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Abstract. High Mountain Asia (HMA) faces heightened vul-
nerability to natural disasters due to its extreme conditions
and the escalating impacts of climate change. Understand-
ing the long-term response of this landscape to hydroclimatic
fluctuations is imperative, given the profound effects these
changes have on millions of people annually. Heavy rain
and the monsoon season bring forth floods and debris flows,
resulting in significant damage to crops, infrastructure, and
communities and having widespread human impacts. Despite
efforts to estimate flood risk locally, traditional techniques
often fall short due to the scarcity of high-quality, consis-
tent data, especially in ungauged basins. To overcome this
challenge, we propose a novel approach: a geomorpholog-
ically guided machine learning (ML) method for mapping
flood effects across HMA. Central to our methodology is
the life year index (LYI), a systematic measure that quan-
tifies both the financial and the human losses incurred by
disasters, specifically for this study fluvial and pluvial flood-
ing. Our model was trained using a dataset comprising over
6000 flood events spanning 1980 to 2020, along with their
corresponding 5- and 10-year LYI. Key predictors included
(1) 5-year rainfall concentrations derived from ERAS daily
data, (2) a geomorphic classifier based on hydraulic scal-
ing functions derived from high-resolution digital elevation
models (DEM), and (3) population density. Results demon-
strate the model’s effectiveness in identifying flood suscepti-
bility hotspots at a national scale and delineating their evolu-

tion from 1980 to 2020. Moreover, the study underscores the
severity of hydroclimatic extremes across the entire HMA
region. Importantly, the proposed framework is versatile and
can be adapted to generate various pluvial and fluvial flood
vulnerability and risk maps in ungauged regions.

1 Introduction

High Mountain Asia (HMA) presents complex terrain char-
acterized by dynamic hydrologic and geomorphological pro-
cesses. Over recent years, the region has been significantly
affected by climate change, notably witnessing acceler-
ated glacial melts (Shrestha and Aryal, 2011; Byers et al.,
2022) and shifts in precipitation patterns and intensity (Haag
et al., 2019; Kirschbaum et al., 2020). These environmen-
tal changes, compounded by anthropogenic influences such
as landscape alterations, have escalated the region’s suscep-
tibility to flooding (Byers et al., 2022; Pervin et al., 2020;
Shrestha et al., 2010; Zheng et al., 2021), with consequent
increasing threats to lives, agriculture, and critical infras-
tructure (Fischer et al., 2022; Pervin et al., 2020; Rentschler
et al., 2022; Sharma et al., 2019; Torti, 2012). The direct im-
pacts caused by the flood are only part of the picture; the
enduring socioeconomic repercussions further compound the
crisis. These include losses of livelihood, the urgent need for
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rehabilitation efforts, and the psychological toll exacted on
affected communities.

Flood disasters are generally associated with hydrocli-
matic extremes. The variability in precipitation patterns re-
garding time, space, and intensity is indeed crucial to their
occurrence, but changes in catchment characteristics can also
alter flood magnitude and frequency. The complex geomor-
phology and orographic characteristics in the HMA region
cause significant spatiotemporal heterogeneity of precipita-
tion patterns and extremes (Haag et al., 2019). Furthermore,
the geomorphic structure of basins in HMA can influence
the flood characteristics more than land cover does (Marston
et al., 1996). Many floods in HMA carry huge amounts of
sediment and water that adversely affect the downstream ar-
eas where most people reside and can remain in the landscape
for years afterward (Kafle et al., 2017; Simonovic et al.,
2022).

Changes in river morphology and channel shifting re-
sulting from sediment variability are recognized causes of
flood risk (Blench, 1969; Criss and Shock, 2001; Lane et al.,
2007; Neuhold et al., 2009; Pinter et al., 2008; Slater et al.,
2015; Stover and Montgomery, 2001; Sofia and Nikolopou-
los, 2020). Several researchers have highlighted how the
morphometric characteristics of watersheds provide useful
insights into these watersheds’ hydrologic response to rain-
fall (Borga et al., 2008) since their morphometric character-
istics are a crucial influence on flash flood intensity. In HMA,
however, these control mechanisms are difficult to model at
a large scale.

Accurate evaluation of the socioeconomic impacts of nat-
ural disasters is paramount to mitigate the sufferings of the
affected people and to rehabilitation (Cavallo and Noy, 2011;
Meyer et al., 2013; Noy, 2015, 2016a). To date, available
studies (Diehl et al., 2021; Mohanty and Simonovic, 2022;
Pangali Sharma et al., 2019; Pervin et al., 2020; Piacen-
tini et al., 2020; Yang and Tsai, 2000) have primarily con-
centrated on vulnerability mapping and risk analysis, em-
ploying case studies and descriptive event-based methodolo-
gies at a local level. Scaling up the analysis over the entire
HMA region is indeed a difficult task, as it requires collect-
ing data from several countries and multiple sources, and
this poses challenges due to the scarcity of ground observa-
tions covering consistent time frames homogeneously (Dol-
lan et al., 2024; Miles et al., 2021). Especially in the context
of the impact of floods using socioeconomic data, the anal-
ysis involves examining the number of fatalities, the num-
ber of people injured and otherwise affected, and the finan-
cial damage that natural disasters cause, and this informa-
tion is generally collected at the local scale based on re-
ported events. Significant disasters are documented in global
databases like The International Disaster Database (EMDAT,
http://www.emdat.be, last access: 22 September 2025) or,
as an example for HMA and this study, the Nepal Disaster
Risk Reduction Portal (http://drrportal.gov.np/, last access:
22 September 2025). However, these databases typically op-
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erate at a global or national level resolution, potentially over-
looking minor disasters. For example, EMDAT only consid-
ers events that meet at least one of the following criteria:
(1) 10 fatalities, (2) 100 affected people, (3) a declaration of a
state of emergency, and (4) a call for international assistance.
Additionally, those databases utilized to support insurance
may prioritize countries with existing or potential insurance
coverage (World Bank, 2012).

