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Abstract. A major challenge in assessing debris-flow sus-
ceptibility at the scale of large mountainous river basins lies
in the excessive reliance on simplified topographic metrics.
Existing approaches often fail to account for the cascading
and dynamically coupled interactions among channel gradi-
ent, discharge, and sediment supply. This oversight limits the
accuracy and robustness of spatial predictions. To address
this gap, we present a novel framework for debris-flow sus-
ceptibility assessment grounded in a process-based indicator
system derived from geomorphic dynamics, using the Jin-
sha River Basin as a case study. Our method integrates key
parameters that characterize landscape evolution – includ-
ing stream power, extreme rainfall events, surface erodibility,
and sediment connectivity – into a Naïve Bayes probabilistic
classification model. By employing kernel functions, we ac-
commodate both continuous and discrete variables, enabling
the probabilistic estimation of debris-flow occurrence across
small, medium, and large magnitude classes. Model valida-
tion across the Jinsha River Basin yields a prediction accu-
racy of 63 %. Notably, empirical testing against the “8.21”
Jinyang debris-flow event in 2023 reveals a high degree of
spatial agreement between predicted high-risk zones and ob-
served disaster footprints. Feature importance analysis indi-
cates that surface erodibility is the dominant contributor to
susceptibility, followed by connectivity, stream power, and
extreme precipitation. Approximately 32 000 high-risk gul-
lies (> 200 m in length) exhibit a power-law distribution,
clustering within a 30 km buffer on both sides of the main

stem of the Jinsha and Yalong Rivers in their middle and
lower reaches. These regions are shown to be strongly associ-
ated with infrequent but high-probability events, which tend
to drive large-scale debris-flow disasters. Amid intensifying
climate change and the rapid expansion of infrastructure in
alpine canyon regions, the dynamic datasets we construct –
such as stream power and sediment connectivity – offer a
quantitative basis for risk-informed planning and mitigation.
This modelling approach represents a scalable and physically
grounded paradigm for debris-flow hazard assessment, offer-
ing broad applicability to other high-relief mountainous en-
vironments worldwide.

1 Introduction

Debris flows in mountainous regions are characterized by ac-
tive runoff erosion, significant topographic relief, and the in-
terplay of tectonic uplift and river incision (Qiu et al., 2021;
Ciccarese et al., 2020; Ye et al., 2023). These flows are trig-
gered by various processes, including shallow landslides,
runoff infiltration, channel mobilization, dam failure, and
rapid snowmelt (Qiu et al., 2021; Ciccarese et al., 2020; Ye et
al., 2023). Due to their high kinetic energy, debris flows pose
significant risks to infrastructure, including roads, bridges,
and buildings. Globally, debris flow-prone areas are concen-
trated in the Pacific Rim fold belt, the Alpine-Himalayan fold
belt, and mountainous regions in Eurasia (Ye et al., 2023).
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In China, regions such as the Gongga Mountains, the west-
ern Loess Plateau, and the Jinsha River Basin are particu-
larly vulnerable, with the latter contributing significantly to
debris flow disasters in the country (Hu et al., 2020). In re-
cent decades, the ongoing global and regional climate warm-
ing has exacerbated the risks associated with debris flows by
increasing the frequency of extreme weather events (Lu et
al., 2021; Zhao et al., 2021). This highlights the urgent need
for research on debris flows. Such research has informed the
development of quantitative models, including the power-
law relationship between mean intensity and rainfall duration
(Coe et al., 2008; Badoux et al., 2009; Oorthuis et al., 2021;
Hürlimann et al., 2019; Nikolopoulos et al., 2014), and the
linear relationship between surge front velocities and flow
depth (Mccoy et al., 2011). These advancements aim to en-
hance the working principles of monitoring and early warn-
ing stations to achieve more accurate debris flow forecasting.
However, despite these efforts, debris flow disasters continue
to occur, and the role of monitoring stations in regional safety
remains limited. From 1999 to 2019, debris flows in China
resulted in 4742 deaths, with an average of 226 deaths per
year. In 2010 alone, 2073 people lost their lives. Notably, on
7 August 2010, a large debris flow in Zhouqu, Gansu, de-
stroyed over 390 buildings (Zhang et al., 2018b); on 28 June
2012, debris flows occurred in ten gullies upstream of the
Baihetan hydropower station, including the Aizi gully, re-
sulting in the death or disappearance of 41 people (Hu et
al., 2017); and on 17 August 2020, a debris flow occurred
in Dayi, Sichuan, blocking a river and causing flooding (An
et al., 2022). The uncertainty in the spatiotemporal distribu-
tion of extreme precipitation events, combined with insuffi-
cient understanding of regional debris flow risk assessment
and patterns, has led to the absence of monitoring stations or
improper site selection in some high-risk areas, thus limiting
the effectiveness of early warning systems (Li et al., 2024).

Currently, numerical simulations based on momentum
conservation, mass conservation, and rheological equations
are commonly used to model the kinematic characteristics
of material flow in debris-flow-prone gullies. These simu-
lations provide key parameters, such as flow velocity and
transport volume. However, accurately identifying potential
debris flow locations in large-scale areas remains a signifi-
cant challenge. In the past, there has been a heavy reliance
on the direct interpretation of remote sensing images (Yi
and Qu, 2018; Lyu et al., 2022; Hu et al., 2017), using ab-
normal reflectance from surface damage areas after debris
flows, such as vegetation, bare soil, and gravel, as indicators.
More recently, the accuracy and efficiency of debris flow sus-
ceptibility assessments have significantly improved with the
development and application of machine learning models.
These models are trained using quantitative surface charac-
teristics of debris flow-prone areas, including slope, aspect,
topographic relief and roughness, lithology, and NDVI (Li et
al., 2024). However, the development of debris-flow channels
is an intense “source-sink” process, where debris and surface

water flow along specific slopes, with the valley bottom be-
ing the most destructive area. The current assessment sys-
tems based on indicators such as slope, lithology, and NDVI
mainly reflect the characteristics of the valley slopes on both
sides, which do not fully correspond to the dynamic nature
of the valley bottom. Therefore, it is necessary to reconstruct
the indicator framework and establish a parameter system
that better aligns with the physical characteristics of the val-
ley bottom to improve the accuracy of debris flow suscepti-
bility assessments. To address these challenges, we propose
an assessment framework based on a Naïve Bayesian model
to improve the identification of debris flow locations, tim-
ing, and likelihood. Focusing on the Jinsha River Basin, this
framework incorporates parameters such as stream power,
surface erosion susceptibility, sediment transport connectiv-
ity, and the frequency and intensity of extreme precipitation
events. The dataset generated by this approach describes the
dynamic quantitative characteristics of debris flow gullies
and the probability of occurrence, helping us identify many
potential debris flow locations previously overlooked. This
framework provides practical reference points for site selec-
tion in major infrastructure projects and disaster prevention
engineering.

