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Abstract. Predicting future drought conditions are crucial
for effective disaster management. In this study, a ma-
chine learning framework is proposed to predict hydrological
drought in the Huaihe River Basin, China. The Extreme Gra-
dient Boosting (XGBoost) model is applied to predict four
drought categories in 28 grid regions for one-month predic-
tion, using 26 features for monthly and 18 for seasonal pre-
dictions. The framework also integrates the Shapley Addi-
tive Explanation (SHAP) variable importance index to in-
fer drought prediction features. The model achieves 79.9 %
accuracy in classifying droughts, with the Standard Precip-
itation Index (SPI) being the most influential feature. The
SHAP values of SPI are 0.360, 0.261, 0.169, and 0.247 for
spring, summer, autumn, and winter, respectively. Soil mois-
ture content and evapotranspiration are particularly affected
in spring and autumn, while large-scale climatic features are
more significant in summer and winter. Overall, this study
offers valuable decision support for regional drought man-
agement and water resource allocation.

1 Introduction

Drought is a global disaster characterized by its long duration
and extensive impacts, resulting in severe implications for
the economy, agriculture, and environment (Fu et al., 2018;
Shi et al., 2018; Zhou et al., 2020, 2021). Over the past 20
years, the frequency and severity of global drought events
have increased (Dai, 2011, 2012, 2013; Zhang et al., 2019),
affecting water security, economic growth, and food supply
in some areas. Therefore, drought prediction is of great sig-

nificance for managing water resources and reducing losses
caused by drought.

Consequently, according to the different effects of
drought, previous studies have divided it into several differ-
ent types. Among them, four types of droughts are widely
used: meteorology, hydrology, agriculture, and social econ-
omy (Wilhite and Glantz, 1985). In the past few decades,
more than one hundred drought indices based on single
or multiple hydroclimatic variables have been proposed to
represent different drought characteristics. For example, the
Palmer Drought Severity Index (PDSI) (Palmer, 1965), the
Standardized Precipitation Index (SPI) (McKee et al., 1993),
and the Standardized Runoff Index (SRI) Shukla and Wood,
2008). SPI index and SRI index are robust, statistically
straightforward to compute, and well-suited to long-term
time series data. Therefore, this study chooses the SPI in-
dex and SRI index to characterize meteorological drought
and hydrological drought.

In recent years, there has been an increasing trend toward
utilizing machine learning to predict droughts (Ardabili et al.,
2020; Sun and Scanlon, 2019). Compared to conventional re-
gression models, machine learning-based models better cap-
ture the non-linear characteristics inherent in drought prob-
lems and exhibit more robustness, especially when dealing
with high-dimensional datasets (Mishra and Singh, 2010;
Kikon and Deka, 2022; Prodhan et al., 2022; Wu et al., 2022).
Multiple machine learning models such as artificial neural
networks (Orimoloye et al., 2021, 2022), support vector ma-
chines (Li et al., 2021), random forests (Park et al., 2019),
and extreme gradient boosting (XGBoost) (Choi et al., 2018;
Han et al., 2019; Zhang et al., 2023) have been extensively
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employed in the research field of drought. Machine Learning
models can learn the input-output relationships in training
data and can effectively leverage big data to improve predic-
tion accuracy (Mardian et al., 2023). By training tree-based
machine learning models, Bachmair et al. (2016) discovered
that tree-based machine learning models outperform baseline
models. Jungho and Kim (2023) employed a tree-structured
XGBoost model to predict the likelihood of impact occur-
rence (LIO) of drought on public water supply. Their findings
demonstrated that the XGBoost model exhibited high accu-
racy and low uncertainty. Furthermore, the XGBoost model
necessitates only minor hyperparameter tuning, and its per-
formance is relatively insensitive to the selection of hyperpa-
rameters (Gao and Ding, 2020; Barnwal et al., 2022).

Previous research indicates that numerous features sig-
nificantly impact hydrological drought. Zou et al. (2018)
demonstrated that climate change is the primary feature af-
fecting hydrological drought on long-term scales. Wang et
al. (2021) found that climatic variables such as precipita-
tion and evapotranspiration significantly influence the dura-
tion of hydrological drought. Additionally, Gan et al. (2023)
revealed that large-scale climatic features and sunspot activ-
ity have a substantial impact on hydrological drought events
in the Huaihe River Basin. Despite many studies showing
that machine learning models outperform physical models in
terms of prediction accuracy, these models lack transparency
and interpretability. Most research on machine learning mod-
els for drought prediction focuses on model performance,
often neglecting the role of different features influencing
drought occurrence in model predictions. For example, Xu et
al. (2022) established a hybrid model combining autoregres-
sive integrated moving averages (ARIMA) and long short-
term memory (LSTM) to predict the standardized precipi-
tation evapotranspiration index at multiple time scales. Yu
et al. (2023) combined the Hydrologiska Byrans Vattenbal-
ansavdelning (HBV) model with an LSTM neural network
to improve the prediction ability for semi-arid basins. Yal-
cin et al. (2023) proposed a hybrid model of convolutional
neural networks (CNN) and LSTM to enhance the prediction
accuracy of the standardized precipitation evapotranspiration
index. However, these studies do not consider the influence
of different features on the model output.