The integration of geomorphic properties, population data,
and rainfall characteristics for assessing socioeconomic flood
impact has only recently begun to be explored comprehen-
sively on a large scale (e.g., Janizadeh et al., 2024). For
HMA, this is primarily due to the inherent challenges as-
sociated with conducting on-site surveys in rugged and of-
ten inaccessible terrain. However, leveraging remote sensing
data has emerged as a valuable approach for delving deeper
into these dynamics and effectively quantifying flood im-
pacts. Modern global datasets, featuring improved resolution
and coverage, further enhance the utility of remote sensing in
this regard (Diehl et al., 2021; Jongejan and Maaskant, 2015;
Mosavi et al., 2018; Bentivoglio et al., 2022; Mazzoleni et al.,
2022; Hawker et al., 2018; Kirschbaum et al., 2020; Mohanty
and Simonovic, 2022; Pangali Sharma et al., 2019; Sanyal
and Lu, 2004; Yang and Tsai, 2000; Zheng et al., 2018).

Furthermore, machine learning (ML) techniques have
emerged as increasingly popular tools in advanced predic-
tion systems over the past 2 decades. They offer more
cost-effective solutions with performance that can be aggre-
gated, surpassing the complexity and time demands associ-
ated with simulating the complex development of flood pro-
cesses. Recent research (Bentivoglio et al., 2022; Deroliya
et al., 2022; Mosavi et al., 2018) has showcased encouraging
advancements by integrating machine learning (ML) tech-
niques with global datasets. This contemporary approach to
mapping flood vulnerability notably streamlines the compu-
tational processes associated with data-intensive simulations,
enhancing flood risk management strategies. However, ML
systems rely on existing data for learning. Insufficient or in-
complete data coverage can hinder effective learning, leading
to suboptimal performance when deployed in real-world sce-
narios. Therefore, ensuring robust data enrichment, encom-
passing both quantity and quality, is imperative.

In this study, we introduce a streamlined methodology for
preliminary flood vulnerability assessment on a large scale,
leveraging available global datasets. Specifically, we intro-
duce a flood risk assessment model designed to quantify spa-
tially distributed socioeconomic susceptibility in flood-prone
regions. We utilize this model to augment disaster under-
standing by integrating remotely sensed data, including cli-
mate variables and high-resolution terrain information.

Finally, we apply this model in the High Mountain Asia
(HMA) region to analyze changes in socioeconomic flood
impacts spanning 1980 to 2020.
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2 Materials and methods
2.1 Study area

HMA, otherwise known as the Hindu Kush-Himalayan re-
gion, comprises Nepal, Pakistan, Bangladesh, Bhutan, India,
Afghanistan, Kazakhstan, Kyrgyzstan, Tajikistan, Uzbek-
istan, Mongolia, China, and parts of many other countries
in Asia. HMA is home to some of the world’s highest
mountain systems, including the Himalayas and the Hindu
Kush. This rugged terrain has a highly variable climate,
ranging from tropical to subpolar, which is essentially con-
trolled by altitude. Around 1.5 billion people (https://nsidc.
org/data/highmountainasia, last access: 22 September 2025)
dwelling in the region are at risk of natural disasters (such as
heavy rainfall, flooding (pluvial/fluvial/flash), earthquakes,
avalanches, and landslides) due to topographic characteris-
tics, changing climate patterns, and high population density.
Some of the world’s largest rivers and deltas, such as the In-
dus and the Ganges, are located in this region. In the summer-
time (June to September), monsoon rains bring a vast amount
of water (Kayastha and Kayastha, 2019) to the rivers and val-
leys in the southern part of HMA (Northern India, Nepal,
Bangladesh, and Pakistan). Kirschbaum et al. (2020) have
projected that the greatest increase in very high intensities
of precipitation (>20mmd~") will occur during the mon-
soon season, with the enormous amount of rain causing all
types of devastating floods (Talchabhadel et al., 2018). Re-
ferring to the data reported, for example, in EMDAT, of all
hydroclimatic disasters in HMA from 1980 to 2020, floods
affected the most people (53 % of all hydroclimatic disas-
ters) and caused the highest total damage (56 % among all
other hydroclimatic disasters). Bangladesh, Nepal, Pakistan,
and parts of India were hotspots with the highest numbers
of casualties (source: EMDAT, http://www.emdat.be, last ac-
cess: 22 September 2025).

This study designates approximately 6000 watersheds
across HMA as the main target area (Fig. 1): the watersheds
were selected to be consistent with the HMA domain and
all the datasets produced throughout the different phases of
the NASA-funded HIMAT project (https://himat.org/, last ac-
cess: 22 September 2025). The analysis initially centered on
training and testing a machine learning model specifically
for Nepal. To achieve this, we collected fine-resolution topo-
graphic data along with district-scale socioeconomic infor-
mation on population characteristics and documented flood
impacts for this region. Subsequently, leveraging the insights
gained from this initial phase, we extended the application of
the trained model to predict socioeconomic impacts across
all watersheds in HMA.

2.2 Methods

Figure 2 illustrates the conceptual framework guiding this
study. We employed machine learning (ML) analysis, utiliz-
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ing climatic and geomorphologic variables, to forecast the
socioeconomic impact of extreme fluvial and pluvial flood
events spanning 1980 to 2020 across High Mountain Asia
(HMA). To capture the link between flooding and climatic
and geomorphologic processes, the model regards as pre-
dictors a climatic index derived from ERAS rainfall and a
geomorphological index and the flood geomorphic potential
(FGP), which characterizes the flood-proneness of the land-
scape, together with population data. A notable advantage of
the proposed approach lies in its reliance on automatic tech-
niques leveraging globally available datasets, thereby facil-
itating its applicability across diverse geographical regions
to forecast socioeconomic flood impacts. The framework
also benefits from leveraging geomorphologically driven in-
formation to have an improved characterization of the dif-
ferent aspects of the underlying physical processes shap-
ing the landscape and possibly impacting flood characteris-
tics. By incorporating such domain knowledge into the ML
model, the framework can better generalize across different
regions and conditions, improving robustness and reliability
for risk mapping in diverse environments and facilitating in-
formed decision-making for flood management and mitiga-
tion strategies.

To represent exposure and socioeconomic impacts, we in-
troduced a variable for population and for the “life year in-
dex” (LYI) (Noy, 2014, 2016a, b), a unit of measurement
used to describe a disaster’s impact in terms of the total years
of life lost (see Sect. 2.3.1 for details). To predict the LY, we
applied XGBoost (eXtreme Gradient Boosting) (Chen et al.,
2018; Chen and Guestrin, 2016). The predictor and response
variables of the ML framework are described in the subsec-
tions below.