2 Study Area

The Jinsha River, a crucial tributary of the Yangtze River,
originates in the Tanggula Mountains of China. It tra-
verses several distinct natural regions, including the eastern
Qinghai-Tibet Plateau, the northwestern Yunnan-Guizhou
Plateau, and the southwestern Sichuan Basin (Fig. 1). The
mainstream flows for approximately 2316 km, with an aver-
age gradient of 2.16 ‰, and an annual average discharge of
4750 m3 s−1, draining a catchment area of about 5× 105 km2

(Li et al., 2018). In its upper reaches, the terrain is relatively
flat, underlain by continental crust that was formed and recy-
cled during the Paleozoic era. The landscape is characterized
by desert meadows, and the valley is wide and shallow, re-
sulting in slow river flow. As the river progresses into the
middle reaches, it enters the Indosinian fold belt, where the
continental crust formed during the Meso-Cenozoic era. The
lower basement consists of ancient Precambrian continental
crust (Ma, 2002). The entire river basin lies within a seismi-
cally active zone due to ongoing neotectonic activity, char-
acterized by numerous faults and generally fractured rock
masses. Precipitation in the region is concentrated between
May and October, driven by both southwest and southeast
monsoons, with extreme rainfall typically occurring from
June to August. The annual average precipitation is 632 mm,
increasing gradually from northwest to southeast. However,
in areas above 4000 m, the average annual rainfall drops to
just 344 mm, making it the driest region in the Yangtze River
basin (Cao et al., 2011). Over the past six decades, river dis-
charge has increased, driven by global warming and the ac-
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celerated melting of ice and snow (Liu et al., 2016). The rapid
tectonic uplift and river erosion in the region have shaped
deep canyon-type landforms, with valley depths exceeding
1000 m. The dynamic interaction between internal tectonic
forces and external erosional processes has contributed to the
development of a highly active river system, prone to fre-
quent landslides and debris flows (Liu et al., 2018).

3 Methodology

3.1 Data and Preprocessing

This study utilizes a comprehensive set of data sourced from
various repositories, including debris-flow surveys, stream
discharge records, precipitation data, topographic informa-
tion, and soil characteristics. The key datasets and prepro-
cessing steps are outlined below.

1. Stream Discharge, Discharge data from hydrological
stations are crucial for estimating stream power;

2. Rainfall, the Standardized Precipitation Index (SPI) is
computed at daily, monthly, and annual scales using
high-resolution, long-term daily grid precipitation data
from the ECMWF ERA5-Land product (Period: Jan-
uary 1950–present) with a ∼ 9 km spatial resolution,
which is derived from radar and satellite-based weather
observations (https://cds.climate.copernicus.eu, last ac-
cess: 6 October 2022), this data demonstrates supe-
rior quality compared to satellite-based precipitation re-
trieval in similar data products (Xu et al., 2022);

3. Topography, elevation and catchment areas along the
longitudinal profile are extracted from SRTM 1 arc-
second. DSM data, which offers a spatial resolution of
approximately 30 m; Critically, the dataset deliberately
retains vegetation elevation values, thereby facilitating
the acquisition of surface connectivity characteristics
under vegetative interference and enabling systematic
evaluation of vegetation’s modulating effects on debris
flow susceptibility mechanisms;

4. Debris Flow Incident Sites, the distribution of debris
flow events in China is mapped at a scale of 1 : 5 000 000
(or Obtain the vector data from Resource and Envi-
ronmental Science Data Platform, Chinese Academy of
Sciences; https://www.resdc.cn/, last access: 2 Novem-
ber 2023). This map, based on field investigations and
depositional markers, provides locations and magni-
tudes of historical debris flows (Yi and Qu, 2018). Due
to spatial discrepancies between some annotated haz-
ard points and the corresponding gully centerlines, it
was necessary to manually adjust the positions of these
points within the ArcGIS platform prior to the calcula-
tion of geomorphic dynamic parameters. This step en-
sured the alignment of points with relevant geomorphic

features and allowed us to retain enough samples for
both model training and validation.

5. Soil Characteristics, the China Soil Map-based Harmo-
nized World Soil Database (HWSD v1.2) is used to es-
timate soil erodibility (K), with a spatial resolution of
250 m (Wieder et al., 2014). To reduce potential er-
rors, data from flat surfaces are excluded. When im-
plementing the D8 algorithm for depression filling in
DEM processing, the filled regions (typically reservoirs
or natural depressions) exhibit zero gradient in eleva-
tion. Fluid flow through such hydraulically flattened ar-
eas undergoes complete kinetic energy dissipation, ren-
dering them non-informative for hydrodynamic investi-
gations.

Debris flows are categorized into three classes based on the
volume of the accumulation body: small (< 1× 104 m3),
medium (1× 104–1× 105 m3), and large (> 1× 105–
1× 106 m3). Volume estimates account for factors such
as debris-flow bulk density, solid particle bulk density,
debris-flow duration, and peak discharge. The surface
regolith data at a reference depth of 1 m provide detailed
information on the percentage contents of gravel, sand, clay,
and organic matter, along with related parameters (Meng
and Wang, 2018). This methodological framework ensures
an accurate assessment of debris-flow susceptibility by
integrating critical environmental and geological factors.

3.2 Modelling Approach

Debris flows are influenced by surface erosion and sediment
supply, requiring a thorough consideration and quantification
of related factors. Before designing the assessment frame-
work, we identified key indicators with significant physical
relevance to Earth’s surface processes and made necessary
adjustments to produce a three-dimensional visual represen-
tation of the numerical values. During the research, we used
parameter sequences from debris-flow survey sites as train-
ing and testing samples. These parameters include dynamic
characteristics of surface rock erosion, sediment connectiv-
ity, stream power, and the frequency and severity of extreme
precipitation events in highly sensitive debris-flow valleys
within the Jinsha River basin. A Naïve Bayes model was
then applied to assess debris-flow probability across daily,
monthly, and annual timescales (Fig. 2).

This model calculates the posterior probability of each fea-
ture using Bayesian inference based on its prior probabil-
ity, assigning it to the category with the highest posterior
probability. Specifically, if there are m classes (e.g., non-
occurring, small, medium, and large debris flows) denoted as
C1, C2, . . . , Ck , and spatiotemporal variables denoted as x1,
x2, . . . , x5 (e.g., stream power, erodibility, connectivity, and
the severity and frequency of extreme precipitation). Accord-
ing to Bayes’ theorem, the posterior probability of a class Ck
given a set of features x = (x1,x2, . . .,x5) can be expressed
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Figure 1. The Jinsha River Basin and Its Adjacent River Systems. Note: The projected coordinate system utilizes the UTM zone 47N (6°
longitudinal division) based on WGS 84 datum.

