Supplement of Nat. Hazards Earth Syst. Sci., 25, 4263–4281, 2025 https://doi.org/10.5194/nhess-25-4263-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Review article: Towards multi-hazard and multi-risk indicators – a review and recommendations for development and implementation

Christopher J. White et al.

Correspondence to: Christopher J. White (chris.white@strath.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary tables

Table S1. Search terms used in this study to obtain peer-reviewed literature from Scopus, Web of Science and PubMed including multi-hazard/risk (Level 1 search terms) and indicators (Level 2 search terms).

Level 1: Multi-hazard/risk		Lev	Level 2: Indicators	
1	multi-hazard*	1	indicator*	
2	multihazard*	2	index*	
3	multi hazard*	3	indices	
4	multi-risk*	4	metric*	
5	multirisk*	5	disaster risk indicator*	
6	multi risk*			
7	compound* hazard*			
8	compound* event*			
9	compound* risk*			
10	interacting hazard*			
11	interacting event*			
12	interacting risk*			
13	cascading hazard*			
14	cascading event*			
15	cascading risk*			
16	interconnected hazard*			
17	interconnected event*			
18	interconnected risk*			
19	interrelated hazard*			
20	interrelated event*			
21	interrelated risk*			
22	multiple hazard*			

Table S2. Search strings used in Scopus, Web of Science and PubMed.

Scopus	Web of Science	PubMed
TITLE-ABS-KEY-AUTH	(TI=("multi-hazard*" OR	("multi-
("multi-hazard*" OR	"multihazard*" OR "multi	hazard*"[Title/Abstract] OR
"multihazard*" OR "multi	hazard*" OR "multi-risk*" OR	"multihazard*"[Title/Abstract]
hazard*" OR "multi-risk*" OR	"multirisk*" OR "multi risk*"	OR "multi
"multirisk*" OR "multi risk*"	OR "compound* hazard*" OR	hazard*"[Title/Abstract] OR
OR "compound* hazard*" OR	"compound* event*" OR	"multi-risk*"[Title/Abstract]
"compound" event" OR	"compound* risk*" OR	OR
"compound" risk"" OR	"interacting hazard*" OR	"multirisk*"[Title/Abstract]
"interacting hazard*" OR	"interacting event*" OR	OR "multi
"interacting event*" OR	"interacting risk" OR	risk*"[Title/Abstract] OR
"interacting risk" OR	"cascading hazard*" OR	"compound*
"cascading hazard*" OR	"cascading event*" OR	hazard*"[Title/Abstract] OR
"cascading event*" OR	"cascading risk*" OR	"compound*
"cascading risk*" OR	"interconnected hazard*" OR	event*"[Title/Abstract] OR
"interconnected hazard*" OR	"interconnected event*" OR	"compound"
"interconnected event*" OR	"interconnected risk*" OR	risk*"[Title/Abstract] OR
"interconnected risk*" OR	"interrelated hazard*" OR "	"interacting
"interrelated hazard*" OR "	interrelated event*" OR	hazard*"[Title/Abstract] OR
interrelated event*" OR	"interrelated risk*" OR	"interacting
"interrelated risk*" OR	"multiple hazard*") OR	event*"[Title/Abstract] OR
"multiple hazard*") AND	AB=("multi-hazard*" OR	"interacting risk"
TITLE-ABS-KEY-	"multihazard*" OR "multi	[Title/Abstract] OR "cascading
AUTH("indicator*" OR	hazard*" OR "multi-risk*" OR	hazard*"[Title/Abstract] OR
"index*" OR "indices" OR	"multirisk*" OR "multi risk*"	"cascading
"metric*" OR "disaster risk	OR "compound* hazard*" OR	event*"[Title/Abstract] OR
indicator*")	"compound* event*" OR	"cascading
Results = 769	"compound* risk*" OR	risk*"[Title/Abstract] OR
Date Range is 2015 – present	"interacting hazard*" OR	"interconnected
(day of search $3/11/2023$) =	"interacting event*" OR	hazard*"[Title/Abstract] OR
621	"interacting risk" OR	"interconnected
English = 597	"cascading hazard*" OR	event*"[Title/Abstract] OR
Zinginin (5)	"cascading event*" OR	"interconnected
	"cascading risk*" OR	risk*"[Title/Abstract] OR
	"interconnected hazard*" OR	"interrelated
	"interconnected event*" OR	hazard*"[Title/Abstract] OR "
	"interconnected risk*" OR	interrelated
	"interrelated hazard*" OR "	event*"[Title/Abstract] OR

