-25-4361-2025
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Figure 2. Samples and the flood area labels in the dataset, the white marked range is the flood extent.

In addition, we employed LabelMe, an open-source im-
age annotation tool widely used in the field of computer vi-
sion, to manually annotate the flooded regions in the images.
Through its graphical interface, annotators can polygonally
map the inundated areas in an image and assign correspond-
ing category labels to each area, thus generating high-quality
semantic segmentation data that can be used for deep learn-
ing model training (Zhang et al., 2023). Using this tool, we
precisely labeled the inundated areas in a total of 4000 im-
ages. To ensure the accuracy and consistency of the annota-
tions, three graduate students with research backgrounds in
urban flooding were recruited to independently perform the
annotation work. Specifically, each flood image was anno-
tated separately by all three annotators, followed by a cross-
review process to identify potential discrepancies in the flood
boundaries. In cases of inconsistency, the annotators engaged
in multiple rounds of collaborative discussion and iterative
refinement, optimizing the boundaries based on image de-
tails. This process ensured the overall quality and reliability
of the dataset. Figure 2 presents a comparison between the
original images and the labeled images, where the inundated
areas are marked in white and the non-inundated areas are
marked in black.

3.2 Evaluation metrics

In validation and testing, mean Intersection over Union
(MIoU), F1 score, precision, and recall were used to assess
the performance of the semantic segmentation models (Mu-
nawar et al., 2021).

The MIoU value is defined as the ratio of the intersection
area of the predicted bounding box and the real bounding box
to the concatenation area, and is calculated by averaging the
results for each category. It is used to evaluate the accuracy
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of the location information of the predicted results of the tar-
get detection task. The larger the overlap area between the
real and the presumed area of the object, the larger the cal-
culated value of MIoU, and the more accurate the presumed
target area. The calculation of the MIoU value follows the
following formula:

k
MIoU = > TP (1)
k+14<TP+FP+FN

=

Precision, which is the proportion of samples predicted to be
positive that are actually positive, is also known as the check
rate, and can be expressed by the following formula:

. TP
Precision = ———— (2)
TP +FP
Recall, which is the proportion of actual positive samples that
are predicted to be positive, is also known as the check all
rate, and is given by the following formula:

TP

Recall = —————
TP +FN

3)
F'1 score is the reconciled mean of precision and recall. The
formula for each precision evaluation metric is as follows:

2 x Precision x Recall
F1 score = — “4)
Precision + Recall

In the above formula, TP is the number of actual situations
that are true and predicted to be true; FP is the number of
actual situations that are false and predicted to be true; FN is
the number of actual situations that are true and predicted to
be false; and TN is the number of actual situations that are
false and predicted to be false.
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Table 1. Configuration table of the experiment.

Project Model

Operating System Windows 10

Programming Language  Python 3.13

GPU NVIDIA GeForce RTX3080
GPU memory 32GB

3.3 Experimental configuration

All experiments were conducted using an operating sys-
tem of Windows 10, a CPU model of Intel(R) Core(TM)
1712700F@2.10 GHz, a GPU model of NVIDIA GeForce
RTX 3080, 32GB of operating memory, a programming lan-
guage of Python 3.13, and a deep learning framework of Py-
Torch1.13, GPU acceleration is enabled during model train-
ing with CUDA 11.7 and cuDNN 8.4.1 to improve training
efficiency. The input image resolution is 512 x 512 pixels,
the training optimizer type is Adam, the weight decay index
is 0.0001, and the initialized learning rate is 0.005. Parame-
ters are shown in Table 1.

4 Result
4.1 Ablation study

In this section, we present a comparative analysis of the
DeepLabv3+ model with different backbone networks and
compare it with the NWseg model. As shown in Table 2
and Fig. 3, all evaluation metrics are improved after re-
placing the original backbone network of DeepLabv3+ with
Mobilenetv2 and ResNetl01, respectively. Notably, when
ResNet101 was used as the backbone, the model’s perfor-
mance improved even more, with Precision, F'1 score, Re-
call, and MIoU increasing by 14.4 %, 10.11 %, 6.63 %, and
5.91 %, respectively, compared to the baseline model. How-
ever, all DeepLabv3+ variants still exhibited a significant per-
formance gap when compared to NWseg. The NWseg model
achieved 95.99 % in Precision, 94.80 % in Recall, 95.39 % in
F'1 score, and 91.46 % in MIoU, demonstrating its superior
capability in nighttime urban flood extent recognition. Al-
though NWseg has a relatively large number of parameters,
it delivers outstanding accuracy and robustness.

