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Abstract. Drought is a recurrent and significant driver of
stress on agricultural enterprises in Australia. Historically,
rainfall indices have been used to identify drought and inform
government responses. However, rainfall indicators may not
fully reflect agricultural or economic drought conditions and
are a lagging indicator. To address these shortcomings, the
AADI (Australian Agricultural Drought Indicators) was re-
cently developed to monitor and forecast drought for up-
coming seasons using biophysical and agro-economic mod-
els, including crop yields, pasture growth and farm profit, at
∼ 5 km2 resolution. Here, we evaluate the skill of drought
indicator forecasts driven by the ACCESS-S2 dynamical
global climate model over a hindcast period from 1990–
2018. Analysis of the AADI hindcasts finds that antecedent
landscape conditions significantly enhance predictive skill
for crop yields, pasture growth and farm profit across a fi-
nancial year. As lead time shortens from 12 to 3 months,
forecast confidence increases: median farm profit skill rises
from 43 % at 12 months to 67 % and 73 % at 6 and 3 months,
respectively, whilst median farm profit biases remain be-
low 2 % across all lead times, with high reliability indicat-
ing a well-calibrated ensemble, making the forecasts highly
suitable for risk management and decision-making. Forecasts
for wheat, sorghum, and pasture are also skilful and reliable
in ensemble spread, although residual biases can occur (e.g.
up to 20 % for sorghum) and suggests further system refine-
ments are needed. Analysis of historical events under both

dry and wet conditions demonstrated the AADI system’s
ability to identify drought-impacted areas with increased
confidence up to 6 months earlier than rainfall deficits.

1 Introduction

Drought is a recurrent and significant challenge in Australia
and affects water resources, agriculture and ecosystems (Van
Dijk et al., 2013; Devanand et al., 2024; Holgate et al., 2020;
Lindesay, 2005). Two major droughts in recent decades are
the Tinderbox Drought (2017–2020) and the Millennium
Drought (2001–2009), which both had major impacts on in-
dustry and the environment. Even outside of drought periods,
industries such as cropping and livestock are exposed to risks
from high seasonal climate variability, long-term declines in
cool season rainfall (Mckay et al., 2023) and/or decadal mon-
soon variability (Heidemann et al., 2023). Historically, gov-
ernment responses to drought impacts in the agriculture sec-
tor have been informed by meteorological drought indicators
such as rainfall deficits. However, it is understood that rain-
fall indicators are often flawed proxies for agricultural and
economic drought impacts (Hughes et al., 2022a; Das et al.,
2023; Stagge et al., 2015; Wang et al., 2022). In the absence
of accurate assessments of agricultural impacts, government
drought responses can be poorly directed and overly reac-
tive to media narratives (Rutledge-Prior and Beggs, 2021).
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Addressing these challenges requires not only monitoring of
drought conditions but also forecasting of drought onset and
recovery (Das et al., 2023; Stagge et al., 2015; Wang et al.,
2022).

Whilst many drought warning systems have been de-
veloped globally, most focus on meteorological indicators
and emphasise monitoring over forecasting (Van Ginkel and
Biradar, 2021). In Australia, tools like the AussieGRASS
model (Carter et al., 2000) have long provided forecasts of
agricultural indicators like pasture growth using analogues
selected according to the Southern Oscillation phase (https:
//www.longpaddock.qld.gov.au/aussiegrass/, last access: 20
June 2025). In recent work, Bhardwaj et al. (2023) combined
rainfall, soil moisture and evapotranspiration into a princi-
pal component analysis (PCA) index, which they then paired
with seasonal rainfall forecasts to develop a drought con-
cern matrix. For example, dry antecedent conditions coupled
with a high likelihood of low rainfall correspond to the high-
est level of drought concern. Whilst Bhardwaj et al. (2023)
demonstrated the use of seasonal forecasts in a drought early
warning system, more work is needed to understand the
regional economic impacts of agricultural drought across
the combined cropping and grazing sectors, particularly as
drought impacts can be modulated by external factors such
as commodity prices.

The Australian Bureau of Agricultural and Resource Eco-
nomics and Sciences (ABARES) has developed a statisti-
cal farm microsimulation model – farmpredict – which in-
tegrates climate data and farm survey data to predict consol-
idated farm profit for a region (Hughes et al., 2019, 2022b).
An example of farmpredict output is provided in Fig. 1,
which shows the expected relative farm profit for the finan-
cial year 2018–2019, where the negative impact of the Tin-
derbox Drought (Devanand et al., 2024) on farm profits can
be seen over south-eastern Australia. The question arises,
then, whether farmpredict can be successfully driven by cli-
mate forecast ensembles to generate skilful forecasts of fi-
nancial outcomes for farm businesses.

Such an approach is not without precedent, as climate fore-
cast ensembles have been used to generate seasonal outlooks
of crop yields (e.g. Potgieter et al., 2022; Schepen et al.,
2020a). Indeed, in addition to farm profit outlooks, drought
analysts and policy planners can also be interested in the po-
tential yield outlooks for winter and summer crops or pasture
availability for livestock.