Recent advancements in Explainable Al (XAI) techniques
have provided opportunities for understanding why mod-
els make certain predictions (Gunning et al., 2019; Islam
et al., 2022). Recently, local interpretability methods have
been developed and can be implemented for neural net-
work and random forest model architectures (Ribeiro et al.,
2016a). The Local Interpretable Model-Agnostic Explana-
tion (LIME) method has been widely used, but it exhibits
a high degree of instability due to considerable variation in
its explanations upon repeated use (Ribeiro et al., 2016b).
Therefore, the Shapley Additive Explanations (SHAP) ap-
proach was proposed as a solution. Grounded in the strong
theoretical basis of game theory, it provides more robust
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mathematical accuracy and consistent extension on top of the
LIME framework (Lundberg and Lee, 2017; Molnar, 2022).
At present, SHAP has been applied to a variety of predic-
tion scenarios. For example, Dikshit and Pradhan (2021) em-
ployed an LSTM model combined with the SHAP algorithm
to predict droughts, demonstrating that the inclusion of cli-
mate variables as predictors can enhance prediction accuracy.
Mardian et al. (2023) utilized an XGBoost model and SHAP
to predict droughts in the Canadian prairies, and clarified the
importance of spatial and temporal predictors, drought in-
dicators, GRACE groundwater distribution and teleconnec-
tion in drought prediction. Similarly, Xue et al. (2024) an-
alyzed the spatial and temporal characteristics and driving
factors of agricultural drought during the extreme drought
period in northern Italy in 2022 by using the integrated ma-
chine learning model explained by SHAP combined with the
new integrated agricultural drought index (IADI), quantified
the dominant factors, and revealed that meteorological con-
ditions were the main driving factors. Likewise, Zeng et al.
(2025) used the XGBoost model explained by SHAP com-
bined with the new rate of extension (RE) index to analyze
the spatial and temporal evolution of meteorological drought
characteristics in the Yangtze River Basin of China, quanti-
fied the dominant driving factors, and revealed that soil mois-
ture was a primary factor. However, the range of drought-
influencing features considered in their research is still not
comprehensive enough. For example, soil temperature and
water content, surface thermal radiation and other features
are also important features affecting drought (Raposo et al.,
2023).

In light of the above, the novelty of this study is to em-
ploy interpretable machine learning models for hydrological
drought prediction and to identify the contribution of dif-
ferent influencing features to the model prediction results.
While SPI is a precursor to SRI, this study disentangles the
hierarchy of contributing features, including SPI, large-scale
climate indices, soil moisture etc. Soil moisture directly af-
fects hydrological drought, and it can analyze the contribu-
tion of different features to drought when it is predicted to-
gether with drought features such as large-scale climate fea-
tures. For example, Mardian et al. (2023) employed a method
combining the XGBoost model with SHAP (Shapley Ad-
ditive Explanations) values, utilizing a variety of drought-
influencing features such as large-scale climatic features and
soil moisture, to predict drought conditions in the context of
the Canadian Drought Monitor (CDM) and to understand the
underlying driving features. Therefore, the objectives of the
study are: (i) Utilizing the XGBoost model, combined with
26 features predicted monthly and 18 features predicted sea-
sonally, the hydrological drought in the Huaihe River Basin
is predicted, and the performance evaluation is carried out
by using precision and recall indicators; (ii) Various SHAP
plots were employed to gain insights into the model outputs
and analyze the influence of different drought variables on
the predictive results of the model.
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2 Study area and data
2.1 Study area

In this paper, as shown in Fig. 1, the Huaihe River Basin is
selected as the research area, and the grid is divided at a reso-
lution of 1° lat x 1° lon, with a total of 28 grid regions, which
takes into account the computational feasibility and spa-
tial heterogeneity. Although large-cale climatic features have
spatial consistency, their effects on regional precipitation can
be different through local terrain-atmosphere feedback (Lu et
al., 2006). Gridded analysis identifies sensitive subregions,
supporting targeted mitigation. The Huaihe River Basin is
located at 111°55'-121°25"E, 30°55'-36°36' N, covering an
area of approximately 270000 km?. It experiences signifi-
cant spatiotemporal variations in precipitation, with an av-
erage annual precipitation of around 883 mm. Situated in the
transitional climatic zone from south to north, the southern
part of the basin falls under a subtropical climate, while the
northern part experiences a warm temperate climate. The av-
erage annual temperature ranges from 11 to 16 °C. The win-
ter and spring seasons in the basin are relatively dry, while
the autumn and summer seasons are hot and rainy, result-
ing in pronounced seasonal fluctuations between droughts
and floods. The average annual runoff depth in the basin is
230 mm. Due to its unique geographical location, the area
is prone to frequent flooding, leading to high water levels
and prolonged flood conditions. In addition, the annual av-
erage water surface evaporation in the Huaihe River Basin
ranges from 900 to 1500 mm. As one of the important agri-
cultural production bases in China, the basin is densely pop-
ulated with substantial water demands. However, the region
frequently suffers from drought disasters. Since the begin-
ning of the 21st century, an average of 2.698 million ha of
crops, accounting for 21 % of the total cultivated land area
in the basin, have been affected annually. The Huaihe River
Basin is a significant agricultural area and a high-population-
intensive area in eastern China. Seasonal droughts frequently
affect food production and water resources. One-month ad-
vance prediction is essential for reservoir scheduling, irriga-
tion planning and early warning times for farmers.

2.2 Data

We obtained monthly average precipitation, wind speed,
temperature, evapotranspiration, monthly average runoff,
0-10cm soil moisture, and 100-200cm soil moisture
data sets for the Huaihe River Basin from the web-
site  https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_
M_2.0/summary ?keywords=GLDAS%20NOAH10 (last ac-
cess: 26 October 2025) for the period 1960 to 2014. The
monthly average 2 m dewpoint temperature, surface net solar
radiation, surface net thermal radiation, surface pressure, and
leaf area index data sets were obtained from the ERAS-Land
reanalysis dataset (https://cds.climate.copernicus.eu/, last ac-
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cess: 26 October 2025). According to whether the grid center
point falls within the basin, 28 grid regions are defined. If the
center point of the grid is not within the basin boundary, the
region is not divided into grids. The grid analysis is carried
out with these grid points as the center and 1° lat x 1° lon as
the resolution, covering a total of 28 grid regions. Using the
interpolation method based on the Xarray package, the data
of Huaihe River Basin are interpolated to 28 grid regions.

