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Abstract. Different hydrometeor retrieval schemes are ex-
plored based on the Weather Research and Forecasting
(WRF) model in the indirect assimilation of radar reflectiv-
ity for two real cases occurred during June 2020 and Au-
gust 2018. When retrieving hydrometeors from radar re-
flectivity, there are two commonly used hydrometeor clas-
sification methods: “temperature-based” and “background
hydrometer-dependent” schemes. The hydrometeor propor-
tions are usually empirically assigned in the “temperature-
based” method within different background temperature in-
tervals, whereas in the “background hydrometer-dependent”
scheme, each type of hydrometeor is derived based on the
portions estimated from the background field for different
radar reflectivity ranges. In this study, a blending scheme is
designed to combine “temperature-based” and “background
hydrometer-dependent” methods adaptively to avoid errors
caused by fixed relationships and reduce uncertainties in-
troduced by the background field itself. Three experiments,
EXP_temp, EXP_bg, and EXP_temp-bg are conducted using
the “temperature-based” method, “background hydrometer-
dependent” scheme, and blending scheme, respectively. It is
found that adding the “background hydrometer-dependent”
scheme facilitates the generation of accurate hydrometeor
species which will enhance the effectiveness of radar data
assimilation. In addition, due to the adaptive combina-
tion of “temperature-based” and “background hydrometer-
dependent” schemes, the EXP_temp-bg experiment yields

improved thermodynamic and dynamic structures, which
contributes to predicting radar reflectivity and precipitation
intensity more accurately.

1 Introduction

The Initial conditions are a crucial factor in enhancing the ac-
curacy of numerical weather prediction (NWP, Navon, 2009;
Kain et al., 2010; Lopez, 2011; Xu et al., 2021; Huang et
al., 2023). Compared to conventional observations, Doppler
radar observations have extremely high temporal and spatial
resolution, as well as containing precipitating hydrometeor
information (Zhao et al., 2012; Li et al., 2013; Kong et al.,
2020). Therefore, radar is one of the key platforms for ob-
taining proper initial conditions to successfully predict con-
vective storms (Lilly, 1990; Dawson et al., 2015; Gustafs-
son et al., 2017; Shen et al., 2020a, 2025a; Xu et al., 2022;
Chen et al., 2023). A number of efforts have been devoted
to assimilating radar data into mesoscale numerical models
(Lindskog et al., 2004; Dowell et al., 2011; Sun et al., 2014;
Bick et al., 2016; Tong et al., 2020; Shen et al., 2016, 2019,
2022, 2025b; Wan et al., 2024).

Radar observations have two fundamental variables: radar
radial velocity (Vr) and radar reflectivity (Z). Assimilating
radar radial velocity is conducive to improving the dynami-
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cal structure of the initial field. Numerous scholars are ded-
icated to researching radar radial velocity assimilation (Gao
et al., 2004; Simonin et al., 2014; Li et al., 2016; Shen et al.,
2020b). Based on the three-dimensional variational (3DVar)
system of the fifth-generation Pennsylvania State University-
NCAR Mesoscale Model (MM5), Xiao et al. (2005) devel-
oped a radar radial velocity observation operator and inves-
tigated the impact of assimilating radar radial velocity on
precipitation forecasts. In addition, Wang et al. (2013b) em-
ployed the four-dimensional variational (4DVar) system to
assimilate radar radial velocity and reflectivity into a model
for enhancing forecasting accuracy.

In contrast, assimilating radar reflectivity is more chal-
lenging than assimilating radial wind, on account of its
highly nonlinear observation operator and close relationship
with complex microphysics (Borderies et al., 2019; Xu et
al., 2019). Currently, there are two main methods for assim-
ilating radar reflectivity: direct assimilation and indirect as-
similation. Xiao et al. (2007) proposed a direct assimilation
scheme for radar reflectivity based on the 3DVar system of
MM5. The water content was classified according to phases
using warm rain microphysical processes. However, due to
the absence of ice-phase particles, the scheme demonstrates
limited effectiveness in deep moist convection cases that are
dominated by cold cloud processes. To assimilate radar re-
flectivity into NWP models more effectively, Gao and Sten-
srud (2012) proposed a hydrometeor classification method
based on the 3DVar system in the direct assimilation of radar
reflectivity. The results demonstrated that this classification
method beneficially accelerates the convergence speed of the
analysis and reduces errors in the analysis. Compared to vari-
ational data assimilation methods, ensemble Kalman filter
(EnKF; Evensen, 1994) is a better choice for assimilating
radar reflectivity directly since EnKF does not require con-
sideration of the tangent or adjoint model of the observation
operator (Liu et al., 2019). Based on the EnKF method, Tong
and Xue (2005) assimilated the simulated radar observations
from a supercell storm. The results indicated that directly as-
similating radar reflectivity data has a positive impact on both
analyses and forecasts. Although the forward operator of re-
flectivity tends to be easily implemented in EnKF, its com-
putational cost is too high to be widely applied in scientific
research and operational forecasting (Kong et al., 2018).