interrelated	event*"	OR			
"interrelated	risk*"	OR			
"multiple h	azard*")	OR			
AK=("multi-ha	ızard*"	OR			
"multihazard"	OR "1	nulti			
hazard*" OR "multi-risk*" OR					
"multirisk*" O	R "multi ri	sk*"			
OR "compound	d* hazard*'	OR			
"compound"	event*"	OR			
"compound"	risk*"	OR			
"interacting	hazard*"	OR			
"interacting	event*"	OR			
"interacting	risk"	OR			
"cascading	hazard*"	OR			
"cascading	event*"	OR			
"cascading	risk*"	OR			
"interconnected	d hazard*"	OR			
"interconnected	d event*"	OR			
"interconnected	d risk*"	OR			
"interrelated h	nazard*" O	R "			
interrelated	event*"	OR			
"interrelated	risk*"	OR			
"multiple haz	zard*'')) A	AND			
(TI=("indicator	*" OR "ind	ex*"			
OR "indices"	OR "met	ric*"			
OR "disaster r	risk indicato	or*")			
OR AB=("in	dicator*"	OR			
"index*" OR	"indices"	OR			
"metric*" OR	"disaster	risk			
indicator*")		OR			
AK=("indicato		OR			
"index*" OR	"indices"	OR			
"metric*" OR	"disaster	risk			
indicator*"))					
Results = 590					
Date Range is 2015 - present					
(day of search $3/11/2023$) =					
498					
English = 494					

"interrelated risk*"[Title/Abstract] OR "multiple hazard*"[Title/Abstract]) AND ("indicator*"[Title/Abstract] "index*"[Title/Abstract] OR OR "indices" [Title/Abstract] OR "metric*"[Title/Abstract] OR "disaster indicator*"[Title/Abstract]) Results = 109Date Range is 2015 - present (day of search 3/11/2023) = 84 English = 83Free Full Text = 49

Table S3. Broad classification of hazards with corresponding hazard types. The classification is adapted from the UNDRR hazard information profile (HIPs).

Broad classification	Specific hazards	
Meteorological and	Drought	
hydrological	Extreme precipitation	
	Extreme temperature	
	Flood - fluvial, pluvial, coastal or flash flood	
	Heatwaves (or cold waves)	
	Storm - tropical cyclone, tornado, wind storm, extra-tropical cyclone, hail,	
	electrical/thunderstorm	
	Tsunami	
Geohazards	Earthquake	
	Erosion - coastal erosion and shoreline change	
	Landslide	
	Tsunami - volcanic/earthquake triggering	
	Volcanic eruption	
Environmental	Erosion - river bank erosion	
	Erosion - soil erosion	
	Sea level rise	
	Soil salinity	
	Wildfire (Wildfire, forest fire)	
Technological	Flood - sewer or reservoir flooding	
	Pollution	

Supplementary figures

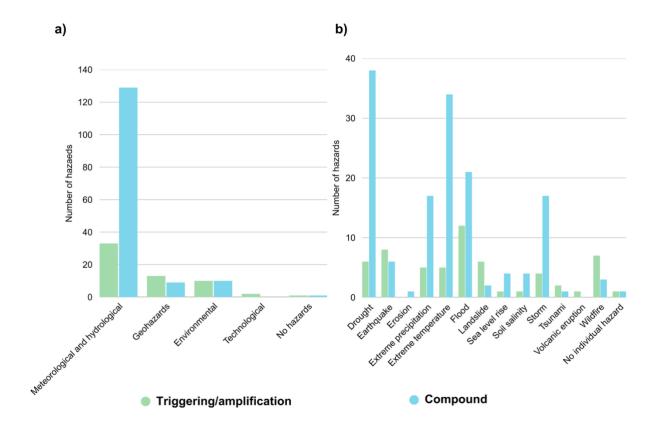


Figure S1. Distribution of hazards addressed in multi-hazard studies involving compound events or triggering/amplification relationships. (a) shows the number of hazards categorized according to the UNDRR's Hazard Information Profiles (HIPs) classification. (b) displays the number of studies based on the primary hazard involved in each multi-hazard sequence.