Figure 2. Study Implementation Framework.

as:

P (Ck|x1, x2, . . .,x5)=
P (Ck) ·P(x1,x2, . . .,x5|Ck)

P (x1,x2, . . .,x5)
(1)

Here, P(Ck) denotes the prior probability of class Ck , which
reflects the proportion of samples belonging to that class in
the training data. The term P(x1,x2, . . .,x5|Ck) represents
the likelihood, i.e., the joint probability of observing the fea-
ture set xxx given that the sample belongs to class Ck . The
denominator P(x1,x2, . . .,x5) is the marginal probability of

the features, which remains constant across classes and thus
can be omitted when performing class comparisons. In the
Naïve Bayes framework, a core assumption is that features
are conditionally independent given the class. This allows the
likelihood term to be factorized into a product of individual
conditional probabilities:

P (x1,x2, . . .,x5|Ck)=

P (x1|Ck) ·P (x2|Ck) , . . .,P (x5|Ck) (2)
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Substituting Eq. (2) into Eq. (1), the posterior probability
simplifies to:

P (Ck|x1,x2, . . .,x5)∝ P (Ck) ·

5∏
i=1
P(xi |Ck) (3)

For classification, a new sample x = (x1x2, . . .,x5) is as-
signed to the class with the highest posterior probability:

ŷ = argmax
Ck

[
P

(
Ck ·

5∏
i=1
P(xi |Ck)

)]
(4)

The likelihood estimation methods are based on the normal
distribution function (for continuous variables), frequency
statistics (for discrete variables), and the Bernoulli equation
(for binary outcomes, i.e., 0 or 1). In this study, the condi-
tional probability density P(xi |Ck) is estimated using a ker-
nel density estimation (KDE) approach defined as:

P (xi |Ck)=
1
nkhi

nk∑
j=1

K

(
xi − x

k
i,j

hi

)
(5)

Where nk is the number of training samples in class Ck ,
xki,j is the j th observation of feature i in class Ck , hi is the
bandwidth for feature i, and K denotes the kernel function –
typically the Gaussian function. It is important to note that
when feature values are approximately continuous across
their ranges, the Gaussian kernel can be directly applied to
estimate the probability density. However, in cases where
certain features are relatively discrete, a preprocessing step
is introduced to estimate a smoothed continuous distribution
using the kernel function, thereby enabling the application of
Eq. (5) under the continuous assumption. The mutual infor-
mation measure permits analysis with both continuous and
categorical variables and has been widely adopted in the liter-
ature; we therefore select this metric (Blanquero et al., 2021;
Kinney et al., 2010). It quantifies the information about vari-
able X contained in variable Y , defined formally as:

I (X,Y )=

∫ ∫
P(x,y) log

(
P(x,y)

P (x)P (y)

)
dxdy (6)

The attribute value for a point within the basin is computed as
the average value of the upstream confluence interval, using
the following formula:

F j =

∑n
i=1Ei,j

Ni,j
(7)

In the formula,Ei,j is the attribute value of the j th parameter
at point i, and N is the number of corresponding grids. Due
to the algorithm’s resilience, this model is not susceptible to
missing data, and the discriminant effect is steady (Mu et
al., 2021; Soomro et al., 2022). Following this scheme, the
probability of debris flow at various sizes and durations can
be determined to produce a more realistic and understandable
illustration of debris-flow susceptibility.

3.3 Quantitative parameters

3.3.1 Stream power and its gradient

Stream power (W m−1) is the rate at which runoff’s gravi-
tational potential energy is transformed into kinetic energy
(Pérez-Peña et al., 2009). Its ratio (ω, W m−2) to river width
may be used to quantify runoff erosivity to river channels
(Bagnold, 1960). When stream power increases throughout
the channel, the value is higher than 0, and runoff erodes;
when stream power is reduced downstream, the value is less
than 0, indicating an energy-dissipating stretch and sediment
deposition occur. Erosion and deposition are balanced at 0
(Lea and Legleiter, 2016). In fluvial systems across low-relief
terrain, stream power per unit channel length (�, in W m−1)
is dominantly governed by discharge (Q, m3 s−1) and chan-
nel width, as longitudinal gradients (S, %) exhibit minimal
spatial variability. We quantify the spatial distribution of ero-
sional potential within the valley using specific stream power
(ω, W m−2), calculated as:

ω =�/L (8)

where L represents the reach length (m). Given that � is
functionally linked to discharge and gradient (�= γQS),
and discharge can be parametrized as a power-law function of
contributing catchment area (Q= aAb), Eq. (3) is expanded
into:

ω =
γ aAbS

L
(9)

Here, γ denotes the specific weight of the fluid (N m−3).
While clean water flows adopt γ = 9800 N m−3, debris-
laden flows require an amplified value (Reference value:
γ = 16 000 N m−3) to account for elevated bulk densities
(1000–2400 kg m−3) and enhanced erosive loads. Coeffi-
cients a and b were calibrated via nonlinear regression
against gauge-derivedQ andAmeasurements. Crucially, this
formulation focuses on isolating baseline erosional drivers,
deliberately excluding transient sediment feedback to align
with the study’s scope of identifying first-order geomorphic
controls.

Stream power computation involves depression-filling,
slope aspect, catchment area, channel numbering, and ele-
vation extraction. Using a threshold of 1 km2, we extracted
the longitudinal profile of the valley and its catchment areas
(m2), and the channel gradients were computed using the first
order fitting function (Fig. 3):
h1,i = k1L1,i + c1,i R2

1

h2,j = k2L2,j + c2,j R2
2

. . .

hn,m = knLn,m+ cn,m R2
n

(10)

where n is the number of reaches; hn,m denotes the elevation
of point m; C is the corresponding constant; kn is the ratio
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Figure 3. Diagram of numbering reaches. Note: The reach between
the two gully junctions is considered a gradient cell.

Figure 4. The calculation process of stream power and its gradient.

of the calculation; R2
n is the linear fitting coefficient of the

reach; Ln,m is the length (m) between the mth point of a cer-
tain reach and its gully head; and i, j , . . . , m has the same
meaning as m but represents river segments with different
lengths, that is, the distance between the intersection of two
confluence points (Fig. 3). The calculation process is shown
in Fig. 4.

