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Abstract. Personal weather station (PWS) networks owned
by citizens now provide near-surface observations at a spatial
density unattainable with standard weather stations (SWSs)
deployed by national meteorological services. This article
aims to assess the benefits of assimilating PWS observa-
tions of screen-level temperature and relative humidity in
the AROME-France model in the same framework of ex-
periments carried out to assimilate PWS observations of sur-
face pressure in a previous work. Several methods for pre-
processing these observations, in addition to the usual data
assimilation (DA) screening, are evaluated and selected. Af-
ter pre-processing, nearly 4700 PWS temperature and 4200
PWS relative humidity observations are assimilated per hour,
representing 3 and 6 times more than SWS observations, re-
spectively. Separate assimilation of each variable in the at-
mosphere with the three-dimensional ensemble variational
(3DEnVar) DA scheme significantly reduces the root-mean-
square deviation between SWS observations and forecasts of
the assimilated variable at 2 m height above ground level up
to 3 h of forecasts. Improvements to the near-surface temper-
ature and relative humidity fields analysed are shown for a
sea breeze case during a heatwave and a fog episode. How-
ever, degradation of short-range forecasts are found when
PWS observations are assimilated with the current opera-
tional 3DVar DA scheme in the atmosphere or jointly in the
atmosphere and at the surface with 3DEnVar and optimal in-
terpolation DA schemes. These results demonstrate that the
benefit of assimilating PWS temperature and relative humid-
ity observations can be highly dependent on the DA schemes
and settings employed.

1 Introduction

The increase in spatial and temporal resolution of regional
numerical weather prediction (NWP) models requires their
analyses to be initialized by spatially and temporally dense
observations to represent meteorological phenomena on in-
creasingly finer scales (Gustafsson et al., 2018). At Météo-
France, the operational regional NWP system designed to
forecast such phenomena with an up to 51 h lead time is
AROME-France (Seity et al., 2011; Brousseau et al., 2016).
AROME-France currently uses a three-dimensional varia-
tional (3DVar) DA scheme. This scheme is planned to be re-
placed by a three-dimensional ensemble variational (3DEn-
Var) DA scheme, with an up-to-date background error co-
variance matrix, improving the spread of the information
from the observations (Montmerle et al., 2018; Michel and
Brousseau, 2021).

Phenomena whose representation in the analyses needs
to be improved are meso-γ - to meso-β-scale phenomena (2
to 200 km; Orlanski, 1975) such as thunderstorms, breezes
or fog (Stull, 1988) which cause substantial thermodynamic
changes, particularly in the atmospheric boundary layer. New
observations are emerging to improve analyses above the sur-
face, from ground-based microwave radiometers (Caumont
et al., 2016; Bell et al., 2022; Vural et al., 2024), water vapour
lidars (Flamant et al., 2021), or aircraft (Pourret et al., 2022).
Even if these instruments provide dense vertical observa-
tions, their horizontal density remains low. Work is under-
way to exploit horizontally dense satellite observations near
the surface, such as radiances from the Meteosat Spinning
Enhanced Visible and Infrared Imager (SEVIRI) (Sassi et al.,
2019), which are currently assimilated with a spacing of the
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order of 30 km and are still difficult to assimilate at full reso-
lution.

The growth of crowdsourced data, i.e. the data obtained
from a range of sensors belonging to the public and shared
via the Internet, could play a significant role in improv-
ing near-surface analyses of NWP models, in particular data
from personal weather stations (PWSs) (Hintz et al., 2019;
Coney et al., 2022). In order to obtain observations compara-
ble with standard weather station (SWS) observations, PWS
observations should be properly pre-processed, i.e. bias-
corrected or quality-controlled or both, the bias designating
the deviation of a PWS observation time series from a ref-
erence time series (other observations or a modelled field).
Indeed, PWSs provide observations that may not comply
with World Meteorological Organization (WMO) methods:
PWS sensors have heterogeneous environments of siting,
have sometimes unsuitable shelters, can be positioned at var-
ious heights above ground level (a.g.l.), and can suffer from
time lag compared to sensors following WMO requirements
(Bell et al., 2015; Varentsov et al., 2020; Fenner et al., 2021).
After pre-processing, observational studies showed that PWS
observations, when combined with SWS observations, are
able to describe near-surface thermodynamic variations as-
sociated with mesoscale phenomena such as thunderstorms
that are partially visible with SWS observations only (Clark
et al., 2018; Mandement and Caumont, 2020).

Various bias correction (BC) methods have been devel-
oped. The bias can be computed over a short period (e.g. 6 h
for Clark et al., 2018, or approximately 24 h for Mandement
and Caumont, 2020). To account for the effects of an inappro-
priate sheltering or siting, the bias can be computed as a lin-
ear function of solar incident radiation or by a more sophisti-
cated decomposition, e.g. with multilinear functions (Sgoff
et al., 2022), generalized additive mixed models (Cornes
et al., 2019), or machine learning methods (Beele et al., 2022;
Marquès, 2023).

Regarding quality control (QC) methods, CrowdQC
(Meier et al., 2017) and CrowdQC+ (Fenner et al., 2021)
were designed to remove PWS temperature observations
deemed erroneous based on their deviation from neighbour-
ing observations. CrowdQC was used in numerous studies
of urban temperatures (Feichtinger et al., 2020; Venter et al.,
2020; Potgieter et al., 2021; Zumwald et al., 2021). Another
QC for PWS temperature observations, used operationally in
post-processing algorithms by MET Norway, is called Ti-
tan (QC-Titan hereafter; Båserud et al., 2020; Nipen et al.,
2020). CrowdQC+ and QC-Titan are comparable in a way
as they both use the information from their neighbours to
remove inconsistent observations, e.g. the m5 procedure of
CrowdQC+ is comparable to the spatial buddy check of QC-
Titan (Fenner et al., 2021). In addition, as CrowdQC+ uses
local climate zones, it is challenging to use on a scale larger
than a city. For both PWS temperature and relative humidity
observations, Mandement and Caumont (2020) have devel-
oped a QC (QC-MC hereafter) using an adaptive rejection

threshold based on a comparison to interpolated SWS obser-
vations. Both QC-Titan and QC-MC are tested in this study.

Once PWS observations have been pre-processed, the op-
portunity of their assimilation arises. Sgoff et al. (2022)
carried out experiments assimilating pre-processed (bias-
corrected and quality-controlled) PWS temperature and rel-
ative humidity observations, using the flow-dependent local
ensemble transform Kalman filter DA scheme of the Icosahe-
dral Nonhydrostatic model with 2 km resolution (ICON-D2).
They showed that the assimilation of PWS observations is
beneficial; however, no experiments assimilating at the same
time both SWS and PWS observations were conducted. On
the other hand, Demortier et al. (2024, hereafter D24) carried
out experiments assimilating simultaneously pre-processed
PWS and SWS observations of surface pressure with both
3DVar and 3DEnVar DA schemes in AROME-France. Statis-
tically significant improvements in mean sea level pressure
forecasts of up to 9 h range were found with the 3DEnVar
scheme.

This article extends the Sgoff et al. (2022) and D24 works
by simultaneously assimilating pre-processed PWS and SWS
observations of screen-level temperature and relative humid-
ity and addresses the following questions. What are the most
effective pre-processing methods for assimilating PWS data?
Are AROME-France’s analyses and forecasts improved by
assimilating pre-processed PWS temperature and relative hu-
midity observations? What impact does the choice of the DA
scheme have?

The remainder of this article is organized as follows. Sec-
tion 2 describes the AROME-France NWP system and its
DA schemes in the atmosphere and at the surface, as well
as the observations used and the pre-processing methods of
these observations. Section 3 describes the assimilation ex-
periments. Objective results of these experiments are given
in Sect. 4, and results for case studies are detailed in Sect. 5.
Finally, results are summarized and discussed in Sect. 6.