Numerous studies have demonstrated the significant in-
fluence of large-scale climate indices, including the At-
lantic Multidecadal Oscillation (AMO), Arctic Oscillation
(AO), North Pacific pattern (NP), Pacific Decadal Oscilla-
tion (PDO), and Nino3.4, on drought dynamics (Gan et al.,
2023; Phan-Van et al., 2022; Wu and Xu, 2020; Xiao et
al., 2019). For example, the positive phase of AMO leads
to a decrease in summer precipitation in the Huaihe River
Basin by enhancing the western Pacific subtropical high (Lu
et al., 2006); the Pacific Decadal Oscillation (PDO) has the
most significant impact on the monthly runoff in the Huaihe
River Basin (Sun et al., 2018). These selected climate fea-
tures (Nino3.4, AMO, TPI, PDO, AO, TNI, and NP) for the
Huaihe River basin analysis were acquired from the National
Oceanic and Atmospheric Administration (NOAA) climate
database (http://www.esrl.noaa.gov/psd/data/climateindices,
last access: 26 October 2025), covering the period from 1960
to 2014.

3 Methods
3.1 Drought indices

In this study, the standardized precipitation index (SPI) (Mc-
Kee et al.,, 1993) is used to characterize meteorological
drought. SPI is widely used for drought risk assessment and
monitoring due to its ease of calculation and ability to work
on multiple time scales.

The standardized runoff index (SRI) was first proposed
by Shukla and Wood (2008) as an effective and accurate in-
dex for describing hydrological drought characteristics. It has
been widely used in hydrological drought identification. SRI
is also calculated by transforming the cumulative flow dis-
tribution of a given time scale into a standard normal dis-
tribution using equiprobability transformation, similar to the
calculation method of SPI. The SPI/SRI classes are classified
as shown in Table 1 (Li et al., 2024). In this study, drought
is classified into four classes, namely, Normal (ND), Mild
drought (D1), Moderate drought (D2), and Severe drought
and Extreme drought (D3), according to Table 1. However,
due to the limited number of extreme drought events, it posed
an issue in training the model. Therefore, the classes of Se-
vere drought and Extreme drought were merged into one.
The specific calculation formula for the Standardized Pre-
cipitation Index (SPI) is provided in Appendix A.
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Figure 1. Huaihe River Basin and 28 grid area location.

Table 1. Drought category classification and corresponding SPI and
SRI values.

SPI/SRI value Category
SPI/SRI> 0 Normal (ND)
—1.0<SPI/SRI <0 Mild (D1)
—1.5 <SPI/SRI<—1.0  Moderate (D2)
—2.0<SPI/SRI<—1.5 Severe (D3)
SPI/SRI< —2.0 Extreme(D3)

3.2 Machine learning models

In this paper, the XGBoost model is used for multi-input
single-output regression prediction problems to predict the
hydrological drought in the Huaihe River Basin. The XG-
Boost model is an ensemble learning algorithm belonging
to the Boosting algorithm category. It utilizes decision trees
as its basic elements and implements a gradient-boosting al-
gorithm to minimize loss when adding new models. XG-
Boost aims to improve the training speed and predictive per-
formance of gradient-boosting decision trees. The founda-
tional knowledge about the mechanism and implementation
behind XGBoost can be found in the paper by Chen and
Guestrin (2016). The mathematical formulation of the XG-
Boost model and the construction of its objective function
are detailed in Appendix B.

3.3 Modeling Settings

The study period for this research spans from 1960 to 2014,
with the model training period from 1960 to 2003 and the
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prediction period from 2004 to 2014. The input and output
data types for 28 grid areas are the same. We use a sliding
window of 12 and 3 months. The prediction lead time is 1
month. The relevant settings for models are shown in Table 2.

Take the 7th grid area as an example. When using monthly
data, the input was 26 different drought influencing features,
and the output was SRI-1. The number of input samples dur-
ing model training was 13767, and the number of output
samples was 526. There are 3432 input samples and 132 out-
put samples during the model prediction period. When using
seasonal data, the input is 18 features without drought, and
the output is SRI-3 in different seasons. The number of input
samples during model training is 792, and the number of out-
put samples is 44. The number of input samples in the model
prediction period is 198, and the number of output samples
is 11. The model uses Bayesian hyperparameter optimization
to find optimal parameters, such as learning rate, tree depth,
and number of iterations.

The XGBoost model for 28 grid areas is established, and
the data types used in each region are the same. As shown in
Table 3, for the monthly data analysis, 26 different drought-
influencing features were considered. These include a month-
scale SPI (SPI-1) and SPI indices at different time scales of 1
month and 2 months in advance. Large-scale climate indices
(AMO, TPI, PDO, AO, TNI, NP), evapotranspiration, wind
speed, 2 m dewpoint temperature, soil moisture content, sur-
face net thermal radiation, surface net solar radiation, surface
pressure and leaf area index were considered.

As shown in Table 3, for seasonal data analysis, the basin
data are classified by season, and 18 different drought influ-
encing features are used. It includes SPI-3 value, soil mois-
ture content, evapotranspiration, surface net thermal radia-
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Table 2. Model setup and data overview.

4303

Phase Data Period  Input Window Lead time  Output
Training phase (Monthly time scale) 1960-2003  M-12 to M-1 (12 month) 1 month SRI-1
Validation phase (Monthly time scale) 2004-2014  M-12 to M-1 (12 month) 1 month SRI-1
Training phase (Seasonal time scale) 1960-2003  M-3 to M-1 (3 month) 1 month SRI-3
Validation phase (Seasonal time scale) 2004-2014  M-3 to M-1 (3 month) 1 month SRI-3

Table 3. The monthly scale and seasonal scale of the model predict the input target variables. (7 is the lead time, SPI-1, SPI-3, SPI-6, and

SPI-9 are SPI values at different monthly scales.)