3.3.2 Index of connectivity (IC)

Connectivity reflects the topographic resistance of detrital
material on a mountain as it is transported. The transport
mechanism of detrital materials will change due to the tight
relationship between the upslope component (Dup) and the
downslope component (Ddn) with topographic variations.
The following equation is as follows:

IC= Log10

(
Dup

Ddn

)
(11)

where IC is defined in the range of [−∞, +∞], with greater
IC values indicating higher connectivity. The upslope com-

ponent (Dup) describes the potential for the downward rout-
ing of sediment produced upslope and is estimated as fol-
lows:

Dup =W S
√
A (12)

whereW is the average weighting factor for the upslope con-
tributing area, S is the mean slope (%), and A is the size
(m2). The downslope component (Ddn) considers particles’
flow path lengths to reach the nearest target or sink. It is ex-
pressed as follows:

Ddn =
∑
i

di

WiSi
(13)

where di is the length of the flow path along the ith cell
according to the steepest downslope direction (m), and Wi

and Si are the weighting factor and slope of the ith cell,
respectively (Jing et al., 2022).D etermining weighting fac-
tors within a watershed uses the standardized roughness in-
dex (SRI) or land use classification data (Zanandrea et al.,
2020). The determination of weights in this paper is based
on the standardized roughness index (RI), which is calculated
as the standard deviation of the difference between the non-
smoothed and smoothed DTM and can represent vegetated
regions(Zanandrea et al., 2020). The RI values provide valu-
able surface roughness information computed in an n× n cell
moving window over the residual topography grid. The RI is
defined as follows:

RI=

√∑25
i=1(xi − xm)

2

25
(14)

where xi is the value of each cell of the residual topography
within the moving window, and xm is the mean of the n× n
cell values. Here, we used nine as the number of processing
cells within the 3× 3 cell moving window. The W value is
typically calculated from the RI according to the methodol-
ogy defined by the following:

WRI = 1−
(

RI
RIMax

)
(15)

where RIMax is the maximum RI value in the study area.

3.3.3 Extreme precipitation identification

Extreme precipitation (or wetting) events are identified using
the run theory (Huang et al., 2021; Yevjevich, 1969). We used
McKee’s standardized precipitation index (SPI) from 1993
to characterize the precipitation probabilities and observed
extreme precipitation events at three scales: daily, monthly,
and annual (Table 1). In the SPI, a two-parameter gamma
probability density function is used to explain the frequency
distribution of precipitation:

g(x)=
1

βα0(α)
xα−1e

−x
β (16)
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Table 1. Category of standardized precipitation index (SPI) based
on range values (Dutta et al., 2015; McKee et al., 1993).

SPI Range Category

+2 to more Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet
−0.99 to 0.99 Near Normal
−1.0 to −1.49 Moderately dry
−1.5 to −1.99 Severely dry
−2 to less Extremely dry

where x is the precipitation accumulation, and 0(α) is the
gamma function. The gamma distribution’s shape and scale
parameters, α and β, may be calculated using the most ex-
cellent likelihood method (Edwards, 1997). Under certain
conditions, the cumulative probability G(x) can be reduced
to the so-called incomplete cumulative gamma distribution
function, t = x/β:

G(x)=
1

0(α)

x∫
0

tα−1e−tdt (17)

Since Eq. (12) is invalid for zero precipitation (x = 0), the
cumulative probability distribution, including zeros, may be
stated as H(x)= q + (1− q)G(x), where q and 1− q are
the probabilities of zero (x = 0) and nonzero (x 6= 0) pre-
cipitations, respectively. The SPI is computed by changing
H(x) to a zero-mean, one-variance normal distribution. Pos-
itive SPI levels imply moist periods, whereas negative values
suggest dry periods (Farahmand and AghaKouchak, 2015).
The severity of precipitation can be described as the total of
the SPI across the length of numerous single severe rainfalls.

Sij =

(
1
m

m∑
i=1
|SPIi |

)
j

(18)

where m is the number of extreme wetting events, indicating
wetting occurrences dominated by precipitation.

3.3.4 Erodibility (K)

Erodibility (K) is a surface erosion factor related to the con-
centration of organic materials, sand, mud, and gravel in
weathered accumulations. A higher number suggests a more
easily degraded surface nature. It is commonly represented as
the number of soil particles lost due to precipitation erosivity
per unit of time in a standard area. The models used to calcu-
late K include Nomograph (Wischmeier et al., 1971), EPIC
(Sharpley and Williams, 1990), Torri (Torri et al., 1997), Shi-
razi (Shirazi et al., 1988), and Wang (Wang et al., 2013). As
it is more widespread in hilly places, the EPIC model (Ero-
sion/Productivity Impact Calculator) was utilized to estimate

erosion in this study. The model can be expressed as follows:

KEPIC =

[
0.2+ 0.3e

−0.0256ϕsa

(
1− ϕsi

100

)]
×

(
ϕsi

ϕcl+ϕsi

)0.3

×

(
1−

0.25ϕoc

ϕoc+ e3.72−2.95ϕoc

)
×

[
1−

0.7(ϕcl+ϕsi)

ϕcl+ϕsi+ e−5.51+22.9(ϕcl+ϕsi)

]
(19)

where ϕsa, ϕsi, ϕoc and ϕcl (%) are the sand, silt, organic car-
bon and clay contents, respectively (Sharpley and Williams,
1990).

4 Results

4.1 Mapping of High-Energy Valleys and Erosion
Dynamics

Stream power is a critical parameter in erosion processes, as
it reflects the rate at which gravitational potential energy is
converted into kinetic energy, closely linking it to the channel
gradient. In the Jinsha River basin, most areas have a channel
slope of less than 5.63 %, with regions of steeper gradients
predominantly concentrated in the middle and lower reaches
of the Jinsha and Yalong Rivers, within approximately 30 km
of the riverbanks (Figs. 5a and 6). According to geomor-
phological evolution principles, in the initial stages of ero-
sion, the longitudinal profile of the valley typically follows
a straight-line form. As the erosion process progresses, this
profile gradually becomes more curved, and eventually, the
mountains are reduced to a peneplain. Throughout the dif-
ferent stages of this process, the valley’s longitudinal profile
can be best represented by four functions: linear, exponen-
tial, logarithmic, and power, in the following sequence: lin-
ear → exponential → logarithmic → power (Ohmori and
Saito, 1993; Ohmori, 1991; Rãdoane et al., 2003). In con-
trast, the longitudinal profiles of most valleys in the basin
display distinct linear characteristics, with an average linear
fitting coefficient (R2) exceeding 0.94 (Fig. 5b). This sug-
gests that most valleys in the basin are still in the early stages
of erosional evolution. To quantify stream power, we esti-
mated the flow parameters and gradients at each grid loca-
tion, converting them into stream power values (Fig. 5d). In
Fig. 5c, we categorized river segments by different stream
power intervals. Figure 5e, h, and k show the geographical
locations of erosion and deposition along the downstream
river sections. Our analysis revealed that effective erosion
in the Jinsha River basin is primarily concentrated in the
middle and lower reaches, with tributaries on both sides ex-
hibiting stronger erosional activity (Fig. 5a). By using an
average stream power gradient threshold of 1× 104 W m−2,
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we identified high-energy valleys and validated this thresh-
old using debris flow fans as geomorphic markers (Fig. 5f-1
and f-2). We then quantified the number of high-energy val-
leys at various buffer distances along the Jinsha and Yalong
Rivers, which revealed a significant power-function relation-
ship (Fig. 6). The total number of valleys longer than 200 m
is approximately 32 000 (Valley segments shorter than 200 m
and disconnected gullies were excluded from statistical ag-
gregation due to resolution limitations.). These valleys, re-
quiring substantial driving forces for debris flows, are likely
to pose significant disaster risks.

