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Abstract. Practice and policy have emphasized the need
for building resilience to climate-related events in a further
warming world. Scholarship has studied resilience largely
in terms of process, latent capacity informing vulnerabil-
ity, or the outcome of risk management interventions, with
little work integrating these perspectives. Implementation
science work by the Climate Resilience Alliance has de-
veloped the Flood Resilience Measurement for Communi-
ties (FRMC) process and tool to measure resilience as an
outcome (post-flood mortality and morbidity reduction) and
as capacity (pre- and post-intervention levels). This article
builds on FRMC analytics to investigate the effect of re-
silience capacity, represented by five forms of capital (5Cs)
and five stages of the disaster risk management (DRM) cycle,
on injury and mortality outcomes across 66 flood-affected
communities in seven Global South countries. Data were col-
lected using household surveys, community focus groups,
key informant interviews, and secondary sources. We applied
a quasi-experimental regression design, controlling for de-
mographic and flood hazard/exposure variables, to estimate
the effect of 5Cs and DRM stages on health outcomes. Re-
sults show that social and human capital help reduce injuries
after floods, and preparedness lowers both deaths and in-
juries. Some results were unexpected, such as the positive as-
sociation between natural capital and delayed deaths, where
limited gains in natural capital may not yield meaningful
protection in communities with degraded ecosystems. This
study finds that preparedness is the most consistent predic-

tor of positive health outcomes, while forms of 5Cs may not
translate into reduced mortality. By combining 5Cs, DRM
stages, and health indicators, this paper contributes to bridg-
ing a gap in the literature and offers policy-relevant insights
for improving community-level disaster response.

1 Introduction

Floods are the most frequent disaster triggered by envi-
ronmental extremes and account for the highest disaster-
related death rate (Yari et al., 2020). Also, floods cause se-
vere health impacts worldwide, particularly affecting lower-
income, densely populated regions (Escobar Carías et al.,
2022; Lynch et al., 2025). Research highlights that mortal-
ity and morbidity during and after floods are shaped by a
variety of individual and community risk factors, including
hazard event type, intensity, and duration (Birkmann et al.,
2022) and factors associated with exposure and vulnerabil-
ity including age (Petrucci, 2022; Yang et al., 2023), gender
(Jerin et al., 2024; Mucherera and Mavhura, 2020), urban–
rural location (Petrucci, 2022), and various other drivers, all
of which significantly determine risk and actual impacts on
affected populations in disaster events as well as informing
interventions to build resilience (Chapagain et al., 2025).

Although the impact of demographic factors – such as
age, gender, and rural or urban residence – on flood-related
mortality and morbidity is well-documented, the role of five
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forms of capital (5Cs) and stages of the disaster risk manage-
ment (DRM) cycle, when accounting for demographic fac-
tors and flood exposure/hazard, is less clear. One study has
explored the role of five forms of capital (social, human, fi-
nancial, physical, natural) as drivers of vulnerability in terms
of total injuries and fatalities, controlling for flood expo-
sure but with no control for demographics (Chapagain et al.,
2025). Another study examined the challenges faced at stages
of the DRM cycle in the context of rural flooding in Pakistan.
Employing a qualitative approach with focus groups and key
informant interviews in Khyber Pakhtunkhwa Province, the
study identified challenges in risk reduction, preparedness,
rescue and relief, and rehabilitation and recovery phases
(Shah et al., 2023).

Understanding resilience has proceeded. Drawing on
Alexander (2013), resilience has evolved from an outcome-
oriented concept – “bouncing back” after disturbance – to
one that also includes latent features such as inherent capac-
ity and adaptive potential. Initially defined by its etymology
and early scientific use in mechanics (resisting and absorb-
ing force), resilience concepts have been advanced to reflect
deeper systemic traits in ecology (absorbing shocks while
maintaining function), psychology (individual adaptation to
adversity), and the social sciences (community robustness
and flexibility for transformation). In disaster risk reduction
(and climate adaptation) research and implementation, dif-
ferent dimensions have seen attention and resilience has been
analysed as observable outcomes after events and latent qual-
ities before events – like adaptability, resistance, and trans-
formative capacity – that enable systems to withstand and
evolve through disruption (Alexander, 2013). Yet, there has
been limited work combining outcomes and capacity.

Furthermore, understanding resilience and DRM stage ef-
fects and their interactions with demographic profiles and ex-
posure is essential for developing effective policy interven-
tions. Available evidence suggests that investing in building
community resilience to floods reduces the negative impacts
of these events on human health and well-being along a DRM
cycle that aims to avoid, lessen, or transfer the adverse effects
of floods, contributing to better flood outcomes by guiding
integrated and proactive management strategies (Hochrainer-
Stigler et al., 2020, 2021; Keating et al., 2017a; Laurien et al.,
2020).

This article uses the Flood Resilience Measurement for
Communities (FRMC) tool to examine the role of capaci-
ties in reducing fatalities (immediate and delayed) and injury
outcomes for 66 flood-affected communities across seven
countries. Recent global analysis of the FRMC’s large-scale
application across nearly 400 communities further validates
its use, highlighting consistent patterns in how different re-
silience dimensions relate to recovery outcomes (Keating
et al., 2025).

The analysis controls for demographic factors and flood
exposure/hazard. Communities are grouped into four re-
silience clusters and two DRM cycle groups to reflect the

tendency of similar capital levels and DRM coping capaci-
ties (Hochrainer-Stigler et al., 2021; Keating et al., 2025). A
quasi-experimental research design with regression adjust-
ment is applied to evaluate the distinct influence of resilience
and DRM cycle stages on morbidity and mortality outcomes
after controlling for confounders.

Our findings emphasize the critical role of resilience and
DRM cycle stages in shaping health and mortality outcomes
after a flood event. Social capital and natural capital were
assessed to be effective in reducing injuries. DRM models
demonstrated stronger predictive power, with preparedness
significantly decreasing both fatalities and injuries. Mean-
while, corrective risk reduction lowered injury rates. Never-
theless, we found some unexpected results. For instance, the
positive association between natural capital and delayed mor-
tality may reflect the vulnerability of communities with de-
graded ecosystems, where limited improvements fail to yield
meaningful health benefits. Similarly, unexpected patterns in
the DRM stages, such as higher mortality associated with
corrective risk reduction, may be explained by lagged effects
or measurement timing relative to implementation efforts.

2 Conceptual foundations and prior research on the
independent variables

This section presents the independent variables, emphasiz-
ing their theoretical components and relevant literature. The
sections are organized around the key explanatory variables
(5Cs and the DRM cycle stages) and the control variables
(demographics and hazard/exposure to floods). We hypothe-
size that these variables can play a crucial role in influencing
mortality and morbidity outcomes after a flood event.

2.1 The FRMC capital framework (5Cs)

A central component of the framework is the 5Cs, which
are broadly derived from the Sustainable Livelihoods Frame-
work (Keating et al., 2014). They represent different types of
assets and resources that contribute to a community’s over-
all well-being and its capacity to cope with and recover from
shocks, including floods. A summary of each form of cap-
ital is provided next (Campbell et al., 2019; Keating et al.,
2017a):

– Human capital refers to the education, skills, health, and
well-being of household members in a community that
enhance their ability to prepare for and recover from a
flood. Examples include flood preparedness knowledge,
personal safety skills, and education levels.

– Social capital encompasses the social relationships, net-
works, and shared norms that enable communities to
support each other, such as formal community emer-
gency services and community-led flood management
efforts.
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– Financial capital includes the financial resources avail-
able to households and communities, such as savings,
income, access to credit, and government funding for
infrastructure.