The analysis follows a multistep approach, beginning with
data at both watershed and district scales. Initially, the focus
was on the district scale, as socioeconomic data for Nepal,
selected as the primary training ground, were readily avail-
able at this level through the Nepal Disaster Risk Reduc-
tion Portal (http://drrportal.gov.np/, last access: 22 Septem-
ber 2025). For this region, furthermore, there is comprehen-
sive coverage of high-resolution (8 m) digital elevation mod-
els (DEMs) from prior High Mountain Asia (HMA) work
(High Mountain Asia 8 m DEMs derived from along-track
optical imagery, https://doi.org/10.5067/0MCWIJJH5ABYO,
Shean, 2017). Subsequently, all the information is aggregated
at the watershed scale, as phenomena such as fluvial and plu-
vial flooding occur at this level, necessitating a dataset tai-
lored to this scale.

To transfer the demographic information from the district
to the watershed scale, we performed a weighted spatial join
between the watersheds and districts. For each watershed,
we attributed the statistical characteristics of the intersect-
ing districts, with weights based on the overlapping areas.
The aggregation from district to watershed is performed by a
weighted average, considering the extent of the district area
within the watershed to be a weight. Generally, the districts
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Figure 1. Study area watersheds across High Mountain Asia (HMA), with the training domain (Nepal) highlighted and the overall rainfall
variability across the region. The watershed displayed in black represents the 6000 watersheds that were used in the study. The watersheds
were selected to be consistent with the HMA domain and all the datasets produced throughout the different phases of the NASA-funded

HiMAT project (https://himat.org/, last access: 22 September 2025).
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Figure 2. Conceptual framework. Considered predictors are flood
geomorphic potential (FGP), rainfall, and population. The predicted
value is the socioeconomic impact, characterized as the life year
index (LYI) (Noy, 2016a, 2015). Readers should refer to the main
text for an explanation of the predictors and predicted values.

in Nepal are smaller in extent compared to the various water-
sheds.

2.3 Datasets
2.3.1 Socioeconomic flood impacts

The research focused on predicting the socioeconomic im-
pact of floods. Measured economic loss and tangible damage
were analyzed by considering the life year index (LYI) (Noy,
2014, 20164, b). This index is presented by Noy (2016a) as
“life years lost”, and it is a variant of the WHO Disability Ad-
justed Life Years (DALYs) lost due to diseases and injuries
(WHO, 2014). We calculated LYI for Nepal using damage
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statistics and demographic information collected from dif-
ferent data portals in Nepal.

The index is described by Eq. (1), and the parameters used
in the equation are described in Table 1:

LYI = M(Aexp + Amed) +¢-T - N + (1 —¢)Y/PCGDP. (1)

In this study, we classified life year index (LYI) values into
three distinct categories: low for cases where log(LYI) <2,
medium for values falling between 2 and 3, and high for
log(LYI) > 3. This classification scheme indicates that a wa-
tershed or district is deemed to be at high risk if the average
LYTI exceeds 1000 years, while medium risk spans LYT values
ranging from 100 to 1000 years and low risk encompasses
LYT values of less than 100 years. For instance, if the calcu-
lated LYT is 100 years, it implies that the estimated impact of
the given disaster equates to a potential loss of 100 years of
life per 100 000 people.

The cumulative LYT for Nepal (Fig. 3) can provide an idea
of how the cumulated flood impact has been increasing in
a country with time. It also highlights how the index itself
captures major disasters, such as those that occurred in 1981
(ICIMOD, 2011; Kiran et al., 2008), 1993 (Nepal: Floods
and Landslides, 1993), 1996 (Nepal: Floods Situation Re-
port No. 1, 1996), and the monsoon seasons in 2003 and 2014
(Nepal: Appeal No. 01.55/2003 Annual Report, 2003; Nepal:
Landslides and Floods, 2014). Most changes can be noticed
in the LYT for the years 1981, 1993, and 2014; the cumula-
tive step changes for these years from the respective previous
years are 9999, 82 865, and 976 238 years.
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Table 1. Parameters used to calculate LYT.
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Variable  Description

References

M Mortality (number of deaths due to disaster) Nepal Disaster Risk Reduction Portal (http://drrportal.gov.np/, last access: 22 September 2025)
Aexp Average life expectancy at birth (by year) WHO (https://data.who.int/countries/524, last access: 22 September 2025)

Amed Median age (by year) WHO (https://data.who.int/countries/524, last access: 22 September 2025)

e Welfare reduction weight associated with being exposed to a disaster ~ Set to e = 0.054 according to Noy (2016a), based on World Health Organization (2020)

T Time taken by the affected person to get back to normal Noy (2016a)

N Number of affected people Nepal Disaster Risk Reduction Portal (http://drrportal.gov.np/, last access: 22 September 2025)
c Percent of time not used in work-related activities (75 %) Noy (2016a)

Y Financial damage (value of destroyed/damaged infrastructure) Nepal Disaster Risk Reduction Portal (http://drrportal.gov.np/, last access: 22 September 2025)

The World Bank (https://data.worldbank.org/country/Nepal, last access: 22 September 2025)
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Figure 3. Cumulative life years lost plotted against year in Nepal.
Highlighted years represent jumps in the cumulative value (mostly
related to well-known disasters): 1981 (ICIMOD, 2011; Kiran et al.,
2008), 1993 (Nepal: Floods and Landslides, 1993), 1996 (Nepal:
Floods Situation Report No. 1, 1996), and in the monsoon seasons
in 2003 and 2014 (Nepal: Appeal No. 01.55/2003 Annual Report,
2003; Nepal: Landslides and Floods, 2014).

2.3.2 Floodplain mapping

The identification of areas with the potential to be inundated
is fundamental to preserving and protecting human lives and
property while safely supporting economic activities. Hence,
we applied a large-scale floodplain delineation algorithm to
identify such areas at the basin scale across the HMA. Many
researchers (e.g., Dingle et al., 2020; Lindersson et al., 2021;
Piacentini et al., 2020; Sofia, 2020) have used DEM-derived
geomorphic indices as a high-resolution flood mapping tool.
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We opted for considering a variation of the geomorphic flood
index (GFI) by Samela et al. (2017), proposing the flood ge-
omorphic potential (FGP).

FGP = In(h,/H) 2)

The index is calculated as the logarithm function of the
bankfull elevations, H (estimated using a hydraulic scaling
function, or HSF (w = aAP), based on bankfull width (w)
and contributing area (A)), in the element of the river net-
work closest to the point under examination and the eleva-
tion difference between these two points, A, (Fig. 4, Eq. 2).
The index was improved regarding one main aspect: the au-
tomatic identification of the HSF directly from terrain data,
applying the technique of Sofia et al. (2017, 2015) to retrieve
the bankfull location automatically through the landscape.
This has the advantage of allowing for full automation of the
mapping starting purely from terrain data.