Drought influencing
features (monthly)

SPI-1, T=1SPI-1, T=1SPI-3, T=1 SPI-6, T =1 SPI-9, T =2 SPI-1,
T =2 SPI-3, T =2 SPI-6, T =2 SPI-9, d2m temperature, surface pressure,

evapotranspiration, Air temperature, wind speed, surface net solar radiation,
surface net thermal radiation, 0—10 cm soil moisture, 100-200 cm soil moisture,
Nino3.4, AMO, PDO, AO, TNI, NP, TPI, leaf area index

Drought influencing
feature (seasonal)

SPI-3 (different seasons), d2m temperature, surface pressure, evapotranspi-
ration, Air temperature, wind speed, surface net solar radiation, surface net

thermal radiation, 0—10 cm soil moisture, 100-200 cm soil moisture, Nino3.4,
AMO, PDO, AO, TNI, NP, TPI, leaf area index

tion, air temperature, NINO3.4, NP, wind speed, TNI, PDO,
TPI, surface pressure, AO, AMO, leaf area index, 2 m dew-
point temperature and surface net solar radiation in four sea-
sons.

For monthly and seasonal data sets, SHAP (Shapley Ad-
ditive Explanation) values were used to analyze the contri-
bution of 28 grid regions to determine the impact of each
feature.

Monthly-scale predictions capture the rapid onset of
drought, which is critical for early warning systems, whereas
seasonal analysis aligns with agricultural planning cycles.
Thus, our study employs both monthly and seasonal analyses
to comprehensively assess short-term variability and long-
term trends in hydrological drought.

3.4 Model evaluation

Based on the optimal parameters obtained during the train-
ing phase, the XGBoost model is utilized to predict the hy-
drological drought situation in the Huaihe River Basin from
2004 to 2014. These predictions will be assessed using pre-
cision, recall, and the Heidke Skill Score (HSS) as measure-
ment metrics. Precision is defined as the ratio of correctly
classified instances of a specific category to the total num-
ber of predicted instances, quantifying the model’s precision
in predicting drought conditions and evaluating its reliability.
Recall represents the ratio of correctly classified instances of
a specific category to the total number of observed instances
in that category, capturing the probability of the model pre-
dicting observed drought conditions and reflecting its sensi-
tivity (Mardian et al., 2023; Zhang et al., 2023). The HSS
measures the model’s classification performance relative to
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random chance, accounting for both correct and incorrect
predictions. It is particularly useful for assessing predictive
skill in imbalanced datasets (Heidke, 1926). The following
are precision, recall and HSS formulas:

.. TP 0
recision = —mm—
P TP + FP
TP
Recall = ——— 2)
TP +FN
HSS =
2 x (TP x TN — FN x FP) 4

[(TP+FN) x (EN +TN) + (TP + FP) x (FP +TN)]

where the classification evaluation metrics employed are
True Positives (TP), True Negative (TN), False Positives
(FP), and False Negatives (FN). TP denotes the number of
actual positive samples correctly predicted as positive, TN
is the actual number of negative samples that are correctly
predicted to be negative, FP represents the number of actual
negative samples incorrectly predicted as positive, and FN
signifies the number of actual positive samples incorrectly
predicted as negative.

3.5 Shapley Additive Explanations (SHAP)

SHAP, a machine learning interpretability method, provides
a unified approach by combining elements from additional
variable attribution methods with Shapley values as a mea-
sure of variable importance. Shapley values were originally
introduced in game theory to determine the contributions
made by each player in cooperative games. The fundamen-
tal idea is that each player receives a corresponding pay-
out based on their contribution (Shapley, 1953). The inter-
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pretation of SHAP values is straightforward: larger absolute
SHAP values indicate greater weight of the variable in pre-
dicting the model, while negative (positive) SHAP values
exert a negative (positive) influence on the prediction pro-
cess. Lundberg and Lee (2017) developed the SHAP method
based on the theoretical foundation of Shapley values to ex-
plain the influence of each variable on model predictions,
thereby providing increased transparency to the model. The
Shapley value is calculated as the average marginal contribu-
tion based on all possible variable permutations. Importantly,
SHAP values reflect local feature importance, meaning that
they quantify the contribution of each variable to a specific
prediction instance, rather than summarizing its overall ef-
fect across the entire dataset. The specific mathematical def-
inition of SHAP values and the explanatory model formula
are provided in Appendix C.

In our study, the SHAP baseline is the difference between
the prediction of the model and the average prediction on the
data set. For each sample and each feature, the SHAP value
is the difference between the predicted value of the model
containing the feature and the predicted value after removing
the feature and the baseline. We use these SHAP values to
quantitatively analyze the positive or negative effects of each
predictor on hydrological drought prediction.

4 Results
4.1 Model performance

According to the data in Table 4 and Fig. 2, the overall pre-
cision of the XGBoost model is 79.9 %, which means that it
has a 79.9 % ability to correctly identify drought categories.
In the identification of the ND drought category, the perfor-
mance of the model is particularly excellent. Figure 2 shows
that the median precision and recall rate of the ND category
is both more than 0.8. It can be seen from the data in Table 4
that the recall rate of the ND drought category is 91 % and
the precision rate is 88 %, which proves that the model has
high sensitivity and reliability in predicting the ND drought
category. For ND, the HSS is 0.77, showing a significant dis-
criminant advantage over the no-skill baseline that always
predicts the most common category. At the same time, the
precision rates of ND and D3 drought categories are 88 %
and 86 %, respectively, indicating that the model had good
prediction accuracy for these two types of droughts. How-
ever, the precision rates of the D1 and D2 drought categories
are 74 % and 61 %, respectively, reflecting the lack of predic-
tion accuracy of the model in these categories.

In addition, the boxplot in Fig. 2 further reveals the pre-
cision and recall performance of the model for each drought
category in 28 grid regions. Although the median precision
and recall of the D1 drought category is both close to 0.8,
indicating that the model has a high predictive ability in this
category, the performance of the D2 and D3 drought cate-
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Figure 2. Box plots of the accuracy and recall rates of the four
drought categories predicted by the 28 regional models (“P” rep-
resents the accuracy rate, and “R” represents the recall rate. The
small square represents the average.).