4.2 Variations in Surface Erodibility and Connectivity

The formation and transportation of debris flow source ma-
terial are significantly influenced by surface erodibility and
terrain connectivity. During the short period of debris flow
formation, an equilibrium is often established between the
supply of eroded material to the river and the river’s ca-
pacity to transport and deposit these materials. The source
material typically originates from loose debris triggered by
earthquakes, landslides, or shallow landslides, which evolve
into unconfined debris (mud) flows. In flatter regions, sta-
ble accumulation occurs, disrupting surface connectivity. As
shown in Fig. 7, areas with high erodibility in the Jinsha
River basin are primarily concentrated in the downstream
regions, where the erodibility factor (K) typically exceeds
0.245 t ha h (ha MJ mm)−1. These regions are characterized
by high clay content and low organic matter. The connectiv-
ity of these areas follows a distinct pattern, with lower values
in the source regions and higher values in the middle and
lower reaches. The Index of Connectivity (IC) values range
from −2.47 to 1.17, with high-connectivity zones mainly
found in the middle sections of the Jinsha River and along
both sides of the Yalong River. In these high-connectivity
zones, IC values generally exceed 2.68, which corresponds
to the spatial distribution of high-energy or high-gradient val-
leys. The transition in connectivity between valley slopes and
valley bottoms shows a clear decline in values, from high at
the slopes to low at the valley bottoms. Deeply incised val-
leys typically exhibit low connectivity, with the valley bot-
tom often having lower connectivity than the adjacent valley
branches. These low-connectivity regions are highly prone
to sediment accumulation, which can lead to the formation
of barrier dams.

4.3 Variations in Extreme Precipitation Events and
Implications for Debris Flow Risk

We identified extreme precipitation events in the Jinsha River
basin over the past decade (2010–2020) using the Standard-
ized Precipitation Index (SPI) on daily, monthly, and yearly
time scales, as well as the Run Theory. Figure 8 illustrates
that the frequency of extreme precipitation events in any
given area is generally fewer than 22 occurrences. The mid-

dle and lower reaches of the Jinsha River are identified as
high-frequency zones for extreme rainfall events. However,
as the observation time scale increases, a noticeable shift of
these high-frequency areas towards the upstream regions oc-
curs. The observed spatiotemporal decoupling – wherein ex-
treme precipitation hotspots shift across daily, monthly, and
annual scales – highlights mechanistic divergence between
stochastic microscale forcings (e.g., terrain-modulated con-
vection) and deterministic macroscale controls (e.g., orbital
cycles), thereby manifesting intrinsic instability in event pat-
terning. This spatial shift suggests that the pattern of extreme
precipitation events is not stable over time. Figure 8b, e,
and h display the severity of precipitation events under daily,
monthly, and yearly observation scales. The severity of these
events is negatively correlated with the frequency of extreme
precipitation events (Fig. 8c, f, and i). Consequently, in re-
gions with fewer occurrences of extreme precipitation, when
debris flows do occur, they may be more destructive in terms
of scale and intensity than in areas with higher frequencies of
extreme precipitation events. Time-series statistical analysis
reveals that 2014 experienced a higher number of extreme
precipitation events, with a decrease in frequency observed
starting from 2015 (Fig. 9a). This trend indicates a declining
risk of debris flows in the Jinsha River basin in recent years.
Extreme precipitation events most frequently occur in July,
accounting for approximately 30 % of the total annual occur-
rences (Fig. 9b). The severity of major precipitation events
shows minimal interannual variation (Fig. 9c).

4.4 Probability of Debris Flow Occurrence at Different
Observation Scales

The occurrence probabilities of small, medium, and large de-
bris flow events under daily, monthly, and yearly observation
scales are presented in Fig. 10. The estimation results show
that medium- and small-sized debris flows are more preva-
lent in the basin. During the disaster formation process, the
relative importance of various factors contributing to debris
flow risk decreases in the following order: surface material
erodibility > connectivity > stream power > extreme pre-
cipitation frequency and severity (Fig. 11b). To explore the
variability in disaster risk, we constructed a Taylor diagram
to evaluate the differences in risk across different time scales.
This diagram provides a visual comparison of risk deviations
at the monthly and yearly scales relative to the daily scale,
characterized by standard deviation, root mean square error
(RMSE), and correlation coefficient (Fig. 11c). We found
that the standard deviation and RMSE for large debris flows
at the yearly scale are significantly smaller compared to the
other two categories, suggesting that the risk of large debris
flows exhibits relatively stable spatial and temporal patterns.
Based on these findings, we can conclude that the temporal
and spatial stability of debris flow occurrence probabilities in
the Jinsha River basin follows this order: large debris flows
> small debris flows > medium debris flows.
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Figure 5. Spatial Distribution Characteristics of Runoff Erosion Activity: (a) Channel gradient; (b) Linear fit coefficients of the longitudinal
profile; (c) Length of river segments across different stream power intervals; (d) Stream power distribution; (e) Stream power gradient;
(f) External dynamics in a typical debris flow Channel (f-1) and its geomorphic landscape (f-2); (g) Number of erosion and deposition grids
in the mainstream of the Jinsha River; (h) Longitudinal profile of the Jinsha River and stream power gradient along the river; (k) A typical
high-energy watershed environment. Note: In this study, we calculated the gradient values, stream power, and power gradients for all river
reaches. Due to the extensive spatial data involved, we applied interpolation techniques to simplify the results for easier interpretation by
readers, as shown in panels (a), (b), (d), and (e). Image credit: Zhenkui Gu.