2 Datasets and methods

The assimilation experiments run from 6 September to 5 Oc-
tober 2021, as in D24. This 1-month study period en-
compasses a diverse range of meteorological events. It in-
cludes two periods of anticyclonic conditions, during which
a heatwave (from 2 to 8 September) and fog (from 22 to
24 September) were observed. It also includes disturbed
weather episodes such as squall lines on 8 September in the
south-west of France, a mesoscale convective system in the
south-east of France on 14 September and heavy precipita-
tion events from 2 to 4 October.

2.1 AROME-France NWP system

AROME-France is the limited-area NWP model developed
by Météo-France, operational since December 2008 (Seity
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et al., 2011; Brousseau et al., 2016). AROME-France is a
spectral model coupled to the global NWP system ARPEGE
(Courtier et al., 1998). AROME-France (AROME hereafter)
has a 1.3 km grid spacing on the horizontal and has 90 ver-
tical levels in the atmosphere ranging from 5 m height a.g.l.
(lowest atmospheric model level) up to 10 hPa.

AROME uses a mass-flux shallow convection scheme
(Pergaud et al., 2009). Its associated surface scheme is SUR-
FEX (Masson et al., 2013). AROME and SURFEX exchange
flux and near-surface variables such as temperature, humid-
ity, and wind. Surface variables are computed over tiles rep-
resenting four types of surfaces: nature, town, inland water,
and ocean. The surface layers have a dedicated assimilation
system, which is described in Sect. 2.1.2.

AROME has a 1 h DA cycle for the atmosphere and a 3 h
DA cycle for the surface. From the analysis, the experiments
in this study produce 24 h forecasts at 00:00, 06:00, 12:00,
and 18:00 UTC.

In AROME, an average of 49 253 observations (active;
see below) are assimilated per hour during the 1-month
study period. A total of five observation systems account for
99 % of incoming active observations: radar (56.5 %), SWSs
(17.0 %), satellites (9.8 %), radiosoundings (9.6 %), and air-
craft (6.1 %). Among the variables observed by SWSs, the
ones assimilated in AROME are screen-level temperature
and relative humidity, zonal and meridional wind at 10 m
height a.g.l., and the surface geopotential. More details are
given in Sect. 2.2.1.

2.1.1 AROME atmospheric DA system

The atmospheric DA procedure is composed of two main
steps, which are the screening, which is a series of QC
checks, and the minimization of the cost function used for
variational DA (see D24). During both steps, modelled vari-
ables are compared to observed variables by an observation
operator. AROME has 13 prognostic variables and 5 con-
trol variables, which include temperature and specific hu-
midity. Relative humidity is a diagnostic variable computed
from specific humidity, temperature, and pressure. The for-
mula used in AROME is given in Appendix A. The model
equivalents of observed screen-level temperature (T ) and rel-
ative humidity (RH) are 2 m height a.g.l. temperature (T2 m)
and relative humidity (RH2 m), described by Vasiljevic et al.
(1992) and ECMWF (2023). The computation of T2 m uses
the temperature from the lowest atmospheric model level and
the surface temperature, based on Monin–Obukhov theory
– with separate solutions for stable and unstable conditions
(Cardinali et al., 1994). RH2 m is computed using only the
lowest level fields of the atmospheric model. Thus, the effect
of the type of surface on observations is taken into account by
these observation operators, either directly when it includes
a surface variable modelled by SURFEX (for T2 m) or indi-
rectly when it only includes atmospheric variables, modified

through the surface–atmosphere exchanges during the fore-
cast (for RH2 m).

The difference between the observation and the model
equivalent from the background (1 h forecast starting from
the previous analysis), i.e. the observation minus the back-
ground, is further called OmB. In the same way, the differ-
ence between the observation and its corresponding value in
the analysis is further called OmA.

One of the main QC checks of the screening rejects obser-
vations, verifying

‖OmB‖>
α

σcoef

√
σ 2

o + σ
2
b , (1)

where α = 4 and σcoef = 0.9 are two coefficients, σo is the
standard deviation of observation errors set to 1.4 °C and
10 % for screen-level T and RH observations, σb is the stan-
dard deviation of background errors, and the right-hand term
is referred to as the rejection threshold. As an example, for
T2 m, during the first hour of the assimilation experiments
(i.e. 6 September 2021 at 01:00 UTC), the average σb equals
0.5 °C and the rejection threshold is up to 6.5 °C. For RH2 m,
the average σb equals 10 % and the rejection threshold is up
to 70 %. These rejection thresholds are high because cur-
rent near-surface assimilated observations (SWS observa-
tions) are considered as anchor observations for the model,
and screening has been designed to keep as much of these
observations as possible.

All active observations, i.e. those that have passed the
screening, are combined with the background to produce the
analysed state of the atmosphere. AROME currently uses
a 3DVar DA scheme to constitute the atmospheric analy-
sis fields. The only difference between the 3DVar and the
3DEnVar DA schemes comes from the background error co-
variance matrix B, which is static (prescribed) for the 3DVar
and dynamic for the 3DEnVar, estimated at each hour from
the AROME Ensemble Data Assimilation system. To illus-
trate the difference between the two schemes, the increments
(i.e. the analysis minus the background) at the lowest at-
mospheric model level when single screen-level T and RH
observations are assimilated in two idealized experiments
are shown in Fig. 1. The propagation of the information
from an observation is isotropic with the 3DVar DA scheme
(Fig. 1a and c), whereas with the 3DEnVar DA scheme it is
anisotropic and localized within 25 km around the observa-
tion (Fig. 1b and d). At the observation location, the values
of the increments differ. From an identical OmB of 3.4 °C in
both experiments, the increment at the observation location
reaches 1 °C with the 3DVar DA scheme and is reduced to
0.4 °C with the 3DEnVar DA scheme. Similarly, the assimi-
lation of a single RH2 m observation results in an increment
of 3.3 % (1.1 %) with the 3DVar (3DEnVar) DA scheme. The
relative observation weight is diminished from the 3DVar to
the 3DEnVar DA scheme due to lower σb on average during
the study period for temperature observations. Further details
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on the 3DVar and the 3DEnVar DA scheme configurations
are provided by D24.

2.1.2 AROME surface DA system

AROME has a dedicated surface DA scheme for the initial-
ization of the soil prognostic variables, which consist of two
ground temperature variables and two groundwater content
variables (Giard and Bazile, 2000). The surface DA scheme
has its own screening, which uses the same formulation as
the atmospheric one (Eq. 1), with, for T2 m (RH2 m), α set to
5 (2.5), σcoef set to 1, σo set to 1.3 °C (10 %), and σb set to
1.6 °C (10 %).

The surface DA scheme is based on atmospheric incre-
ments of T2 m and RH2 m. First, T2 m and RH2 m are com-
puted with the observation operator described in Sect. 2.1.1.
Then, a univariate optimal interpolation (OI) scheme com-
bines screen-level observations with T2 m and RH2 m back-
ground, using isotropic structure functions. The characteris-
tic distanceD used in the OI scheme is set to 100 km for T2 m
and RH2 m observations, which is a compromise between the
resolution of the NWP model, the scale of the weather phe-
nomenon represented and the density of the weather stations.
Then T2 m and RH2 m increments are used to correct the soil
variables with linear interpolations. More details on the sur-
face DA are given by Sassi et al. (2019).

2.1.3 A posteriori diagnostics

A number of diagnostic tools exist to understand a posteriori
the way in which the DA schemes use the observations. Both
the Desroziers diagnostic of observation error and the spatial
Desroziers diagnostic (also used in D24) are used (Desroziers
et al., 2005). The spatial Desroziers diagnostic is computed
to define a minimum thinning length λ from which the cor-
related observation errors are found to be significantly low.
Then, the observation network is thinned by selecting one
random observation per mesh from a horizontally spaced λ
grid (D24).

2.2 Screen-level observations of temperature and
relative humidity

A distinction is made here between standard weather stations
and personal weather stations: the former are bought, oper-
ated and maintained by national meteorological and hydro-
logical services, while the latter are managed by private indi-
viduals or third-party organizations. Behind this distinction,
it is important to keep in mind that citizens or third-party
organizations can acquire stations identical to meteorologi-
cal services, just as meteorological services can use low-cost
stations dedicated to citizens.