– Physical capital consists of the built infrastructure es-
sential for both daily life and disaster response, includ-
ing roads, communication systems, and flood defences.

– Finally, natural capital embodies the natural resources
and ecosystems that provide flood protection and sus-
tain livelihoods, such as wetlands, forests, and managed
biodiversity.

The 5Cs can play a crucial role in influencing mortality
and morbidity outcomes after a flood event. For example, it
is expected that communities with strong levels of the 5Cs
will tend to experience fewer injuries and fatalities. A pre-
vious study using FRMC data examined these effects; how-
ever, the analysis did not control for the demographic profile
of the community (Chapagain et al., 2025). Physical capital
was linked to fewer fatalities at the 5 % confidence level; so-
cial capital was associated with lower fatalities and injuries,
with statistical significance at the 6 % level; and natural cap-
ital showed a significant negative relationship with injuries.
In contrast, financial and human capital did not demonstrate
statistically significant associations with flood-related fatali-
ties or injuries in the models.

2.2 The DRM cycle stages

FRMC analysis can zoom into key phases of the DRM cy-
cle, which is broken down into five stages (Keating et al.,
2017a, b):

– Prospective risk reduction involves taking proactive
steps to prevent new risks from arising.

– Corrective risk reduction focuses on lowering risks for
people and assets already at risk.

– Preparedness is about getting people and resources
ready for possible events.

– Response encompasses the immediate measures imple-
mented during and right after a disaster to reduce its
effects.

– Recovery, on the other hand, includes both short- and
long-term efforts aimed at supporting individuals and
communities in managing the aftermath.

The DRM cycle has well-documented limitations. Schol-
ars have criticized its continuous cyclic nature and broad
phase definitions, which can hinder application across di-
verse urban settings and complicate its integration into cli-
mate change and resilience discourse (Rana et al., 2021).
However, while acknowledging its imperfections, the DRM

cycle continues to be used due to its convenience and ro-
bustness (Alexander, 2018). While debates continue on how
to adapt it for more effective management – taking into ac-
count time, resources, preferences, capacities, needs, and in-
stitutional changes – its practical benefits continue to support
its broad use (Baas et al., 2008). We found no study linking
DRM cycle stages with mortality/morbidity outcomes.

2.3 Control variables

The following section examines the control variables used
in the analysis. The prior literature identifies these factors as
important in explaining variations in flood-related mortality
and morbidity.

2.3.1 Gender and age composition

Research suggests that the relationship between flood-related
morbidity and mortality and age and gender is relevant. For
example, evidence on the gender-specific effects of floods on
mortality is well-documented:

– Globally, men generally experience higher mortality
rates during flood events (Jerin et al., 2024; Petrucci,
2022). An analysis of research conducted in Europe,
the United States, and Australia found that 65 % of the
studies reported consistently higher fatality rates among
men. The study highlights that in the United States
(1996–2014), male flood fatalities consistently outnum-
bered female ones across all scenarios. A similar pattern
was observed in parts of Europe (1980–2018), where
male fatalities were generally higher, except among the
elderly. The review attributes this increased male vul-
nerability to greater exposure to flood hazards and the
higher proportion of men who operate vehicles during
such events (Petrucci, 2022).

– Morbidity effects, on the other hand, tend to stress the
vulnerability of women and of specific population age
groups. For instance, a study emphasizes the heightened
health vulnerabilities of women during floods due to
factors like polluted water and challenges in menstrual
management (Jerin et al., 2024).

In contrast to gender influences, the effects of age on flood
fatalities and injuries vary significantly across studies. Some
research, for instance, emphasizes that older individuals are
particularly prone to fatalities during and in the aftermath of
floods (Ban et al., 2023; Yang et al., 2023), while there is ev-
idence indicating that younger individuals can face a higher
risk of mortality, specifically non-accidental deaths, during
flood events compared to older adults (Ban et al., 2023).

In sum, the literature indicates that the relationship be-
tween flood impacts and risk, age, and gender is multifaceted
and requires further attention as some studies have suggested
that women’s access to human, social, and financial resources
can strengthen their ability to adapt to floods (Azad and
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Pritchard, 2023). This evidence is particularly relevant to our
study, as we focus on the net effect of community 5Cs and
DRM cycle stages on flood-related mortality and morbidity.

2.3.2 Urban–rural residence

Urban–rural linkages play a critical role in shaping flood-
related mortality.

– Research shows that rural areas face higher flood-
related risks due to slower emergency response capabili-
ties, lower population densities – which limit immediate
assistance from bystanders – a lack of protective infras-
tructure such as elevated bridges, and their frequent lo-
cation in headwater basins where floods develop rapidly,
leaving little time for warning or evacuation. In contrast,
urban areas tend to demonstrate greater resilience and a
lower concentration of risk, largely due to the presence
of more valuable assets, higher average incomes, and
more robust housing structures (Petrucci, 2022).

– The interdependencies between rural and urban areas
are rarely considered in disaster risk frameworks. Ru-
ral areas, particularly in developing countries, depend
heavily on cities for jobs, services, and information,
while cities rely on rural areas for labour, food, and
ecosystem services. Floods alter the flows of people,
goods, finances, and information between rural and ur-
ban areas (Jamshed et al., 2019, 2020a, b, 2021).

– In some cases, floods increase rural dependence on
cities – for example, through heightened migration, fi-
nancial support from urban relatives, or greater reliance
on urban markets and information. In other cases, de-
pendence may shift toward nearby rural areas when ac-
cess to cities is constrained due to damaged roads or
inflated prices (Jamshed et al., 2019, 2020a, b, 2021).

In summary, research suggests that while both urban and
rural areas face flood risks, specific setting factors may lead
to significantly differential impacts on mortality and morbid-
ity. Further research is needed to understand the complex in-
terplay of factors shaping flood vulnerability across different
geographical contexts and population groups.

2.3.3 Flood hazard and exposure

Research indicates a strong relationship between the sever-
ity of a flood event – often measured by a flood’s return
period – and its health and mortality impacts. The flood re-
turn period refers to the number of years between two flood
events of the same or greater magnitude (Paul and Mahmood,
2016). Studies using FRMC data show that communities hit
by rare, catastrophic floods affecting large areas tend to re-
port higher rates of injuries. There is a connection between a
flood’s return period and a community’s preparedness; com-
munities frequently exposed to milder recurrent floods (e.g.

1–2-year return periods) may develop adaptive behaviours
and a higher preparedness level, which can reduce injuries. In
contrast, infrequent but severe floods (e.g. 50- and 100+-year
return periods) often overwhelm even resilient communities,
leading to more serious health and mortality consequences
(Campbell et al., 2019; Chapagain et al., 2025).

Also, the exposure to the flood has been found to have
consequences on mortality/morbidity outcomes:

– In Bangladesh, studies of flood-related deaths from
1972 to 2013 found that both the extent of the flooded
area and the number (or proportion) of people affected
had a significant impact on the death toll (Paul and Mah-
mood, 2016).

– Also, population density was found to be positively cor-
related with the number of flood-related victims (in-
cluding deaths) per unit area. This implies that in more
densely populated areas, when floods occur, a higher
number of people are likely to be affected and conse-
quently face increased mortality risk (Hu et al., 2018).

In addition to flood intensity and return period, climatic
variables may also act as effect modifiers that shape health
outcomes following flood events. For example, certain envi-
ronmental factors can significantly influence the relationship
between floods and diarrheal morbidity. In an empirical study
conducted in Sichuan Province, China, three effect modifiers
were identified that amplify the impact of flooding on diar-
rheal outcomes: elevated air pressure, reduced diurnal tem-
perature range, and higher ambient temperatures (Lan et al.,
2022). Unfortunately, those variables are not available in our
dataset.