Table 4. The average accuracy, recall and HSS of each drought cat-
egory in 28 regional models.

Category  Precision (%) Recall (%) HSS
ND 88 91 0.77
Dl 74 78 0.61
D2 61 47 0.46
D3 86 50 0.59
Average 71.3 66.5 0.608

gories is relatively poor. Especially for the D3 drought cate-
gory, the median recall rate does not exceed 0.5, indicating
that the model is not sensitive to the identification of such
drought events, and there are some limitations in the pre-
diction. However, although the recall rate of the D3 drought
category is low, its precision is almost as high as the ND
drought category, which is mainly due to the low frequency
of D3 drought category events. The model can successfully
capture all D3 drought category events in some grid areas,
thereby improving the precision of this category. The HSS
metric complements precision and recall by evaluating the
model’s performance relative to the no-skill baseline. Values
closer to 1 indicate superior performance. The declining HSS
from ND to D2 underscores the model’s reduced discrimina-
tory power for less extreme drought categories, aligning with
the observed precision-recall trade-offs.

4.2 Prediction maps
According to the predicted drought data, 2011 was identified

as a year with relatively severe drought conditions. To vi-
sually assess the predictive capability of the model, drought
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predicted, observed, and difference maps were created for
each month of 2011 (Figs. 3 to 4). Figure 3 shows the com-
parison between the prediction and observation in the first
six months of 2011, and the complete month map is placed in
the appendix. In 2011, the model accurately captured drought
situations across most regions. In January, the drought situ-
ation was severe, and the drought category was mainly in
the D2 and D3 categories. However, the prediction map of
the model shows that the drought degree in most regions
is lighter than the actual drought situation, and the drought
category is mainly classified as D1, which relatively under-
estimates the actual situation of drought. In February, the
drought situation was rapidly reduced, and the prediction
map of the model was basically consistent with the obser-
vation map. In March and April, the drought conditions in
the entire basin rapidly escalated and became severe, and
most of the areas in the observation map reached the drought
categories of D2 and D3, and only a few areas in the north
were classified as D1 drought category. Consequently, this
period poses a considerable challenge to the predictive abil-
ity of the model, making it an appropriate period to evalu-
ate the predictive performance of the model. In general, the
model effectively predicts the occurrence and deterioration
of drought and captures the spatial distribution pattern. How-
ever, in some parts of the central and western regions, the
model still underestimates the drought situation.

In May, the severity of the drought situation decreased
relative to the previous two months, and the actual ob-
served map and the model-predicted map were largely con-
sistent. According to the observed map, in June, a drought
occurrence was observed in the northern region where no
drought had been previously recorded. Furthermore, in July,
the drought area shifted from the northern to the western re-
gion. It was not until August that drought gradually dimin-
ished in most areas. Basically, the model captures the change
of drought, but for some areas of D3 drought category, the
model predicts them as D2 drought category.

In September, drought conditions were found in the east-
ern and southern regions on the observed map. However,
the drought situation in some areas is underestimated on the
map predicted by the model. In October, the model signif-
icantly overestimated the severity of the drought situation.
According to the observed map, all regions except a small
part of the western region experienced the D1 drought cate-
gory. In contrast, the model-predicted map shows widespread
drought across the region, with most of the regions classified
in the D2 drought category. In November and December, the
drought in the observation map dissipated rapidly, and the
drought situation was basically the same as that in the model
prediction map.

In general, the XGBoost model has a great performance
in capturing the spatial structure and temporal dynamics of
drought events during the 12-month period of 2011. How-
ever, the model indicates that while the model can distin-
guish between drought and non-drought conditions, it lacks
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clarity in defining the boundaries between different drought
categories. In most cases, the model underestimates drought
conditions compared to the observed results.

4.3 Variable importance analysis
4.3.1 Monthly prediction analysis

To study the effects of different features on drought, 26 dif-
ferent drought influencing features were considered, and the
corresponding influencing features are analyzed for 28 grid
regions, and the contribution analysis is made with SHAP
values. Due to the limited space, only the analysis of the 7th
grid region is shown in Fig. 5. Figure 5 reveals the contribu-
tion of each input feature based on the SHAP value of each
instance in 28 grid regions. In the vertical direction, the vari-
ables in the beeswarm plot are sorted according to their ab-
solute SHAP values, which also reflects the importance of
ranking variables. The density of points represents the eigen-
values of each instance in each row. The x-axis shows the
SHAP value corresponding to a single instance. The left side
of the y-axis of the bee colony graph represents the nega-
tive total contribution of the features in the XGBoost model,
while the right side represents the positive total contribution.
The negative and positive SHAP values represent the corre-
sponding negative and positive total contribution of the re-
lated target variables to the XGBoost model. Therefore, the
beeswarm plot reflects the relationship between the variables
and the related target variables. The larger the absolute value
of SHAP is, the greater the contribution to the model is. The
analysis reveals that SPI plays a dominant role, followed by
AMO and evapotranspiration.

To gain a deeper understanding of the features contributing
to drought events in the study area, As shown in Fig. 6, this
study shows the spatial distribution of the first three main
drought-influencing features and discusses the changes of
drought-influencing features in the basin. The results show
that the main influencing feature of hydrological drought in
the Huaihe River Basin is meteorological drought. As shown
in Table 5, the absolute average SHAP value of the first in-
fluencing feature is significantly higher than that of the sec-
ond and third influencing features. Large-scale climate fea-
tures (particularly AMO) emerge as the secondary major in-
fluence, and about half of the North Central Basin is signif-
icantly dependent on these features. For the third influenc-
ing feature, a diverse range of large-scale climate variables,
such as TPI, PDO, NP, TNI, and AMO, affect almost half
of the study area. In summary, the foremost determinant of
hydrological drought is meteorological drought. Large-scale
climate features (notably AMO) rank second in importance,
followed by features like soil moisture content, and so on.