4.5 Verification of Disaster Probability Maps with
Actual Cases

Model robustness was rigorously validated using an indepen-
dent dataset preserved from the initial training cohort, with
the average accuracy benchmarking at 63 % (Fig. 11a). To
validate the accuracy of the disaster probability maps, we
reviewed news reports of recent debris flow events in the
Jinsha River basin and compared them with our evaluation
results (Times, 2023a, b). One such event occurred in the
early morning of August 21, 2023, when a flash flood-debris
flow impacted the Yanjiang Expressway JN1 project section
in Lugao Town, Jinyang County, Liangshan Prefecture. The
site, managed by Shudao Group, is in the lower reaches of the
Jinsha River. According to reports, heavy rainfall persisted
for nearly 10 h prior to the disaster, with accumulated precip-

itation reaching 160 mm (Fig. 12). Lugao Town (Fig. 13) was
the hardest hit, with four confirmed fatalities and 48 missing
individuals at the time of reporting. Tragically, in the months
following the event, all the missing persons were confirmed
dead, raising the total death toll to 52. When compared with
the probability map we created, the likelihood of a medium-
scale debris flow occurring at this location was found to ex-
ceed 80 %, significantly higher than the surrounding areas
(Fig. 13b and f). This supports the accuracy of our model, as
it predicted the occurrence of debris flow in a high-risk zone.
In the aftermath of the disaster, the local geomorphic land-
scape was significantly altered (Fig. 13d and e), likely due
to a combination of accumulated loose sediment, heavy pre-
cipitation, and the presence of a high-energy valley. While
the probability of small, large, and super-large-scale debris
flows in this area was relatively low (Fig. 13a and c), it is
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Figure 6. Characteristic statistics of High-Energy valley: (a) Variation in the Number of High-Energy Reaches with Channel Buffer Distance;
(b) Debris flow investigation points in various stream power gradient intervals. Note: High-energy valleys are defined here as those with a
stream power gradient greater than 1.3× 104 W m−2 and the threshold is defined according to the inflection point of the trend change of the
fitted curve. This chart displays the count of high-energy valleys within a 200 m buffer along the Jinsha River and Yalong River, across a
range of buffer widths, specifically including those with a stream power gradient exceeding 1.3× 104 W m−2.

important to note that this does not imply safety in all areas
outside the event zone. Our model also identified other high-
risk zones in Jinyang County and its surroundings, highlight-
ing the need for enhanced disaster risk preparedness in the
future (Fig. 13b).

5 Discussion

5.1 Impact of Temporal Observation Scale Changes on
the Assessment

Precipitation characteristics are among the most dynamic and
least predictable factors influencing debris flow formation.
In general, climate change on an annual scale is often deter-
mined by ocean-atmosphere coupling oscillations, solar ra-
diation variations, etc; climate change on a monthly scale
is mainly determined by the seasonal periodic variations of
Earth’s orbit; climate change on a daily scale is influenced
by local factors such as the modulation of solar radiation
forcing by the diurnal cycle, valley wind circulation, land-sea
wind oscillation, and human activities. An extreme weather
event is often the result of the superposition of the effects
of different levels of dynamic factors (Da Silva and Haerter,
2025; Wen et al., 2022; Bi et al., 2023; Ombadi et al., 2023).
There are substantial differences in precipitation characteris-
tics across different temporal observation scales. These dif-
ferences significantly affect our understanding of debris flow
susceptibility, suggesting that both the spatial extent and pre-
cipitation variables influencing debris flow risk may vary de-
pending on the time scale of observation. We observed an
inverse relationship between the frequency and severity of
extreme precipitation events, along with notable spatial in-

consistencies in the Jinsha River basin at daily, monthly, and
annual time scales. Specifically, as the observation scale in-
creased, the number of extreme precipitation events and the
extent of high-incidence areas both decreased and shifted
(Fig. 9). These findings suggest a pattern in which extreme
precipitation events are more frequent, shorter in duration,
and more localized on shorter observation scales. In con-
trast, on longer time scales, these events are less frequent but
tend to cover broader spatial and temporal extents. This pat-
tern aligns with broader changes in climate elements such
as temperature, wind, and atmospheric pressure (McKitrick
and Christy, 2019), reflecting the complex dynamics of the
surface environmental system. Daily precipitation variations
are heavily influenced by factors such as diurnal tempera-
ture fluctuations, local topography, wind patterns, vegeta-
tion cover, and human activities, leading to high variabil-
ity and low regularity in regional climate change. In con-
trast, monthly variations are more strongly influenced by sea-
sonal changes driven by Earth’s orbital fluctuations, exhibit-
ing clear periodicity and recurrence patterns. For effective
disaster preparedness, it is crucial to focus on areas where
debris flow susceptibility remains consistent across different
time scales. These regions indicate relatively stable spatial
and temporal risk, with more predictable probability values.
Furthermore, before a debris flow can form, rainfall must un-
dergo processes such as interception, infiltration, and con-
vergence with the vegetation and soil layers to generate suf-
ficient erosive force – processes that inherently require time.
Therefore, assessing debris flow susceptibility under differ-
ent temporal observation scales can help mitigate bias from
response time differences, leading to more accurate risk as-
sessments.
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Figure 7. Spatial Variation Characteristics of Surface Erodibility and Connectivity: (a) Spatial distribution of erodibility; (b) Composition
of materials within different erodibility ranges; (c) Surface connectivity of the Jinsha River basin; (d) Combined profile of connectivity and
elevation (red: mean; black: maximum; blue: minimum).

5.2 Changes in Debris Flow Susceptibility Influenced
by Climate Change

The rapid uplift of the Tibetan Plateau within the Jinsha River
basin has caused widespread stratigraphic fracturing, desta-
bilizing rock masses and creating favorable conditions for
accelerated weathering and gravitational erosion (Zhu et al.,
2021; Li et al., 2020). This process has contributed to the
accumulation of debris and the formation of highly undu-
lating terrain, creating a high-energy environment conducive
to debris flow development. These geomorphological fea-
tures also play a key role in controlling the spatial distri-
bution of debris flow-prone areas. Between 2000 and 2015,
China experienced 10 927 debris flow disasters, accounting
for 36.14 % of fatalities from geological hazards (Wei et al.,
2021; Zhang et al., 2018a). However, given the vast geo-
graphical span of the Jinsha River basin, which covers mul-
tiple natural zones with significant spatial and temporal cli-
matic variations, the locations and frequency of such disas-

ters may shift under the influence of global warming (Wei et
al., 2021).