3 Data

The FRMC dataset offers a multifaceted view of community-
level flood resilience, collected through a standardized,
mixed-methods approach. Trained practitioners, often NGO
staff, gather data using household surveys, community focus
group discussions, key informant interviews, and secondary
sources such as census data and government reports (Camp-
bell et al., 2019; Hochrainer-Stigler et al., 2020, 2021; Keat-
ing et al., 2014, 2017a, 2025; Laurien et al., 2020).

The FRMC data capture two main phases: baseline (BL)
and post-event (PE). While the framework includes an end
line (EL) phase, it is not used in this study and is therefore
excluded from the analysis.

– Baseline data (BL) provide a pre-flood snapshot of
a community’s resilience across 5Cs (human, social,
physical, financial, and natural) and its capacity across
disaster risk management (DRM) cycle stages – cor-
rective and prospective risk reduction, preparedness, re-
sponse, and recovery. Variables are scored on a scale
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Table 1. Distribution of the communities affected by floods by
country.

Country Frequency

Bangladesh 32
El Salvador 2
Malawi 8
Mexico 3
Nepal 5
Senegal 4
Vietnam 12

Total 66

Source: FRMC.

from A (best practice) to D (significantly below stan-
dard), with numerical equivalents (A= 100, B = 67,
C= 33, D= 0) used for analysis.

– Post-event data (PE) are collected after a flood and mea-
sure actual outcomes, including death counts, illness-
related mortality within 3 months post-flood, and in-
juries. They also capture flood exposure (proportion of
the community affected) and the flood return period.

This study focuses on 66 riverine flood-prone communi-
ties across seven developing countries, each of which expe-
rienced a flood event following baseline data collection. Ta-
ble 1 presents these communities by country. Post-event data
collection occurred between 2019 and 2023. While precise
flood dates are unavailable, the PE data were gathered exclu-
sively following confirmed flood events.

We now provide a detailed list of FRMC variables in-
cluded in the analysis. Indicators for each of the 5Cs are
presented in Table 2, while those related to the DRM stages
are shown in Table 3. Table 4 provides the outcome vari-
ables (mortality and morbidity), and Table 5 provides the
control variables (demographics and flood hazard/exposure).
In this analysis, variables gathered from different respon-
dents (key informants, focus groups, and secondary sources)
were averaged to produce a single response for each com-
munity. Household-level variables were also aggregated to
the community level by averaging. One limitation is that de-
mographic variables (age, gender, and urban–rural compo-
sition) reflect only the respondent’s information rather than
that of all household members. Consequently, our approach
provides an approximate demographic profile of each com-
munity.

4 Methods

This section outlines the methods used in this study. First,
we describe how the indicators for the 5Cs and the DRM
cycle stages were constructed. Next, we outline the proce-

dures used to cluster communities into distinct profiles, fol-
lowing approaches adopted in previous FRMC studies. Fi-
nally, we present the steps taken for the regression adjust-
ment. A flowchart of the methodology is provided in Fig. 1.

4.1 Principal component analysis (PCA) of the 5Cs and
DRM cycle stages

To estimate the 5Cs and the DRM cycle stages, we use a
latent construct approach. PCA is conducted to derive a sin-
gle construct for each of the 5Cs – social, physical, natural,
human, and financial – as well as along each of the phases
of the DRM cycle: prospective risk reduction, corrective risk
reduction, crisis preparedness, response, and recovery. Com-
ponents are weighted by estimated population (households
multiplied by average household size) to account for vary-
ing community scales. Validation of these constructs starts
with decomposing the correlation matrix into eigenvalues
and eigenvectors, and a scree plot helped determine the num-
ber of factors to retain. We then calculate Cronbach’s alpha
coefficients (Tables A1 and A2 in the Appendix) to ensure
they meet the acceptable threshold of 0.7. All DRM stages
except prospective risk reduction and recovery, which were
close to 0.6, met this criterion. Histograms of the constructs
(5Cs and DRM cycles; Figs. A1 and A2), as well as their cor-
responding scree plots (Figs. A3 and A4), are included in the
Appendix. Most indicators display a strong model fit, a key
requirement for the validity of the analysis.

4.2 Community clusters

A study using the FRMC framework has emphasized the im-
portance of clustering communities to better understand how
resilience changes over time (Chapagain et al., 2024). Us-
ing hierarchical clustering methods, the study identifies five
distinct community clusters based on the five capital scores.
We now present the characteristics of the clusters calculated
according to the key independent variables: 5Cs and DRM
cycle stages.

4.2.1 5Cs

A summary of the characteristics of the clusters is as fol-
lows. Table 6 presents the distribution of the communities
across the clusters. We group the 66 communities which ex-
perienced a flood event into five resilience clusters. No com-
munity affected by flood was found in Cluster 5. Figure A5 in
the Appendix presents the average score of the 5Cs by cluster
in the baseline survey.

A description of the clusters is as follows:

– Cluster 1 features the lowest resilience across all 5Cs.

– Cluster 2 exhibits marginally stronger performance in
financial, human, and physical capital compared to nat-
ural and social capital.
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Table 2. Variables according to the FRMC five forms of capital.

Financial Human Natural Physical Social

Household asset recovery Evacuation and safety
knowledge

Natural capital condition Flood healthcare access Community participation in
flood-related activities

Community disaster fund First aid knowledge Priority natural units Early warning systems
(EWSs)

External flood response and
recovery services

Business continuity Education commitment
during floods

Priority managed units Flood emergency
infrastructure

Community safety

Household income
continuity strategy

Flood exposure awareness Natural resource
conservation

Provision of education Community disaster risk
management planning

Risk reduction investments Asset protection
knowledge

Natural habitat restoration Household flood protection Community structures for
mutual assistance

Disaster response budget Future flood risk awareness Large-scale flood
protection

Community representative
bodies

Conservation budget Water and sanitation
awareness

Transportation interruption Social inclusiveness

Environmental
management awareness

Communication
interruption

Local leadership

Governance awareness Flood emergency food
supply

Inter-community flood
coordination

Flood-safe water Integrated flood
management planning

Flood waste contamination National forecasting policy
and plan

Flood energy supply

Source: FRMC.

Table 3. Variables according to DRM cycle stages.

Corrective risk reduction Preparedness Prospective risk reduction Recovery Response

Risk reduction investments Business continuity Conservation budget Household asset recovery Disaster response budget

Asset protection
knowledge

Evacuation and safety
knowledge

Future flood risk awareness Community disaster fund Water and sanitation
awareness

Governance awareness First aid knowledge Environmental
management awareness

Provision of education Flood healthcare access

Natural habitat restoration Early warning systems
(EWSs)

Natural capital condition Flood energy supply Transportation interruption

Household flood protection Flood emergency
infrastructure

Priority natural units Community safety Communication
interruption

Large-scale flood
protection

Community participation
in flood-related activities

Natural resource
conservation

Flood emergency food
supply

Community representative
bodies

External flood response
and recovery services

Community disaster risk
management planning

Flood-safe water

Social inclusiveness Inter-community flood
coordination

Local leadership Flood waste contamination

Integrated flood
management planning

National forecasting policy
and plan

Community structures for
mutual assistance

Source: FRMC.
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Table 4. Outcome variables.

Outcome
variable

Description Dataset Respondents

Injuries How many men in the community suffered serious injuries in the flood? PE Key informant, focus
How many women in the community suffered serious injuries in the flood? group, secondary source
How many children in the community suffered serious injuries in the flood?
How many men in the community suffered serious injuries in the flood?

Deaths How many men in the community lost their lives in the flood? PE Key informant, focus
How many women in the community lost their lives in the flood? group, secondary source
How many children in the community lost their lives in the flood?