2.2.1 Standard weather station observations

This study uses only SWS observations assimilated in
AROME, which constitute a subset of all SWS observations.
On average over 1 month, the number of SWSs providing
at least one observation per hour of temperature and relative
humidity is 2440 and 1600, respectively. Only 65 % of SWS
temperature observations entering the AROME DA system
are located in France. This is only 48 % for relative humidity.
Over France, there are more than twice as many observations
of temperature as there are observations of relative humid-
ity, and both are fairly evenly distributed (Fig. 2). Regarding
the height of observation, air temperature and relative humid-
ity should be and are generally measured between 1.25 and
2 m height a.g.l. (World Meteorological Organization, 2023),
the rule being 1.5 m in France, but often a little higher up
in mountainous areas with heavy snowfall. For SWS wind
speed observations used in Sect. 4, wind speed is generally
measured at 10 m height a.g.l.

2.2.2 Personal weather station observations

Three networks of PWSs are used in this study: Netatmo
PWSs, StatIC PWSs, and Toulouse Métropole PWSs. In con-
trast to SWS observations, PWS observations are not cur-
rently assimilated operationally in AROME.

The Netatmo PWS network is the largest available in near-
real time in France (Mandement and Caumont, 2020). As
they are owned by citizens, PWSs are unevenly distributed
in France (Fig. 2). The outdoor module of the Netatmo PWS
network contains temperature and relative humidity sensors.
On average over 1 month, the number of PWSs providing
at least one observation per hour of temperature and relative
humidity is 63 099 and 63 117, respectively. With appropri-
ate sheltering, these sensors have a median and a 95 % range
of departures from a reference sensor of about 0 °C±0.9°C
in temperature and 3% ± 7% in relative humidity, show-
ing their correct intrinsic quality (Mandement and Caumont,
2020). However, the stations as they are sold are not sheltered
according to WMO recommendations: short-wave and long-
wave radiation affect T and RH, causing departures from
sheltered reference sensors (Büchau, 2018). For temperature,
these departures are generally overestimations of warm tem-
peratures and underestimations of cold temperatures. These
departures are complex depending on the location of the sta-
tion in relation to its close environment (e.g. wall, balcony,
garden; Varentsov et al., 2020) and its actual height above
ground level.

The StatIC PWS network from the Infoclimat association
encompassed 880 stations in 2023 (Garcelon et al., 2023),
almost 600 of which are free to download over the period
via their open-data portal. It gathers Davis Instruments Van-
tage Pro2 and Vantage Vue PWSs, as well as sensors from
the companies Dragino or Talkpool in shelters, owned by cit-
izens or by the association itself. To join the network, each
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Figure 1. Increments at the lowest atmospheric model level of (a, b) temperature and (c, d) specific humidity, resulting from the assimilation
of screen-level T and RH observations, respectively, at Blagnac SWS on 6 September 2021 at 01:00 UTC with the (a, c) 3DVar and (b,
d) 3DEnVar DA schemes. The black circle indicates a 25 km distance around the observation location.

station should follow the WMO recommendations adapted
by Météo-France (Leroy, 2014) wherever possible: T and
RH observations in a normalized shelter, in a clear environ-
ment, and at 1.5 m height a.g.l. However, in enclosed urban
environments (with low air circulation), the recommended
height is 1.5 m above the roof, i.e. various heights a.g.l. de-
pending on the height of the roof. StatIC PWSs are set up in
meteorologically interesting locations such as La Chapelle-
en-Vercors, which is a cold hole, or areas not well covered
by SWSs. The accuracy given for the Davis Instruments Van-
tage Pro2 or Vue PWS is 0.3 °C for temperature and 2 % for
relative humidity (Garcelon et al., 2023).

Toulouse Métropole has deployed Davis Vantage Pro2
PWSs around the city of Toulouse for the study of the urban
heat island (Dumas et al., 2021). During the study period, 33
PWSs are available.

Figure 3 shows the average OmB distributions for the two
largest PWS networks and the SWS network. For tempera-
ture over the study period, there are only one-fifth as many
StatIC PWS observations as SWS observations, while there
are about 25 times as many Netatmo PWS observations.
However, the heterogeneous siting of the PWSs, seen by
the OmB standard deviation, increases from SWSs to StatIC
PWSs to Netatmo PWSs. The results are similar for relative
humidity.

In this study, the only PWS observations assimilated are
from Netatmo PWSs, hereafter referred to as PWSs. StatIC

and Toulouse Métropole PWS observations are used to eval-
uate pre-processing methods of PWS observations of tem-
perature. For the evaluation, Netatmo PWS observations are
interpolated at the location of StatIC and Toulouse Métropole
PWSs, providing an estimate which is compared to the StatIC
and Toulouse Métropole PWS observations. The linear in-
terpolation method takes into account the vertical profile of
temperature. The use of independent (i.e. non-assimilated)
PWS observations allows the absence of bias in the model to
be verified.

2.3 Satellite observations

Observations of top-of-the-atmosphere bidirectional re-
flectance from the high-resolution visible (HRV) channel
from the SEVIRI radiometer, on board the Meteosat Sec-
ond Generation 3 (MSG-3) satellite (also called Meteosat-
10) in rapid scanning service at 1 km horizontal resolution
every 5 min, are used in Sect. 5.2 to locate clouds. The HRV
channel is a broadband channel which is sensitive to wave-
lengths between 0.4 and 1.1 µm (Schmetz et al., 2002). Re-
flectance observations from EUMETSAT are corrected de-
pending on the solar angle following the method of Li and
Shibata (2006) applied to visible channels in Météo-France
operational products (Derrien and Le Gléau, 2010).

An estimate of the global solar radiation at each PWS lo-
cation has been derived from the spatialized global solar radi-
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Figure 2. Number of (a) SWSs measuring temperature, (b) SWSs measuring relative humidity, (c) Netatmo PWSs, and (d) StatIC PWSs
providing at least one observation during the 1-month study period over France. Observation counts are binned into approximately 0.15× 0.1°
bins. The dashed rectangles delimit the four domains used in the cases studied: (1) Paris, (2) Toulouse, (3) along the Atlantic coast for the
heatwave case, and (4) the Saône Valley for the fog case.

Figure 3. Histograms of average OmB over the 1-month study period for (a, d) Netatmo PWS, (b, e) StatIC PWS, and (c, f) SWS observations
of (a–c) temperature and (d–f) relative humidity. Boxes indicate the number of OmB time series, µ the average OmB for all time series, and
σ the standard deviation of average OmB for all time series.
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ation product made by Météo-France in near-real time. This
product uses both in situ observations and surface solar irra-
diance from MSG satellites (EUMETSAT, 2017). Nighttime
values are set to zero. The hourly global solar irradiance is
cumulated over each hour and is used as a predictor for one
of the bias correction methods of PWS observations.

2.4 Pre-processing methods

In the article, PWS observations used are interpolated to
round hours, and PWSs with identical coordinates are re-
moved, as in the step preparation of D24. Hereafter, these
observations, prepared but not pre-processed, are referred to
as raw PWS observations.

2.4.1 Bias correction (BC) methods

The bias correction (BC) ensures that possible biases (i.e. a
systematic departure from a reference) in PWS observation
time series do not propagate to the model. In this study, raw
PWS observations of screen-level temperature and relative
humidity have been monitored – i.e. T2 m and RH2 m OmB
time series are computed – in the operational AROME 3DVar
configuration, which is called the Monitor experiment (as in
Sgoff et al., 2022, and D24). Four types of BC methods that
can be applied in real time because they use past OmB statis-
tics, are tested. They are named as follows:

– BC-D removes the average OmB of the last 24 h (aver-
age of 24-hourly OmBs, D for daily), in a manner close
to Mandement and Caumont (2020).

– BC-M removes the average OmB of the last 30 d (M for
monthly).