For this analysis, we trained the model considering FGP
derived from the unique 8 m digital elevation models (DEMs)
for Nepal that are available at the NASA National Snow and
Ice Data Center Distributed Active Archive Center (NSIDC
DAAC) (Shean, 2017). While Nepal is entirely covered by
the 8 m DEM, extending the model to the whole HMA re-
gion is complicated by the gaps in the input satellite strip
resulting from limited coverage, clouds, or failed stereo cor-
relation. For this reason, we also considered the 30 m DEM
by Copernicus (European Space Agency, 2021), a digital sur-
face model (DSM) that represents the surface of the Earth,
including buildings, infrastructure, and vegetation. Impor-
tantly, this DSM is derived from World DEM, an edited DSM
in which the flattening of waterbodies and the consistent flow
of rivers have been included. Shores and coastlines, special
features such as airports, and implausible terrain structures
have also been edited.

We identified flood-prone areas by grouping them into six
classes by their FGP index. For each watershed, we then con-
sidered the areas covered by the classes with FGP greater
than 4, which, when compared to published data, proved to
correspond realistically to areas subject to floods of about
100-year depth. Figure 4b compares the flood geomorphic
potential (FGP) automatic classes derived for select rivers
in Nepal, with baseline inundation scenarios evaluated us-
ing standard inundation depths associated with critical flood
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Figure 4. (a) Flood geomorphic potential (FGP) (modified from Samela et al., 2017); (b) FGP automatic classes compared to baseline
inundation depth (HAND) scenarios and orthophotos of selected areas (aerial imagery © Google Earth, 2015).

events and their return periods provided in the work of De-
lalay et al. (2018). This visual comparison serves to highlight
the efficacy of flood inundation mapping facilitated by the
FGP. HAND (height above nearest drainage) in Delalay et al.
(2018) is a widely used approach for estimating flood inun-
dation extents and water depths. It operates on the principle
of deriving relative elevations from a DEM, similarly to our
approach, which also relies on DEM-based analysis. While
having assumptions may introduce some limitations on ac-
curately capturing complex flood dynamics, HAND remains
a useful and practical method for large-scale flood assess-
ment due to its computational efficiency and compatibility
with readily available topographic data. Given these similar-
ities, we find it reasonable to include HAND as a comparative
reference in our study but acknowledge its limitations.

It is worth noting that the DEM-derived geomorphic in-
dex has been previously published and applied in various

Nat. Hazards Earth Syst. Sci., 25, 3759-3778, 2025

contexts (Samela et al., 2017). While testing the quality of
the DEM-derived geomorphic index lies beyond the scope of
this work, its effectiveness in flood mapping has been well
established in previous studies (e.g., Manfreda and Samela,
2019), which have demonstrated the utility of the methodol-
ogy, particularly in ungauged conditions, for the preliminary
identification of flooded areas in regions where conducting
expensive and time-consuming hydrologic-hydraulic simu-
lations may not be feasible.

2.3.3 Rainfall characteristic

The climatology in HMA is highly variable (Dollan et al.,
2024). Summer monsoons drive precipitation in the Ganges—
Brahmaputra basins and on the Tibetan Plateau (Bookhagen
and Burbank, 2010; Shamsudduha and Panda, 2019); syn-
optic storms dominate winter precipitation, impacting areas
in the northwestern Karakorum mountains (Winiger et al.,

https://doi.org/10.5194/nhess-25-3759-2025
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2005; Barlow et al., 2005). Overall, variations in elevation
gradients also contribute to diverse microclimates, exempli-
fied by Nepal’s swift transition from high mountains to low-
lands (Kansakar et al., 2004; Karki et al., 2016). Winter pre-
cipitation in the area is primarily influenced by the west-
erly weather system, with western disturbances originating in
the Mid-Atlantic or Mediterranean Sea and traversing north-
west India to western Nepal after passing over Afghanistan
and Pakistan (Kansakar et al., 2004; Hamal et al., 2020). In

Nepal, which was used as the training site for the model, re-

gional climate variations exist, mostly driven by changes in

elevation, with overall homogeneity in trends (aside from a

few hotspots) and regional statistics of precipitation, in line

with the variability of HMA, as highlighted in a recent study

by Khanal et al. (2023).

For this work, for the main rainfall driver of the model,
we focused on daily climate concentration. As climate con-
centration values are mostly related to the temporal variabil-
ity of the rainfall, not to its total amount or to the average
yearly and seasonal statistics, using this index allows us to
capture various climates globally (Monjo and Martin-Vide,
2016). The variability in climate concentration, furthermore,
has been proven to be highly linked to pluvial/fluvial flooding
impacts in various regions of the world, including for exam-
ple Italy (both in mountainous landscapes and on floodplains
(Sofiaetal., 2019), the USA (Saki et al., 2023) (over a variety
of physiographic regions), or China (Du et al., 2023). Dif-
ferent authors have adopted different methods to determine
the temporal concentration of precipitation, and the concen-
tration index (CI) (Eq. 2) is one of the most used parame-
ters (Caloiero et al., 2019; Martin-Vide, 2004; Monjo, 2016;
Sangiiesa et al., 2018; Serrano-Notivoli et al., 2018).

CI S 3
S+A ©)
This index was proposed by Martin-Vide (2004) originally

to explore the contribution of the days with major rainfall to

the total amount within a certain time range. The benefit of
this index is that it can describe the temporal variability in
rainfall at daily, annual, and seasonal scales using a single
metric, as well as spatial variability at the pixel or water-
shed scale. In the present study, we computed CI (Martin-

Vide, 2004) using the ERAS5 hourly rainfall data from 1980

to 2019. The source of rainfall data was selected because var-

ious studies on HMA have highlighted its effectiveness in
capturing extreme events quite accurately compared to other

products (Maggioni and Massari, 2018; Maina et al., 2023;

Dollan et al., 2024). The CI was calculated considering a 5-

year window. The choice of this length was made to have

sufficient data to calculate the index, as well as be able to
capture variability over the 49 years of this analysis.