Here, we connect climate forecasts from the Bureau of
Meteorology’s ACCESS-S2 seasonal model to farmpredict,
crop models and a pasture model, considering only rainfed
systems. Initially, climate forecast post-processing is needed
to develop forecast ensembles that have the same character-
istics as the observations used in the downstream models.
New drought indicator forecasts are generated by forcing the
downstream models with the post-processed climate ensem-
bles on a 5 km grid across Australia. Corresponding pseudo-
observations of the target variables, which we call historical

simulations, are generated by forcing the same models with
observational weather data.

In this study, we assess the forecast performance of four
agriculturally focused drought indicators – pasture growth,
wheat yield (representing winter crops), sorghum yield (rep-
resenting summer crops) and farm profit – that form the
AADI (Australian Agricultural Drought Indicators) system
(Hughes et al., 2025). Often, drought system performance is
evaluated using threshold or categorical forecasts (e.g. bot-
tom tercile) (Madrigal et al., 2018; Sutanto et al., 2020; Li
et al., 2023). Here, we verify forecasts using ensemble verifi-
cation metrics and an ensemble of 51 members, which allows
assessment across the range of thresholds and performance
for non-drought years as well as drought years. Forecast per-
formance is investigated in terms of bias, accuracy (using the
continuous ranked probability score), reliability (using prob-
ability integral transforms) and sharpness (using the inter-
decile range, IDR). Additionally, we analyse the evolution of
forecasts for major historical events.

The paper is subsequently organised as follows. Sections 2
and 3 present the data and methods, including a summary
of the climate, biophysical and farmpredict models, climate
forecast downscaling, cross-validation, and forecast verifi-
cation. In Sects. 4 and 5, the results are presented and dis-
cussed, respectively. Section 6 concludes the paper with
the main findings. It is anticipated that the results of this
study will support the operational AADI system by providing
drought analysts with a level of confidence in the forecasts
dependent on location, lead time and indicator, as well as by
serving as a demonstration of a novel agricultural drought
forecasting system driven by climate ensemble forecasts.

2 Data and models

2.1 SILO gridded climate data

SILO is a gridded dataset of climate data, mostly constructed
from real measurements, that is used as the observational
data. It is interpolated and infilled to give continuous cover-
age across Australia at 5 km resolution (Jeffrey et al., 2001),
which makes it highly suitable for large simulation studies. In
addition, it is already integrated with the AussieGRASS and
APSIM (Agricultural Production Systems sIMulator) simu-
lation systems. SILO is an operational product of the Queens-
land Government and is therefore continuously monitored
and updated for quality.

The complete set of target variables required for the bio-
physical and economic models are minimum and maximum
temperature (Tmin and Tmax), rainfall (Rain), incoming so-
lar radiation (Radn), synthetic pan evaporation (Evap), and
vapour pressure (Vapr). SILO data are aggregated in several
ways for the purposes of climate forecast downscaling; more
details are provided in Sect. 3.1.
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Figure 1. Percentiles of farm profit for the 2018–2019 financial year as output by the farmpredict model using a 1990–2018 baseline. The
shaded regions are agricultural land and constitute the study area.

2.2 ACCESS-S2 climate model

Climate forecasts are sourced from ACCESS-S2, a global dy-
namical climate model from the Australian Bureau of Me-
teorology that provides forecast ensembles up to 6 months
ahead. ACCESS-S2 is selected as the model for real-time
forecasting due to daily updates supporting timely fore-
cast release. For this retrospective testing, raw hindcasts of
ACCESS-S2 (Wedd et al., 2022) are available for initialisa-
tion dates between 1 January 1981 and 31 December 2018.
We make use of ensemble members generated on the 1st of
each month as well as the preceding 8 d, which gives a raw
ensemble comprising 27 members. Because the lag times are
relatively short, the members are assumed to be exchange-
able, which means they are treated as random draws from
the same underlying distribution.

The climate variables used in the calculation of predictors
are daily rainfall (pr), minimum temperature in 24 h (tasmin),
maximum temperature in 24 h (tasmax), net incoming short-
wave solar radiation (rsds), specific humidity (huss), pressure
(ps) and sea surface temperature (sst).

ACCESS-S2 raw data are on an approximate
80 km× 60 km grid. Each run is initialised at midnight
UTC, and forecast variables are provided at a daily time step
up to 215 d ahead. For the purposes of statistical forecast
post-processing, we aggregate the forecasts to a monthly
time step.

2.3 The AADI system

The AADI system links biophysical and agro-economic
models driven by weather observations and forecasts (Fig. 2).
As this study focuses on the hindcasting performance, we re-
fer to Hughes et al. (2025) for details on the configuration of
APSIM, AussieGRASS and farmpredict. However, for com-
pleteness, we give a summary of the critical details here and
describe the key datasets in Table 1.

APSIM simulates potential crop yield under different cli-
matic conditions. For each hindcast year, APSIM is ini-
tialised with 15 years of historical weather data to estab-
lish equilibrium conditions, then run forward with SILO ob-
servations or ACCESS-S2 forecasts. Wheat simulations use
cultivars optimised for yield in each grid cell, with specific
management rules for sowing and fertilisation tailored to
three regional zones. Sowing typically occurs between April
and July, with nitrogen applied based on soil deficits and
crop growth stages. Sorghum uses the “Buster” variety with
optimised density. Currently, AADI produces water-limited
yield, which represents the yield that can be achieved using
current best practices, technology and genetics for rainfed
crops.