– BC-S uses the BC method developed by Sgoff et al.
(2022), in which S signifies Sgoff. The bias is computed
from five predictors composed of trigonometric basis
functions from the hour of the measured observations
with 2 d inertia.

– BC-R uses a random forest method trained with the hour
of the day and cumulative hourly global solar irradiance
predictors from the last 30 d, close to the BC used by
Beele et al. (2022) but with fewer predictors (R for ra-
diation).

2.4.2 Quality control (QC) methods

Quality control (QC) methods are used in this study to re-
move PWS observations judged erroneous because the cur-
rent screening for near-surface observations has not been de-
signed to deal with observations with OmB statistics so dif-
ferent from those of SWS (Sect. 2.2.2).

Titan or titanlib (Båserud et al., 2020) is an open-source
library composed of various checks or tests. In this article,
as in Nipen et al. (2020), Titan-QC designates the combina-
tion of three main spatial tests, which are the buddy check,

the spatial consistency test, and the isolation test. The buddy
check consists of removing observations if their deviation
from the average is more than twice the standard deviation
of the observations in the neighbourhood within a 15 km
radius. The spatial consistency test consists of an iterative
cross-validation procedure. For each observation, it adjusts
a vertical profile, and computes an estimation of a true ob-
servation, and the standard deviation of the observations in
the neighbourhood. The observation is removed if the ratio
of the squared deviation from the observation estimation di-
vided by the standard deviation is greater than 4 (or 8 for
negative values). The process is repeated until no observa-
tions are removed. The isolation test removes observations
which have fewer than five stations within a 15 km radius
and 200 m elevation difference.

QC-MC (Mandement and Caumont, 2020) has been
adapted for use on a larger scale, throughout France even
though it was designed for the scale of a French region: com-
putations are done simultaneously for 11 selected climato-
logical areas. The second main adaptation is the use, for each
PWS observation, of OmB statistics from AROME instead of
comparisons between this PWS observation and an estimate
derived from neighbouring SWS observations. In QC-MC,
every hour, in every climatological area, for each PWS, the
rms’s (root mean squares) of PWS OmBs are computed on
the last 6 h to separate observations that differ from the back-
ground at a given time due to physical reasons (e.g. a phe-
nomenon not well positioned in the background) from the ob-
servations that differ all the time from the background. PWSs
having rms OmB exceeding an adaptive threshold, computed
according to Mandement and Caumont (2020), are removed.

3 Assimilation experiment design

3.1 Choice of bias correction and quality control

In the literature, some authors carry out a QC without a
BC (Nipen et al., 2020). To evaluate this choice, we com-
pare QC-MC and QC-Titan. Note, however, that QC-MC
was designed to be used after a BC. Every hour, the obser-
vations considered incorrect by the two QCs are removed.
The hourly mean OmBs for the PWS temperature observa-
tions are shown in Fig. 4a. The average OmB exhibits a sys-
tematic bias following a diurnal cycle: it varies from about
0.7 °C during the day to 1.3 °C during the night. The sys-
tematic warm bias could be due to site effects as the PWSs
are placed close to heating environments such as windows
or balconies (Bell et al., 2015; Sgoff et al., 2022). For rela-
tive humidity (Fig. 5b), the raw PWS observations exhibit a
diurnal bias composed of a drier nighttime and a wetter day-
time. Its variations are close to what was reported by Sgoff
et al. (2022). Regarding the observations after the two QCs,
the mean OmB is reduced throughout the day when using
QC-MC, while it still shows a diurnal bias with QC-Titan
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(Fig. 4a). QC-MC takes into account a reference, which is
here the model background, allowing the QC to remove spa-
tially incoherent observation in relation to the model back-
ground. A map of quality-controlled temperature observa-
tions near Paris at 12:00 LT is shown in Fig. 4b–e. Without
QC, no regional pattern could be seen in the temperature ob-
servations from PWSs, explaining a high rms deviation from
StatIC PWS observations of 1.5 °C (Fig. 4b). QC-Titan has
the ability to remove observations which are too far from
their neighbours. After QC-Titan, every single PWS obser-
vation is closer to its neighbours, but PWS observations have
a mean deviation from StatIC PWS observations of 2.0 °C.
When using QC-MC, more stations are removed, but only
the observations close to the background are kept (QC-MC
PWS OmB threshold is equal to ±1 °C at the time of the fig-
ure). QC-MC will therefore be chosen for the next part of the
study. However, QC-MC does not ensure by itself a zero bias
of PWS observations: Fig. 4a shows a slight positive bias,
and a BC is necessary to remove it.

To remove the remaining bias, the four BC methods de-
scribed in Sect. 2.4.1 are tested, in association with the se-
lected QC-MC. Figure 5 shows the diurnal cycle of mean
OmBs for both the PWS observations after applying the four
BC methods and the SWS observations. For temperature ob-
servations (Fig. 5a), mean OmBs for all choices of BC are
close to zero and are on the order of magnitude of SWS
observation OmBs. By construction, BC-M mean OmBs are
near zero throughout the diurnal cycle: BC-R means OmBs
are very close, and the addition of hourly global solar irradi-
ance as a predictor does not seem to make any substantial im-
provement. For relative humidity observations (Fig. 5b), all
BCs tested exhibit a reduced diurnal cycle compared to raw
PWS observations. BC-D and BC-S mean OmBs are close,
as they both use 24 and 48 h rolling periods to estimate bi-
ases, respectively. Still, BC-S OmBs are slightly closer to
zero during the night. Once again, the BC-M mean OmBs
are near 0 % throughout the diurnal cycle, like SWS OmBs.

Figure 6 shows how the four BC methods modify PWS ob-
servations of screen-level temperature on 7 September 2021
at 23:00 LT around the city of Toulouse (centre of the map).
Raw PWS temperature observations are close to observations
from SWS, Toulouse Métropole PWS, and StatIC PWS net-
works, even if some PWS observations are warmer north-
west of the city. However, BC-M and BC-R, which use
monthly rolling periods to estimate biases, reduce PWS tem-
peratures in the suburbs of the city, which is inconsistent
with other observation networks. In contrast, BC-S and BC-
D, which use 24 or 48 h rolling periods to estimate biases,
keep observations in agreement with other observation net-
works: the rms deviation (RMSD) of PWS observations com-
pared with independent Toulouse Métropole PWS observa-
tions reaches only 0.4 and 0.2 °C, respectively. T2 m values
of the AROME background (Fig. 6f) are close to Toulouse
Métropole observations (RMSD of 0.3 °C), while unfortu-

Figure 4. (a) Distributions of PWS OmB for each hour of the study
period: thick lines indicate the mean, thin lines indicate the mean
± 1 standard deviation. The area between thick and thin lines is
shaded. (b–e) Screen-level temperature observations around Paris
on 7 September 2021 at 10:00 UTC from (coloured triangles with
black contours) SWSs and (coloured stars) StatIC PWSs. Coloured
circles are either (b–d) PWS screen-level temperature observations
or (e) T2 m AROME background at the PWS location. PWS obser-
vations are (b) raw or quality-controlled by (c) QC-Titan, (d) QC-
MC. Boxes indicate the mean deviation (MD) and the rms deviation
(RMSD) of PWS observations compared with independent StatIC
PWS observations.

nately none are available north-east of the city to support the
colder temperatures indicated by the background.

3.2 Choice of observation error covariances and
thinning

In variational DA schemes, the observation error covariance
matrix R has to be specified. As in D24, the part of R al-
located to PWS observations is prescribed diagonally, like
for the part allocated to SWS observations, and the diago-
nal values (σo) are the same as for SWS observations: 1.4 °C
for T2 m and 10 % for RH2 m. This is done for simplicity’s
sake, as modelling the non-diagonal terms is an open re-
search question (Guillet et al., 2019), and a study of sensi-
tivity to a change in σo is beyond the scope of this article.