To avoid the issue of high nonlinearity in radar reflectiv-
ity observation operators, the indirect assimilation method
is often used in the NWP. Based on the Advance Regional
Prediction System (ARPS), Hu et al. (2006) investigated the
impact of cloud analysis using radar reflectivity on forecast-
ing tornado storms. They found that cloud analysis helps in
adjusting the temperature, humidity fields, and hydromete-
ors within the clouds, thereby improving tornado predictions.
Also, Schenkman et al. (2011) found that cloud analysis tech-
nology is able to adjust cloud variables to better suit the dy-
namic and thermal fields. However, cloud analysis schemes
rely largely on uncertain empirical relationships, thus hardly

suppressing the generation of spurious echoes. Using the
4DVar system, Sun and Crook (1997) proposed assimilat-
ing rainwater mixing ratios retrieved from reflectivity instead
of directly assimilating reflectivity, which seems to produce
better analysis results. Based on the 3DVar system of WRF,
Wang et al. (2013a) further demonstrated that assimilation
of rainwater and estimated water vapor obtained from radar
reflectivity reduces the linearization error in the radar re-
flectivity observation operator, thus improving precipitation
forecasts. However, both indirect assimilation methods under
the two variational frameworks are employed in the warm
rain scheme, which restricts their applications above tropo-
sphere or in the coexistence of liquid and ice particles. Shen
et al. (2021) added hydrometeor control variables including
ice-phase particles when indirectly assimilating radar reflec-
tivity observations of Hurricane Ike, which enables track and
intensity forecasts of hurricanes to be greatly improved.

For the indirect assimilation of radar reflectivity, one
of the challenges is how to correctly classify hydromete-
ors in observations. There are currently two methods to
distinguish hydrometeor types. One is to classify hydrom-
eteor types according to background temperature (here-
after called temperature-based) developed by Gao and Sten-
srud (2012), with fixed parameters and empirical relations.
Another is the “background hydrometer-dependent” hy-
drometeor retrieval scheme (Chen et al., 2020, 2021). The
“background hydrometer-dependent” method calculates hy-
drometeor weights at various thresholds from the model
background field to better allocate radar reflectivity observa-
tion information. This approach avoids empirical thresholds
and weighting coefficients given in the “temperature-based”
method, and beneficially improves the accuracy of hy-
drometeor retrievals. However, the “background hydrometer-
dependent” scheme also relies on the accuracy of the back-
ground field itself. When the background field is similar
to the observation, the “background hydrometer-dependent”
method tends to provide accurate hydrometeor weights. On
the other hand, when the background field differs signif-
icantly from the observation, the algorithm may not be
suitable for appropriately allocating hydrometeors of the
radar reflectivity observation. Considering the limitations
of both “temperature-based” or “background hydrometer-
dependent” schemes, this study aims to adaptively combine
two above methods of classifying hydrometeors to assimilate
radar reflectivity more reasonably.

In the study, Sect. 2 describes the WRF-3DVar methods,
radar observation operators, and a new hydrometeor retrieval
method that adaptively combines the “temperature-based”
and “background hydrometeor-dependent” methods. Based
on two convective cases, three experiments are designed
to investigate the impact of different hydrometeor retrieval
schemes on assimilation and prediction, with the specific
configurations presented in Sect. 3. Section 4 presents analy-
sis and forecast results of all experiments. The conclusion is
presented in Sect. 5.
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2 Methods

2.1 The WRF-3DVar system

Based on the incremental method proposed by Courtier et
al. (1994), 3DVar uses the minimization algorithm to solve
the objective function. The cost function is as follows:

J =
1
2
(x− xb)

T B−1(x− xb)+
1
2
[H (x)− yo]

T R−1 [
H (x)− yo

]
.