AussieGRASS, a pasture growth model operational for
over 25 years, simulates pasture dynamics on a 5 km grid
across Australia. Unlike other models that operate on a point-
based system, AussieGRASS uses highly optimised code to
run daily simulations across all grid cells, integrating tightly
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Figure 2. Schematic of the workflows for (1) generating and verifying climate forecasts under leave-1-year-out cross-validation and (2) sub-
sequently generating and verifying profit, yield and pasture growth forecasts.

Table 1. Key datasets used for AADI forecast verification, description of their purpose, spatial resolution and time periods.

Dataset Purpose Spatial resolution Time period used

ACCESS-S2 hindcasts Input – ensemble forecasts to Native ∼ 60 km grid 1981–2018
drive AADI models downscaled to 5 km

SILO climate grids Input – forcing of baseline model runs; 5 km grid 1960–2018
downscaling of ACCESS-S2 forecasts

Australian Agricultural and Input – training farmpredict and Point data and 1992–2022
Grazing Industry Survey defining grid cell characteristics regridded to 5 km

Soil type data, derived from Input – regional optimisation of APSIM Interpolated to 5 km Static
the National Generic Soil Group

Farm profit Output – simulated financial-year profit (June–July) 5 km grid 1990–2018

Wheat potential yield Output – simulated harvest yield (final yield 5 km grid limited 1990–2018
typically occurs September–January) to wheat zones

Sorghum potential yield Output – simulated harvest yield (final yield 5 km grid limited 1990–2018
typically occurs March–June) to sorghum zones

Pasture growth Output – average growth over 5 km grid 1990–2018
financial year (June–July)

with SILO weather data. This model supports drought assess-
ment and forecasting, providing insights into pasture avail-
ability under varying climatic conditions.

Farmpredict uses a statistical micro-simulation approach
to model Australian broadacre farms, leveraging Australian
Agricultural and Grazing Industry Survey (AAGIS) data and
machine learning (xgboost). It links farm characteristics, cli-
mate and commodity prices to predict farm outputs and fi-

nancial outcomes, including profit (July to June financial
years). For example, farmpredict increases Australian fod-
der price and widens the Australian grain price basis (rel-
ative to global prices) when drought occurs. Trained on
45 000 AAGIS observations from 1991–2022, farmpredict
integrates geocoded farm data with SILO historical climate
data to produce simulations of farm performance under dif-
ferent climatic and economic scenarios.
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3 Methods

The workflow for generating and verifying the AADI fore-
casts is shown in Fig. 2. The next sections describe the vari-
ous components in detail.

3.1 Climate forecast post-processing

Climate forecast post-processing (calibration and downscal-
ing) is required to reduce forecast biases, downscale to local
features, extend forecast lead time and improve forecast re-
liability in ensemble spread. In a sense, post-processing the
climate forecasts can be thought of as “pre-processing” for
the purposes of agricultural simulations. However, we retain
the term post-processing here as it is the usual term for such
statistical methods.

We apply the Bayesian joint probability (BJP) modelling
approach (Wang et al., 2019; Wang et al., 2009) coupled with
an empirical downscaling technique (Potgieter et al., 2022;
Schepen et al., 2020b, a). BJP is applied to calibrate climate
forecasts on the coarse ACCESS-S2 grid. Then, the method
of fragments (MOF; e.g. Westra et al., 2012) is applied to dis-
aggregate forecasts to 5 km spatial resolution and to a daily
time step, as described by Schepen et al. (2020b), who ex-
tended the MOF to disaggregate multiple variables simulta-
neously.

BJP applies transformed bivariate normal distributions
to model the relationship between the predictor variables,
which are taken as the means of the raw ACCESS-S2 en-
sembles, and observed variables, which are taken as the cor-
responding SILO observations. A transformation step ac-
counts for non-normality, and non-continuous variables are
handled through censoring in both the transformation and
BJP models (Wang and Robertson, 2011; Wang et al., 2019).
By conditioning the joint distribution on new values of the
raw forecasts, a calibrated forecast distribution is obtained,
from which a representative ensemble can be sampled. We
sample 51 ensemble members. An advantage of the BJP cal-
ibration, by virtue of being a model output statistics (MOS)
approach, over simple bias corrections (such as linear scal-
ing or quantile mapping) is that it returns the forecast to a
climatology when the relationship between raw forecasts and
observations is weak. In other words, it harnesses skill where
available and returns a baseline forecast otherwise.

Raw versions of the target variables vapour pressure and
evaporation are not directly available from ACCESS-S2;
however, we can approximate them from the available out-
puts using the following standard equations:

vapr=
qPs

0.622+ 0.378q
, (1)

where q is the specific humidity (kgkg−1), and Ps is the sur-
face pressure (Pa),

evap= 0.0135(TA+17.78)×Rs×

(
238.8

595.5− 0.55TA

)
, (2)

where TA is the average surface temperature (°C), and Rs is
the surface solar radiation (MJm−2).

The main reason BJP is applied to monthly, coarse-
resolution forecasts is to calibrate forecasts at the scales of
seasonal signals and because calibration at a high spatial res-
olution and daily time steps is computationally expensive.
However, efficient spatial and temporal downscaling is then
necessary. MOF is efficient but relies on having daily obser-
vational datasets at the target resolution, which we have. In
MOF, each BJP post-processed forecast ensemble member
is matched to aggregated historical observations through a
nearest-neighbour search (Schepen et al., 2020b). The pattern
of observations within the month and at each high-resolution
grid cell is used to simultaneously disaggregate the fore-
cast, which generates sequences with the correct intervari-
able, spatial and temporal correlations. Finally, the Schaake
Shuffle (Clark et al., 2004) is applied to every 5 km grid cell
to link the ensemble members in grid cells across the con-
tinent to generate a national-scale forecast grid with correct
spatial, temporal and intervariable dependencies.