Supplementary text

Multi-layered single hazard indicators

Approximately 45% of the 192 reviewed articles focused on multi-layer single hazard studies, primarily targeting meteorological, hydrological, and geological hazards. Notably, these studies did not account for interactions between hazards. Indicators in this category were typically applied to individual hazards or aggregated into composite forms. Individually applied indicators often describe a hazard's extent and intensity. Single-variable indicators—frequently used in machine learning (ML) applications—support the identification of areas potentially exposed to specific hazards. This approach is particularly common in flood and landslide susceptibility assessments, where past occurrences and hazard preconditioning factors inform predictions of future hazard potential (Nguyen et al., 2023; Rehman and Azhoni, 2023; Pourghasemi et al., 2020). However, these studies are highly dependent on the quality of input data and often lack consideration of interactions or temporal overlaps between hazards.

In studies using composite indicators, multiple hazard maps are often overlaid for a specific geographic region. For instance, Emrich et al. (2022) developed a Composite Multi-Hazard Index (CHI) map for the United States, integrating 15 natural hazards and classifying them into five groups: (1) severe weather; (2) flooding, hurricanes, and storm surges; (3) winter weather; (4) heat, drought, and wildfires; and (5) earthquakes. These composite indicators are typically standardised or normalised to categorise hazard intensity levels (e.g., "very low" to "very high"). This methodology facilitates the inclusion of a broad array of variables and is widely employed in hazard mapping (e.g., Wang and Sebastian, 2022; Fleming et al., 2023; Ou et al., 2022; Barasa et al., 2022; Murnane et al., 2019).

Another subset of multi-layer single hazard studies involves assigning weights to individual hazard-causing factors, thereby reflecting variations in hazard intensities. Multi-hazard indicators developed using methods such as the Analytical Hierarchy Process (AHP) (Durlević et al., 2021; Guerriero et al., 2022) or ML-based algorithms (Mandal et al., 2022) exemplify this approach. Nonetheless, despite their methodological rigor, these studies still neglect spatiotemporal interactions among hazards, justifying their classification as multi-layer single hazard analyses.

Risk indicators based on multi-layer single hazards

Risk assessment research has increasingly incorporated multi-layer single hazard approaches. Among the 86 studies identified in this category, approximately 41% (n = 35) addressed risk, with the majority (n = 32) focusing on meteorological and hydrological hazards.

These risk assessments span multiple scales, from global to national levels, each employing context-specific methodologies. At the global scale, Marulanda Fraume et al. (2020) introduced a holistic risk assessment framework using data from 216 countries. Their model evaluated physical risk through direct hazard-induced damage and examined underlying risk drivers and amplifiers. At the national scale, Zuzak et al. (2022) developed the National Risk Index (FEMA, US), which integrates diverse

geographic datasets and risk factors to generate a county-level risk profile. This index uses a transdisciplinary approach, involving stakeholder participation and composite indicators for comprehensive risk evaluation.

Several studies have also incorporated social vulnerability into multi-hazard risk assessments. Bixler et al. (2021), for example, used a modified Social Vulnerability Index (SoVI) to assess hazard exposure at the census block level. Similarly, Guillard-Gonçalves et al. (2015) applied SoVI in Greater Lisbon to delineate risk zones for six natural hazards—including earthquakes, floods, flash floods, landslides, tsunamis, and coastal erosion—through susceptibility and exposure mapping at the parish level.

Further, the scope of these studies extends to a variety of assets, including cultural heritage, rural communities, agriculture, and infrastructure. Valagussa et al. (2021) proposed the UNESCO Risk Index for assessing multiple hazard risks to cultural heritage sites in Europe. Asare-Kyei et al. (2017) developed the West Sudanian Community Risk Index to quantify drought and flood risks in rural West Africa, validated through a novel Community Impact Score (CIS).