The IPCC’s 5th Assessment Report indicates a global av-
erage surface temperature increase of approximately 0.85 °C
between 1880 and 2012, with the warming more pronounced
in the Northern Hemisphere. The past 30 years have likely
experienced the highest temperatures in the last 1400 years.
According to the Clausius-Clapeyron relation, for every 1 °C
rise in global temperature, the intensity of extreme precipi-
tation increases by 7 %, by 15 % in high-altitude areas, and
precipitation variability rises by 5 % (Zhang and Zhou, 2020;
Ombadi et al., 2023). We recognize the broad significance
of this conclusion, but this does not imply that the basin
strictly adhered to this rule during the research period. For
at least since 2014, the frequency of extreme precipitation
has shown a decreasing trend. This suggests a more uneven
temporal distribution of precipitation, with greater fluctua-
tions between wet and dry periods, and an expanded range
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Figure 8. Frequency, Severity, and Correlation of Extreme Precipitation in the Jinsha River Basin (2010–2020). Note: panels (a), (d), and
(g) illustrate the number of extreme precipitation events from 2010 to 2020 at daily, monthly, and yearly observation scales, respectively;
panels (b), (e), and (h) demonstrate the severity of extreme precipitation events at three observation scales: daily, monthly, and yearly.
Panels (c), (f), and (i) depict the severity of extreme precipitation under the corresponding conditions.

of precipitation intensities. Two primary theories explain the
increase in extreme precipitation events. First, climate warm-
ing leads to higher atmospheric moisture content and a slow-
down in atmospheric circulation, causing low-pressure sys-
tems to remain stationary. Second, weakened summer at-
mospheric circulation causes it to become slower and more
erratic, resulting in prolonged heatwaves and droughts (as-
sociated with high-pressure systems) and extended periods
of heavy rainfall (associated with low-pressure systems). In
China, the intensity and frequency of extreme precipitation
events, particularly in the southern regions and the Yangtze
River basin, have significantly increased from 1970 to 2018
(Li et al., 2022). These changes have altered the hydrological
cycle, leading to shifts in the spatial and temporal distribution

of water resources, as well as changes in the overall quantity
of available water resources (Wu et al., 2020). As a result, the
susceptibility of disaster-prone environments has increased.
The Jinsha River basin, in line with general climate trends,
has seen increases in temperature, precipitation, and runoff
between 1972 and 2017, primarily driven by ice melt and pre-
cipitation (Wu et al., 2020). This has caused a significant rise
in streamflow from May to June, peaking in July (Fig. 10b).
Consequently, this period is critical for debris flow prepared-
ness. Previous studies indicate that precipitation in the Jinsha
River basin follows a distinct wet and dry cycle with minimal
interannual variability (Song et al., 2012). However, this pat-
tern primarily reflects general precipitation trends, while ex-
treme rainfall events exhibit marked interannual fluctuations
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Figure 9. Temporal Characteristics of Extreme Precipitation Frequency and Severity in the Jinsha River Basin: (a) Interannual variation in
the frequency of extreme precipitation from 2010 to 2020; (b) Monthly variations in the frequency of extreme precipitation; (c) Severity of
extreme precipitation events.

(Fig. 9). Future projections for extreme precipitation indices
in China suggest a consistent upward trend, with a slight de-
crease in the number of consecutive dry days (CDD). The
growth rate of these indices is expected to accelerate over
the coming decades, extending into the middle of this cen-
tury. Changes in thermal (temperature) and dynamic (circu-
lation) factors are likely contributors to the increased inten-
sity and frequency of future precipitation events (Guo et al.,
2018). Recent precipitation simulations for the Yalong River
basin under future warming scenarios suggest that the re-
gion may experience more frequent and intense precipitation
events, which would increase the likelihood of debris flows
(Guo et al., 2018). While heavy precipitation typically results
in flooding in plains, it can have catastrophic consequences
in high mountain valleys, such as those found in the Jinsha
River basin (Zhao et al., 2021). Therefore, the susceptibility
areas identified in Fig. 10 should be prioritized for disaster
prevention efforts.

5.3 Interaction Between Reservoir Operations and
Debris Flow Activity

The Jinsha River basin is rich in hydropower resources,
with an exploitable capacity of approximately 1.1× 108 kW,
making it one of China’s strategically significant hy-
dropower bases. Several large hydropower plants have al-
ready been constructed, including Wudongde (dam height:
270 m), Baihetan (289 m), Xiluodu (285.5 m), and Xiangji-
aba (88.2 m), with a total installed generation capacity ex-
ceeding 4.2× 106 kW. Additionally, numerous smaller hy-
dropower plants are either operational or in the planning
stages along the main streams of the Jinsha and Yalong
Rivers (Fig. 4). The development of hydropower has sig-
nificantly altered the river valley landscape, transforming it
from one primarily shaped by runoff and erosion into a series
of reservoirs extending hundreds of kilometers. Debris flows
bring substantial sediment into these reservoir areas, leading
to complex interactions between reservoir water levels and

debris flow activity. The presence of dams raises the water
level, elevating the base level of erosion, which reduces the
erosive and incisional forces acting on the valleys along the
reservoir areas of the Jinsha River. However, the sediment
carried by debris flows contributes to soil and water conser-
vation within the reservoirs (Schmidt et al., 2019), effectively
reducing sediment flux and intercepting 71.4 % of the sedi-
ment in the Yangtze River (Lu et al., 2019), surpassing the
impacts of land reclamation and landslides caused by agri-
cultural activities. For example, the average annual sediment
load at the Panzhihua station increased by 42.4 % from 1966–
1984 to 1985–2010, primarily due to mineral extraction and
deforestation. However, this was followed by a 75.9 % de-
crease from 2011–2015, attributed to the operation of cas-
cade reservoirs in the middle Jinsha River basin since 2010
(Li et al., 2018). Such fluctuations in sediment load can sig-
nificantly impact the lifespan of the reservoirs. The long-term
interplay between regional geology, geomorphology, and hy-
drology will be shaped by this reciprocal feedback. Notably,
nearly all completed and planned reservoirs along the Jinsha
and Yalong main streams are situated in areas highly sus-
ceptible to debris flows, as identified in this study (Fig. 8a).
The number of debris-flow channels exhibits a multiplica-
tive power function relationship with their distance from the
mainstream channel, with a distinct trend change occurring
within a 5 km radius of the reservoir area (Fig. 6). The rela-
tively dense distribution of debris-flow channels in this zone
highlights the significant interaction between reservoir oper-
ations and debris flow activity.