In addition to calibrating the ACCESS-S2 forecasts, the
forecast ensembles are extended up to 18 months ahead
to allow the biophysical and economic models to be run
over multiple financial years. Forecast augmentation occurs
by introducing a “no-input” BJP model for lead times be-
yond 6 months. The no-input models effectively model the
marginal distributions of the climate variables, and the out-
puts can therefore be seamlessly blended with the calibrated
forecasts by disaggregating and shuffling in the same way as
the forecast ensemble members. In effect, the post-processed
forecasts comprise 6 months of ACCESS-S2-based forecasts
extended up to 18 months using model-generated climatol-
ogy.

3.2 Forecast verification

The AADI system produces raw outputs in the form of en-
semble forecasts. It is therefore possible to assess the fore-
casts using ensemble forecast verification methods, which is
the primary way we assess forecast skill. The important as-
pects of forecasts to be verified include accuracy, bias and
reliability. We also assess forecast sharpness for additional
context around these metrics.

Verification of climate forecast post-processing is un-
dertaken via a leave-1-year-out cross-validation framework.
Whilst not able to completely eliminate bias associated with
training and evaluating over the same period (Risbey et al.,
2021), cross-validation is a means to obtain a realistic skill
estimate when there are insufficient data for split-sample test-
ing and remains standard practice in seasonal forecasting.

Model-based agricultural forecasts are verified via com-
parison with the pseudo-observations (i.e. ignoring model
error). As such, the results offer an assessment of climate
forecast skill in a specific agricultural context but do not esti-
mate the absolute skill of these models in forecasting on-the-

https://doi.org/10.5194/nhess-25-4053-2025 Nat. Hazards Earth Syst. Sci., 25, 4053–4070, 2025
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ground agricultural outcomes (crop yields, pasture growth or
farm profits). The related study of Hughes et al. (2025) offers
a detailed assessment of AADI performance against a range
of observed ground truth data, while skill assessments of the
individual models have been published previously (for ex-
ample, Hughes et al., 2022b, present leave-1-year-out cross-
validation results for farmpredict).

3.2.1 Ensemble scores

Percentage bias is calculated to assess systematic over- or
underprediction:

bias (%)=

∑T
t=1

(
ft − ot

)∑T
t=1ot

× 100, (3)

where ft is the forecast ensemble mean for event t , and ot is
the corresponding observation.

The continuous ranked probability score (CRPS) is a met-
ric for evaluating the accuracy of an ensemble forecast con-
sidering the full distribution of the forecast:

CRPSt =

∫
(Ft (x)− 1x≥ot )

2dx, (4)

where Ft is the cumulative distribution function represent-
ing the forecast ensemble for event t , and 1x≥ot is an indica-
tor function representing the cumulative distribution function
(CDF) of the observation, which is 1 for x ≥ ot and 0 oth-
erwise. We adopt the empirical calculation of CRPS as per
Hersbach (2000).

The average CRPS over a set of forecasts is compared to
a baseline or reference set of forecasts and computed into a
skill score that quantifies the percentage reduction in error:

skill score (%)=

(
1−

CRPS

CRPSRef

)
× 100. (5)

The skill score can reach a maximum of 100 %, which in-
dicates a perfect match between forecasts and observations.
A skill score of 0 % indicates that the forecasts and refer-
ence forecasts have similar overall performance. Negative
skill scores are unbounded but indicate that the forecasts do
not add value over knowledge of the historical (climatology)
distribution.

Reliability is assessed through evaluation of the distribu-
tion of probability integral transforms (PITs):

PITt = Ft (ot ). (6)

If the frequency of observations is consistent with forecast
probabilities, then the PIT values over a set of events will
be uniformly distributed (Diebold et al., 1998), which can
be assessed using a standard uniform QQ plot (e.g. Wang
and Robertson, 2011). The mean absolute deviation of the

PITs from the 1 : 1 line can be summarised into an overall
reliability (REL) metric:

REL= 1−
2
M

∑M

i=1

∣∣∣∣ i

M + 1
−PIT(i)

∣∣∣∣ , (7)

where PIT(i) is the ith-ranked PIT value in ascending order,
and the score has been adjusted to range between 0 and 1,
where 1 is perfect reliability, and 0 is poor reliability.

In a properly calibrated ensemble forecasting system, fore-
cast sharpness and forecast skill will be related. However, to
aid in the interpretation of reliability with respect to bias and
forecast sharpness, we consider the relative width of the fore-
cast ensemble interdecile range (IDR) over the climatological
IDR as a measure of forecast ensemble spread (dispersion).
If dispersion is 100 %, then, on average, the forecast ensem-
bles are the same width as the climatology. Typically, it is
expected that the forecast ensemble spread narrows with in-
creasing skill.

Dispersion (%)=

∑T
t=1

(
F−1

t (0.9)−F−1
t (0.1)

)
∑T

t=1

(
F−1

clim,t
(0.9)−F−1

clim,t
(0.1)

) × 100, (8)

where F−1
t and F−1

clim,t are the inverse CDFs of the forecast
and reference forecast, respectively.

