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Abstract. Identification of risks and vulnerabilities in ur-
ban and rural areas is crucial for supporting local author-
ities in disaster risk reduction and climate change adapta-
tion. Moreover, comparison of risk assessments across dif-
ferent areas may help effective allocation of adaptation fund-
ing towards more resilient and sustainable communities. The
distinct physical, social, economic, and environmental char-
acteristics of a settlement, along with the relevance of im-
pending hazards, determine the level of risk and vulnerability
faced by its residents. While the results of risk assessments
will vary from one settlement to another, using general set-
tlement typologies (e.g. coastal cities, dryland cities, and in-
land or high-altitude cities) can effectively support the un-
derstanding of risk in relation to its key drivers, helping to
segmentate the complexity in an otherwise too broad prob-
lem (Dickson et al., 2012).

This study aims to reduce complexity in risk assessment
of urban/rural settlements at regional and national scale, en-
sure a baseline for comparison and identify potential hotspots
in risk assessment frameworks. We propose a clustering
methodology that groups human settlements based on open-
source data, used as proxies of urban vulnerability and ex-
posure. Applying two widely used clustering techniques, we
define 18 urban and rural archetypes for the Italian territory,
incorporating geographic, demographic, and socio-economic
characteristics. These archetypes satisfy multiple validity di-
mensions of archetype analysis (Piemontese et al., 2022) and
can serve as a valuable tool for policymakers. By providing a
structured understanding of human settlements vulnerability
profiles, they support the design of targeted interventions and
resilience strategies tailored to specific risk conditions.

1 Introduction

Over the last few decades, natural disasters have caused dev-
astation to many communities throughout the world, killing
about 1.5 million of people and incurring losses exceeding
USD 4.5 billion (Centre for Research on the Epidemiology
of Disasters – CRED, 2024). Such disasters are the results
of the interaction of hazards (natural or man-made) with vul-
nerable socio-ecological and socio-economical systems. Ev-
idence shows that the level of disaster proneness of commu-
nities may vary greatly with their physical, demographic, so-
cioeconomic and institutional characteristics (Cutter et al.,
2003; Wang et al., 2022). For example, low-income and mi-
nority communities in New Orleans were disproportionately
affected during Hurricane Katrina due to residing in flood-
prone, lower-lying areas, and lacking personal transporta-
tion, which hindered evacuation (Flanagan et al., 2011). Sim-
ilarly, aging communities with limited mobility face chal-
lenges in evacuating quickly during hazardous events, lead-
ing to higher mortality rates, as seen during the 2011 Tohoku
Tsunami, Hurricane Katrina, and the 2017 and 2018 Califor-
nia wildfires (Brunkard et al., 2008; Hamideh et al., 2022;
Miyazaki, 2022).

Climate change brings additional challenges to manage-
ment and decision making for city governments and is asso-
ciated with a growing variety of impacts on cities, the sur-
rounding ecosystems, and livelihood of resident and tempo-
rary population (e.g., Dickson et al., 2012). As highlighted
in the IPCC’s 6th assessment report, in urban areas the risk
to people and assets due to climate-related hazard has al-
ready increased, and climate impacts are felt disproportion-
ately in urban communities, with the most economically and
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socially marginalized being most affected (Dodman et al.,
2023). Such risks depend on the increase of intensity and
frequency of extreme weather events (La Sorte et al., 2021;
Mulholland and Feyen, 2021) as well as on the interplay with
several non-climatic risk drivers including extent and fea-
tures of the exposed systems and assets (e.g., European En-
vironment Agency, 2024) and their vulnerability (e.g., Cutter
and Finch, 2008; Dickson et al., 2012).