4.2 Model performance experiments

In this section, we present a comparative analysis of the ex-
perimental results of the NWseg model against other seg-
mentation models. As shown in Table 3 and Fig. 4, the
NWseg model achieved optimal results on the test set of
the nighttime flood inundation dataset, with a Precision of
95.99 %, Recall of 94.8 %, F1 score of 95.39 %, and MIoU
of 91.46 %. These metrics are significantly higher than those
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of the other models, demonstrating superior accuracy and
recall rates. Compared to the ResNetSO-FCN model, the
NWseg model exhibits superior performance across all in-
dicators, with increases of 10.99 % in Precision, 17.57 % in
Recall, 14.46 % in F'1 score, and an 8.76 % improvement
in MIoU. When compared with the U-Net model, while the
NWseg’s Precision is similar, it outperforms in other met-
rics, with Recall, F'1 score, and MIoU higher by 11.23 %,
7.15 %, and 10.96 % respectively. Additionally, compared to
the lightweight LRASPP model, the NWseg model shows
more pronounced advantages, with Precision increased by
15.82 %, Recall significantly increased by 69.41 %, F1 score
improved by 56.82 %, and MIoU enhanced by 32.25 %. Al-
though NWseg is higher in the number of model parameters
than the other comparative models, it still demonstrates sig-
nificant advantages in several evaluation metrics. Future re-
search will aim to further optimize the structure of the model
while maintaining its performance to achieve a higher degree
of lightweighting.

Overall, the NWseg model demonstrates superior perfor-
mance across all evaluation metrics and also shows strong
performance in real scenario tests. In contrast, although the
ResNet50-FCN model performs well in precision and detail
processing, it lacks efficacy in handling edge regions, leading
to slightly insufficient performance in complex scenes. While
LRASPP offers advantages in computational efficiency due
to its lightweight design, it has limitations in the precise cap-
ture of details and boundaries. The U-Net model is compa-
rable to NWseg in accurately detecting target areas but is
somewhat less robust and consistent when processing com-
plex scenes.

4.3 Real-world scenes prediction comparison

To validate the effectiveness and stability of each model un-
der challenging scenes, we conducted tests on seven mod-
els using nighttime strong illumination scenes and night-
time rainfall scenes (Wan et al., 2025). As shown in Fig. 5a
presents the original scene where streetlights at night gener-
ate strong reflections and halos on the water surface. Addi-
tionally, the intense lighting affects the detailed features of
the ground. By comparing the recognition results of each
model, it is evident that the NWseg, ResNet50-FCN, and
U-Net models accurately detected the flooding conditions in
the scene. Notably, the NWseg model exhibited a more re-
fined recognition ability in identifying water accumulation in
road depressions. However, both ResNet50-FCN and U-Net
showed certain false detections when recognizing the over-
all flooded areas. In contrast, the Mobilenetv2-DeepLabv3+,
DeepLab, and LRASPP models could only sporadically
identify small flooded regions and exhibited varying degrees
of false detections. Although the ResNet101-DeepLabv3+
model recognized a larger flooded area, a comparison with
the original image reveals a relatively high false detection
rate, indicating deviations in prediction accuracy. Overall, the
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Table 2. NWseg and DeepLabv3+ series model training results.

4367

Models P R Flscore MloU Params
(%) (%) (%) (%) M)
Mobilenetv2-DeepLabv3+ 67.46 50.64 57.85 46.15 5.81
ResNet101-DeepLabv3+ 67.74 57.24 62.05 5198 59.34
DeepLabv3+ 53.34  50.61 51.94  46.07 54.70
NWseg 95.99 94.8 95.39 91.46 122.6
100%
Precision
Recall
90% + F1 score
MioU
80% -
70%
60%
50%
40%
30%
20% e — - T —T
NWseg Mobilenetv2-DeepLabv3+ ResNetlOl-DeeplLabw3+ DeepLabv3+

Models

Figure 3. Comparison of experimental results between NWseg and DeepLabv3+ series of models.

Table 3. NWseg and other segmentation model training results.