Nat. Hazards Earth Syst. Sci., 25, 429–449, 2025 https://doi.org/10.5194/nhess-25-429-2025



A. Demortier et al.: Assimilation of temperature and relative humidity observations 437

Figure 5. Mean diurnal cycle of OmBs during the 1-month study period of (a) temperature and (b) relative humidity for (blue) raw PWS
observations; for PWS observations quality-controlled with QC-MC and bias-corrected with (brown) BC-D, (green) BC-M, (orange) BC-S,
(purple, only in a) BC-R; and for (black) SWS observations. Lines and colour shades are like in Fig. 4a.

Figure 6. As in Fig. 4b–e, around the city of Toulouse on 7 September 2021 at 21:00 UTC (23:00 LT). Coloured circles are either (a–e) PWS
screen-level temperature observations or (f) T2 m AROME background at the PWS location. PWS observations are (a) raw and quality-
controlled with QC-MC, as well as bias-corrected with (b) BC-M, (c) BC-R, (d) BC-S, and (e) BC-D. Coloured squares, stars, and triangles
are Toulouse Métropole PWS, StatIC PWS, and SWS screen-level temperature observations, respectively. Boxes indicate the mean deviation
(MD) and the rms deviation (RMSD) of PWS observations compared with independent Toulouse Métropole PWS observations.

The diagonal assumption demands verifying that observation
errors are not correlated, and if they are, the reduction in the
spatial density of the observations may diminish the correla-
tion between observation errors.

Figure 7 shows the spatial Desroziers diagnostic for PWS
observations after BC-M and QC-MC. This diagnostic is
computed using OmA and OmB of these PWS observations
assimilated without thinning in a cycled 3DEnVar DA ex-

periment launched on 6 September 2021 at 00:00 UTC. This
diagnostic decreases when the distance between the observa-
tions increases. Two observations being far from each other
have less probability of having correlated observation errors,
reducing the influence of their local environment. The spatial
Desroziers diagnostic decreases up to distances of 1 to 6 km,
depending on the variable and the hour of the day. To re-
duce the probability of having correlated observation errors,
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Figure 7. Spatial Desroziers diagnostic of PWS observations of (blue) temperature and (red) relative humidity after BC-M and QC-MC on
6 September 2021 at (solid lines) 03:00 UTC and (dashed lines) 15:00 UTC. The grey dashed line indicates the number of pairs of equidistant
stations (in 1 km bins).

a thinning is applied, selecting one random observation per
mesh in an approximately 8 km horizontally spaced regular
Gaussian grid (8 km thinning hereafter). One of the limits of
the method is the fact that two observations may have cor-
related errors independently of the distance, for example if
they are subject to similar anomalous siting conditions, and
these observations are not corrected or removed by the pre-
processing.

Two pre-processing methods of PWS observations are se-
lected for the DA experiments: P-M composed of BC-M,
QC-MC, and an 8 km thinning and P-S composed of BC-S,
QC-MC, and an 8 km thinning. One of the points to bear in
mind when using pre-processing methods based on compar-
isons with the background of the model into which we want
to assimilate these observations is that pre-processed PWS
observations can overfit the model background (see the triple
collocation method shown in Appendix B).

3.3 Overview of the experiments

All experiments are described in Table 1. The benefit from
assimilating PWS observations of a variable X (T for T2 m
or RH for RH2 m) is evaluated using the observing system
experiment (OSE) framework, comparing a reference exper-
iment (3DVar, 3DEnVar) to an experiment where PWS ob-
servations are assimilated (Pourret et al., 2022; D24). To
explore the role of the pre-processing (or bias correction,
since this is the only part that changes), PWS observations
after P-M and P-S are assimilated using the 3DEnVar DA
scheme (3DEnVarX and 3DEnVarXS, respectively). To ex-
plore the role of the DA scheme, PWS observations after P-
M are assimilated using the 3DVar DA scheme (3DVarX).
Finally, the impact of assimilating simultaneously PWS ob-
servations after P-M at the surface using the OI DA scheme
and in the atmosphere with the 3DEnVar DA scheme is
tested (3DEnVarX-surf). Monitor, 3DVar, and 3DEnVar ex-
periments are the same as in D24. Except Monitor, they are
cycled, which means that the assimilation of PWS observa-
tions at time t influences the background at time t+1h, used

to make the new analysis. During 1 month, 719 analyses are
made, and 119 forecasts are launched.

4 Results of the assimilation experiments

The experiments are evaluated using statistics of 1-month
OmB and OmF (observation minus forecast), where observa-
tions are systematically SWS observations. The relative evo-
lution of the rms OmX (X being B or F) of an experiment
(XP) with respect to another (CTRL) is given by

1rmsOmX=
rms(OmXXP)− rms(OmXCTRL)

rms(OmXCTRL)
. (2)

As in D24, 1rms OmX is considered significant if 0 is
not in the 95 % confidence interval around it. This inter-
val is computed by bootstrap with the “percentile” method
(scipy.stats.bootstrap function; Virtanen et al., 2020): the
OmXXP time series is randomly sampled with a replacement,
giving a new time series of the same size. This is done 1000
times, providing 1000 time series and giving 1000 rms values
forming a distribution, from which the confidence interval is
estimated.

4.1 Impact of the bias correction with the 3DEnVar DA
scheme

When PWS T2 m observations are assimilated in 3DEnVarT
or 3DEnVarTS (Table 2), T2 m rms OmBs decrease sig-
nificantly for both experiments in comparison with 3DEn-
Var, which is an improvement. The improvement is slightly
larger with 3DEnVarT (1rms OmB of −0.7%) than with
3DEnVarTS (−0.6%) over the AROME domain. The im-
provement is larger (−0.9% and −0.8%, respectively) over
France, as it is the area where PWS observations are assimi-
lated. Surface pressure rms OmB significantly increases over
France for 3DEnVarT (+1.6%) and 3DEnVarTS (+3.7%).
Other variables show no significant evolution.
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Table 1. Overview of the experiments. The Monitor experiment was launched on 6 August 2021 at 00:00 UTC. All cycled experiments
were launched on 6 September 2021 at 00:00 UTC. All experiments use the OI surface DA scheme. X corresponds to the variable of PWS
observations assimilated in the atmospheric DA scheme only unless otherwise indicated: T for T2 m or RH for RH2 m.

Experiments Duration Cycling Atmospheric
DA scheme

Use of PWS observations

Monitor 2 months No 3DVar Raw observations monitored
3DVar 1 month Yes 3DVar No
3DVarX 1 month Yes 3DVar Variable X assimilated after P-M (BC-M, QC-MC, 8 km thinning)
3DEnVar 1 month Yes 3DEnVar No
3DEnVarX 1 month Yes 3DEnVar Variable X assimilated after P-M (BC-M, QC-MC, 8 km thinning)
3DEnVarXS 1 month Yes 3DEnVar Variable X assimilated after P-S (BC-S, QC-MC, 8 km thinning)
3DEnVarX-surf 1 month Yes 3DEnVar Variable X assimilated after P-M (BC-M, QC-MC, 8 km thinning) in both

atmospheric (3DEnVar) and surface (OI) DA schemes

Table 2. 1rms OmB (%) of surface pressure, T2 m, RH2 m, and 10 m zonal and meridional wind for SWSs over the 1-month study period.
Negative values of an experiment (XP) with respect to another (CTRL) indicate that the backgrounds (1 h forecasts) of XP are closer than
CTRL to SWS observations; i.e. improvement and positive values indicate degradation. Significant values are in bold.