Exposure refers to the presence of people, livelihoods,
species or ecosystems, environmental functions, services,
and resources, infrastructure, or economic, social, or cultural
assets in places and settings that could be adversely affected,
while vulnerability refers to the propensity or predisposition
to be adversely affected. Vulnerability encompasses a variety
of concepts and elements, including sensitivity or suscepti-
bility to harm and lack of capacity to cope and adapt (Inter-
governmental Panel on Climate Change – IPCC, 2022; Koren
et al., 2017). It encompasses both the lack of coping capacity
and adaptive capacity – factors that influence a community’s
ability to manage disasters effectively (Cardona et al., 2012;
Marin Ferrer et al., 2017). The level to which urban settings
are prone to the negative impacts of one or multiple hazards
is also known as urban vulnerability (Thywissen, 2006), and
its assessment is particularly challenging, as cities are intri-
cate systems composed of interdependent networks of built
environments, infrastructure, and social systems (Koren et
al., 2017). The concentration of assets and people may in-
crease potential losses, while dynamic interactions between
individual components that enable efficient system perfor-
mance can lead to cascading failures. In addition, urban areas
are often exposed to multiple hazards, such as earthquakes,
floods, heatwaves, each interacting with the built environ-
ment and human activities in different ways. Rural settle-
ments, on the other hand, may experience different forms of
vulnerability, often related to geographic isolation, limited
access to emergency services and infrastructure, lower insti-
tutional capacity, and demographic challenges such as ag-
ing population, which can significantly hinder preparedness
and recovery. This complex interplay explains also why often
non-extreme hazards can lead to severe consequences, while
extreme events in other contexts may not result in disasters
(Lavell et al., 2012).

In this complex context, archetypes can be powerful tools
for simplifying and interpreting systemic risks They provide
structured representations of recurrent patterns across diverse
cases, helping policymakers understand key drivers of vul-
nerability and exposure and supporting more effective risk
communication and decision-making (Oberlack et al., 2023;
Piemontese et al., 2022; Wicki et al., 2024). Archetypes have
been extensively employed to classify cities based on socio-
economic and socio-demographic parameters, to support pol-
icy decisions on fiscal interventions (Bruce and Witt, 1971;
Dalton and Williams, 2015; Harris, 1943). An increasing
amount of climate studies are dedicated to identifying re-
curring patterns and archetypes, in order to understand lo-

cal climate vulnerabilities and to formulate specific adapta-
tion strategies (Rocha et al., 2020; Vidal Merino et al., 2019;
Wicki et al., 2024). For instance, in Riach et al. (2023) recur-
ring climate risk patterns at the municipal level in Baden-
Wuerttemberg, Germany, are identified by analysing indi-
cators for climatic hazards (e.g., annual mean temperature,
hot/ice days, heavy precipitation) and exposure/vulnerabil-
ity (e.g., proportion of elderly, energy production, population
density). The nine urban archetypes derived represent munic-
ipalities with varying climate risk characteristics that require
tailored adaptation measures. Although several examples of
city-scale archetypes analysis are available, they often focus
on the analysis of single-hazard risk (e.g., Awah et al., 2024;
Carroll and Paveglio, 2016; Joshi et al., 2022; Riach et al.,
2023) and may be not applicable in a multi-risk context.

This study addresses the following research question: can
urban and rural settlements be clustered into meaningful
archetypes based on shared characteristics of vulnerabil-
ity and exposure, to improve multi-risk assessment and sup-
port more targeted resilience planning at regional and na-
tional scale? Indeed, despite the high specificity of expo-
sure and vulnerability of each urban and rural environment,
we assume that a relatively low number of representative
archetypes could be found to decrease the level of complex-
ity at regional and national scale, ensure a baseline for com-
parison and highlight potential hotspots in multi-hazard and
multi-risk assessment frameworks.

The term “archetype” can be interpreted in different ways.
In statistics, archetypes refer to extremal profiles used to de-
scribe all data points as convex combinations of a few “pure”
types (Cutler and Breiman, 1994). In contrast, in sustainabil-
ity science and climate risk research, archetypes are under-
stood as representative specimens or clusters of similar enti-
ties that are “crucial for describing the system dynamics or
causal effect of interest” and that “exhibit recurring patterns
of risk-relevant characteristics” (Oberlack et al., 2019). We
adopt this latter interpretation. In our work, urban and rural
settlement archetypes are defined as representative instances
(real or ideal) of a group of municipalities sharing similar
vulnerability and exposure characteristics.