(1)

The vectors x, xb, and yo stand for analysis variables, back-
ground variables, and observation variables. B is the back-
ground error covariance, which is calculated by the National
Meteorological Center (NMC; Parrish and Derber, 1992)
method. R represents the observation error covariance. H is
the nonlinear observation operator.

2.2 The radical velocity observation operator

The radial velocity observation operator is as follows:

Vr = u
x− xi

ri
+ v

y− yi

ri
+ (w− vT)

z− zi

ri
. (2)

u, v, and w denote the zonal, meridional, and vertical wind
components, respectively. (x, y, z) and (xi , yi , zi) represent
the radar position and observation position, respectively. ri is
the distance between the radar and the observation. vT is the
terminal speed.

2.3 The radar reflectivity observation operator

According to Tong and Xue (2005), the radar reflectivity ob-
servation operator is as follows:

Z = 10× log10 (Ze) , (3)
Ze = Ze (qr)+Ze (qs)+Ze(qg), (4)

Ze (qx)= αx(ρqx)
1.75. (5)

qx means hydrometeor mixing ratios. Ze (qx) (units: dBZ)
is the equivalent reflectivity factor of rainwater, snow, and
graupel. αx represents the fixed coefficient that is determined
by the dielectric coefficient, density, and intercept parameter
of each hydrometeor. αr is 3.63× 109. For snow and grau-
pel, the coefficient is temperature dependent. When the en-
vironmental temperature is greater than 0°, αs for wet snow
is 4.26× 1011 and αg for wet graupel is 9.08× 109. When
the temperature is below 0°, αs for dry snow is 9.80× 108

and αg for dry graupel is 1.09× 109. ρ is the air density.
During the direct assimilation of radar reflectivity, the lin-
earization errors are almost inevitable. Therefore, the indi-
rect assimilation method is utilized in the study. The indirect
method assimilates the retrieved water vapor and hydromete-
ors from the radar reflectivity observations. Following Wang
et al. (2013a), it is assumed that when the radar reflectiv-
ity exceeds a certain threshold, the relative humidity reaches

100 %. The threshold is set to 30 dBZ in this study. The satu-
ration water vapor at that point is then calculated and assim-
ilated as a pseudo observation.

For retrieving hydrometeors from radar reflectivity, it is
required to determine the proportion of each hydrometeor in
the radar reflectivity observation. At present, there are two
methods to obtain the proportion of each hydrometeor.

2.3.1 The “temperature-based” method

In Gao and Stensrud (2012), the hydrometeor types in re-
flectivity are classified based on the background temperature.
The specific values are as follows:

Cr = 1,Cs = Cg = 0,Tb > 5°, (6)

Cr =
Tb+ 5

10
Cs = (1−Cr) ·

αs

αs+αg
Cg = (1−Cr) ·

αg

αs+αg
− 5°< Tb < 5°, (7)

Cr = Cs =
αs

αs+αg
Cg =

αg

αs+αg
Tb <−5°. (8)

Cr,Cs, and Cg denote the weights of rainwater, snow, and
graupel, respectively. αr, αs, and αg represent the fixed coef-
ficients of rainwater, snow, and graupel, respectively (Same
as above). Tb is the background temperature.

2.3.2 The “background hydrometer-dependent”
method

It is found that hydrometeor weights derived from the back-
ground field vary with individual weather conditions, which
helps to reduce errors resulting from fixed coefficients in
Chen et al. (2020, 2021). The specific process of calculating
proportions is as follows.

Compute the average equivalent radar reflectivity of each
hydrometeor (Zx(k, refi )

) in different reflectivity ranges (refi)
and model layers (k) based on the background field statis-
tics. The reflectivity ranges are usually set as follows: ref1 <

15dBZ, 15dBZ≤ ref2 < 25dBZ, 25dBZ≤ ref3 < 35dBZ,
35dBZ≤ ref4 < 45dBZ, ref5 ≥ 45dBZ.

Calculate the weight (Cx(k, refi )
) of each hydrometeor in the

background field.