Deaths after
3 months

Compared to the number of people who lose their lives from these illnesses in
non-flood times, how many additional people lost their lives due to these
illnesses in the 3 months following the flood?

PE Key informant, focus
group, secondary source

Source: FRMC. PE: post-event survey.

Table 5. Control variables.

Control variable Description Dataset Respondents

Average percentage of
population affected by flood

What percentage of the community was directly impacted
by the flood?

PE Key informant, focus
group, secondary source

Average flood return period What is the return period or re-occurrence interval of this
flood, in number of years? In other words, how often is a
flood of this size or bigger expected/experienced in the
community?

PE Key informant, focus
group, secondary source

Age group distribution (%) Which of the following age groups do you fall into: 15–25,
26–50, or over 50?

BL Household

Gender distribution (%) What is your gender: male, female, or other? BL Household

Average rural composition (%) Is this a rural, urban, or peri-urban community? BL Household

Source: FRMC. PE: post-event survey; BL: baseline survey.

Table 6. Distribution of the 66 communities that have experienced
flood according to 5Cs.

Cluster Freq. Perc. Cum.

1 – low resilience 43 65.1 65.1
2 5 7.6 72.7
3 4 6.0 78.8
4 – high resilience 14 21.2 100.00

Total 66 100

Source: FRMC.

– Cluster 3 presents relatively high human, natural, and
social capital scores but lower financial and physical
capital scores.

– Cluster 4 demonstrates generally higher average capital
scores compared to Clusters 1–3, particularly in human,
natural, and social capital.

4.2.2 DRM cycle stages

We applied the same clustering methodology approach to
classify the communities based on their DRM cycle perfor-
mance, maintaining consistency with our earlier analysis ap-
proach. The dendrogram reveals two distinct clusters accord-
ing to DRM cycle stages. Figure A6 in the Appendix presents
the average score of the five stages by cluster in the baseline
survey. As done for the resilience clusters, we grouped the
66 communities which experienced a flood event into the two
DRM cycle clusters. Table 7 presents the distribution of the
communities across the clusters.

A description of the clusters is provided:

– Cluster 1 demonstrates strong capabilities across most
dimensions of the DRM cycle. These communities ex-
hibit above-average preparedness. Their protective risk
reduction and their recovery capabilities are notably
strong.
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Figure 1. Flowchart of the method.

Table 7. Distribution of the 66 communities that have experienced
flood according to DRM cycle clusters.

Cluster Freq. Perc. Cum.

1 – high DRM cycle performance 27 40.9 40.9
2 – low DRM cycle performance 39 59.1 100.00

Total 66 100

Source: FRMC.

– Cluster 2 represents significant weaknesses across all
measured DRM stages. These communities show poor
response and recovery capabilities. Their preparedness
scores are substantially below average.

4.3 Regression adjustment

To estimate the effect of the 5Cs and DRM cycle stages
on morbidity and mortality outcomes, we use a quasi-
experimental research design based on regression adjust-
ment. This method is a robust approach for identifying causal
effects in observational data by addressing the challenge of
confounding. While the FRMC dataset includes a longitudi-
nal component, for the post-event (PE) data, we only have
one time point available. This necessitates controlling for
baseline levels of 5Cs, DRM cycle stages, demographics, and
flood exposure/hazard.

Regression adjustment allows us to isolate the relationship
of interest by accounting for observable characteristics that
could otherwise bias the estimated treatment effects. Prop-
erly specified regression models reduce systematic differ-
ences between units, thereby approximating ceteris paribus
conditions and enhancing the validity of the causal inference.

To ensure robustness, post-estimation diagnostics were
conducted, including tests for overall model significance
(R2) and comparison of Akaike information criterion (AIC)
and Bayesian information criterion (BIC) values to evaluate
model fit. Ordinary least squares (OLS) regression was used
as the primary method, incorporating nested models to assess
how additional predictors contributed to the model’s explana-
tory power. Finally, given the differing scales of predictors –

such as the average return period (1 to 35) and the percent-
age of female household respondents (0 to 1) – all predictors
were standardized to enable meaningful comparison and in-
terpretation of their relative importance.

We use clustered standard errors to address the fact that
observations within the same cluster might be like each other
in terms of both resilience and DRM cycle levels. As we have
a small number of clusters – 5 for resilience and 2 for the
DRM cycle – we employ the wild bootstrap approach. The
wild bootstrap is primarily used to obtain more reliable in-
ference – such as p values and confidence intervals – by ad-
dressing issues like heteroskedasticity or a small number of
clusters.

Due to the small sample size, a significance level of 10 %
was considered relevant. We tested different specifications
to analyse the sensitivity of the parameters to the inclusion
of control variables, but the preferred model for the analy-
sis is the full model (with all controls). There is a vivid dis-
cussion among statisticians and econometricians on the role
of control variables and whether they should be excluded if
there is not statistical significance. This paper takes the stand
that considering the control variables is relevant because they
have theoretical meaning, and, hence, even a non-significant
result is a relevant result. Besides, they help reduce omitted-
variable bias and improve causal inference. Another impor-
tant issue for modelling is that, if the 5Cs or if the five DRM
cycle stages are highly correlated, it can cause multicollinear-
ity, making it difficult to determine their individual effects.
High variance inflation factors (VIFs) would indicate if this
is an issue.

5 Results

Our analysis revealed distinct patterns in the relationships be-
tween the 5Cs, DRM cycle stages, and the morbidity and
mortality outcomes, controlling for demographic character-
istics and flood exposure/hazard. But let’s first begin with a
description of the data.

The distribution of the dependent variables – average in-
juries due to floods, average deaths, and average lives lost to
illnesses within 3 months – is shown in histograms in Figs. 2
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Figure 2. Average number of deaths (immediate and delayed) re-
ported in flood-affected communities.

Figure 3. Average injuries reported in flood-affected communities.

and 3. Notably, all three variables exhibit a high number of
zeros, and the death counts are characterized by a low num-
ber of cases (maximum of 11 for immediate mortality and 23
for delayed mortality).

To facilitate interpretation, we use variable labels for
statistics and regression results. We provide in Table 8 a de-
scription of the variables and in Table 9 the descriptive statis-
tics.

The regression results for the 66 communities that experi-
enced a flood while controlling for demographics and flood
exposure and hazard are presented next. The nested models
(testing for the inclusion of each control variable) are pre-
sented in the Appendix (Tables A3–A8). Overall, the full
model also displayed better fit according to all specifications
(R2 and AIC/BIC). The results for the full model of the VIFs
for the independent variables specified in the linear regres-
sion model show that multicollinearity is present but not ex-
treme, with mean a VIF of 2.41. A mean VIF below 5 sug-
gests that overall, a model is not suffering from severe mul-
ticollinearity.

5.1 The effect of community resilience on health
outcomes

Table 10 displays the results of the effect of the 5Cs on health
outcomes (average deaths, average number of injuries, aver-
age number of deaths after 3 months). For the first regression
model (column 2), which analysed the effect of the 5Cs on
average deaths due to floods, no form of capital was found
to be statistically significant. This lack of significant asso-
ciation is a critical finding. It suggests that certain forms of
resilience, as currently measured, may not translate directly
into reductions in flood-related mortality – or may only do so
above a particular threshold of capital accumulation. Report-
ing such null results is essential to avoid publication bias and
contributes to a more realistic understanding of the limits of
resilience-building initiatives in extreme events. Contrary to
our study, Chapagain et al. (2025) found that physical capital
and social capital did have a statistically significant negative
association with total flood-related fatalities. This difference
might be due to how the models are specified: our estimation
includes all control variables and accounts for clustered stan-
dard errors. The only statistically significant variable in our
analysis at the 1 % level was the control for the percentage of
the community affected by the flood, in which a 1-standard-
deviation increase in this variable was associated with an in-
crease of 0.27 deaths, everything else held constant.