Surface pressure T2 m RH2 m Zonal wind Meridional wind

AROME France AROME France AROME France AROME France AROME France
domain domain domain domain domain

3DVarT w.r.t. 3DVar 0.2 0.7 1.8 2.4 −0.1 −0.3 −0.3 −0.5 −0.1 −0.2
3DEnVarT w.r.t. 3DEnVar 0.1 1.6 −0.7 −0.9 −0.2 −0.2 −0.1 −0.2 0.0 0.0
3DEnVarTS w.r.t. 3DEnVar 1.3 3.7 −0.6 −0.8 −0.1 −0.2 0.1 0.1 0.0 0.0
3DEnVarT-surf w.r.t. 3DEnVar 0.1 0.9 0.5 0.7 0.3 0.5 0.1 0.4 0.0 0.1
3DVarRH w.r.t. 3DVar −0.3 −0.8 −0.6 −0.9 2.7 4.5 −0.2 −0.2 −0.1 −0.2
3DEnVarRH w.r.t. 3DEnVar 0.2 0.3 0.2 0.3 −1.0 −1.5 0.0 0.0 0.1 0.2
3DEnVarRHS w.r.t. 3DEnVar 0.5 0.7 0.5 0.8 −0.8 −1.2 0.1 0.2 0.0 0.2
3DEnVarRH-surf w.r.t. 3DEnVar 0.1 0.1 0.3 0.4 −0.9 −1.3 0.1 0.2 0.1 0.2

For PWS RH2 m observation assimilation in 3DEnVarRH
or 3DEnVarRHS, RH2 m rms OmBs also decrease signifi-
cantly over the AROME domain (1rms OmB of −1.0%
and −0.8%, respectively). The improvement is larger over
France (−1.5% and−1.2%, respectively). However, a slight
but significant degradation of T2 m rms OmBs is found in the
3DEnVarRHS experiment over both France and the AROME
domain (0.8% and 0.5%, respectively). Other variables show
no significant evolution.

For experiments assimilating PWS observations of either
T2 m or RH2 m, the lowest rms OmBs are obtained with the
P-M pre-processing for all variables over France.

Scores for forecasts up to 24 h are shown in Fig. 8.
When PWS T2 m observations are assimilated (3DEnVarT
and 3DEnVarTS in Fig. 8a), an improvement in T2 m rms
OmFs is found up to 3 h of forecasts; beyond the 3 h forecast
range, the rms OmF evolution is neutral to slightly degraded.
Similar results are found in 3DEnVarRH and 3DEnVarRHS
when PWS RH2 m observations are assimilated. These results
are consistent with Sgoff et al. (2022) results showing im-
provements vanishing or not significant beyond the 5 to 6 h
forecast range when assimilating bias-corrected PWS obser-
vations only.

No significant evolution of rms OmBs or rms OmFs of
other observing systems is noticed (not shown), which could
be explained by the small impact of T2 m and RH2 m above the
atmospheric boundary layer (Brousseau et al., 2014). Also,
for observing systems such as radiosoundings, the low num-
ber of observations over France makes it difficult to show
significance (D24).

4.2 Impact of the DA scheme

When compared to 3DVar, 3DVarT significantly degrades
the T2 m rms OmBs over France by +2.4% (Table 2).
For 3DVarRH compared to 3DVar, this degradation reaches
+4.5%. The degradation is very large in the analysis and re-
mains significant between the 6 to 12h forecast range for T2 m
and RH2 m, respectively (Fig. 8). As was found by D24 for
PWS surface pressure observation assimilation, the 3DVar
DA scheme with its operational settings is not able to take ad-
vantage of these PWS observations with the pre-processing
(including the thinning) which is selected.

When PWS T2 m observations are concomitantly as-
similated by the atmospheric and surface DA systems
(3DEnVarT-surf), the improvement found in 3DEnVarT turns
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Figure 8.1rms OmF of (a) T2 m and (b) RH2 m for SWSs over France every 3 h between the 0 and 24 h forecast range over the 1-month study
period. Negative values indicate improvement, and positive values indicate degradation. Points (crosses) indicate improvement (degradation)
of XP with respect to CTRL at the 90 % statistical significance level.

into a significant degradation for T2 m rms OmBs (Ta-
ble 2). The degradation is significant up to 9h forecast range
(Fig. 8). When PWS RH2 m observations are concomitantly
assimilated by the atmospheric and the surface DA system
(3DEnVarRH-surf), RH2 m rms OmBs and OmFs are very
similar to 3DEnVarRH, showing an improvement. These
large differences between the assimilation of PWS obser-
vations of T2 m and RH2 m in the surface DA scheme could
be explained by the fact that the RH2 m observation opera-
tor, contrary to the T2 m observation operator, uses only vari-
ables from the lowest atmospheric model level and not sur-
face variables.

5 Results from case studies

In the case of a strong near-surface gradient of a meteorolog-
ical variable caused by a meso-β-scale meteorological phe-
nomenon, the added value of a dense network of weather sta-
tions is likely to be clearly visible. Two cases with substan-
tial temperature and relative humidity gradients in Septem-
ber 2021 are studied: a sea breeze case during a heatwave on
7 September with around 4 °C of screen-level temperature
difference between two SWS observations 12 km apart and
a fog case on 23 September with 40 % screen-level relative
humidity differences between two SWS observations 25 km
apart.

5.1 Sea breeze front during a heatwave on
7 September 2021

On 7 September 2021, at the synoptic scale, subtropical
warm air came from North Africa ahead of a low-pressure
system located over the Atlantic Ocean. Near the surface, the
south-eastern to eastern winds carried the warm continental
air mass over western France. Maximum daily temperature
reached 33.7 °C at Nantes-Bouguenais SWS at 15:07 UTC

and 32.2 °C at 15:00 UTC at Vannes-Séné SWS (Fig. 9a). It is
11.3 and 10.3 °C more than the 1991–2020 normal Septem-
ber maximum temperature of these SWSs, respectively. The
daily maximum temperature at Nantes-Bouguenais was 5 °C
above or equal to the September normal from 2 to 8 Septem-
ber, i.e. for more than 5 consecutive days, which is the WMO
criterion for heatwaves.

Figure 10 shows the temperature analysis at around 5 m
height a.g.l. for the different experiments and both SWS and
PWS screen-level temperature observations. If the height be-
tween observations and this analysis field is different, it is
shown here because it is the lowest atmospheric level to
which DA increments are applied. The experiments are cy-
cled from 6 September 2021 at 00:00 UTC onwards, which
accounts for the significant discrepancy observed between
the analyses. The two types of pre-processing show similar
results for this case (not shown).

In the afternoon, a sea breeze rises up due to the differ-
ence in temperature between the ocean and the land, cool-
ing the coast. This cooling is observed by three SWSs and
is observed well by PWSs, particularly after pre-processing
(Figs. 9a and 10). Analyses from the four DA experiments
(Fig. 10) are able to reproduce the coastal cooling caused
by the breeze but with differences in temperature on either
side of the breeze front and differences in the location of this
front.

In the 3DVar experiment (Fig. 10a) the temperature anal-
ysed is very close to SWS observations of temperature. When
PWS temperature observations are assimilated in 3DVarT
(Fig. 10c), the temperature analysed in area A is lower than
in 3DVar, which increases the deviation from the analysis of
the Vannes-Séné SWS observation. In the 3DEnVar experi-
ment (Fig. 10b), still in area A near Vannes-Séné SWS, the
breeze front is located further inland, which is not in agree-
ment with this SWS observation or PWS observations shown
in Fig 10c. Also, in area B, temperature analysed in 3DEnVar
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Figure 9. Geographical situation of (a) the heatwave case on 7 September 2021 at 15:00 UTC with raw screen-level temperature observations
and (b) the fog case on 23 September 2021 at 09:00 UTC with raw screen-level relative humidity observations. SWSs are indicated by
coloured triangles with black contours, PWSs by coloured circles, and StatIC PWSs by coloured stars. Human crowdsourced observations
of fog between 08:00 and 09:00 UTC are indicated by three encircled horizontal bold lines (fog symbol). MSG-3 satellite HRV channel
reflectance observations equal to 24 % and 43 % are shown by bold and thin black edges, respectively. Light blue indicates water surfaces
(here mainly the Atlantic Ocean).