We identified storm events from this dataset primarily
based on the criterion of rainfall of more than 0.5 mm, and
we separated events when rainfall was below this thresh-
old for more than 12 h. Furthermore, we calculated CI us-
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Figure 5. Example of the line of equality and empirical curve for the
rainfall concentration calculation. The concentration index is equal
to the area between the line of equality and the fitted curve (S) di-
vided by the total area below the line of equality (S + A).

ing the cumulative amount of rainfall and the cumulative fre-
quency of the event duration (Fig. 5) for the selected events.
The method (similar to the methods of Cortesi et al., 2012,
and Monjo and Martin-Vide, 2016) eventually aggregates the
amount of precipitation that falls during each event into in-
creasing categories and determines the relative contribution
(as a percentage) of the progressively accumulated precip-
itation as a function of the accumulated percentage of the
durations of the events. The concentration index is then cal-
culated as the ratio of the area between the line of equality
(y = x) and the fitted curve (S) to the total area under the
line of equality (A + S) (Fig. 5, Eq. 2). The index is defined
by the relationship between the accumulated percentage of
time and the accumulated rainfall.

2.3.4 Exposure (population)

As all the parameters of the LYI are not always readily
available at the watershed scale (as highlighted by most of
the published literature, which considers LYI at the coun-
try scale), we added population counts as one of the pre-
dictors to train the model. For Nepal, we selected the data
from the country’s national census (https://censusnepal.cbs.
gov.np/Home/Index/EN, last access: 22 September 2025)
and aggregated them at the watershed scale using the pre-
viously mentioned weighted join. To extend the model to the
whole HMA, we computed the population for each water-
shed across the region from the Gridded Population of the
World (GPW), v4 | SEDAC (2024). This dataset provides
spatially explicit estimates of population density for the years
2000, 2005, 2010, 2015, and 2020, based on counts consis-

Nat. Hazards Earth Syst. Sci., 25, 3759-3778, 2025


https://censusnepal.cbs.gov.np/Home/Index/EN
https://censusnepal.cbs.gov.np/Home/Index/EN

3766

tent with national censuses and population registers, as raster
data to facilitate data integration. We used a simple linear
regression to retrieve data for the missing years.

2.4 Machine learning model

XGBoost is primarily used to solve classification problems.
To generate the results, the XGBoost algorithm uses an en-
semble of boosted trees. An ensemble is a collection of pre-
dictors that together can give a final prediction while re-
ducing errors significantly. In this case, the predictors were
climatic variables, geomorphologic variables, and exposure.
Boosted algorithms are those in which each successive model
attempts to correct the errors of its predecessor (similarly to
adaptive learning). The basic XGBoost algorithm can be un-
derstood as an ensemble of boosted trees. The idea behind
such an ensemble is that multiple trees are built in sequence,
with each tree built on the previous one’s prediction. And
each successive tree built considers the errors of the previ-
ous trees. This means that when we take an average of all
the trees at the end, we get a final tree that is better than any
individual tree within the model. We applied the XGBoost
model to the geomorphologic, climatic, and exposure vari-
ables to predict classes of LYI in different basins in Nepal
and HMA.

2.4.1 Validation of the system at the HMA scale

We conducted thorough testing and validation of our model
for Nepal, comparing the predicted value of LYT to the calcu-
lated life year index (LYI) data from tabular values specific
to the region. We trained the model and validated it only us-
ing the data for Nepal, at the district scale and then at the
watershed scale. Overall, we opted for a 90-10 approach,
meaning 90 % of the Nepal data were used for training
and 10 % for validation. Upon extending the model’s appli-
cability to the entire High Mountain Asia (HMA) region, we
rigorously assessed the quality of our results by comparing
the predicted social impact with that reported in established
flood databases covering the region. We performed hyper-
parameter tuning using weighted accuracy (1-3-9 weighting
scheme) for subsequent classes (low, medium, and high), pri-
oritizing the category “high”. Initially, when XGBoost was
trained, it achieved a 63 % test accuracy, but its confusion
matrix revealed that it struggled to correctly classify the most
destructive category (category 3). Since this category was of
primary interest, the model was refined using weighted accu-
racy, emphasizing its importance. A 5-fold cross-validation
procedure with 1000 iterations was conducted, and for each
cross-validation, oversampling was applied to balance the
dataset.

To verify our findings, we compared the predictions at
the HMA level with flood events reported in the Dartmouth
Flood Observatory (DFO) Global Active Archive of Large
Flood Events, 1985—Present (Brakenridge, 2023). This com-
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prehensive database compiles information on major floods,
with this information sourced from diverse channels such
as news reports, governmental records, ground observations,
and remote sensing data. Notably, the DFO dataset encom-
passes various flood types, including lowland floods and
mountainous river floods characterized as fluvial and pluvial
floods. The dataset provides point locations, representing the
centroids of affected areas during floods. While acknowledg-
ing that flood centroids may oversimplify the complexities
driving flood events, we utilized this dataset to showcase our
model’s capability to target high-risk locations historically
impacted by floods within the specified time frame. Identi-
fying high-risk areas with recorded flood occurrences cen-
tered around these locations underscores the robustness of
the model beyond the confines of its training and validation
site in Nepal.

Meteorological and climatological severity reported in the
DFO database does not directly reflect the social impact of
floods, and the events listed often span multiple watersheds.
To address these limitations, we compared our model’s pre-
dictions to the DFO data using a proxy for social severity —
specifically, the reported number of people affected, includ-
ing “deaths” and “displaced.” Instead of relying on meteoro-
logical classifications, we grouped the DFO events by social-
severity classes defined as 10n, where n corresponds to the
severity level indicated in the DFO database. We then eval-
vated the marginal probability that events with varying DFO
severity occurred in watersheds with different predicted LYT
(life year index) levels. Additionally, we computed the condi-
tional probability — that is, the likelihood of a DFO-classified
event occurring within watersheds predicted by our model
of having a certain LY classification. This conditional prob-
ability helps to assess how well our system identifies high-
impact regions across different time frames. For example, if
only 10 % of watersheds are classified as high impact by our
model but most of the DFO’s most severe events (e.g., those
with > 1000 people affected) occurred within these water-
sheds, this would indicate that our model effectively captures
regions of elevated social risk. A more detailed discussion of
model performance and validation is provided in Sect. 3.3.