Next, Table 10 (third column) displays the results of
the second regression model, which analysed the effect of
the 5Cs on average injuries caused by floods. Social capital
was found to be strongly associated with a decline in injuries,
with a 1-standard-deviation increase in this indicator reduc-
ing the average number of injuries by 39 units (statistically
significant at 1 % level). Also, human capital was found to
reduce injuries, with a 1-standard-deviation increase in this
indicator leading to a drop of 5.97 injuries (statistically sig-
nificant at 1 % level). Regarding the controls, the average
number of population aged 50 plus was found to be nega-
tively associated with injuries, with a 1-standard-deviation
increase in this variable associated with a decrease of 9.7 in-
juries, ceteris paribus (statistically significant at 1 % level).
This might indicate that older individuals are more likely to
evacuate early or take preventive measures before disasters,
reducing their likelihood of flood-related injuries. Finally, the
percentage of the community affected by the flood was found
to increase the number of injuries, in which a 1-standard-
deviation increase in this variable was associated with an in-
crease of 18 injuries, everything else held constant.

Finally, Table 10 (fourth column) shows the results of the
third regression model, which analysed the effect of the 5Cs
on average fatalities after 3 months of the flood event. This
model revealed an unexpected result: natural capital scores
were positively associated with delayed mortality, everything
held constant, with a 1-standard-deviation increase in this
variable associated with an increase of 1.59 delayed deaths
(significant at 1 % level). To further investigate this unex-
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Table 8. Description of variable labels.

Variable Description

AverageAge15to25 The average proportion of the population aged 15 to 25 years in the community.
AverageAge26to50 The average proportion of the population aged 26 to 50 years in the community.
AverageAge50plus The average proportion of the population aged 50 years and above in the community.
AveragePercFemaleResp The average percentage of female respondents in the community.
AverageRural The average proportion of the community classified as rural.
AverageReturnPeriod The average return period of significant flooding events in years for the community.
AveragePercComAffect The average percentage of the community affected by the flood.
AvLostLivesDueInjuries3months The average number of lives lost due to injuries in the 3 months following the flood.
AverageLostLife The average number of lives lost directly due to the flood.
AverageInjuries The average number of injuries reported due to the flood.

Source: FRMC.

Table 9. Descriptive statistics for the control and dependent variables.

Variable Observations Mean SD Min Max

AverageAge15to25 66 0.100 0.079 0.000 0.324
AverageAge26to50 66 0.586 0.185 0.184 0.928
AverageAge50plus 66 0.315 0.203 0.036 0.816
AveragePercFemaleResp 66 0.577 0.143 0.198 0.836
AverageRural 66 0.803 0.401 0.000 1.000
AverageReturnPeriod 66 8.111 8.793 1.000 35.000
AveragePercComAffect 66 0.710 0.225 0.183 1.000
AvLostLivesDueInjuries3months 66 1.695 4.458 0.000 23.000
AverageLostLife 66 1.045 1.978 0.000 11.000
AverageInjuries 66 48.668 68.475 0.000 257.750

Source: FRMC.

pected result, we ran a regression model with the same spec-
ification by cluster. The large coefficient for std_natural in
Cluster 2 (9.387) could be driving the overall significant and
positive effect. This makes theoretical sense, as natural cap-
ital in this cluster is low due to degraded natural environ-
ments and weak ecosystem services, even if some manage-
ment efforts exist (Chapagain et al., 2024). Because of this,
small improvements may not help much, and the positive
association with delayed mortality might reflect the overall
vulnerability of these communities rather than a real ben-
efit of natural capital. Contrary to the model for injuries,
the average number of population aged 50 plus was found
to be positively associated with delayed mortality, with a 1-
standard-deviation increase in this variable associated with
an increase of 1.07 deaths after 3 months of a flood, ceteris
paribus (statistically significant at 1 % level). Older individu-
als may have a higher likelihood of developing complications
from flood-related injuries, infections, or chronic disease ex-
acerbation. Conditions such as cardiovascular disease, respi-
ratory illnesses, and weakened immune function could make
them more vulnerable to delayed mortality rather than imme-
diate death.

5.2 The effect of DRM cycle stages on health outcomes

The results for the regressions on the effects of the DRM cy-
cle stages on health/mortality outcomes after a flood event
portray a different scenario from the 5Cs estimates presented
before. Table 11 summarizes the results. First, both cor-
rective risk reduction and preparation scores were statisti-
cally associated with the average number of deaths (second
column). Surprisingly, corrective risk reduction was posi-
tively associated with average immediate mortality, with a
1-standard-deviation increase in this score associated with
an increase of 0.65 deaths, everything held constant. To fur-
ther investigate this counterintuitive finding, we conducted a
cluster-specific regression analysis, which revealed substan-
tial heterogeneity across community contexts. In Cluster 1,
corrective risk reduction (CRR) showed a small negative as-
sociation (coefficient=−0.03, p= 0.925), while Cluster 2
exhibited a stronger positive relationship (coefficient= 0.84,
p= 0.396), suggesting this larger cluster may be driving
the overall significant effect. Cluster 2 has significant weak-
nesses across all measured DRM cycle dimensions. These
communities with low CRR scores might have implemented
recent improvements that had not yet translated into reduced
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Table 10. Wild bootstrap clustered regression models with the impact of 5Cs on health and mortality outcomes.

Independent variables Dependent variables

Average fatalities Average injuries Average fatalities after 3 months

std_social 0.054 −39.976∗∗∗ −0.179
std_financial 0.203 15.602 −3.341
std_physical −0.630 8.109 0.047
std_human −0.256 −5.970∗∗∗ −0.500
std_natural 0.582 −11.277 1.591∗∗∗

std_AverageAge15to25 −0.721 1.510 0.285
std_AverageAge50plus −1.137 −9.735∗∗∗ 1.079∗∗∗

std_AveragePercFemaleResp 0.459 −1.707 −0.088
std_AverageRural 0.075 0.052 0.124
std_AverageReturnPeriod 0.685 27.150 −0.645
std_AveragePercComAffect 0.271∗∗∗ 18.123∗∗∗ 1.797

Observations 66 66 66
R2 0.49 0.61 0.35
AIC 228.12 683.02 381.65
BIC 234.69 689.58 388.22

Observation: ∗∗∗ significant at 1 %; ∗∗ significant at 5 %; ∗ significant at 10 %. Source: FRMC.

Table 11. Wild bootstrap clustered regression models with the impact of DRM cycle stages on health and mortality outcomes.

Independent variables Dependent variables

Average fatalities Average injuries Average fatalities after 3 months

std_CRR 0.656∗∗∗ −30.906∗∗∗ 1.285
std_PREP −0.532∗∗∗ −23.375∗∗∗ 0.637
std_PRR 0.022 5.921∗∗∗ −1.758∗∗∗

std_RECOV −0.019 27.943 −3.577∗∗∗

std_RESP −0.419 −3.674 −0.031
std_AverageAge15to25 −0.744∗∗∗ 3.069 −0.045
std_AverageAge50plus −0.925∗∗∗ −14.998∗∗∗ −0.030
std_AveragePercFemaleResp 0.490 −3.284 0.137
std_AverageRural 0.094∗∗∗ −3.781 0.136
std_AverageReturnPeriod 0.845∗∗∗ 25.841∗∗∗ −0.458∗∗∗

std_AveragePercComAffect 0.243∗∗∗ 13.702∗∗∗ −1.503∗∗∗

Observations 66 66 66
R2 0.45 0.59 0.38
AIC 228.86 681.17 374.33
BIC 231.04 683.36 376.52

Observation: ∗∗∗ significant at 1 %; ∗∗ significant at 5 %; ∗ significant at 10 %. Source: FRMC.

mortality outcomes during our study period, potentially cre-
ating a lagged effect where reported improvements coexist
with historically high mortality rates.