Cx(k, refi )
= Zx(k, refi )

/Ztotal(k, refi )
(9)

Ztotal(k, refi )
= Zr(k, refi )

+Zs(k, refi )
+ Zg(k, refi )

(10)

Divide radar reflectivity observations based on the weights
(Cx(k, refi )

) derived from step 2. If the background field has
missing data, the calculated climatological mean for 1 month
will be used instead.

2.3.3 The blending method

The blending method aims to utilize the two methods of par-
titioning hydrometeors accordingly to retrieve multiple hy-
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Figure 1. The simulated area of (a) Case 1 and (b) Case 2, with the detecting ranges of the Nanjing radar and Shenyang radar. Both radars are
S-band Doppler radars with a maximum coverage range of 230 km. The radial velocity and reflectivity observations have range resolutions
of 250 and 1000 m, respectively.

Table 1. The list of DA experiments.

Experiments Hydrometeor retrieval methods

EXP_temp the “temperature-based” method
EXP_bg the “background hydrometer-dependent”

method
EXP_temp-bg the blending method

drometeors more reasonably in radar reflectivity indirect as-
similation. Firstly, calculate the standard deviation σ of each
hydrometeor content in the model grid and its surrounding
background grids. If the standard deviations of the retrieved
hydrometeors of the two schemes are less than 2σ , it means
that the retrieved hydrometeors are consistent with the lo-
cal structure of the background. Therefore, the hydrometeor
content is calculated by the following formulas:

β =
δ2
t

δ2
t + δ

2
b
, (11)

Cx = βC
b
x + (1−β)C

t
x . (12)

δ2
t represents the deviation between the hydrometeor con-

tent of the background field and the retrieved hydrom-
eteor content based on the “temperature-based” scheme.
δ2

b is the deviation between the hydrometeor content of
the background field and the retrieved hydrometeor by the
“background hydrometer-dependent” scheme. Ct

x and Cb
x

are the weights calculated by the “temperature-based” and
“background hydrometer-dependent” methods, respectively.
β means the proportion of the results calculated by the “back-
ground hydrometer-dependent” method.

3 Experimental design

WRF v4.3 and its data assimilation system, WRFDA v4.3,
are employed in this study. Two convective cases are inves-
tigated: 14 June 2020 (referred to as Case 1; Fig. 1a) and
6 August 2018 (denoted as Case 2; Fig. 1b). For Case 1,
the model domain consists of 500× 471 grid points with
a horizontal resolution of 3 km and 50 vertical levels. For
Case 2, the domain comprises 723× 691 grid points, also
with a 3 km horizontal resolution and 50 vertical levels.
The physical parameterizations applied include the WRF
Double-Moment 6-Class Microphysics (WDM6) scheme,
the Rapid Radiative Transfer Model (RRTM) longwave radi-
ation scheme (Mlawer et al., 1997), the Dudhia shortwave ra-
diation scheme (Dudhia, 1989), the Yonsei University (YSU)
boundary layer scheme (Hong et al., 2006), and the Noah
land surface model (Chen and Dudhia, 2001) for land surface
processes. No cumulus parameterization scheme is used. As
summarized in Table 1, three data assimilation (DA) exper-
iments are conducted to evaluate the effects of all retrieval
methods considered in this study. For all three DA exper-
iments, the initial and lateral boundary conditions are pro-
vided by NCEP Global Forecast System (GFS) data. Addi-
tionally, the specific workflow is illustrated in Fig. 2. Radar
observations for both cases undergo a series of preprocess-
ing and quality control procedures, including anomaly de-
tection and velocity de-aliasing. The observation errors for
radar radial velocity and radar reflectivity are set to 2 m s−1

and 5 dBZ, respectively.
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Figure 2. The assimilation flow charts of Case 1 and Case 2.

Figure 3. The observed composite reflectivity fields (units: dBZ) at (a) 23:00 UTC on 14 June, (b) 00:00 UTC, and (c) 01:00 UTC on
15 June 2020. The black line a1–a2 in Fig. 3b is the vertical cross section location of Fig. 4.