3 Result analysis
3.1 Variability of the predictors

The topographical characteristics of an area can influence the
local climate and population distribution. Figure 6 shows an
example of how climate concentration and population vary
in Nepal, as compared to watersheds that have areas of high
FGP to a greater or lesser extent. The figure reports the av-
erage for the time frame 1980-2020 for CI and population,
while the FGP is a static value for the time frame (since it is
based on a unique DEM dataset), and it represents the overall
geomorphic characteristics of Nepal.
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From this analysis, we can see how the variability in CI is
complex. As expected, the variability in the index is related
to atmospheric characteristics (Sangiiesa et al., 2018), but the
index also varies due to geographical factors influencing cli-
mate (Tuladhar et al., 2020). In their study based on Nepal,
Karki et al. (2017) highlighted the difference in the spatial
pattern of high-intensity storm events from that of annual
and monsoon events. The rapid rate at which physical pro-
cesses (e.g., convection) take place regulates the high tem-
poral concentration of precipitation in the regions where the
sea surface and ground are highly affected by warmer tem-
peratures (Monjo and Martin-Vide, 2016). On the other hand,
the low temporal concentration of rainfall is characterized as
a normal pattern caused by cyclical weather events (Monjo
and Martin-Vide, 2016). Watersheds with lesser floodplain
extents (that is, smaller areas with high FGP) are related to
higher and steeper mountains with complex orography. Re-
search has shown that low areas in Nepal are susceptible to
receiving high-intensity storm events even though they expe-
rience fewer wet days (Karki et al., 2017). Karki et al. (2017)
also observed that the low-intensity events (annual and mon-
soonal precipitation) were mostly predominant over Nepal’s
western middle mountains and central high mountains. In an-
other study, however, Subba et al. (2019) stated that the fre-
quency of extreme events had decreased significantly over
the past 2 decades in the eastern part of Nepal. For our case,
areas having the larger physical potential to flood (high FGP)
appear to be areas showing the largest variation in CI, with
values ranging from low (0.2) to very high (0.75), indicat-
ing a potential compound effect of highly torrential rains
(CI=0.7) in locations where much of the landscape is po-
tentially floodable (FGP high) and most of the population
resides. Readers should consider that higher FGP values do
not imply locations having wider channels but rather indicate
how the landscape is potentially more flood-prone, as high-
lighted by Samela et al. (2017) and Manfreda and Samela
(2019).

Much of the population of Nepal tends to be concentrated
in areas with higher FGP, as is typical of mountainous ar-
eas, where populations and economic activities are mostly
located in the river valleys. Globally, the floodplains of rivers
are preferred living spaces for the population and provide fa-
vorable locations for economic development. These areas are
commonly exposed to floods; however, an increasing popula-
tion, together with the changes in storminess, means that the
risks from flooding are expected to be higher. On average, the
population increased significantly in watersheds that transi-
tioned from low to medium (LtoM), medium to high (MtoH),
or low to high (LtoH) flood risk categories (Fig. 7: example
variability from 1985 to 2020). This suggests that growing
population density in certain watersheds may be contributing
to increasing flood susceptibility. The CI (concentration in-
dex) slightly decreased over this period for some watersheds.
However, watersheds experiencing population growth were
more likely to influence the transition to a higher flood risk
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category. Although CI has not significantly increased, the
interaction between land use change, urban expansion, and
demographic shifts may be playing a role in driving these
transitions. Transitioning watersheds have a higher average
FGP compared to the overall average FGP and tend to have
a larger average watershed area compared to all watersheds.
This indicates that larger watersheds are more prone to expe-
riencing shifts in FGP and flood risk categories, possibly due
to their ability to accumulate and distribute larger volumes
of runoff and sediment. This supports the idea that intrinsic
watershed characteristics (such as geomorphology and size)
play a role in flood susceptibility alongside external factors
like population growth and the rainfall concentration index
(CI). Areas successfully predicted as at high risk (high LYT)
in the most recent years are those showing high social vulner-
ability in terms of social conditions (lack of communication,
lack of access to electricity and infrastructures, lower educa-
tion, small children under 5), a high percentage of migrant
communities, and a high risk of poverty and poor infrastruc-
tures (Aksha et al., 2019).

3.2 Variable importance and model performance

In this section, we present a variable importance compari-
son (Fig. 8) based on the feature importance score (F score)
in XGBoost. XGBoost provides an F score based on how
frequently a feature is used in splitting the data across all de-
cision trees. This is the number of times a feature appears in
a split across all trees in the model. A higher value indicates
that the feature is used more frequently in decision-making,
suggesting it has a stronger influence on model predictions.
The F score indicated that population (Pop) was the most im-
portant variable, which was consistent with our expectation
in the sense that the socioeconomic impact depends largely
on exposure. The climate variable (CI) was the next most
important variable, showing the significance of the region’s
climate to the socioeconomic impact of flood occurrences.

The precision, recall, and F1 score are metrics used to eval-
uate the performance of a classification model. Precision is
the fraction of true positives among the predicted positives.
Recall is the fraction of true positives among the actual pos-
itives. The F1 score is the harmonic mean of precision and
recall.

The evaluation metrics, shown in Table 2, reveal that the
model performs best in the high class, with the highest pre-
cision, recall, and F1 score. The final tuned models achieved
weighted accuracies of between 52 % and 58 % but signif-
icantly improved recall (71 %), precision (73 %), and the
F1 score (72 %) for the category “high”. This means that
out of 34 actual instances of the highest category, 24 were
correctly predicted, and out of 33 predicted cases, 24 were
accurate, confirming that the model effectively focused on
the most critical category. This suggests that while the over-
all accuracy slightly decreased due to the re-weighting, the
model’s performance in identifying the most critical cases
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Figure 6. Average variability in the CI (a) and population (b) compared to FGP from 1980-2020.

significantly improved. The medium class also demonstrates
relatively high performance across these metrics. However,
the low class exhibits the lowest performance, suggesting
that the model may face challenges in accurately distinguish-
ing between the low and medium classes or may demonstrate
a bias toward predicting the medium and high classes. These
findings provide valuable insights into the strengths and lim-
itations of the classification model and can guide future ef-
forts to improve its performance. Overall, considering that
the model aims to target substantial risk areas, a higher rate
of predicting impacts is acceptable compared to an underes-
timation of the risk.

3.3 Predicted versus observed flood impact in Nepal

Comparing predicted life year index (LYI) flood impacts
with observed data showed good correspondence between
high-risk areas identified by the ML method and historical
flood locations in Nepal. This suggests that the proposed ap-
proach effectively delineates flood risk on a national scale.

Nat. Hazards Earth Syst. Sci., 25, 3759-3778, 2025

Table 2. Performance metrics of the model on the test dataset.