Models P R Flscore MlIoU Params

(%) (%) (%) (%) ™M)
NWseg 95.99 94.8 95.39 9146 122.6
ResNet50-FCN 85 77.23 80.93 82.7 35.31
LRASPP 80.17 25.39 38.57 59.21 3.22
U-Net 947  83.57 88.24 80.5 43.93

NWseg model outperformed the others in this scene recog-
nition task, demonstrating superior capability in recognizing
flooded areas under complex lighting conditions.
Furthermore, in the nighttime rainfall scene tests, we eval-
uated each model’s performance to simulate urban flood
recognition under real-world conditions. In such scenes, re-
flections from rainwater, slippery road surfaces, and interfer-
ence from raindrops on the camera lens can adversely affect
image clarity and the models’ recognition accuracy (Zhao et
al., 2025). As shown clearly in Fig. 6, the NWseg, ResNet50-
FCN, and U-Net models were able to correctly identify the
flooded areas in the images, with the NWseg model provid-
ing the most detailed performance by accurately capturing
the edges of the flooded regions. While ResNet50-FCN and

https://doi.org/10.5194/nhess-25-4361-2025

U-Net also identified the extent of flooding relatively well,
they were somewhat insufficient in recognizing the flood
boundaries and exhibited some false detections.

In contrast, the other four models performed rela-
tively poorly. Specifically, the LRASPP and Mobilenetv2-
DeepLabv3+ models were almost unable to detect the flood-
ing, indicating weaker recognition capabilities in night-
time rainfall scenes. Although ResNet101-DeepLabv3+ and
DeepLab could detect some flooded areas, comparison with
the original images revealed that the regions identified did
not accurately reflect the actual flooding conditions and had
high false detection rates. Through comparative analysis, we
further confirmed the challenges posed by nighttime rainfall
environments for urban flood recognition and demonstrated
the superior performance of the NWseg model in handling
complex conditions such as nighttime rainfall.

5 Discussion

In this study, a state-of-the-art model named NWseg is pro-
posed to address the challenges of nighttime urban flood ex-
tent identification. Through a series of experimental valida-
tions, the NWseg model demonstrates superior performance

Nat. Hazards Earth Syst. Sci., 25, 4361-4373, 2025
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Figure 4. Comparison of experimental results between NWseg and other segmentation models.

with 95.99 %, 94.8 %, 95.39 %, and 91.46 % in Precision,
Recall, F1 score, and MIoU, respectively. In the prediction
comparison of real scenarios, the model also shows high ac-
curacy and robustness, and effectively recognizes flooded ar-
eas in complex nighttime environments. In addition, NWseg
achieves an inference speed of 37.8 FPS (i.e., approximately
26.5ms per image) under the NVIDIA GeForce RTX 3080
environment, demonstrating its potential for real-time ap-
plications in high-performance computing platforms. This
study bridges the current research gap in flood extent recog-
nition in nighttime scenarios, providing a technical reference
for flood monitoring and emergency response.

Nevertheless, this study still has some limitations. First,
the overall structure of NWseg is relatively complex, and the
model parameters are large in scale, which limits its deploy-
ment capability on resource-constrained edge devices, and
its stability in complex scenarios needs to be further veri-
fied. Second, in nighttime scenarios with extremely low il-
lumination or even complete power outage (e.g., the case of
city blackout triggered by heavy rainfall), the model has dif-
ficulty in extracting effective edge and texture information,
which leads to a significant degradation of the recognition
performance. In addition, the current model is primarily de-
signed for nighttime flood extent recognition and is not yet
capable of sensing or estimating flood depth. It also lacks the
ability to perform reliably under all-weather conditions. Fur-
thermore, although the NWseg model can identify flooded
areas more accurately, it is still difficult to achieve accurate
modeling and area quantification of inundated areas. Finally,
the dataset used in this study is mainly collected from some
typical cities in China, and although it has covered diverse
nighttime environments and lighting conditions, the model’s
generalization ability may be limited by the influence of ge-
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ographic concentration and the dependence on surveillance
cameras, and there is a certain identification bias when facing
areas with different urban structures and lighting conditions.