4 Experimental results

4.1 14 June 2020 case

Figure 3 shows the observed reflectivity at 23:00 UTC on
14 June, at 00:00 UTC, and at 01:00 UTC on 15 June 2020.
At the beginning, there are strong echoes in the southwest-
ern boundary of Jiangsu Province. Subsequently, the strong
convective band begins to expand in both eastward and west-
ward directions, stretching to the central Anhui Province and
Jiangsu Province.

Figure 4 compares the hydrometeor classification algo-
rithm (HCA) based on dual-polarization radar observations
with the hydrometeor retrieval results from the three exper-
iments at 15:00 UTC on 14 June 2020. The HCA diagram
indicates that rainwater dominates the lower levels, while
dry snow and graupel prevail at higher levels, with wet snow
present near the melting layer. In the vertical cross sections of
the three experiments (Fig. 4b, c, d), the overall distribution
patterns of the retrieved hydrometeors appear reasonable, es-
pecially for rain and snow. Notably, the wet snow and graupel
retrieved by EXP_temp-bg are more consistent with the HCA
results compared to EXP_temp and EXP_bg.

To investigate the impact of the radar reflectivity DA based
on the three hydrometeor retrieval methods, Fig. 5 shows
the predicted composite reflectivity initiated at 01:00 UTC
on 15 June. It is shown that the convective structure is di-

vided into two parts (labeled C and D). From the observations
(Fig. 3a), the combination of C and D is initially located in
the western Jiangsu and eastern Anhui. Soon after, region D
gradually separates from C and shifts eastward, displaying
the reduced intensity and poor organization. At 01:15 UTC,
all DA experiments are able to capture region C and region
D, albeit with slightly weaker intensity compared to the ob-
servations. At 01:30 UTC, the patterns of region C predicted
by three experiments depart from the observation, while the
echoes for EXP_temp-bg exhibit the best organization. At
01:45 UTC, region C in EXP_temp and EXP_bg shows poor
agreement with the observations. In contrast, EXP_temp-bg
provides a more accurate forecast in terms of shape and in-
tensity. At 02:00 UTC, three experiments can predict region
C and region D to some extent, but region D in EXP_temp-bg
has the most accurate echo pattern. In general, the blending
scheme is conducive to improving the radar reflectivity fore-
cast skill.

Figure 6 displays the vertical cross sections of the relative
humidity, radar reflectivity, and wind fields at 15:01 UTC.
After 1 h forecast, the cross sections from all experiments in-
dicate the presence of saturated water vapor columns near the
strong echoes (around 32° N). Notably, EXP_temp-bg also
reveals a robust updraft, facilitating the transport of water va-
por from lower to upper levels. In comparison, EXP_temp-bg
produces the most consistent thermal and dynamical condi-
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Figure 4. The vertical sections of (a) the hydrometeor classification algorithm based on the dual-polarization radar observations and retrieved
hydrometeors for (b) EXP_temp, (c) EXP_bg, and (d) EXP_temp-bg along the black lines a1–a2 at 15:00 UTC. The retrieved hydrometeors
refer to rainwater mixing ratio (green contours; units: g kg−1), dry snow mixing ratio (gray contours; units: g kg−1), wet snow mixing ratio
(cyan contours; units: g kg−1), and graupel mixing ratio (shading; units: g kg−1), respectively.

tions, resulting in the most accurate forecast of the convec-
tion.

Figure 7 shows the 3 h accumulated precipitation forecast
from 15:01 to 15:04 UTC on 15 June 2020. As depicted in
Fig. 7a, the primary precipitation zone is concentrated along
the western boundary of Jiangsu Province, with accumu-
lated precipitation exceeding 50 mm. The precipitation in-
tensity is overestimated for three DA experiments. However,
EXP_temp-bg effectively suppresses two false precipitation
areas, leading to an improved precipitation forecast.

To quantitatively assess the performance of different hy-
drometeor retrieval schemes, the equitable threat scores
(ETS) are calculated for 0–3 h precipitation forecasts in
EXP_temp, EXP_bg, and EXP_temp-bg (Fig. 8). The spe-

cific calculation formula of ETS is as follows:

ETS=
A−R

A+B +C−R
, (13)

R =
(A+C)× (A+B)

A+B +C+D
, (14)

where A, B, C, and D are the number of hits, the false
alarms, the misses, and the correct negatives. R refers to the
probability of having a correct forecast by chance.