Precision Recall FI score
Low 0.54 0.57 0.56
Medium 0.64 0.63 0.64
High 0.73 0.71 0.72

Figure 9 illustrates this comparison, showcasing observed
(empirically evaluated) and ML-predicted LYT values at both
watershed (upper row) and district (lower row) levels.

The “observed” LYI values were empirically calculated
from observational data (Table 1) and categorized into three
groups — “low”, “medium”, or “high” — with basins/dis-
tricts labeled “high” for LYI values exceeding 1000 years,
“medium” for those between 100 and 1000 years, and “low”
for those below 10 years. The “predicted” values represent
the outputs from the machine learning model.
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(background image sources: Esri, DeLorme, HERE, MapmyIndia).
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Figure 8. Feature importance score (F score).

In Nepal, we achieved an overall training accuracy of 97 %
and a test accuracy of 63 %. Notably, training the model at the
watershed level yielded higher accuracy compared to the dis-
trict level. This is attributed to watersheds being hydrologic
units that integrate geomorphological and climatic proper-
ties, thus providing a more accurate representation of flood
dynamics compared to administrative district boundaries.

At the watershed level, nearly all year ranges exhibited
a 100 % match with observed impacts. In instances where
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the model’s accuracy fell below 100 % (e.g., 1985-1990 and
1990-1995), the LYI values in the affected watersheds were
low, indicating that the predictors considered were more in-
dicative of major flooding events. The superior accuracy
achieved at the watershed level underscores the value of im-
plementing the model at this scale when scaling up the sys-
tem.

3.4 Prediction of the socioeconomic impact of heavy
rainfall over HMA

We applied the trained model for the watersheds in HMA
to 5-year intervals from 1980 to 2020. As an example,
Fig. 10c and d show the predicted basin-averaged LYIs (low—
medium-high) for the watersheds in HMA for two different
timelines. The yellow circles highlight the changes in flood
impact over the decades. One must consider that most of
HMA has low population density (blue color in Fig. 10b),
and as expected, the proposed model predicts low socioeco-
nomic flood impacts for these regions. Hotspots of high im-
pacts (red colors in Fig. 10c and d) are present, where popu-
lation exposure is higher.

Summarizing the results presented in Table 3, we can say
that, for the years shown, we predicted almost 57 % of water-
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sheds (marginal) having LYTs between 1 and 100 years (low),
35.9 % having LYIs between 100 and 1000 years (medium),
and only 6 % having LYTs greater than 1000 years (high). For
the entire period, most of the time we predicted LYIs of 1
to 100 years, for which we captured events of DFO severity
of around 2 (102 deaths + displaced) (conditional = 28.6 %).
This suggests that most “low”-class DFO events did hap-
pen in the watersheds within the lowest predicted LY range.
Readers must consider that “low” in this case means the
flood impact can range from 1 to 100 years lost, and a DFO
value of 2 means total deaths and displaced are on the or-
der of 10% people. The events with a DFO value of 4 hap-
pened mostly in watersheds with predicted LYTs ranging be-
tween 1 and 100 years and between 100 and 1000 years. The
events with DFO values of 6 and 8 happened mostly in ranges
greater than 1000 years and between 100 and 1000 years.

We further investigated how our predicted LYI behaved
when it was related to the total population (Table 4), evaluat-
ing, as suggested by Noy (2014), the LYT per capita (that is,
the number of life years lost per 100 000 people). As Table 4
shows, we correctly predicted over the years almost 64 % of
watersheds (marginal) have LYI per 100000 people of less
than 1 year (10°), 24.3 % have 10 years per 100000 peo-
ple (101), 11% have 100 years per 100000 people, and
0.6 % have 1000 years per 100000 people. We noticed
that LYI per 100000 people reached, at most, 6000 for
Nepal (at the country scale), and the study by Noy
(2016a) also reported similar values for Nepal in 1987.
Noy (2016a) reported actual LYI data in the range of
LYI > 1000 years per 100000 people in South Asia and
stated that the higher amount of damage in East and South
Asia is likely due to widescale flooding. This gave assur-
ance about the consistency of our prediction with the ac-
tual data available. When looking at LYT per 100000 peo-
ple, we found that, for the whole time frame, most of
the floods that registered in the DFO with low sever-
ity (DFO=10% deaths + displaced) happened in water-
sheds for which the predicted LYIs were between 1 and
100 years (conditional =29.8 %). This confirmed once again
that, in most cases, “low”-risk events did happen in the
watersheds having the lowest predicted range (similar to
the findings presented in Table 3). As before, while the
probability of a watershed being labeled as high risk
(LYT > 1000 years per 100000 people) by our system was
only 6 %, the probability of these watersheds having experi-
enced events recorded by the DFO as having a great impact
(DFO severity > 6, meaning over 1 million people) rose to a
conditional probability of 40 % and 10 %.

Figure 11 shows the LYI per 100000 people
(LYI per 100000) evaluated for different time frames
for all the locations reported in the DFO database to
compare the DFO severity with our predictions. Overall,
the DFO and predicted results were quite consistent with
some minor variability in some scattered areas. When we
compared the changes over time, we noticed an increase
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in vulnerability. As the plot makes evident, the largest
changes took place in 1990-1995 and 2010-2015; the two
concentrated areas were Nepal and China. As Fig. 3 shows,
two big jumps occurred during these timelines for Nepal
because of extreme storm-induced flood events. In Fig. 3,
we show the predominant events that occurred in these
timelines. Regarding China, as of June 2010, more than
29 million people had been affected by flooding, with up
to 2.37 million evacuated and 195000 homes destroyed
(International Federation of Red Cross and Red Crescent
Societies, 2010).

3.5 Change in socioeconomic impact over time

Figure 12 (top) presents our maps of the watersheds where
flood impacts increased over time. Furthermore, Fig. 12 (bot-
tom) shows our evaluation of the percentage changes in the
number of watersheds between timelines, focusing on three
different changes: low to medium (LtoM), medium to high
(MtoH), and low to high (LtoH). Some watersheds have not
changed, and some show a decreased impact. For the sake of
highlighting potential increases in flood impacts, we focused
on those locations where risk increased over time, from low
to medium or from medium to high. The largest changes were
from LtoM for all the timelines and represented a notable
change in vulnerability. Several watersheds showed higher
flood impacts (from low to medium, medium to high, and low
to high) in recent years as compared to 1985-1990. Again,
we observed the largest changes for 1990-1995 and 2010-
2015, which is consistent with Fig. 12. The exposure changed
significantly, along with the intensity of the events; hence, the
risk of flooding was heightened in these areas.