3.2.2 Reference forecasts

A reference ensemble for assessing forecast skill is created
by using the set of historical observations. In the leave-1-
year-out cross-validation framework, a separate reference en-
semble is assembled for each target year by omitting the ob-
servation for the target year and using the observations from
all the other years to construct the ensemble. The reference
ensemble is not influenced by the present year’s antecedent
conditions nor the climate forecast and therefore sets the
baseline for skill as knowledge of the historical spread of
grain yields, pasture growth or farm profits. Whilst other
baselines are possible, the use of these historical simulations
as a reference is consistent with the construction of the in-
dicators, which are expressed as percentiles of the historical
simulations.

3.2.3 Spatial and temporal sampling

AADI is set up in real-time on a 5 km grid and runs ev-
ery month. However, the computational and financial cost
of running APSIM in all grid cells is prohibitive in the
current technological environment. Therefore, for the wheat
and sorghum simulations, we sample every fourth grid cell,
which, as can be seen in the results, gives considerable cov-
erage. The AussieGRASS and farmpredict models retain full
coverage. We also evaluate performance only four times in
the year, for forecasts beginning in April, July, October and
January, which were selected to roughly align with agricul-
tural industry decision points.

Nat. Hazards Earth Syst. Sci., 25, 4053–4070, 2025 https://doi.org/10.5194/nhess-25-4053-2025
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4 Results

4.1 Climate

We briefly present the skill of climate forecasts to analyse
the contribution of climate to the overall skill of the drought
indicators. The CRPS skill scores of the calibrated monthly
climate forcings are summarised in Fig. 3. Each doughnut
plot shows the median and interdecile range of skill for a cli-
mate variable at a lead time for each forecast issue month.
The percentiles are determined by pooling all grid cells and
therefore indicate spatial coverage. At 1 month’s lead time,
most of the climate forecasts have moderate skill, with tem-
perature, evaporation and vapour pressure being the mostly
skilfully predicted variables. Radiation and rainfall have rela-
tively low skill. Beyond 1 month’s lead time, low to moderate
skill is evident in the 90th percentiles for temperature, evap-
oration and vapour pressure, indicating skill in some regions
in the austral spring. Elsewhere, and at lead times beyond
2 months, skill is minimal. Slightly negative skill scores are
evident, albeit expected in cross-validation.

Bias and reliability have also been evaluated and have been
omitted for brevity given previous reporting and almost uni-
versal high reliability (PIT reliability scores > 0.8) and min-
imal bias (typically within ±5 %). However, some locations
show a moderate percentage bias (20 %) for rainfall in the
dry season, where low seasonal totals magnify relative er-
rors, and the prevalence of zeros makes it more difficult to
perfectly correct mean bias due to lower-bound effects.

4.2 Farm profit

Maps of bias, reliability, dispersion and overall skill for the
farm profit indicator are presented in Fig. 4 for each of the
forecast issue months. The farm profit indicator displays lit-
tle or no bias (within ±5 %) for forecasts issued in April,
January and October of the current financial year (FY). How-
ever, regions of positive bias exist in the central east for
forecasts issued in July of the current FY and April of the
previous FY (up to 20 %). Skill increases markedly as the
end of the financial year approaches, which is mainly due to
an increasing proportion of observed data being integrated
into the indicator. Even so, for July-issued forecasts, which
have a lead time of 12 months, the median CRPS skill score
is 45 % (23 %–64 % IDR). This level of skill is quite high
when contrasted with the skill of climate forecasts, which
typically have CRPS skill scores of less than 30 %, depend-
ing on the location and season, and typically not more than
a few months ahead (see discussion in Sect. 5). We can in-
fer that the high degree of skill in the farm profit indicator
is primarily due to knowledge of the antecedent environmen-
tal and economic conditions rather than climate. Skill im-
proves markedly as lead time decreases, and for April fore-
casts of the current FY, skill reaches approximately 80 %–

90 %, which suggests that predicted farm profits converge
with many months’ lead time.

For each forecast issue month, the skill of farm profit pre-
dictions shows limited spatial variation, suggesting that fore-
cast errors are relatively consistent across different climatic
and agricultural zones. Reliability is high (> 0.8) for all fore-
cast issue months and regions. High reliability indicates that
the forecast probabilities are consistent with the frequency
of outcomes, and, therefore, the ensemble spread is typically
unbiased and of appropriate spread. The relative width of the
forecasts is also measured through dispersion, showing that,
compared to the historical distribution of profits, the forecast
ensemble spreads tend to be about as wide as the historical
distribution at long lead times. As forecast skill improves, the
spreads narrow in concert with the increase in skill, suggest-
ing that the economic forecasts remain well calibrated. More-
over, in cropping regions, dispersion is lower in January and
April compared to (say) northern regions, with a differenti-
ation between completed crops and pasture-dominant areas,
consistent with farm profits in the winter cropping zone be-
ing highly dependent on April-to-October rainfall.