Figure 10. Analyses of the temperature of the lowest atmospheric
model level (around 5 m height a.g.l.) for (a) 3DVar, (b) 3DEn-
Var, (c) 3DVarT, and (d) 3DEnVarT experiments on 7 Septem-
ber 2021 at 15:00 UTC. Locations of the stations whose observa-
tions of screen-level temperature are assimilated are indicated by
triangles for SWSs and circles for PWSs. Encircled areas A and B
are referred to in the text.

is higher than SWS temperature observations. In this case,
3DEnVarT analysis seems closer than the other analyses to
both PWS and SWS observations, in particular in areas A
and B (Fig. 10d).

To illustrate the shape of temperature increments given by
each DA scheme depending on the observations assimilated
(from SWSs only or from both SWSs and PWSs), at the low-
est atmospheric level for atmospheric DA schemes and at
ground level for surface schemes, experiments starting from
the same 3DVar operational background at 14:00 UTC are
shown in Fig. 11.

Increments at the lowest atmospheric model level have
lower horizontal gradients in 3DVar (Fig. 11a) with respect
to 3DEnVar (Fig. 11b) and in 3DVarT (Fig. 11d) with re-
spect to 3DEnVarT (Fig. 11e). Because the information from
observations propagates at a longer distance with the set-
tings of the 3DVar DA scheme than the 3DEnVar DA scheme
(as shown in Sect. 2.1.1), increments of the same sign as
the OmBs of coastal observations propagate over longer dis-
tances at sea in 3DVar and 3DVarT than in 3DEnVar or
3DEnVarT.

The assimilation of PWS observations in 3DVarT and
3DEnVarT modifies the shape and sign of the increments
when compared to 3DVar and 3DEnVar, extending positive
increments southwards in particular.

In area B and generally inland, increments are much lower
than the neighbouring SWS OmBs in 3DEnVar, whereas it is
not the case in 3DVar. As shown in Sect. 4, the 3DEnVar DA
scheme gives less relative weight to surface temperature ob-
servations, which explains why observations have little im-
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Figure 11. Temperature increments (a–b, d–e) at the lowest atmospheric model level (around 5 m height a.g.l.) and (c, f) at the highest surface
model level (ground at 0 m height a.g.l.) on 7 September 2021 at 15:00 UTC. These experiments are designated (a) 3DVar, (b, c) 3DEnVar,
(d) 3DVarT, (e) 3DEnVarT, and (f) 3DEnVarT-surf experiments. Their only difference from the experiments referred to by these four names
is that they all start from the same 3DVar background at 14:00 UTC. The locations of stations whose observations of screen-level temperature
are assimilated are indicated by triangles for SWSs and circles for PWSs; their colours indicate temperature OmBs.

pact on the temperature analysis. Assimilating PWS observa-
tions (Fig. 11e) increases the amplitude of increments, in par-
ticular inland, in 3DVarT with respect to 3DVar or in 3DEn-
VarT with respect to 3DEnVar.

At ground level, the shape of the ground temperature in-
crements with the OI in the 3DEnVar experiment (Fig. 11c)
is similar to the shape of the atmospheric increments in the
3DVar experiment. When assimilating PWS temperature ob-
servations with the OI, the sign of increments at the surface
is generally the same as the sign of increments added in the
atmosphere in 3DVarT or 3DEnVarT, and their values are
closer to 3DVarT than to 3DEnVarT.

5.2 Fog on 23 September 2021

The Saône valley, in the north-west of France (Fig. 2), is
regularly affected by fog during the autumn and winter
seasons. Situated between the Morvan and the Jura moun-
tainous massif, it is crossed by a few rivers, including the
Saône (Fig. 9b), providing humidity near the surface. On
23 September 2021, high-pressure conditions are associ-
ated with stable air masses over France (not shown). At
09:00 UTC (Fig. 9b), MSG-3 satellite HRV observations
indicate the presence of low clouds. These clouds reach
the ground, causing mist and fog: SWS and PWS relative
humidity observations reach 90 % to 100 %; three human
crowdsourced observations indicate fog between 08:00 and

09:00 UTC; and a forward scatter sensor at Tavaux SWS,
south-west of Dole, observes a meteorological optical range
of 1020 m at 09:00 UTC between mist and fog. Out of the
fog, between 4.5 and 5° E, relative humidity observations
range from 60 % to 90 %.

Figure 12 shows the evolution of relative humidity in the
backgrounds and analyses of two experiments at two assimi-
lation times: 09:00 and 10:00 UTC.

At 09:00 UTC, at the lowest atmospheric level, relative hu-
midity backgrounds of 3DEnVar (Fig. 12a) and 3DEnVar-
RHS (Fig. 12e) experiments are different due to the cycled
assimilation. High values of relative humidity simulated by
3DEnVarRHS appear closer to the MSG-3 observation of
clouds, in its east–west extension, than 3DEnVar. The anal-
ysis at 09:00 UTC (Fig. 12b, f) slightly increases the relative
humidity under the observed fog but is not able to substan-
tially modify the shape of the wet area in the background
in only one assimilation time step, in particular in 3DEnVar
where only SWS observations are assimilated.

At 10:00 UTC, the 1 h forecast drastically reduces the wet
area for both experiments (Fig. 12c, g). Whereas in 3DEn-
Var the area with relative humidity above 91 % is still large
in its east–west extension, in 3DEnVarRHS the wettest area
is located where clouds are still observed by satellite. The
assimilation at 10:00 UTC increases the relative humidity in
this area, for both experiments, which exceeds 94 %, as indi-
cated by one SWS, only in 3DEnVarRHS.
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Figure 12. Relative humidity at the lowest atmospheric model level (around 5 m height a.g.l.) for (a–d) 3DEnVar and (e–h) 3DEnVarRHS
experiments on 23 September 2021. (a, c, e, g) Backgrounds and (b, d, f, h) analyses are shown at two consecutive assimilation times: (a,
b, e, f) 09:00 UTC and (c, d, g, h) 10:00 UTC. Assimilated observations of relative humidity from (triangles) SWSs and (circles) PWSs
are indicated. MSG-3 satellite HRV channel reflectance observations equal to 24 % and 43 % are shown by bold and thin black edges,
respectively.

This example shows the importance of rapid update cycles
in DA, as one assimilation may have a low impact, but several
are gradually changing the simulated relative humidity. The
model plays a preponderant role in reducing the simulated
fog from 09:00 to 10:00 UTC. Here this situation is illus-
trated with 3DEnVarRHS because this experiment is closer
to the observations than 3DEnVarRH. Regarding the results
of 3DEnVarRH-surf, in this case, the assimilation of PWS
observations in the OI scheme at the surface does not change
the shape and the intensity of the simulated fog (not shown).

6 Discussion and conclusion

This study has explored the impact of the assimilation of
temperature and relative humidity observations from PWSs
in the current operational AROME system. Before the tra-
ditional screening stage of a DA system, two pre-processing
methods of PWS observations were designed and selected.
This was done to obtain pre-processed PWS observations
with statistics of differences from the AROME background
close to SWS observations currently assimilated in the
AROME DA system.

– Of the four bias correction methods evaluated, two have
been selected, including the method of Sgoff et al.
(2022) designed to reduce the diurnal bias of PWSs.
Because these methods are based on statistics of differ-
ences between AROME background and observations,
there is a risk of transferring model bias to PWS ob-
servations, hence the importance of assimilating anchor
near-surface observations.

– Two quality control methods have been evaluated. The
Titan-QC original design with three checks has been
found to be detrimental when multiple PWSs exhibit
biases with respect to SWS observations; however, all
checks described by Båserud et al. (2020) such as the
“first guess” test have not been tested. A QC adapted
from Mandement and Caumont (2020) has been used to
remove PWS observations judged to be erroneous based
on their departures from the AROME background.