The findings demonstrate that the Standardized Precipita-
tion Index (SPI) serves as the dominant driver of hydrolog-
ical drought in the Huaihe River Basin, consistent with the
conclusions of Gan et al. (2023), who identified meteorolog-
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Figure 3. Monthly model predictions and observed drought categories for the first six months of 2011.

ical drought as a critical precursor to hydrological extremes
in this region. Further support arises from Wang et al. (2021),
whose analysis of drought propagation mechanisms in the
Huaihe Basin revealed indirect hydrological drought impacts
mediated through soil moisture and evapotranspiration — a
pattern corroborated by the secondary influence of soil mois-
ture and evapotranspiration in this study. However, compared
with the study of Zou et al. (2018) in the Weihe River Basin,
the influence of large-scale climate features in this study is
more prominent, which may be related to the fact that the
Huaihe River Basin is located in the climate transition zone
and is more sensitive to the air-sea coupling phenomenon.

4.3.2 Seasonal prediction analysis

To accurately reflect the differences in drought-influencing
features across different seasons, this study utilized 18 differ-
ent drought-influencing features to predict the hydrological
drought in the Huaihe River Basin. Histograms of the abso-
lute average SHAP values for different influencing features
in four seasons in the 7th grid region are presented in Fig. 7.
The absolute average SHAP values of SPI-3 in spring, sum-
mer, autumn, and winter were 0.360, 0.261, 0.169, and 0.247
respectively, which had the greatest impact on hydrological
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drought in the same season. In addition, the absolute average
SHAP values of evapotranspiration, soil moisture content, air
temperature, and surface net thermal radiation were close to
or exceeded 0.05, which also had a significant impact on hy-
drological drought in the Huaihe River Basin.

To understand the spatial and temporal distribution char-
acteristics of drought and the potential impact mechanism,
Fig. 8 displays the spatial distribution of the top three in-
fluencing features in each season. The leading influencing
features across the four seasons include SPI-3, soil moisture
content, and surface net thermal radiation, with SPI-3 be-
ing predominant across all seasons and regions. As shown
in Fig. 9, the absolute average SHAP value of the primary
feature exceeded the sum SHAP values of the second and
third features. Aside from SPI-3, soil moisture content also
exerts a significant influence on hydrological drought in sum-
mer and autumn, particularly in the southern and southeast-
ern parts of the river basin. In winter, certain areas in the
central part of the river basin are mainly affected by surface
net thermal radiation and surface net solar radiation.

From the perspective of the second influencing feature,
hydrological drought in most areas of the basin in spring is
mainly affected by soil water content and evapotranspiration.
In the rest of the region, surface pressure, temperature, ra-
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Figure 4. The difference between the predicted results of the model and the observed data values (Difference = SRI-prediction — SRI-actual)
From blue to red indicates that the model predicts the degree of underestimation to overestimation of observations.

diation, and other features also play an important role. It is
worth noting that in the 15th grid region, the surface pressure
becomes a key secondary influencing feature, and its abso-
lute average SHAP value reaches 0.175. This value is signifi-
cantly higher than the second impact feature in other regions,
and even close to the primary impact feature in the same grid
area. This indicates that it is extremely sensitive to surface
pressure in this particular place. During summer, the influ-
ence of large-scale climatic features such as the AMO, PDO,
and TPI becomes more pronounced compared to spring. Ad-
ditionally, soil moisture content and surface radiation con-
tinue to account for a substantial proportion of the influ-
ence on hydrological drought. Regions with absolute average
SHAP values surpassing 0.1 in summer constitute approxi-
mately one-seventh of the study area, indicating elevated sen-
sitivity to these features during this season. Similar to spring,
soil moisture content and evapotranspiration remain predom-
inant influencing features for hydrological drought in half of
the grid areas during autumn and winter. The remaining re-
gions are mainly influenced by surface net thermal radiation
and surface net solar radiation. Specifically, during winter,
the second influencing features for three grid regions (the
12th, 13th, and 21st grid regions) in the central part of the
basin are soil moisture content and evapotranspiration, with
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absolute average SHAP values exceeding 0.1. This indicates
a relatively higher influence of these secondary features in
these regions compared to others.

Compared with the second impact feature, the large-scale
climatic features in the third impact feature have an increased
influence on hydrological drought in the four seasons. In
spring and autumn, soil moisture content exhibits a more sub-
stantial influence on hydrological drought, while in summer,
air temperature is considered to be a more important feature.
However, in winter, half of the study areas continue to be
dominated by soil moisture content and evapotranspiration,
whereas most of the remaining study areas are primarily in-
fluenced by large-scale climate featuresfeatures such as TNI,
PDO, NP, and AO.

According to the above results, there were significant dif-
ferences in the influencing features of drought among the
four seasons. This diversity highlights the need for us to pay
more attention to the weights and dynamic changes of vari-
ous influencing features when predicting and understanding
the spatial-temporal distribution characteristics of drought.
Although the SPI feature continues to dominate, at some grid
points, features such as soil moisture content in summer and
autumn, as well as thermal radiation in winter, cannot be ig-
nored. This suggests that even for the same influencing fea-
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Figure 6. The first three drought-influencing features of 28 grid areas in the Huaihe River Basin.

ture, its influence can vary greatly in different seasons and
regions. Furthermore, in addition to the influence of meteo-
rological drought, the influencing features of spring hydro-
logical drought are mainly biased toward soil moisture con-
tent and evapotranspiration, in addition to surface pressure,
temperature, radiation, and other related features. The abso-
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lute average SHAP value of these influencing features is ba-
sically no more than 0.1, which is very different from SPI-3,
but its impact on hydrological drought cannot be ignored. In
autumn and winter, the above features still dominate, but at
the same time, the proportion of large-scale climate features
gradually increases, indicating that climate change between
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Table 5. The first three drought influencing features and the SHAP value of the absolute average influence of 28 grid areas in Huaihe River