5.4 Response to Debris Flow Hazards

The distribution of debris flow gullies in the middle and
lower reaches of the Jinsha River is notably dense (Fig. 8a),
and the challenges associated with responding to debris flow
disasters are exacerbated by global climate change and the
development of engineering infrastructure. The occurrence
of debris flows has disrupted river ecosystems, making the

https://doi.org/10.5194/nhess-25-3957-2025 Nat. Hazards Earth Syst. Sci., 25, 3957–3975, 2025



3970 Z. Gu et al.: Debris flow susceptibility in the Jinsha River Basin, China

Figure 10. Probability of Debris Flow Occurrence in the Jinsha River Basin. Note: panels (a), (b), and (c) represent the probabilities of small
debris flows occurring at daily, monthly, and yearly scales, respectively; panels (d), (e), and (f) depict the probabilities of medium-sized
debris flows under the same three time scales; panels (g), (h), and (i) illustrate the probabilities of large debris flows occurring at daily,
monthly, and yearly scales; panels (k), (l), and (m) show the probabilities of no debris flow occurrence under these three time scales.

scientific management of these hazards a pressing societal
concern. Effective responses to debris flow disasters must
consider the principles of geomorphological evolution and
human safety, utilizing the specific spatial and energy char-
acteristics of the affected areas. Currently, a combination of
check dams, ecological engineering, and management prac-

tices is widely adopted to mitigate the impacts of debris flows
on critical infrastructure and residential areas. These mea-
sures include constructing check dams and dredging chan-
nels at the mouths of debris flow gullies, creating terraces,
afforesting catchment areas, and installing monitoring and
early warning systems (Xiong et al., 2016). Globally, build-
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Figure 11. Characteristics of the Probabilistic Model for Debris Flow Occurrence: (a) Confusion matrix; (b) Ranking of covariate impor-
tance; (c) Comparisons between daily, monthly, and annual observational scales. Note: SMD, MMD, and GMD represent the deviations of
small, medium, and large debris flow occurrence probabilities at the monthly scale relative to the daily scale, respectively; SYD, MYD, and
GYD represent the deviations of small, medium, and large debris flow occurrence probabilities at the annual scale relative to the daily scale,
respectively.

Figure 12. Precipitation Changes in Jinyang County, Sichuan Province, China, Since 00:00 LT on 20 August 2003.

ing check dams in potential debris flow gullies is recog-
nized as one of the most effective disaster prevention meth-
ods (Gao et al., 2022; Chong et al., 2021). This intervention
modifies the micro-environment of river valleys in hydrologi-
cal, geomorphological, and ecological dimensions. In the ini-
tial stages, check dams serve multiple functions: storing wa-
ter, reducing runoff peaks, slowing flow velocity, promoting
seepage, and recharging groundwater. Additionally, the dams
trap organic matter and sediment, contributing to carbon se-
questration and sediment retention. As silt accumulates, the
topography upstream of the check dam gradually flattens,
creating favorable conditions for vegetation growth and fos-
tering ecological restoration in the local environment (Xiong
et al., 2016). Over time, this process can transform debris
flow gullies into ecological corridors, directly reflected in re-
duced surface connectivity and adjustments in river power.
A critical challenge in debris flow control is identifying opti-
mal locations and determining the appropriate scale for check
dam construction. During dam construction, structures must
be designed to accommodate peak flow from potential de-
bris flows. However, for many debris flow gullies, the neces-
sary engineering parameters are often derived from industry-

standard formulas, which may be limited by regional vari-
ations and insufficient observational data. The findings of
this study provide valuable insights into the spatial locations
and occurrence probabilities of debris flow-prone valleys in
the Jinsha River basin. Beyond merely identifying areas with
high debris flow density, this research offers data on stream
power, gradient values, surface connectivity, and the proba-
bility of debris flow events in specific channels. This enables
the precise identification of high-energy valleys and the tar-
geted monitoring and management of these areas. In the con-
text of global climate change, although controlling the fre-
quency and intensity of extreme precipitation events may be
challenging, disaster risk areas can be more effectively iden-
tified using the debris flow probability maps generated in this
study (Fig. 10). High-risk zones of river power and connec-
tivity can be pinpointed from Figs. 5d and 7c, allowing for
the accurate determination of locations for constructing silt
dams. The scale of dam construction can then be optimized
based on the relationship between soil erodibility, sediment
connectivity, river power, and the observed effects of existing
check dams of varying sizes.
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Figure 13. Analysis of the “8.21” Debris Flow in Jinyang County Based on Daily Scale Probability of Occurrence: (a) Probability of small
debris flow; (b) Probability of medium-sized debris flow; (c) Probability of large debris flow; (d) Photos of the site before the disaster;
(e) Photos of the site after the disaster; (f) Location of the disaster on a satellite image. Panels (d) and (e) were taken by Zhenkui Gu.

6 Conclusions

Accurate delineation of the spatiotemporal window of debris
flow occurrence remains a fundamental challenge in moun-
tain hazard assessment and a prerequisite for designing effec-
tive disaster mitigation and ecological restoration strategies.
Existing large-scale susceptibility evaluations are often con-
strained by an overreliance on simplistic topographic indica-
tors, limiting their spatial resolution and predictive reliability.
Here, we develop a geomorphodynamic Parameters’ system
that captures the source-to-sink physical processes govern-
ing debris flow generation and implement a Naïve Bayesian
model to quantify the probabilistic occurrence and spatial
heterogeneity of debris flows across multiple scales in the
Jinsha River Basin. The model achieves an average accuracy
of 63 % and demonstrates high spatial localization precision,
as validated by the catastrophic “August 21” 2023 debris flow
event in Jinyang County, China. Our analysis yields several
key insights:

1. Spatial patterns: We identify approximately 3.2× 104

high-risk gullies (each exceeding 200 m in length) pre-
dominantly located within a 30 km buffer zone along the
middle and lower reaches of the Jinsha–Yalong River
system. Notably, regions with infrequent extreme rain-
fall tend to exhibit larger debris flow volumes;

2. Dominant controls: The debris flow probability follows
the hierarchy: surface erodibility > surface connectiv-
ity > stream power > extreme rainfall frequency > ex-
treme rainfall intensity. This indicates that basin sub-
strate characteristics exert stronger controls on debris
flow development than climatic drivers in the study
area;

3. Climate implications: Despite a decline in extreme rain-
fall events since 2014, the overarching trend of global
warming persists, suggesting an eventual increase in ex-
treme rainfall frequency. Over longer temporal scales,
debris flow-prone zones are projected to migrate toward
higher elevations.
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The resulting datasets – comprising fluvial power, sur-
face connectivity, and debris flow probability maps – pro-
vide robust quantitative inputs for infrastructure siting, in-
cluding hydropower hubs, transport corridors, and residen-
tial zones. Our process-informed “Geomorphic Dynamics–
Spatial Patterns–Probabilistic Hazard” framework offers a
transferable model for risk-tiered debris flow management in
mountainous river systems worldwide.

Data availability. The dataset we provide primarily includes the
following information: (1) River Power and River Power Gradient
Spatial Data for the Jinsha River Basin; (2) Surface Connectivity
Spatial Data for the Jinsha River Basin; and (3) Debris Flow Occur-
rence Probability Maps for Small, Medium, and Large-Scale Events
in the Jinsha River Basin. These datasets are integrated into a point
grid format and provided in “.shp” format. The dataset is avail-
able for direct download, https://doi.org/10.5281/zenodo.17082973
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