It is evident that as the precipitation threshold increases,
the ETS values for all three experiments decline progres-
sively. Furthermore, EXP_temp and EXP_bg exhibit com-
parable ETS values under various precipitation thresholds.
In contrast, EXP_temp-bg consistently outperforms both
EXP_temp and EXP_bg for the entire 3 h forecast pe-
riod, which implies that the integrated hydrometeor retrieval
scheme is conducive to the assimilation of radar reflectivity
observations.

Nat. Hazards Earth Syst. Sci., 25, 3905–3920, 2025 https://doi.org/10.5194/nhess-25-3905-2025
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Figure 5. The composite reflectivity (shaded; units: dBZ) predicted by (e)–(h) EXP_temp, (i)–(l) EXP_bg, and (m)–(p) EXP_temp-bg for
the 1 h forecast beginning at 01:00 UTC on 15 June 2020, as compared to (a)–(d) the observed composite reflectivity. The labels C and D
present the convection locations.

4.2 6 August 2018 case

Figure 9 presents the observed composite reflectivity at
18:00, 19:00, 20:00, and 21:00 UTC on 6 August 2018. At
18:00 UTC, there are a small number of strong radar echoes
in the central part of Liaoning Province. At 19:00 UTC,
these discrete strong echoes gradually converge in the cen-
ter of Liaoning, forming a well-organized structure. By
20:00 UTC, the convections continue to develop and form a
“V” pattern echo. At 21:00 UTC, a distinct “T” shaped echo
emerges in the observed area.

Figure 10 shows the radar reflectivity analysis fields and
the vertical cross sections along the line a–b from EXP_temp,
EXP_bg, and EXP_ temp-bg at 21:00 UTC. As shown in

Fig. 10a, a distinct “T” shaped echo emerges in the observed
area. Generally, the composite reflectivity analyses of the ex-
periments EXP_temp, EXP_bg, and EXP_temp-bg show a
general agreement. From the observed vertical cross section,
it seems that there exist three strong echo bands between
123.78 and 124.36° E. In order to display the differences be-
tween three DA experiments and the observation, the con-
vective system located near 123.75° E is marked as A, the
strong convection at 123.97–124.17° E is marked as B, and
the strong echo region at 124.17–124.55° E is marked as C.
Notably, part A in the experiment EXP_temp departs from
the observation, while EXP_bg and EXP_temp-bg capture
it more closely. It seems EXP_temp-bg combines the echo
characteristics of both EXP_temp and EXP_bg in part A.

https://doi.org/10.5194/nhess-25-3905-2025 Nat. Hazards Earth Syst. Sci., 25, 3905–3920, 2025
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Figure 6. The cross sections of relative humidity (shading; units: %), radar reflectivity (black contours starting at 40 dBZ; units: dBZ), and
wind vectors for (a) EXP_temp, (b) EXP_bg, and (c) EXP_temp-bg along the line a1–a2. These are 1 h forecasts initialized at 15:01 UTC.

Figure 7. Shown here is 3 h accumulated precipitation initialized at 01:00 UTC on 15 June 2020. (a) The observation, (b) EXP_temp,
(c) EXP_bg, and (d) EXP_temp-bg.

For part B, though all three DA experiments exhibit a gen-
eral agreement with the observation, their intensity is weaker
than that in the observation. All three experiments capture
the overall structure of C.

To examine how different retrieval methods modify the
hydrometeor distributions, the rainwater, snow, and graupel
mixing ratio cross sections are presented in Fig. 11. Rainwa-
ter occurs below the freezing level, while snow and grau-

pel particles primarily exist above the freezing level. The
distribution of low-level rainwater in EXP_temp-bg is sim-
ilar to that in EXP_bg. The proportion of snow and graupel
is a fixed coefficient in the EXP_temp, resulting in similar
vertical distributions as shown in Fig. 11a. For schemes as-
sociated with the background, the weights assigned to dif-
ferent hydrometeors vary dynamically with the background
field. Therefore, the fixed coefficient does not exist in the

Nat. Hazards Earth Syst. Sci., 25, 3905–3920, 2025 https://doi.org/10.5194/nhess-25-3905-2025
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Figure 8. Equitable threat scores of hourly accumulated precipitation forecasts with four thresholds: (a) 0.1, (b) 2.5, (c) 5, and (d) 10 mm
from 02:00 UTC to 04:00 UTC on 15 June.