Following the approach suggested in Piemontese et
al. (2022), we perform the archetype analysis in Italy ac-
cording to three phases of design, analysis and application.
In the design phase, the problem framing and attributes se-
lection is performed. In particular, this study seeks to ad-
dress the challenge of assessing urban/rural exposure and
vulnerability by proposing a national-scale clustering of Ital-
ian settlements using open-source data. Municipality is se-
lected as the primary geographical boundary for settlements
since available authoritative open-source data is often refer-
ring to such administrative units. Municipalities are small,
well-defined units, making them ideal for detailed spatial
analysis and accurate identification of human settlements.
These boundaries often reflect historical settlements, pre-
serving the cultural context that is essential for understand-
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ing contemporary urban dynamics. Additionally, municipali-
ties are responsible for local governance and urban planning,
making them relevant units for studying urban/rural settle-
ments, as local policies directly affect development and qual-
ity of life (actionability also for risk mitigation and climate
change adaptation). The goal of this study is to group set-
tings (municipalities) to define risk-oriented urban and rural
settlements archetype. To this end, we select a set of geo-
graphic, demographic, and socio-economic attributes avail-
able from open-source data, known to be relevant to vulner-
ability/resilience (see Sect. 2). Thanks to a proper selection
of a range of geographic, demographic, and socio-economic
parameters, the study provides a robust assessment of the
vulnerability of Italian urban and rural settlements, identi-
fying archetypes with varying levels of susceptibility to nat-
ural hazards. Moreover, the use of open-source data ensures
the approach is both replicable and scalable, making it gen-
eralizable and applicable to other regions. For the analysis
phase, described in Sect. 3, methods of analysis should be de-
fined towards generalizability of results. Archetypes are de-
rived through a two-step clustering process: first, broad urban
and rural archetypes are defined using only demographic and
geographic data, then they are refined using socio-economic
attributes. This initial classification reduces complexity and
establishes a baseline for comparison, providing a clear, in-
terpretable framework to capture essential structural differ-
ences among urban/rural settlements (e.g., size, density, loca-
tion). Refining these archetypes with socio-economic param-
eters allows for a more articulated understanding of vulnera-
bility differences within similar structural contexts, support-
ing more targeted risk assessment and policy intervention.
This two-step approach balances clarity with detail, enhanc-
ing both usability and precision. The proposed methodology
utilizes two widely-used clustering techniques – agglomer-
ative hierarchical clustering and partitioning clustering –
to analyse vulnerability-related data. Using two clustering
techniques allows for cross-validation of results and helps
capture different patterns in the data, enhancing the robust-
ness and reliability of the identified archetypes. Results of the
cluster analysis are presented in Sects. 4 and 5. Finally, the
application phase entails the practical usefulness and a real-
world check of the archetypes, meaning they should corre-
spond to variable levels of susceptibility to risk (according to
the problem framing), and assessment of the impact, intended
as the usefulness of results for application by final knowledge
users. To this aim, a simplified Impact Susceptibility Index is
proposed, highlighting the likelihood of experiencing nega-
tive consequences based on the combined levels of vulnera-
bility and exposure associated with each identified archetype.
Additionally, Sect. 7 provides a comprehensive discussion on
how each dimension of archetype analysis validity – as out-
lined by Piemontese et al. (2022) – is addressed, emphasizing
both the strengths and limitations of the study.

By developing a national-scale clustering of Italian munic-
ipalities, 10 broad and 18 nested archetypes are identified in

this study. The identified archetypes offer a simplified frame-
work for managing the complexity of diverse areas and their
exposure to hazards. This risk-oriented classification offers
valuable insights for resilience and disaster management pro-
fessionals, enabling policymakers and urban planners to de-
sign targeted risk-reduction strategies tailored to the specific
vulnerability profiles of each archetype, resulting in more ef-
ficient resource allocation.