Multi-criteria decision analysis (MCDA) is frequently employed to assess risk across multiple natural hazards. For instance, Arvin et al. (2023) used MCDA to integrate 25 indicators, evaluating flood, earthquake, and landslide exposure, as well as infrastructure resilience in Iran. In another example, Pagliacci (2019) created a risk framework for Italy's agri-food sector, using composite indicators for hazards, exposure, vulnerability, and overall risk across municipalities. Nofal et al. (2023) introduced a method for assessing infrastructure resilience to hurricane-related hazards, considering physical damage, functionality, and demographic factors, and employing composite indicators to quantify structural impacts. Additionally, Anderson et al. (2021) developed ecological and social vulnerability indices for the Mississippi Delta, which were combined into a multi-hazard vulnerability index. Asare-Kyei et al. (2017) also created a community-based socio-ecological systems (SES) indicator and validated it using a CIS framework.

References

- Anderson, C., Renaud, F., Hagenlocher, M., and Day, J.: Assessing Multi-Hazard Vulnerability and Dynamic Coastal Flood Risk in the Mississippi Delta: The Global Delta Risk Index as a Social-Ecological Systems Approach, Water, 13, 577, 10.3390/w13040577, 2021.
- Arvin, M., Beiki, P., Hejazi, S. J., Sharifi, A., and Atashafrooz, N.: Assessment of infrastructure resilience in multi-hazard regions: A case study of Khuzestan Province, International Journal of Disaster Risk Reduction, 88, 2023.
- Asare-Kyei, D., Renaud, F. G., Kloos, J., Walz, Y., and Rhyner, J.: Development and validation of risk profiles of West African rural communities facing multiple natural hazards, PLoS ONE, 12, 2017.
- Barasa, B., Nakileza, B., Mugagga, F., Nseka, D., Opedes, H., Makoba Gudoyi, P., and Ssentongo, B.: Natural Hazards Magnitude, Vulnerability, and Recovery Strategies in the Rwenzori Mountains, Southwestern Uganda, in: Remote Sensing of African Mountains, Springer International Publishing, 83-116, 10.1007/978-3-031-04855-5 5, 2022.
- Bixler, R. P., Yang, E., Richter, S. M., and Coudert, M.: Boundary crossing for urban community resilience: A social vulnerability and multi-hazard approach in Austin, Texas, USA, International Journal of Disaster Risk Reduction, 66, 2021.
- Durlević, U., Novković, I., Lukic, T., and Valjarevic, A. D.: Multi-hazard susceptibility assessment: A case study Municipality of Štrpce (Southern Serbia), Open Geosciences 13, 1414-1431, 2021.
- Emrich, C. T., Zhou, Y., Aksha, S. K., and Longenecker, H. E.: Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data, Sustainability, 14, 2685, 10.3390/su14052685, 2022.
- Fleming, C. S., Regan, S. D., Freitag, A., and Burkart, H.: Indicators and participatory processes: a framework for assessing integrated climate vulnerability and risk as applied in Los Angeles County, California, Natural Hazards, 115, 2069-2095, 10.1007/s11069-022-05628-w, 2023.
- Guerriero, L., Napoli, M. D., Novellino, A., Martire, D. D., Rispo, C., Lee, K., Bee, E., Harrison, A., and Calcaterra, D.: Multi-hazard susceptibility assessment using analytic hierarchy process: the Derwent Valley Mills UNESCO World Heritage Site case study (United Kingdom), Journal of Cultural Heritage, 55, 339-345, 2022.
- Guillard-Gonçalves, C., Cutter, S. L., Emrich, C. T., and Zêzere, J. L.: Application of Social Vulnerability Index (SoVI) and delineation of natural risk zones in Greater Lisbon, Portugal, Journal of Risk Research, 18, 651-674, 10.1080/13669877.2014.910689, 2015.
- Liu, B., Siu, Y. L., Mitchell, G., and Xu, W.: The danger of mapping risk from multiple natural hazards, Natural Hazards, 82, 139-153, 10.1007/s11069-016-2184-5, 2016.
- Mandal, P., Maiti, A., Paul, S., Bhattacharya, S., and Paul, S.: Mapping the multi-hazards risk index for coastal block of Sundarban, India using AHP and machine learning algorithms, Tropical Cyclone Research and Review, 11, 225-243, 2022.
- Marulanda Fraume, M.-C., Cardona A, O.-D., Marulanda Fraume, P., Carreño T, M.-L., and Barbat, A. H.: Evaluating risk from a holistic perspective to improve resilience: The United Nations evaluation at global level, Safety Science, 127, 104739, 10.1016/j.ssci.2020.104739, 2020.
- Murnane, R. J., Allegri, G., Bushi, A., Dabbeek, J., De Moel, H., Duncan, M., Fraser, S., Galasso, C., Giovando, C., Henshaw, P., Horsburgh, K., Huyck, C., Jenkins, S., Johnson, C., Kamihanda, G., Kijazi, J., Kikwasi, W., Kombe, W., Loughlin, S., Løvholt, F., Masanja, A., Mbongoni, G., Minas, S., Msabi, M., Msechu, M., Mtongori, H., Nadim, F., O'Hara, M., Pagani, M., Phillips, E., Rossetto, T., Rudari, R., Sangana, P., Silva, V., Twigg, J., Uhinga, G., and Verrucci, E.: Data schemas for multiple hazards, exposure and vulnerability, Disaster Prevention and Management: An International Journal, 28, 752-763, 10.1108/dpm-09-2019-0293, 2019.
- Nguyen, H. D., Dang, D. K., Bui, Q. T., and Petrisor, A. I.: Multi-hazard assessment using machine learning and remote sensing in the North Central region of Vietnam, Transactions in GIS, 27, 1614-1640, 10.1111/tgis.13091, 2023.