In the future, the network structure will be further opti-
mized to reduce the computational complexity of the model
and improve the flexibility and efficiency of deployment.
Meanwhile, the training dataset will be continuously ex-
panded to enhance its diversity and representativeness in
multiple dimensions, such as geographic distribution and ur-
ban structure. In addition, it is planned to introduce depth
estimation technology to realize the accurate perception and
quantification of the depth of the flood to meet more detailed
flood monitoring needs. Finally, techniques such as infrared
thermal imaging, microlight enhancement, and multimodal
fusion will be combined to improve the robustness and adapt-
ability of the model under extremely low light conditions. In
subsequent practical applications, the NWseg model can be
widely deployed in key scenarios such as urban emergency
management, intelligent transportation monitoring, and dis-
aster prevention and mitigation, especially for emergency re-
sponse needs under extreme weather at night. By interfac-
ing with existing traffic monitoring systems or urban sens-
ing platforms, the model can automatically extract flooding
information from the monitoring screen and realize rapid
identification and early warning push for waterlogged areas.
Combined with the city scheduling platform, NWseg can as-
sist government departments in flood risk assessment, dy-
namic allocation of emergency resources, and trend analysis
of disaster evolution, which significantly improves the effi-
ciency of urban response and risk management capabilities
in extreme weather events.
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Figure 5. Scene with nighttime strong illumination: (a) the original scene; (b) the segmentation result of Mobilenetv2-DeepLabv3+; (c) the
segmentation result of ResNet101-DeepLabv3+; (d) the segmentation result of DeepLabv3+; (e) the segmentation result of LRASPP; (f) the
segmentation result of U-Net; (g) the segmentation result of ResNet50-FCN; (h) the segmentation result of NWseg.

6 Conclusions

This study successfully verified the excellent performance
of the NWseg model in nighttime urban flood monitoring
(Wan et al., 2024), which provides a new idea for multi-
scene flood extent identification and helps to promote the
flood monitoring system towards all-weather and all-scene
intelligent identification. First, we constructed a represen-
tative dataset comprising 4000 images of nighttime urban

https://doi.org/10.5194/nhess-25-4361-2025

flooding scenes, covering various nighttime environments
and diverse urban backgrounds. Second, a model for night-
time waterlogging recognition, NWseg, is proposed to ad-
dress the limitations in nighttime waterlogging recognition
due to insufficient lighting and complex lighting conditions.
Furthermore, we replaced the backbone networks of the
DeepLabv3+ model with MobilenetV2 and ResNet101 and
conducted ablation experiments to validate the performance
of DeepLabv3+ with different backbones in nighttime flood
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(®

Figure 6. Scene with nighttime rainfall: (a) the original scene; (b) the segmentation result of Mobilenetv2-DeepLabv3+; (¢) the segmentation
result of ResNet101-DeepLabv3+; (d) the segmentation result of DeepLabv3+; (e) the segmentation result of LRASPP; (f) the segmentation
result of U-Net; (g) the segmentation result of ResNet50-FCN; (h) the segmentation result of NWseg.

recognition. We also performed a comparative analysis be- details. However, when compared to the NWseg model,
tween these DeepLabv3+ models and the NWseg model, as there remains a considerable performance gap.

well as systematically analyzed the NWseg, ResNet50-FCN,

U-Net, and LRASPP models. Based on this, we reached the 2. The NWseg, U-Net, and ResNet50-ECN models

following empirical findings: demonstrated excellent performance in recognizing

large-scale flooded areas, effectively capturing the over-

1. Within the DeepLab series, the DeepLabv3+ model us- all contours of flood zones and exhibiting strong gener-
ing ResNetl01 as the backbone outperformed other alization capabilities. Specifically, NWseg shows higher
variants in capturing water surface edges and shadow accuracy and robustness in complex scene tests, while
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ResNet50-FCN and U-Net have some deficiencies and
false detections in detecting edge details. In contrast, the
lightweight LRASPP model showed limited ability to
recognize flooded areas in nighttime scenes, resulting
in relatively poor performance.

3. Through examining each model in complex scenes, we
validated the NWseg model’s effectiveness and stability
in diverse environments and conditions.

This study successfully demonstrates the superior perfor-
mance of the NWseg model in nighttime urban flood detec-
tion, filling the research gap in nighttime flood range iden-
tification. Our work not only promotes the development of
the field of nighttime urban flood identification but also pro-
vides a reference for future deep learning applications un-
der extreme lighting conditions (Wan et al., 2024). However,
the model’s decoupling and parsing process involves com-
plex decomposition of lighting components and adaptive fu-
sion, leading to high computational resource demands, which
may impact its practical usability. Future work will focus
on reducing the model’s parameters and computational costs
while maintaining accuracy. Additionally, further optimiza-
tion of the dataset and model improvements will be pursued
to enhance the overall performance of the NWseg model,
broadening its potential applications.
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