other two experiments (EXP_bg and EXP_temp-bg). Addi-
tionally, both EXP_bg and EXP_temp-bg have significantly
higher snow and graupel content than EXP_temp. Figure 11
shows three strong centers of graupel particles correspond-
ing to three strong reflectivity bands in Fig. 10. By com-
paring the three groups of the DA experiments, it is appar-
ent that EXP_bg has the highest strong center value, while
EXP_temp has the lowest. Moreover, the distribution of high-
altitude hydrometeors in EXP_temp-bg combines the fea-
tures of EXP_temp and EXP_bg. To conclude, the hydrom-
eteor vertical distributions are closely related to the radar re-
flectivity structure as expected.

Figure 12 displays the vertical cross sections of the
pseudo-equivalent potential temperature (θse), wind compo-
nents, and reflectivity at 21:00 UTC for EXP_temp, EXP_bg,
and EXP_temp-bg. All three data assimilation (DA) experi-
ments exhibit a high–low–high vertical distribution of θse. It
suggests that the vertical structure of the atmosphere is un-
stable in this region, with dry conditions prevailing in the
upper levels and moist conditions in the lower levels. This
type of vertical structure is favorable for the development of

severe convective weather events. In the middle layer, there
is a zone with relatively high θse value for EXP_bg and
EXP_temp-bg. Specifically, a warm core structure is identi-
fied near 123.85° N, accompanied by strong upward motion.
This results in the release of unstable energy, indicating that
a severe convective system is continuously developing. Ad-
ditionally, compared with EXP_bg, EXP_temp-bg yields a
more extensive and deeper updraft column.

Figure 13 shows 1, 3, and 5 h forecasts initialized at
21:00 UTC on 6 August 2018 for EXP_temp, EXP_bg, and
EXP_temp-bg. As can be seen from the observation, the
strong echo is located near 42° N at the beginning and has
a tendency to slowly develop to the east. For the sake of clar-
ity, the strong echo zone is divided into two parts: part A and
part B. At 22:00 UTC on 6 August, the forecasts of three DA
experiments for part B are inconsistent with the observation
in terms of the intensity. The part A predicted by EXP_bg
and EXP_temp-bg shows a general agreement with the ob-
servation, while the radar reflectivity forecast of EXP_temp
departs from the observation. At 00:00 UTC on 7 August,
EXP_bg and EXP_temp-bg yield an improved forecast for
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Figure 9. The observed composite reflectivity fields (units: dBZ) at (a) 18:00 UTC, (b) 19:00 UTC, (c) 20:00 UTC, and (d) 21:00 UTC on
6 August 2018.

Figure 10. The composite reflectivity at 21:00 UTC for (a) observation, (b) EXP_temp, (c) EXP_bg, (d) EXP_temp-bg, accompanied by the
vertical cross sections for (e) observation, (f) EXP_temp, (g) EXP_bg, and (h) EXP_temp-bg along the line a–b. The vertical cross section
location at 21:00 UTC is shown by the line a–b in Fig. 10a. The labels in Fig. 10e present the convection locations.
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Figure 11. The vertical cross sections of rainwater mixing ratio (green contours), snow mixing ratio (blue contours), and graupel mixing
ratio (shading) at 21:00 UTC for the experiments (a) EXP_temp, (b) EXP_bg, and (c) EXP_temp-bg. The position of the cross sections is
located at the line a–b of Fig. 10a.

Figure 12. The vertical sections of pseudo-equivalent potential temperature (shaded; units: K) and velocity vectors (units: m s−1; the vertical
velocity has been multiplied by 10) at 21:00 UTC for (a) EXP_temp, (b) EXP_bg, and (c) EXP_temp-bg. The position of the cross sections
is located at the line a–b of Fig. 10a.

part A and B as compared with EXP_temp, in terms of
the intensity and organization. However, there is a southeast
bias in part A predicted by both EXP_bg and EXP_temp-
bg. Compared to EXP_bg, EXP_temp-bg provides more ac-
curate predictions for part B. As shown by the observation
at 02:00 UTC on 7 August, the predicted A in EXP_temp-
bg shows closer alignment with the observation than that in
EXP_temp and EXP_bg. For part B, three sets of experi-
ments all depart from the observation. Overall, EXP_temp-
bg demonstrates superior prediction skills in terms of the
radar reflectivity.