4.3 Winter crops (wheat)

In Australia’s warmer northern regions, wheat is typically
sown from May to July and harvested from October to De-
cember, while in cooler southern regions, sowing occurs
from April to June, with harvests from November to January,
although there can be variation outside these windows. The
verification metrics for April forecast issue dates of the pre-
vious FY and July, October and January forecast issue dates
of the current FY are mapped in Fig. 5. January is the latest
forecast issue date because the crops are harvested by this
time. Skill tends to be low for wheat around sowing time
and, as to be expected, increases gradually as the season pro-
gresses. For forecasts issued in July, the median CRPS skill
score is 31 % (14 %–56 % IDR), which indicates moderate
association with historical simulations with 3–6 months’ lead
time. By flowering and harvesting, skill is typically very high
(80 %–90 %), indicating that the forecasts have converged
and match the historical simulations well. Biases overall are
small (within ±5 %), except for the April-issued forecasts,
where positive biases appear in central Queensland, and neg-
ative biases appear in south-western Western Australia. Reli-
ability is high for forecasts issued in April, July and October.
Reliability appears to decrease for January-issued forecasts;
however, this is somewhat misleading because the maturation
of the crops means the ensemble spreads are correspondingly
very narrow (as indicated by dispersion). Consequently, it is
possible for the observation to fall marginally outside the en-
semble, leading to poor probabilistic reliability, despite hav-
ing a small absolute error.
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Figure 3. Summary of CRPS skill scores of the climate forecasts over the climate hindcast period 1981–2018. The three rings depict the
median (middle ring) and interdecile range (inner ring= 10th percentile; outer ring= 90th percentile). Each ring segment represents a forecast
issue month from January to December in a clockwise direction. Target climate variables are in rows, and the lead times (months ahead) are
in columns.

4.4 Summer crops (Sorghum)

Sorghum crops are limited to regions in Queensland and New
South Wales, often sown as an opportunistic crop in between
regular wheat planting. Sorghum has a wide window of sow-
ing opportunity from September to January, with the crop
cycle taking 4–5 months to complete.

The assessment of sorghum hindcasting skill is presented
in Fig. 6. Overall skill, in terms of the CRPS skill score, is
only evident after crop emergence, that is for forecast issue

dates in January and April. The median skill for forecasts is-
sued in January is 31 % (13 %–41 % IDR), and median skill
for forecasts issued in April is 51 % (29 %–68 % IDR), indi-
cating low to moderate forecasting skill. A mixture of pos-
itive and negative bias is evident across all forecast issue
dates; the median absolute magnitude of the percentage bias
for the forecast issue months ranges from 6.2 % to 7.7 %,
suggesting a discrepancy has arisen between the historical
simulations (pseudo-observations) and the hindcast simula-
tions (see Sect. 5 for further discussion). As with the wheat
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Figure 4. Forecast verification maps for the farm profit indicator calculated over the period 1990–2018. Columns are per verification metric:
CRPS skill score, bias, reliability and dispersion. Rows are per forecast issue date: April in the previous financial year, then July, October,
January and April of the current financial year.
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Figure 5. Forecast verification maps for the APSIM potential wheat yield indicator calculated over the period 1990–2018. Columns are per
verification metric: CRPS skill score, bias, reliability and dispersion. Rows are per forecast issue date: April in the previous financial year,
then July, October and January of the current financial year.
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hindcast results, the sorghum simulations demonstrate high
reliability, except for the April-issued forecasts, for which
reliability is artificially deflated by the very narrow spread of
a grown crop.

4.5 Pasture growth

Pasture growth includes native, rainfall-driven pastures, im-
proved pastures and cropping systems, making the interpreta-
tion of the simulations more complex. To make the interpre-
tation of the pasture growth more similar to the other indica-
tors, pasture growth over a financial year is the combination
of historically simulated pasture growth up until the forecast
issue date and the aggregation of pasture growth over the re-
maining months of the forecast year.

Compared to the cropping simulations, pasture simula-
tions have larger biases, particularly in central and western
Australia, and skill is overall lower (Fig. 7). For July-issued
forecasts, the 12-month outlook has a median CRPS skill
score of 13 % (0 %–28 % IDR) and the median CRPS skill
for April-issued forecasts, essentially a 3-month outlook on
top of the 9-month accumulated growth, is 75 % (56 %–86 %
IDR). Reliability is typically high across all forecast issue
months, with median reliability being approximately 0.9.

4.6 Historical events

To analyse how the retrospective forecasts evolve over time
at a national scale, the percentiles of spatially averaged farm
profit are plotted against the forecast issue month for each
hindcast year, along with the final farm profit and, as a ref-
erence indicator, percentiles of 12-month observed rainfall
deficits. All grid cells are weighted equally in the averaging.
Although the rainfall deficit percentiles do not directly cor-
respond to final farm profit, their evolution can offer insights
into how such a lagging indicator, currently used for drought
assessments, behaves in comparison with the forecast indica-
tor.

We select a small number of the “worst” years for agricul-
ture for detailed analysis based on the final farm profit per-
centile. The 4 worst years, from lowest to highest percentile,
are 2003, 2007, 2019 and 1995. For balance, we also briefly
consider the “good” years, all of which are visible in Fig. 8.

Working in chronological order, the 1995 farm profits
were affected by a drought built on back-to-back El Niño
events in 1993/1994 and 1994/1995, with rainfall deficits
most severe in the second half of 1994, before the drought
broke in January 1995 (White et al., 1998; Lindesay, 2005).
At 12 months’ lead time (July-issued forecasts), the rainfall
and farm profit indicators both indicate below-average con-
ditions, although the farm profit indicator provides earlier
warning that the impacts are likely to be more severe. By
9 months’ lead time (October-issued forecasts), the rainfall
and farm profit indicators are both pointing to a severely im-
pacted year.