– A thinning has been applied to reduce the probability
of having correlated observation errors by taking one
random observation per mesh in an approximately 8 km
horizontally spaced regular Gaussian grid.
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Then, the OSE framework was used: the added value
of PWS observation assimilation with two selected pre-
processing methods and existing DA schemes has been quan-
tified. The assimilation of pre-processed PWS temperature
observations with the 3DEnVar DA scheme reduced between
0.7 and 0.9 % the rms SWS temperature OmBs in France, de-
pending on the pre-processing method. Departures between
SWS observations and forecasts are reduced up to the 3 to 6 h
range. Results are similar for PWS relative humidity observa-
tions, with a reduction of 1.2 % to 1.5 % of the rms SWS rel-
ative humidity OmBs in France. These findings are in agree-
ment with benefits found by Sgoff et al. (2022) in experi-
ments where PWS and SWS observations were not jointly
assimilated.

Finally, the assimilation of pre-processed PWS observa-
tions with the 3DEnVar DA scheme has been subjectively
found to better represent the fine-scale features of a sea
breeze during a heatwave event, as well as the evolution of a
fog event. In these case studies, the relative weight given to
near-surface observations is found to be lower in 3DEnVar
compared to 3DVar, which is compensated for by the high
number of PWS observations assimilated.

Two distinct bias corrections have been evaluated. The
monthly bias correction (BC-M) demonstrates superior per-
formance in reducing the departure between SWS observa-
tions and the model background. In contrast, the 2 d temporal
window bias correction (BC-S) exhibits adaptive correction
capabilities that have been shown to be relevant in case stud-
ies. Further tests involving different seasons would be bene-
ficial in order to validate the results.

This study has some limitations. The OmBs used for P-
M and P-S pre-processing for all experiments are computed
from a monitoring experiment with a 3DVar DA scheme
(Monitor). A more rigorous calculation would require a mon-
itoring experiment to be carried out for each assimilation
scheme tested. To determine the thinning distance, the spatial
Desroziers diagnostic (Fig. 7) is computed from an experi-
ment with a 3DEnVar DA scheme. This thinning distance is
applied to the experiments with a 3DVar DA scheme as well.
Perhaps the scores of the 3DVar experiments are degraded by
an inappropriate choice of the thinning length, which could
be increased in future studies. Furthermore, no testing has
been specifically conducted in complex topographical areas,
such as mountainous regions, where the pre-processing may
deteriorate the new observations or reject them due to tem-
perature model bias (Gouttevin et al., 2023), or in urban ar-
eas. In DA, the observation error includes two contributions:
a measurement error and a representativity error. The as-
sumption that observational errors are uncorrelated becomes
less and less valid as the average spacing between observa-
tions decreases, requiring the use of thinning techniques. Mi-
croclimatic variations, for example in urban environments,
are currently considered as representativity errors if we can-
not model them and are therefore also considered to be rep-
resentativity errors by QC algorithms based on OmB thresh-

olds. Advances in surface modelling, the refinement of hori-
zontal grids, and work on modelling the correlation of obser-
vation errors should gradually reduce the proportion of mi-
croclimatic variations considered as a source of error.

The joint assimilation of temperature, relative humidity,
and surface pressure observations from PWSs in AROME
could now be tested, as these variables describe weather
structures more coherently together than separately. Efforts
should be made to evaluate such a joint assimilation over a
wider variety of cases and perhaps over longer study periods.
In these joint experiments, the correlation of observation er-
rors, especially between T2 m and RH2 m observations, should
be examined. Correlated observation error issues could be
addressed by modelling a non-diagonal observation error co-
variance matrix or by inflating observation errors. Finally,
further work remains to determine the potential for assimi-
lating observations from PWS anemometers and rain gauges,
with specific pre-processing.

For operational use, beyond the recommendations of D24
which also apply in this case, this study has not attempted to
modify the settings of the assimilation systems used (3DVar,
3DEnVar, or OI), and the few new settings have been chosen
identically to the operational ones. However, studies of the
sensitivity of these settings would be desirable given their
importance in the results obtained and because they are set to
obtain the best scores with the observations currently assim-
ilated. In the atmosphere, while the 3DEnVar system is cur-
rently only being tested, there are plans to replace it rapidly
with a 4DEnVar system: it would allow more observations to
be included in the analysis by making it possible to assimi-
late time series of observations. At the surface, the replace-
ment of the OI by a 2DEnVar system is currently under study.
This would allow more observations to be assimilated at the
surface and ensure greater consistency between atmospheric
and surface schemes; it is also a first step before possibly
coupling surface and atmospheric DA systems.

Appendix A: Relative humidity computation

The relative humidity (RH) is calculated in AROME as

RH=
100Pq

esat

(
Rdry
Rvap
+ q

(
1− Rdry

Rvap

)) . (A1)

P is the pressure (in Pa); q is the specific humid-
ity (dimensionless); and Rdry = 287.0597 Jkg−1 K−1 and
Rvap = 461.5250 Jkg−1 K−1 are the gas constants for dry air
and water vapour, respectively.

The saturation vapour pressure esat (in Pa) is equal to

esat = exp(αl+ (αs−αl)δ−
βl+ (βs−βl)δ

T

− (γl+ (γs− γl)δ) ln(T )), (A2)
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with δ = 0 if T ≥ 273.16K and δ = 1 if T < 273.16K and

αl = ln(esat(Tt ))+
βl

Tt
+ γl ln(Tt ), βl =

Lv(Tt )

Rv
+ γlTt,

γl =
Cl−Cpv

Rv
,

(A3)

αs = ln(esat(Tt ))+
βs

Tt
+ γs ln(Tt ), βs =

Ls(Tt )

Rv
+ γsTt,

γs =
Cs−Cpv

Rv
.

(A4)

T is the temperature (in K), Tt = 273.16K is the triple-point
temperature, Lv(Tt )= 2.5008× 106 Jkg−1 is the specific la-
tent heat of vaporization, Ls(Tt )= 2.8345× 106 Jkg−1 is
the specific latent heat of sublimation, esat(Tt )= 611.14Pa,
Cl = 4218Jkg−1 K−1 is the specific heat for water in its liq-
uid phase,Cs = 2106Jkg−1 K−1 is the specific heat for water
in its solid phase, and Cpv = 4Rvap is the specific heat at con-
stant pressure and constant volume for water vapour.

Appendix B: Comparison of observations and AROME
background by triple collocation

PWS and SWS screen-level observations are considered col-
located when separated by less than 1 km horizontally, 50 m
vertically, and less than 10 min apart in time. When it hap-
pens, the AROME background from the Monitor experiment
(Table 1) corresponding to this SWS observation, given by
the observation operator, provides a third value of the phys-
ical variable considered (T2 m or RH2 m). This triple colloca-
tion method (Stoffelen, 1998) is performed over the 1-month
study period, giving a sample of 536 000 (80 000) triplets of
collocated values for temperature (relative humidity).

Figure B1. Boxplots showing distributions of pairwise differences in (a) T2 m and (b) RH2 m in triplets of collocated values (SWS obser-
vations, PWS observations, AROME background from Monitor), depending on the pre-processing (raw, P-M without thinning, P-S without
thinning) applied to PWS observations.

For each variable, three triplets with three different pre-
processing methods for PWS observations are tested: (i) raw,
i.e. without pre-processing; (ii) P-M without thinning; and
(iii) P-S without thinning. We will refer to them simply as
P-M and P-S in this paragraph only. Figure B1 shows dis-
tributions of pairwise differences between the values in each
triplet.

Regarding the distributions of temperature differences be-
tween PWS and SWS collocated observations, their standard
deviation is substantially reduced when pre-processing is ap-
plied, from 2.3 °C (raw) to 1.3 °C with P-M or 1.3 °C with P-
S. Also, mean differences are closer to 0, and the interquartile
range is reduced.

Regarding the distributions of temperature differences be-
tween the pre-processed PWS observations, with both P-M
and P-S, and the AROME background, the standard devia-
tion equals 1.0 °C, which is smaller than 1.3 °C, the standard
deviation of differences between the pre-processed PWS ob-
servations and SWS observations. This could show that the
selected pre-processing methods of PWS observations overfit
the AROME background.

Similar conclusions can be drawn for relative humidity,
although the effects of PWS pre-processing do not reduce in-
terquartile ranges of differences from SWS observations or
the AROME background by the same factor as for tempera-
ture.
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