Preparation scores were negatively associated with aver-
age mortality, with a 1-standard-deviation increase in this in-
dicator leading to a decrease of 0.53 deaths. Preparedness
significantly reduces immediate flood mortality by enhanc-
ing early response. Effective warning systems and safety
knowledge help individuals take timely protective actions,
minimizing exposure to life-threatening conditions. Well-

developed emergency infrastructure and coordinated re-
sponse efforts ensure that communities can react efficiently,
preventing avoidable deaths. Additionally, strong community
participation and external support improve rescue operations
and medical aid delivery, further reducing fatalities.

Finally, more control variables now display a significant
relationship with the average number of deaths: the aver-
age percentage of the young population (15 to 25 years) and
the average percentage of the elderly population (aged 50 or
more) negatively associated with the number of deaths (sig-
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nificant at 1 % level). The explanations are quite straightfor-
ward: older individuals tend to take disasters more seriously,
acting cautiously in response to early warnings and evacu-
ation orders. Life experience and risk awareness help them
recognize the severity of floods and take protective measures
earlier, reducing their chances of fatal exposure. Younger in-
dividuals, in turn, tend to have better physical strength, en-
durance, and mobility, which increases their chances of es-
caping hazardous flood conditions. They typically face fewer
mobility challenges or health problems that could complicate
evacuation or reduce their chances of survival. Next, the av-
erage percentage of the rural population was positively asso-
ciated with the number of deaths, with a 1-standard-deviation
increase in this percentage related to 0.09 deaths. Health
complications and mortality can be influenced by factors like
socio-economic conditions, access to water and sanitation,
and the state of public health infrastructure in rural areas
(Jerin et al., 2024). Finally, flood hazard (return period) and
exposure (percentage of community affected) are positively
associated with mortality at the 1 % confidence level.

The model results for average injuries and their relation-
ship with DRM cycle stages are also presented in Table 11
(third column). For this outcome variable, the results for cor-
rective risk reduction (CRR) and preparedness are in line
with expectations: a 1-standard-deviation increase in CRR
reduces the average number of injuries by 31 units; also,
a 1-standard-deviation increase in preparedness reduces the
indicator by 23 units. Surprisingly, a 1-standard-deviation
increase in the prospective risk reduction (PRR) increases
the number of injuries by 6 units. To further investigate our
counterintuitive finding regarding PRR, we again conducted
a cluster-specific regression analysis, which revealed that in
Cluster 1, which is characterized by high levels of overall
preparedness, PRR maintained a significant positive relation-
ship with injuries (coefficient= 4.88, p= 0.021), while in
Cluster 2, the relationship was weaker and non-significant
(coefficient= 2.93, p= 0.781). This pattern suggests that in
communities with stronger overall disaster management sys-
tems (Cluster 1), there may be more effective injury reporting
and documentation mechanisms in place, leading to higher
recorded injury rates despite better prevention measures. The
results for control variables show that the average number of
the elderly is negatively associated with the number of in-
juries (significant at 1 %), whereas flood hazard and exposure
are positively associated with the number of injuries.

Finally, Table 11 (fourth column) presents the results for
the impact along DRM cycle stages on delayed mortal-
ity from floods (after 3 months). Results are as expected
and in line with the literature regarding two DRM cycle
stages: prospective risk reduction (PRR) and recovery. A 1-
standard-deviation increase in the PRR score is associated
with a decrease of 1.75 delayed deaths, everything held con-
stant. Also, a 1-standard-deviation increase in the recovery
indicator is associated with a decline of 3.57 deaths, ce-
teris paribus. Surprisingly, the only significant control vari-

ables for delayed mortality are flood exposure (percentage
of the community affected) and hazard (return period), with
a 1-standard-deviation increase in these indicators associated
with a decrease in delayed deaths. These results appear coun-
terintuitive, as one would expect communities with more fre-
quent disasters (shorter return periods) and greater affected
populations to experience higher delayed mortality. Cluster-
specific analysis revealed distinct patterns: in Cluster 1, nei-
ther variable showed significant relationships with delayed
mortality (return period: coefficient= 1.98, p= 0.523; com-
munity affected: coefficient= 0.27, p= 0.877). However, in
Cluster 2, both variables showed negative associations, with
the community-affected percentage approaching significance
(coefficient=−1.98, p= 0.089) and return period showing a
similar trend (coefficient=−1.42, p= 0.100). This may be
associated with a survivorship bias or a “harvesting” effect:
the most vulnerable individuals (e.g. the elderly, those with
pre-existing health conditions) may succumb quickly after
the flood, reducing the number of people who die in the de-
layed mortality window. Alternatively, this finding may re-
flect a reporting phenomenon where communities with more
frequent disasters have better systems for attributing later
deaths to the original disaster event.

Interestingly, several DRM stages – including corrective
risk reduction and preparedness – did not show statistically
significant associations with delayed mortality. While these
might initially appear to be disappointing results, they offer
crucial insights: either the health effects of floods evolve dif-
ferently over time, or current DRM metrics may not fully
capture interventions that affect medium-term health out-
comes.

6 Discussion

The goal of this paper was to explore the role of 5Cs and
DRM cycle stages on health and mortality outcomes after
flood events for 66 countries across seven countries partici-
pating in the FRMC: namely, how latent capacities determine
outcomes, in terms of reduced mortality and morbidity. We
advance current literature not only by incorporating a novel
and rich dataset, but also by controlling in our impact anal-
ysis by relevant variables such as the demographic profile of
the community and flood hazard and exposure. The literature
stresses the role of these variables, and they are necessary to
avoid confounding in the econometric analysis. Their signifi-
cance in some models endorses their relevance for the analy-
sis, and the quality of the adjustment in the full models (with
all controls) justifies their inclusion.

Our results demonstrate the relevance of selected 5Cs and
DRM cycle stages for health and mortality outcomes, with
some unexpected results as well.

– The 5C models indicate that social and human capital
are statistically, strongly, and negatively associated with
the average number of injuries. However, none of the 5C
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Table 12. Summary of significant findings.

Variables Results

5Cs – Fatalities:
– none of the 5Cs showed a statistically significant association

– Injuries:
– social and human capital were negatively associated with injuries

– Delayed mortality:
– natural capital was positively associated with delayed mortality

DRM cycle stages – Fatalities:
– preparedness was negatively associated with injuries and immediate fatalities, consistent with the

hypothesis

– corrective risk reduction was positively associated with fatalities
– Injuries:

– preparedness and corrective risk reduction were negatively associated, consistent with the hypothesis
– Delayed mortality:

– natural capital was positively associated with delayed mortality

Controls – Elderly population was negatively associated with injuries but positively associated with delayed mortality

– Younger and elderly populations were negatively associated with immediate fatalities

– Rural population was positively associated with immediate fatalities

– Flood exposure:
– positively associated with immediate fatalities and injuries

– negatively associated with delayed mortality

Source: authors.

indicators, except natural capital, showed a statistically
significant association with either immediate fatalities
or fatalities occurring within 3 months, when control-
ling for all other factors. This absence of consistent ef-
fects underscores the complexity of translating commu-
nity forms of capital into lifesaving outcomes. Surpris-
ingly, natural capital scores were strongly and positively
associated with delayed mortality, an unexpected result
that warrants further investigation.