The 2003 drought, the worst in terms of farm business out-
comes, occurred in the middle of the Millennium Drought.
Long-term rainfall deficits began dipping below normal in
2002 in response to low rainfall across most of the continent
(Fig. 8). The severity of the drought may have been some-
what surprising at the time given the weak to moderate level
of the associated El Niño event (Mcphaden, 2004; Wang and
Hendon, 2007), which highlights that a single climate driver
cannot be relied upon as a signal of drought, and the an-
tecedent conditions, such as existing hydrological drought,
play a significant role. At 12 months’ lead time (July fore-
cast issue), the farm profit and rainfall indicators both point
to well below-average conditions. As the year progresses,
both indicators continue to trend downwards, indicating that,
in this case, the progression of meteorological drought was
locked fairly in sync with the weakening outlook for farm
profits.

After a brief reprieve, the 2007 farm profits were also
impacted by the Millennium Drought and associated with
the development of a weak El Niño event (e.g. Su et al.,
2018). With 12 months’ lead time, the farm profit indicator
indicated a high likelihood of low profits. However, the 12-
month rainfall indicator showed relatively normal rainfalls.
In the following months, the rainfall indicator trends from
slightly above average to slightly below average, whilst the
farm profit indicator remains low. The reason for the rain-
fall indicator failing to drop low is that rainfalls in western
Australia were above average, whilst meteorological drought
conditions mainly intensified in the south-east. Considera-
tion of localised information is therefore critical in the use of
indicators from a drought early-warning system.

The final drought year analysed sits within the Tinderbox
Drought, which peaked in terms of farm profits impacted in
2019. It is only possible to analyse the first three forecasts for
this event because the retrospective forecasts from ACCESS-
S2 finish in 2018. We can see that in 2019, both the rainfall
and profit indicators are indicating severe drought impacts,
with up to 12 months’ lead time. The 2018–2019 drought
rapidly transitioned to severe drought conditions following
on from an exceptionally wet period in 2016–2017. In fact,
the evolution of the drought indices through 2017 to 2019
shows that the farm profit indicator provided advanced indi-
cations of high farm profit with 12 months’ lead time in 2017
before leading the rainfall indicator into drought conditions
in 2018.

Whilst the focus in this study is on drought, the perfor-
mance of the drought indicators in normal and “good” years
is also relevant, for example, in the context of false alarms.
We can summarise that in 1994, 1997 and 2017, the farm
profit indicator provided advance information for high farm
profits compared to the rainfall indicator; however, for 2012,
rainfall remained high following the 2010–2011 high rain-
fall, and the farm profit indicator was relatively late in iden-
tifying high profits, partially because the profit indicator “re-
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Figure 6. Forecast verification maps for the APSIM potential sorghum yield indicator calculated over the period 1990–2018. Columns are
per verification metric: CRPS skill score, bias, reliability and dispersion. Rows are per forecast issue date: July, October, January and April
of the current financial year.

sets” at the beginning of the financial years, whereas the rain-
fall indicator is continuous.

5 Discussion

Climate forecast post-processing is an essential step to
preparing raw climate forecast ensembles from a dynamical
climate model for ingestion into the downstream biophysi-
cal and agro-economic models. Climate forecast skill is gen-

erally available for 1 month ahead across a set of climate
variables (temperature, rainfall, radiation, evaporation and
vapour pressure), with widespread CRPS skill scores up to
30 % (Fig. 3). Beyond the first month, limited skill is avail-
able in temperature, vapour pressure and evaporation fore-
casts, with little or no skill in rainfall and radiation forecasts.
However, because calibrated climate forecasts have little or
no bias (except rainfall forecasts in dry regions can show
moderate percentage bias) and high reliability in ensemble
spread, the forecasts provide suitable forcings for the down-
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Figure 7. Forecast verification maps for the AussieGRASS pasture growth indicator calculated over the period 1990–2018. Columns are per
verification metric: CRPS skill score, bias, reliability and dispersion. Rows are per forecast issue date: April in the previous financial year,
then July, October and January of the current financial year.
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Figure 8. Time series plots of the nationally averaged farm profit indicator within agricultural zones (blue line), with the blue shading
depicting the interdecile range of the ensemble. The x axis depicts the forecast issue date, and the y axis is the percentile. The final farm
profit for the financial year is plotted (green line) as well as the nationally averaged 12-month-lagged rainfall percentile (orange line).
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stream models even where skill is limited. While we have
not tested raw forecasts or simple bias correction of climate
forecasts, formal calibration ensures that forecast ensembles
resemble SILO observations, which is vital for maintaining
spatial, temporal and intervariable characteristics between
forecasts and baselines.

Our results demonstrate much higher skill for the drought
indicators compared to climate, which highlights the predic-
tive importance of antecedent environmental and economic
conditions in the downstream models. The AADI models are
integrative and capture not only rainfall, but important factors
like antecedent soil moisture and prices over the preceding
months and years. The narrower ensemble spreads afforded
by skilful forecasts provide drought policy analysts greater
confidence in identifying areas requiring greater attention.
Forecasts of all drought indicators show high reliability in
ensemble spread, which supports their use for probabilistic
decision making at an appropriate risk level.