Basin.
SHAP value

Grid  The first Average | The second Average | The third Average
area  influencing SHAP | influencing SHAP | influencing SHAP

feature value | feature value | feature value
1 SPI-1 0.160 | Evapotranspiration 0.040 | TPI 0.038
2 SPI-1 0.190 | AO 0.018 | Soil moisture content(100-200 cm) 0.014
3 SPI-1 0.189 | TPI 0.030 | Soil moisture content(100-200 cm) 0.023
4 SPI-1 0.178 | NP 0.020 | PDO 0.016
5 SPI-1 0.147 | Evapotranspiration 0.044 | NP 0.017
6 SPI-1 0.180 | TPI 0.025 | Evapotranspiration 0.021
7 SPI-1 0.190 | AMO 0.037 | Evapotranspiration 0.023
8 SPI-1 0.212 | TPI 0.030 | TNI 0.020
9 SPI-1 0.161 | AMO 0.034 | T =2SPI-6 0.028
10 SPI-1 0.195 | AMO 0.037 | Surface net thermal radiation 0.031
11 SPI-1 0.226 | AMO 0.037 | TNI 0.012
12 SPI-1 0.221 | AMO 0.033 | T =2SPI-3 0.017
13 SPI-1 0.228 | AMO 0.028 | NP 0.026
14 SPI-1 0.204 | Soil moisture content(100-200 cm) 0.057 | T =1 SPI-1 0.029
15 SPI-1 0.160 | Soil moisture content(100-200 cm) 0.033 | NP 0.032
16 SPI-1 0.157 | Wind speed 0.033 | AMO 0.030
17 SPI-1 0.186 | AMO 0.064 | Evapotranspiration 0.025
18 SPI-1 0.235 | AMO 0.040 | Soil moisture content(0—10 cm) 0.032
19 SPI-1 0.168 | TPI 0.055 | AMO 0.035
20 SPI-1 0.172 | AMO 0.038 | T =2SPI-3 0.026
21 SPI-1 0.165 | AMO 0.039 | PDO 0.039
22 SPI-1 0.179 | AMO 0.042 | Evapotranspiration 0.025
23 SPI-1 0.176 | AMO 0.029 | T =1SPI-9 0.022
24 SPI-1 0.189 | PDO 0.053 | AMO 0.021
25 SPI-1 0.149 | AMO 0.055 | TPI 0.024
26 SPI-1 0.160 | AMO 0.043 | PDO 0.030
27 SPI-1 0.169 | AMO 0.047 | T =2SPI-3 0.018
28 SPI-1 0.287 | NP 0.025 | T=1SPI-1 0.016

different seasons may play an important regulatory role in
the composition of drought-influencing features.

5 Discussion

This study demonstrates the efficacy of an XGBoost-SHAP
framework for hydrological drought prediction in the Huaihe
River Basin. The model achieved robust accuracy for the ND
and DI categories, yet underperformed for the more severe
categories (D2 and D3), likely due to limited extreme event
samples. The prediction of a one-month lead time is help-
ful for drought monitoring. This enables water managers to
adjust reservoir operations and irrigation schedules based on
predicted drought conditions. The framework provides a 30 d
buffer for proactive measures, such as mobilizing drought re-
lief resources and implementing crop recommendations.
SHAP analysis based on the XGBoost model unequivo-
cally identifies the SPI as the most influential predictor of
hydrological drought across the Huaihe River Basin. Such as
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(Tanriverdi and Batmaz, 2025) for U.S. drought prediction,
also identified SPI as one of the most critical features across
diverse regions and advanced models. Their SHAP analysis
consistently ranked SPI among the top predictors, reinforc-
ing its fundamental role as a primary driver of drought con-
ditions, even within sophisticated deep learning frameworks.
Beyond SPI, the key secondary drivers exhibit a distinct spa-
tial and seasonal differences. In terms of space, the hydro-
logical drought in the northern part of the basin shows higher
sensitivity to large-scale climate oscillations such as AMO,
indicating that large-scale climate features regulate regional
precipitation patterns (Yu et al., 2024). On the contrary, the
secondary features affecting the hydrological drought in the
southern part of the basin are mainly surface processes, es-
pecially soil moisture and evapotranspiration (Mtupili et al.,
2025; Zhu et al., 2025). The difference in the second in-
fluencing features of hydrological drought in the southern
and northern parts of the basin may be due to the fact that
the basin belongs to the temperate-subtropical transition po-
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Figure 7. The absolute average SHAP values of 18 different influencing features in the 7th grid region of four seasons ((a) Spring; (b)

Summer; (¢) Autumn; (d) Winter).

sition. For the seasonal scale, in spring, soil moisture and
evapotranspiration account for a large proportion of the ex-
planatory power of the model. In summer, the relative weight
of large-scale climatic features increases, which is consis-
tent with the enhancement of water vapor transport (Yu et
al., 2024). In autumn and winter, radiative fluxes (net so-
lar and thermal radiation) assume greater importance (Jin et
al., 2025). Collectively, these findings underscore SPI as the
primary driver while revealing the nuanced spatio-temporal
controls exerted by secondary features, thereby providing a
scientific foundation for developing more targeted drought
mitigation and water resource management strategies across
the diverse Huaihe River Basin.