– In contrast, the DRM cycle models demonstrate greater
predictive power in terms of significant variables for
health and mortality outcomes compared to 5C models,
although some variables show unexpected effects. Pre-
paredness emerged as the most relevant DRM stage, sig-
nificantly leading to reductions in both immediate fatali-
ties and injuries. The corrective risk reduction stage was
found to decrease injuries but unexpectedly increased
fatalities. Recovery and response were negatively asso-
ciated with delayed mortality.

Regarding control variables, the following points can be
made:

– Both elderly and young populations were associated
with a reduction in immediate fatalities, while the per-
centage of elderly individuals specifically contributed
to a decrease in injuries. The literature contradicts this

claim. Instead, it consistently indicates that both older
and younger populations are generally more vulnera-
ble to flood-related mortality and various health im-
pacts (Ban et al., 2023; Bukvic et al., 2018; Doocy
et al., 2013; Lowe et al., 2013; Petrucci, 2022; Za-
gheni et al., 2015). However, older individuals often re-
spond more cautiously to disasters, taking early warn-
ings and evacuation orders seriously. Their life expe-
rience and greater risk awareness help them recognize
the severity of floods and take protective action sooner,
which can lower their risk of fatal exposure. In con-
trast, younger individuals typically have greater phys-
ical strength, stamina, and mobility, which improves
their ability to escape hazardous flood conditions. They
also tend to face fewer health or mobility issues that
might hinder evacuation or reduce their chances of sur-
vival. Therefore, we argue that, despite contrasting find-
ings in the literature, this evidence may be theoretically
justifiable.

– A higher percentage of the rural population was posi-
tively correlated with the number of immediate deaths.
Studies generally align with this correlation (Bukvic
et al., 2018; Petrucci, 2022).

– For flood exposure and hazard indicators, these vari-
ables were strongly and positively associated with av-
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erage fatalities and injuries, as confirmed by several
studies (Ban et al., 2023; Paul and Mahmood, 2016;
Penning-Rowsell et al., 2005), but negatively associated
with delayed mortality. This last finding contradicts the
claims of multiple studies that show that mortality risks
can increase and persist for extended periods following
a flood event (Yang et al., 2023). This is an unexpected
result that warrants further investigation.

The study has limitations that should be considered when
interpreting the results. One key limitation is the small sam-
ple size, which may pose statistical challenges in estimating
more complex models, such as zero-inflated specifications.
Additionally, the study includes a small number of clusters,
which can impact the reliability of statistical inferences. To
mitigate this issue, the analysis incorporates the use of wild
bootstrap methods, providing a more robust approach to ad-
dressing the potential shortcomings in cluster representation.
Another limitation arises from the measurement of certain
constructs, as they are not always well defined by a single in-
dicator. This could introduce measurement errors, potentially
affecting the accuracy and consistency of the results. Finally,
the demographic profile used in the study serves as a proxy
variable for population characteristics, but it is representative
only of household heads. This limitation may reduce the ac-
curacy of the demographic analysis, as it does not fully cap-
ture the diversity and distribution of characteristics across the
broader population.

Table 12 provides a summary of the statistically significant
findings.

Future research should expand the sample size to im-
prove statistical power and allow for more complex mod-
elling approaches. It should also explore the temporal dy-
namics of 5Cs and DRM interventions, particularly the lag
between their implementation and their impact on health out-
comes. Additionally, improving demographic data availabil-
ity would strengthen causal inference and help explain coun-
terintuitive results.

Appendix A

Table A1. Cronbach’s alpha for the 5Cs.

Capital Number of items on the scale Cronbach’s alpha

Financial 7 0.7710
Social 11 0.8453
Physical 12 0.8275
Human 9 0.7053
Natural 5 0.7022

Source: FRMC.

Table A2. Cronbach’s alpha for the DRM cycle stages.

DRM indicator Number of items Cronbach’s
on the scale alpha

Corrective risk reduction 9 0.7365
Preparedness 9 0.7404
Prospective risk reduction 8 0.5646
Recovery 5 0.5830
Response 9 0.7727

Source: FRMC.
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Figure A1. Histograms for the 5Cs. (a) Financial capital. (b) Social capital. (c) Physical capital. (d) Human capital. (e) Natural capital.
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Figure A2. Histograms for the DRM cycle stages. (a) Corrective risk reduction. (b) Preparedness. (c) Prospective risk reduction. (d) Recov-
ery. (e) Response.
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Figure A3. Scree plots for 5Cs. (a) Financial capital. (b) Social capital. (c) Physical capital. (d) Human capital. (e) Natural capital.
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Figure A4. Scree plot for the DRM cycle stages. (a) Corrective risk reduction. (b) Preparedness. (c) Prospective risk reduction. (d) Recovery.
(e) Response.
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Figure A5. Mean of the resilience capital scores by cluster in the baseline survey.

Figure A6. Mean of the DRM cycle stages scores by cluster in the baseline survey.
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Table A3. Comparison of wild bootstrap clustered regression models for assessing community resilience and its impact on average loss of
life.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

std_social −0.537∗∗∗ −0.371 0.190 0.191 0.097 0.112 0.054
std_financial 0.260 0.053 0.215 0.322 0.391 0.218 0.203
std_physical −0.583 −0.706 −0.846 −0.917 −0.854 −0.755 −0.630
std_human −0.472 −0.609 −0.601 −0.466 −0.468 −0.229 −0.256
std_natural 0.434 0.464 0.644 0.618 0.659 0.543 0.582
std_AverageAge15to25 −0.449 −0.529 −0.650 −0.651 −0.744 −0.721
std_AverageAge50plus −0.887∗ −1.011 −0.961 −1.146 −1.137
std_AveragePercFemaleResp 0.409 0.464 0.432 0.459
std_AverageRural 0.236 0.131 0.075
std_AverageReturnPeriod 0.695 0.685
std_AveragePercComAffect 0.271∗∗∗

Observations 66 66 66 66 66 66 66
R2 0.23 0.27 0.35 0.38 0.39 0.48 0.49
AIC 255.23 251.66 243.44 240.39 239.63 229.43 228.12
BIC 261.79 258.23 250.01 246.96 246.20 236.00 234.69

Observation: ∗∗∗ significant at 1 %; ∗∗ significant at 5 %; ∗ significant at 10 %. Source: FRMC.

Table A4. Comparison of wild bootstrap clustered regression models for assessing community resilience and its impact on average injuries.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

std_social −36.145 −37.254 −33.537 −33.547 −36.736 −36.127∗∗∗ −39.976∗∗∗

std_financial 19.833 21.218 22.288 21.208 23.513 16.631 15.602
std_physical −6.930 −6.104 −7.032 −6.320 −4.203 −0.243 8.109
std_human −13.281 −12.361 −12.310 −13.667 −13.742 −4.156 −5.970∗∗∗

std_natural −11.879∗∗∗ −12.076∗∗∗ −10.884∗∗∗ −10.627∗∗∗ −9.240∗∗∗ −13.873 −11.277
std_AverageAge15to25 3.013 2.486 3.704 3.672 −0.068 1.510
std_AverageAge50plus −5.878 −4.633 −2.935 −10.352 −9.735∗∗∗

std_AveragePercFemaleResp −4.106∗∗∗ −2.251 −3.516 −1.707
std_AverageRural 7.992∗∗∗ 3.786 0.052
std_AverageReturnPeriod 27.799 27.150
std_AveragePercComAffect 18.123∗∗∗

Observations 66 66 66 66 66 66 66
R2 0.45 0.45 0.46 0.46 0.46 0.57 0.61
AIC 705.24 705.07 704.72 704.44 703.68 688.74 683.02
BIC 711.81 711.64 711.29 711.01 710.25 695.31 689.58