Some moderate biases exist in farm profit, sorghum and
pasture in central–eastern parts of Australia. Sometimes,
such as with farm profit, these vanish at shorter lead times.
Such discrepancies between historical runs and hindcast sim-
ulations, especially evidenced by bias in hindcasts after con-
vergence is expected (e.g. Fig. 6), highlight potential differ-
ences in configuration or input data when historical simula-
tions and hindcasts were run on different computing infras-
tructure. In contrast, the wheat indicator is largely bias-free
across all lead times. Future work will focus on running all
simulations on the same infrastructure to ensure consistency
across both datasets to improve the reliability of the predic-
tions and minimise bias.

Although month-to-month pasture results are not shown,
they exhibit larger forecast biases compared to seasonal or
annual averages. In AussieGRASS, the parameterisation re-
lated to the soil water index, which controls plant growth
onset and cessation, contributes to non-linear responses to
rainfall. This sensitivity can amplify small biases in rain-
fall forecasts, leading to significant transient errors in mod-
elled pasture growth. Ongoing refinement or recalibration of
AussieGRASS parameters will aim to address this issue.

Although farmpredict takes yields and pasture as inputs,
biases observed in farm profit predictions at longer lead
times, particularly in areas just beyond the edge of the crop-
ping zone, could be partially explained by the interpolation
method used for input data (Hughes et al., 2024). Farm input
data interpolation was applied separately for rangelands and
cropping zones, resulting in higher interpolation errors near
their borders. Addressing this known issue will involve refin-
ing the interpolation method to reduce errors at the interface
between these land-use types. Other errors may exist in input
data such as SILO; however, these data errors are accounted
for in calibrating climate forecasts to the SILO target. Soil
type data are optimised on a grid cell basis and therefore
may deviate from very local conditions at a paddock scale,

and therefore it is not recommended to interpret the forecasts
at a finer scale.

Training and testing models on historical data ensures
that parameters reflect past climate conditions. While this
is consistent with current climate forecast evaluation peri-
ods, changing climate conditions could impact the skill of
future predictions. Recognising this, future research will ex-
plore strategies to maintain model relevance under evolving
climatic scenarios.

Regarding improvements to the system that could enhance
real-time skill, the real-time AADI climate forecast post-
processing system could benefit from dynamic training, in-
corporating the most recent forecast and observation data at
each time step. This allows the system to adapt to changing
biases and be trained on more data to improve accuracy. A
more efficient workflow will have the forecasts in the hands
of drought analysts earlier, giving as much lead time as possi-
ble to make drought policy decisions. Of course, there remain
some discrepancies between the forecasts of drought indica-
tors, which occur in model space, and what occurs on the
ground. The relationships between the AADI drought indica-
tors and real-world outcomes, like yield and socio-economic
data, are addressed by Hughes et al. (2025). Nevertheless,
studies like the current one are needed to evaluate indicators,
like pasture, for which there are no real observed data. As
such, the AADI user interface, used by the drought analysts,
will present the results of both studies and indicate “fore-
cast skill”, i.e. ensemble forecast verification against pseudo-
observations in the model world, and “indicator skill”, which
is cross-correlations with a multitude of real-world indica-
tors.

In the global context, Oyarzabal et al. (2025) reviewed
drought forecasting, albeit with a focus on machine learn-
ing. It was found that the vast majority of drought predic-
tion studies focus on meteorological drought and rainfall pre-
diction, with a relatively small focus on agricultural drought
(13 %). Moreover, most studies focussed on drought predic-
tion indices such as the standardised precipitation index (SPI)
and the standardised precipitation–evapotranspiration index
(SPEI). AADI has demonstrated that, in data-rich environ-
ments, it is feasible to develop a system of drought predic-
tion that covers meteorological, agricultural and economic
drought using hybrid approaches combining machine learn-
ing and process-based methods. However, we do see the po-
tential for machine-learning-based emulators and error mod-
els to improve forecast accuracy relative to ground truth data,
to overcome the problem of crop models being computation-
ally expensive and to expand forecasts into data-sparse re-
gions.

6 Conclusion

This study has been a first step towards quantifying and
understanding the performance of the Australian Agricul-
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tural Drought Indicators as a forecasting system. The farm
profit indicator has high CRPS skill when compared with
the historical distribution of simulated farm profits. Even at
12 months’ lead time, median farm profit skill is 45 %, which
exceeds climate forecast skill and is attributable to the in-
tegration of antecedent environmental and economic condi-
tions. Early season skill in wheat predictions is moderate at
about 30 % (median); however, this increases to 79 % and
90 % mid-season and late in the season, respectively. In con-
trast, sorghum showed lower skill and small to moderate bi-
ases (5 %–15 %) across the growing districts, which warrants
further investigation. For pasture, long-lead-time CRPS skill
(12 and 9 months) is typically below 20 %, consistent with
the dependency on rainfall forecasts.

Historical event analyses show that, by considering the
propagation of drought and the effect of commodity prices,
the AADI system has benefits over standard rainfall analy-
sis for providing warning of drought effects in agriculture.
Importantly, the AADI system appears unbiased towards
drought scenarios and tests well for “good” years, which is
important for covering drought and recovery. Future work
will focus on eliminating biases in the system and improving
overall skill, as well as considering improvements to support
use directly by industry.
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