When studying the influence of large-scale climate in-
dices on drought, the correlation between climate indices and

Nat. Hazards Earth Syst. Sci., 25, 4299-4316, 2025

drought for the same period and a certain lead time is often
considered, and the results show that climate indices for the
same period and different lead times have a certain influence
on drought in the basin, and the degree of influence varies
with the changes in the study area. For example, Ren et al.
(2017) studied the correlation between SPI and large-scale
climate indices with advance periods of 0, 1, 2, and 3 months,
and the correlation results show that Nino3.4 has significant
correlation in August—October, and PDO has significant cor-
relation in January—-May and June—December of the same
period. Lv et al. (2022) analyzed the correlation between
large-scale climatic features and drought in different lag peri-
ods. The results show that large-scale climatic features in the
same period also have an impact on drought. Due to the many
influencing features considered in this paper, only the effect
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Figure 8. The first three drought-influencing features of 28 grid points in Huaihe River Basin in each season.

of climate indices on drought in the basin during the same

6 Conclusions

period was considered when selecting the large-scale climate

indices. Subsequent studies can consider selecting the most
relevant large-scale climate features in different months or
seasons as the influencing features for basin drought predic-
tion to further improve the accuracy of drought prediction.
Before inputting the influencing features into the machine
learning model for training, methods such as random forest
and principal component analysis (PCA) can be used to se-
lect the influencing features. Future research can extend the
existing one-month-ahead framework to multiple prediction
periods to evaluate the impact of different lead times on pre-
diction accuracy. To improve the robustness of the model, a

Drought is one of the most significant environmental and
climate problems in the world, and drought prediction is a
crucial means of drought prevention. In this study, the inte-
gration of SHAP and XGBoost provides a novel framework
that can not only improve the prediction accuracy, but also
show the impact of different drought influencing features on
drought. The framework can provide two types of support for
decision makers: (1) giving priority to high weight features in
real-time drought warning; (2) Identifying early risk signals
in long-term water resources planning. The main conclusions
are as follows:

variety of ensemble learning schemes can be compared. Fur-

thermore, the introduction of uncertainty quantification and
data enhancement helps to alleviate category imbalances and

improve prediction reliability.
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1. The XGBoost model achieved an accuracy of 79.9 %
for identifying drought categories. The model performs
particularly well in predicting ND and D1 drought cat-
egories, with a precision rate of 88 % and 74 %, respec-
tively. It also has a recall rate of 91 % and 78 %. How-
ever, the prediction performance of the model for the D2
and D3 drought categories is relatively poor, especially
for the D3 drought, the recall rate should not exceed 0.5,

Nat. Hazards Earth Syst. Sci., 25, 4299-4316, 2025
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Figure 9. The absolute average SHAP values of the first three drought-influencing features in each season.

indicating that the recognition sensitivity of the model
for the D3 category is limited. In general, the model has
high prediction reliability for ND and D1 categories, but
limits in the prediction performance of D2 and D3 cate-
gories.

This study determined that SPI is the most critical fac-
tor affecting hydrological drought in the Huaihe River
Basin. In 28 grid regions, the absolute average SHAP
value of SPI is not less than 0.147, which is much higher
than other influencing features. In addition, large-scale
climate features, soil moisture content, and evapotran-
spiration play a significant role in hydrological drought
in the basin.

3. The SPI remains a major influence in all seasons with
absolute average SHAP values of 0.360, 0.261, 0.169,
and 0.247 in spring, summer, autumn, and winter re-
spectively. Additional features such as soil moisture
content, net heat radiation, and solar radiation also play
seasonal roles. Soil moisture content and evapotranspi-
ration are significant features in spring and autumn,
while temperature and large-scale climate features are
critical in summer and winter.
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Appendix A

The calculation method of SPI is as follows:

X

a—1

fo=X_¢ (AD)
-~ BT ()
Flx) = /0 F)dx (A2)

Assuming that the precipitation series x at a certain time
scale follows a stationary gamma distribution, where « and
B are the scale and shape parameters (o >, 8 >). The cumu-
lative probability F'(x) of each item is normalized to obtain
the corresponding SPI.

Appendix B

Assuming we have K, base models denoted as f; (x) € Ft =
1,2,...... , K, where F' the model space contains all the base
models, the XGBoost model can be represented using the fol-
lowing function:
S=F =Y fi) (B1)
where the parameters of the XGBoost model primarily con-
sist of the structure of each tree and the scores in the leaf
nodes, that is, the learning of each function f;(x).

As each base model is generated in a certain sequential
order, the creation of the subsequent tree takes into account
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the predictions made by the preceding tree. Therefore, the
objective function of the ¢ base model can be expressed as
follows:

¥ =3 105D+ fi) + Q) (B2)

Here, 1(y; y; (t=1)y represents the loss function related to
yiyi b, yi(tfl) denotes the predictions of the first t — 1 de-
cision trees for sample i (i.e., the sum of predictions made by
the first # — 1 trees), y; represents the actual value of sample
i, fi(x;) represents the prediction of the ¢ decision tree for
sample i, and Q ( f;) represents the model complexity of the
t tree. Therefore, the predictions of the first k trees for the
sample i are equal to the predictions of the first k — 1 trees

plus the prediction of the k tree.

Appendix C

The mathematical expression for the classic SHAP value is
as follows:

1(n—1S|— 1!
o =Y gy B D s u i - v €
where ¢; represents the contribution of variable i, N repre-
sent the set of all variables, n denote the number of vari-
ables N, S indicate the subset of N that includes variable
i, and v(V) represent the baseline, which signifies the pre-
dicted outcome of each variable in N when their values are
unknown.

The model results for each observed value are estimated by
summing the SHAP values of each variable corresponding
to that observed value. Hence, formulating the explanation
model as follows:

M
g@) =0+ ¢z} (C2)

i=1

where, 7' € {0, 1}M , the variable quantity is denoted as M,
and the value ¢; can be obtained from Eq. (C2). SHAP offers
a variety of Al model explainers.

Code and data availability. The code and data set for predic-
tion using python language (version 3.9.13) can be found
in Mendeley Data: https://doi.org/10.17632/jnr2z36g77.1 (Yao,
2024). The warehouse was created by Yuhang Yao (e-mail:
151746151 @qq.com). The author ’s experimental environment is as
follows: CPU: AMD Ryzen 9 7845HX 3.00 GHz; GPU: NVIDIA
GeForce RTX4060 8 GB; RAM:16G.
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