Figure 14 shows 6 h accumulated precipitation of the three
DA experiments from 21:00 UTC on 6 August to 03:00 UTC
on 7 August 2018. According to the observation, heavy rain-
fall is mainly concentrated in the northeastern part of Liaon-
ing, with precipitation quantity exceeding 100 mm. All three
experiments underestimate the extent of the precipitation in
this event, especially in the range of 25 to 50 mm. More-
over, there is a certain deviation between the predicted and
observed locations. As shown in Fig. 14c and d, the pat-
terns of heavy precipitation areas are similar in EXP_bg and
EXP_temp-bg. EXP_bg and EXP_temp-bg are notably bet-
ter than EXP_temp in predicting the rainfall for the threshold
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Figure 13. The composite reflectivity (shaded; units: dBZ) predicted by (d)–(f) EXP_temp, (g)–(i) EXP_bg, and (j)–(l) EXP_temp-bg,
as compared to (a)–(c) the observed composite reflectivity. The corresponding times from left to right are 22:00 UTC on 6 August (left),
00:00 UTC on 7 August (middle), and 02:00 UTC on 7 August (right), respectively. The labels A and B present the convection locations.

50 mm. EXP_temp-bg displays the best forecasting skill in
terms of the heavy rainfall area.

Figure 15 shows ETS values of 1 h accumulated pre-
cipitation for EXP_temp, EXP_bg, and EXP_temp-bg. For
the threshold of 2.5 mm h−1, the precipitation forecasts
of EXP_temp-bg generally exhibit superior quality. The
EXP_temp experiment consistently shows the lowest ETS
scores among the three experiments. At the threshold of

10 mm h−1, the ETS score of EXP_temp-bg gradually in-
creases in the later stages of the forecast. These results in-
dicate that the blending method is able to improve the pre-
cipitation forecast skill.
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Figure 14. Shown here is 6 h accumulated precipitation initialized at 21:00 UTC on 6 August 2018. (a) The observation, (b) EXP_temp,
(c) EXP_bg, and (d) EXP_temp-bg.

Figure 15. ETS of three DA experiments for the thresholds of (a) 2.5 and (b) 10 mm h−1.

5 Conclusions

The study proposes an adaptive hydrometeor retrieval
scheme within the WRF-3DVar system, which com-
bines “temperature-based” and “background hydrometer-
dependent” methods to enhance analyses and forecasts for
strong convections. In the indirect assimilation of radar re-
flectivity, it is vital to correctly divide hydrometeor infor-
mation in radar reflectivity. On the basis of two retrieval
methods proposed by Gao and Stensrud (2012) and Chen et
al. (2020, 2021), the blending scheme is developed to min-
imize the limitations brought by both methods so as to im-
prove the assimilation and prediction skills.

The three hydrometeor retrieval schemes above are evalu-
ated for two strong convective processes that occurred dur-
ing June 2020 and August 2018. Three DA experiments
(EXP_temp, EXP_bg, and EXP_temp-bg) are conducted by
using the “temperature-based”, “background hydrometer-
dependent”, and blending methods, respectively. The anal-
ysis results reveal that the blending method is effective at
improving the radar reflectivity structures for severe convec-
tions. Based on the other two DA experiments, EXP_temp-
bg further improves hydrometeor structures and properly al-
locates the proportion of each hydrometeor, which is re-
sponsible for more reasonable hydrometeor distributions.
Also, EXP_temp-bg provides more reasonable dynamics and
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thermal structures compared with EXP_temp and EXP_bg.
EXP_temp-bg shows advantages in the precipitation predic-
tion skills due to the reasonable spatial distribution and pro-
portion of each hydrometeor.

Compared to conventional Doppler weather radars, dual-
polarization radar observations provide more accurate iden-
tification of the three-dimensional microphysical struc-
tures within precipitation systems. Consequently, dual-
polarization radar data (e.g. differential reflectivity, specific
differential phase, correlation coefficient) will be considered
for identifying the hydrometeor types more accurately, aim-
ing to enhance the effectiveness of radar data assimilation.
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