Impact changes from low to high were next, according to
the number of watersheds changed for all the timelines. It
was obvious that more changes would happen overall, but
the comparison of the 1990-1995 and 1995-2000 timelines
demonstrated that heightened flood impact occurred in a con-
siderable number of watersheds within a brief period. For
many watersheds, the risk was heightened by a population
boom during the overall period.

3.6 Model constraints and limits

While this study demonstrates the promise of accurate flood
impact prediction, the use of static flood geomorphic poten-
tial (FGP) maps presents limitations. Flooding alters chan-
nel morphology and downstream topography, impacting fu-
ture flood dynamics (Khanam et al., 2024). Therefore, dy-
namic flood topographies are essential for robust hazard as-
sessment. Although high-resolution data after extreme events
can enhance prediction accuracy, the availability of such data
is constrained by acquisition frequency. Hence, efforts to im-
prove data availability post-disaster are crucial for enhanc-
ing the reliability of predictive models. Researchers could
also derive FGPs from enhanced high-resolution terrain data,
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Table 3. LYI compared to DFO flood damage.

DFO LYI No. Proportion Marginal ~ Conditional
probability  probability
2 1-100 years 54 16.6 58.2 28.6
2 100-1000 years 26 8.0 35.7 224
2 > 1000 years 5 1.5 6.2 25.0
4 1-100 years 92 28.3 58.2 48.7
4 100-1000 years 45 13.8 35.7 38.8
4 > 1000 years 5 1.5 6.2 25.0
6 1-100 years 42 12.9 58.2 222
6 100-1000 years 44 13.5 35.7 379
6 > 1000 years 8 2.5 6.2 40.0
8 1-100 years 1 0.3 58.2 0.5
8 100-1000 years 1 0.3 35.7 0.9
8 > 1000 years 2 0.6 6.2 10.0
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Figure 11. Comparison of DFO and LYT per 100 000 people for all the timelines. © OpenStreetMap contributors 2023. Distributed under the

Open Data Commons Open Database License (ODbL) v1.0.

such as those derived from lidar sources if available. In
such cases, however, it is advisable to retrain the model and
reassess the significance of this parameter in the updated
model, as terrain resolution and survey techniques might de-
termine the variability of the data, especially when dealing
with hydrologic parameters (Sofia, 2020).

The climate index considered in this study might vary de-
pending on the input dataset (reanalysis vs. measurements),
as well as on the timescale of the analysis. When comparing
results to this study, researchers should make careful consid-

Nat. Hazards Earth Syst. Sci., 25, 3759-3778, 2025

eration of the length of the time window used for this evalu-
ation (5 years). If daily data are considered over shorter time
windows (e.g., 1 year), the index itself might result in higher
values, capturing only short-term variability due to specific
isolated storms. Seasonal analyses, on the other hand, would
capture more of the concentration due to monsoon periods or
dry vs. wet months. The proposed multi-year analysis is in
line with literature studies on climate change and on the ef-
fect of flooding (Sofia et al., 2019; Saki et al., 2023; Du et al.,
2023).
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Population data for this work rely on standard available
datasets. When considering the method to predict future
changes, outside the time range covered by the proposed
model, head counts alone cannot offer a full picture. It is also
crucial to consider additional elements that could determine
population shifts over time.

https://doi.org/10.5194/nhess-25-3759-2025

4 Conclusions

High Mountain Asia (HMA) presents a multifaceted land-
scape characterized by rugged terrain, diverse climates, rich
vegetation, and substantial population exposure to natural
disasters. Given its susceptibility to natural disasters, effec-
tive management is imperative for the region’s long-term
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Table 4. LYT per 100 000 people compared to DFO flood damage.

DFO LYI No. Proportion Marginal ~ Conditional

probability  probability
0 0 13 3.8 65.0 5.9
0 1 1 0.3 23.5 1.3
0 2 1 0.3 10.9 2.7
2 0 62 18.2 65.0 28.1
2 1 13 3.8 23.5 16.3
2 2 9 2.6 10.9 24.3
2 3 1 0.3 0.6 50.0
4 0 97 28.5 65.0 43.9
4 1 34 10.0 23.5 425
4 2 10 2.9 10.9 27.0
4 3 1 0.3 0.6 50.0
6 0o 47 13.8 65.0 213
6 1 32 9.4 23.5 40.0
6 2 15 4.4 10.9 40.5
8 0 2 0.6 65.0 0.9
8 2 2 0.6 10.9 54

sustainability. Addressing the considerable threat posed by
flooding demands a comprehensive strategy involving disas-
ter risk reduction, sustainable land use practices, and climate
change mitigation.

In this study, we introduced a simplified approach to iden-
tify vulnerability hotspots within the HMA region, focusing
on intense rainfall events. To map the socioeconomic flood
vulnerability, we employed a remotely sensed data-driven
model integrating geomorphological and climate variability
factors. This adaptable framework can be tailored to various
regions provided that similar terrain and climate datasets are
available, accommodating adjustments to flood drivers such
as climate and geomorphology, as well as population dynam-
ics. The resulting predictions offer valuable insights into vul-
nerabilities across HMA watersheds, facilitating proactive
flood management planning.

The novelty of our study lies in the efficiency and ver-
satility of the proposed predictive model. Requiring only a
small number of variables, our model accurately forecasts
the socioeconomic impact of pluvial and fluvial flooding
events. In densely populated, possibly ungauged regions with
rapidly changing climates, such a model serves as a valu-
able decision-making tool for stakeholders. The efficacy of
the framework, as demonstrated in Nepal, underscores its po-
tential applicability across regions with similar climatic and
morphological characteristics. Our goal is to provide a rea-
sonable assessment of vulnerability through life years lost,
rather than to definitively classify flood-prone areas by so-
cietal factors. Despite certain limitations, our findings offer
valuable insights into regional flood risk and its key drivers.

With advancing technology, we can now predict the drivers
of impending extreme events, enabling proactive measures to
mitigate their impact. Stakeholders could leverage our model

Nat. Hazards Earth Syst. Sci., 25, 3759-3778, 2025
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to forecast vulnerability to future flood events with preci-
sion, enhancing hazard assessment, decision-making, plan-
ning, and mitigation efforts.
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(https://doi.org/10.5067/WS83XMWHGEMY) (Sofia et al., 2024).
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