- Nofal, O. M., Amini, K., Padgett, J. E., Van De Lindt, J. W., Rosenheim, N., Darestani, Y. M., Enderami, A., Sutley, E. J., Hamideh, S., and Duenas-Osorio, L.: Multi-hazard socio-physical resilience assessment of hurricane-induced hazards on coastal communities, Resilient Cities and Structures, 2, 67-81, 10.1016/j.rcns.2023.07.003, 2023.
- Ou, X., Lyu, Y., Liu, Y., and Zheng, X.: Integrated multi-hazard risk to social-ecological systems with green infrastructure prioritization: A case study of the Yangtze River Delta, China, Ecological Indicators, 136, 2022.
- Pagliacci, F.: Agri-food activities in jeopardy—A territorial analysis of risks from natural hazards, Land Use Policy, 87, 2019.
- Pourghasemi, H. R., Kariminejad, N., Amiri, M., Edalat, M., Zarafshar, M., Blaschke, T., and Cerda, A.: Assessing and mapping multi-hazard risk susceptibility using a machine learning technique, Scientific Reports, 10, 3203, 10.1038/s41598-020-60191-3, 2020.
- Rehman, S. and Azhoni, A.: Multihazard Assessment of the Sutlej-Beas River Basin Using Bivariate Statistical Frequency Ratio (FR) Model and Management Barriers of Land-River Interface, Environmental Modeling & Assessment, 28, 673-692, 10.1007/s10666-023-09886-1, 2023.
- Valagussa, A., Frattini, P., Crosta, G., Spizzichino, D., Leoni, G., and Margottini, C.: Multi-risk analysis on European cultural and natural UNESCO heritage sites, Natural Hazards, 105, 2659-2676, 10.1007/s11069-020-04417-7, 2021.
- Wang, Y. V. and Sebastian, A.: Equivalent hazard magnitude scale, Natural Hazards and Earth System Sciences, 22, 4103-4118, 10.5194/nhess-22-4103-2022, 2022.
- Zuzak, C., Mowrer, M., Goodenough, E., Burns, J., Ranalli, N., and Rozelle, J.: The national risk index: establishing a nationwide baseline for natural hazard risk in the US, Natural Hazards, 114, 2331-2355, 10.1007/s11069-022-05474-w, 2022.