Observation: ∗∗∗ significant at 1 %; ∗∗ significant at 5 %; ∗ significant at 10 %. Source: FRMC.
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Table A5. Comparison of wild bootstrap clustered regression models for assessing community resilience and its impact on average fatalities
after 3 months.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

std_social 0.096 −0.011 −0.687 −0.687 −0.546 −0.561 −0.179
std_financial −3.493 −3.359 −3.554 −3.517 −3.619 −3.443 −3.341
std_physical 0.846∗∗∗ 0.925∗∗∗ 1.094∗∗∗ 1.070 0.976 0.875 0.047
std_human −0.565 −0.476 −0.485 −0.439 −0.436 −0.680 −0.500
std_natural 2.037∗∗∗ 2.017∗∗∗ 1.801 1.792 1.730 1.849 1.591∗∗∗

std_AverageAge15to25 0.291 0.387 0.345 0.346 0.442 0.285
std_AverageAge50plus 1.069∗∗∗ 1.026∗∗∗ 0.951∗∗∗ 1.140∗∗∗ 1.079∗∗∗

std_AveragePercFemaleResp 0.141 0.059 0.091 −0.088
std_AverageRural −0.354 −0.246 0.124
std_AverageReturnPeriod −0.710 −0.645
std_AveragePercComAffect 1.797

Observations 66 66 66 66 66 66 66
R2 0.27 0.27 0.28 0.28 0.29 0.30 0.35
AIC 389.93 389.74 388.34 388.30 388.12 387.08 381.65
BIC 396.50 396.31 394.91 394.87 394.69 393.65 388.22

Observation: ∗∗∗ significant at 1 %; ∗∗ significant at 5 %; ∗ significant at 10 %. Source: FRMC.

Table A6. Comparison of wild bootstrap clustered regression models for assessing DRM cycle levels and their impact on average fatalities.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

std_CRR −0.015∗∗∗ 0.100 0.315∗∗∗ 0.335∗∗∗ 0.613∗∗∗ 0.716∗∗∗ 0.656∗∗∗

std_PREP −0.577∗∗∗ −0.550∗∗∗ −0.460∗∗∗ −0.491∗∗∗ −0.699∗∗∗ −0.597∗∗∗ −0.532∗∗∗

std_PRR 0.095 0.131 0.022 0.025 0.029 0.068 0.023
std_RECOV 0.482 0.062 0.299∗∗∗ 0.314∗∗∗ 0.874∗∗∗ 0.079∗∗∗ −0.019
std_RESP −0.774∗∗∗ −0.640∗∗∗ −0.743∗∗∗ −0.734∗∗∗ −1.063∗∗∗ −0.563∗∗∗ −0.420
std_AverageAge15to25 −0.344∗∗∗ −0.312∗∗∗ −0.313∗∗∗ −0.447∗∗∗ −0.741∗∗∗ −0.744∗∗∗

std_AverageAge50plus −0.528∗∗∗ −0.516∗∗∗ −0.733∗∗∗ −0.901∗∗∗ −0.925∗∗∗

std_AveragePercFemaleResp 0.599 0.676 0.491 0.491
std_AverageRural 0.278∗∗∗ 0.172∗∗∗ 0.094∗∗∗

std_AverageReturnPeriod 0.832∗∗∗ 0.845∗∗∗

std_AveragePercComAffect 0.243∗∗∗

Observations 66 66 66 66 66 66 66
R2 0.20 0.22 0.25 0.31 0.32 0.44 0.45
AIC 253.52 251.91 249.00 243.61 242.67 229.72 228.86
BIC 255.71 254.10 251.19 245.80 244.86 231.91 231.04

Observation: ∗∗∗ significant at 1 %; ∗∗ significant at 5 %; ∗ significant at 10 %. Source: FRMC.
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Table A7. Comparison of wild bootstrap clustered regression models for assessing DRM cycle levels and their impact on average injuries.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

std_CRR −32.123∗∗∗ −36.119∗∗∗ −32.668∗∗∗ −32.294∗∗∗ −30.654∗∗∗ −27.559 −30.906∗∗∗

std_PREP −28.290∗∗∗ −29.227∗∗∗ −27.792∗∗∗ −27.963∗∗∗ −30.126∗∗∗ −27.041∗∗∗ −23.375∗∗∗

std_PRR 10.098∗∗∗ 8.831∗∗∗ 7.077∗∗∗ 7.057∗∗∗ 7.290∗∗∗ 8.478∗∗∗ 5.921∗∗∗

std_RECOV 36.256∗∗∗ 50.975 54.779 55.717 57.476 33.488 27.944
std_RESP −19.805∗∗∗ −24.528∗∗∗ −26.193∗∗∗ −26.870∗∗∗ −26.831∗∗∗ −11.777 −3.675
std_AverageAge15to25 12.051 12.555 12.306 12.081 3.224 3.070
std_AverageAge50plus −8.446∗∗∗ −8.934∗∗∗ −8.557∗∗∗ −13.617∗∗∗ −14.998∗∗∗

std_AveragePercFemaleResp 1.259 2.309 −3.256∗∗∗ −3.285
std_AverageRural 3.814∗∗∗ 0.593 −3.782
std_AverageReturnPeriod 25.092∗∗∗ 25.841∗∗∗

std_AveragePercComAffect 13.702∗∗∗

Observations 66 66 66 66 66 66 66
R2 0.46 0.48 0.49 0.49 0.49 0.58 0.59
AIC 699.54 697.23 696.38 696.35 696.17 684.03 681.17
BIC 701.73 699.42 698.57 698.54 698.36 686.22 683.36

Observation: ∗∗∗ significant at 1 %; ∗∗ significant at 5 %; ∗ significant at 10 %. Source: FRMC.

Table A8. Comparison of wild bootstrap clustered regression models for assessing DRM cycle levels and their impact on average fatalities
after 3 months.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

std_CRR 0.956 1.020∗∗∗ 1.085 1.132 0.964 0.917 1.285
std_PREP 0.843 0.858 0.885 0.863 1.085∗∗∗ 1.039∗∗∗ 0.637
std_PRR −1.983∗∗∗ −1.962∗∗∗ −1.995∗∗∗ −1.997∗∗∗ −2.021∗∗∗ −2.039∗∗∗ −1.758∗∗∗

std_RECOV −4.314∗∗∗ −4.553∗∗∗ −4.482∗∗∗ −4.365∗∗∗ −4.545∗∗∗ −4.185∗∗∗ −3.577∗∗∗

std_RESP 1.127∗∗∗ 1.204∗∗∗ 1.173∗∗∗ 1.088∗∗∗ 1.084∗∗∗ 0.858∗∗∗ −0.031
std_AverageAge15to25 −0.196 −0.187 −0.218 −0.195 −0.062 −0.045
std_AverageAge50plus −0.157 −0.219 −0.257 −0.181 −0.030
std_AveragePercFemaleResp 0.158 0.050 0.134 0.137
std_AverageRural −0.392 −0.344 0.136
std_AverageReturnPeriod −0.376 −0.458∗∗∗

std_AveragePercComAffect −1.503∗∗∗

Observations 66 66 66 66 66 66 66
R2 0.34 0.34 0.34 0.34 0.35 0.35 0.38
AIC 378.63 378.55 378.51 378.46 378.22 377.91 374.33
BIC 380.82 380.74 380.70 380.65 380.41 380.10 376.52

Observation: ∗∗∗ significant at 1 %; ∗∗ significant at 5 %; ∗ significant at 10 %. Source: FRMC.
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