2 Selection of key indicators of vulnerability
dimensions

To apply clustering techniques, it is essential to have a dataset
containing meaningful features (attributes) that allow for
clear differentiation between clusters. These attributes may
include numerical, categorical, or mixed data types, depend-
ing on the clustering algorithm. Thus, the first step in clus-
tering human settlements at a national scale is to identify key
drivers of vulnerability and assess data availability.

Vulnerability is multidimensional, defined by various
physical, social, economic, environmental, and institutional
factors that shape the susceptibility of systems to the impact
of hazards (UNDRR, 2023; Van Westen and Woldai, 2012;
Villagrán de León, 2006). Social vulnerability refers to the
propensity of some social groups (e.g., poor, single-parent
households, pregnant or lactating women, the handicapped,
children, and elderly) to suffer negative consequences of haz-
ards, due to their lack of capacity to react and manage the
effect of hazard related processes (Cutter et al., 2003; Wis-
ner et al., 2004). Economic vulnerability is the propensity of
economic assets and processes to be harmed by exogenous
shocks (Cardona et al., 2012), such as the potential impacts
of natural and man-made hazards (i.e., business interruption,
secondary effects such as increased poverty and job loss).
Physical vulnerability expresses the propensity of the built
environment (e.g., buildings and infrastructure) and popula-
tion to suffer the physical impact of hazardous events (Dou-
glas, 2007). Institutional vulnerability arises from limitations
in governance structures, risk communication, preparedness,
and emergency management systems. Following Papathoma-
Köhle et al. (2021), institutional vulnerability also encom-
passes the capacity of institutions to anticipate, absorb, and
adapt to hazards, highlighting the importance of coordina-
tion, contingency planning, and learning mechanisms as part
of adaptive risk governance. Environmental vulnerability is
the susceptibility of ecosystems to sustain degradation (de-
struction of forest, farmland, or crops, lower yields) and loss
of functionality following a hazardous event (Angeon and
Bates, 2014; Marzi et al., 2019). Table 1 presents a list of
key indicators commonly used in literature to assess each di-
mension of vulnerability mentioned.

In our work we focused on a selection of indicators, ex-
pectedly linked with different vulnerability dimensions, and
namely: altimetric zone, centeredness degree, degree of ur-
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Table 1. Vulnerability dimensions most common indicators.

Dimension Indicator Reference

Social Dependency ratio Cutter et al. (2003), Eriksen and Kelly (2007), Frigerio et al. (2018)

Age Cutter et al. (2003), Frigerio et al. (2018), Marzi et al. (2019)

Population growth Cutter et al. (2003), Frigerio et al. (2018)

Level of education Cutter et al. (2003), Frigerio et al. (2018), Marzi et al. (2019), Sibilia
et al. (2024)

Family structure Cutter et al. (2003), Frigerio et al. (2018), Marzi et al. (2019)

Commuting rate Cutter et al. (2003), Frigerio et al. (2018), Marzi et al. (2019)

Quality of buildings Cutter et al. (2003), Frigerio et al. (2018)

Race/Ethnicity Cutter et al. (2003), Frigerio et al. (2018), Marzi et al. (2019)

Access to medical services Cutter et al. (2003), Sibilia et al. (2024)

Economic Employment rate Marzi et al. (2019), Opach et al. (2020), Sibilia et al. (2024)

% women in the workforce Marzi et al. (2019), Opach et al. (2020)

Household income Marzi et al. (2019), Sibilia et al. (2024)

GDP per capita Eriksen and Kelly (2007), Sibilia et al. (2024)

Physical Housing conditions Marzi et al. (2019), Sibilia et al. (2024)

Building typology/material/
design

FEMA (2022), Kappes et al. (2012), Lagomarsino and Giovinazzi
(2006)

Population density Marzi et al. (2019), Opach et al. (2020)

Institutional Access to services/Distance to
services centres

Marzi et al. (2019), Opach et al. (2020)

Political stability Papathoma-Köhle et al. (2021), Sibilia et al. (2024)

Risk awareness and perception Papathoma-Köhle et al. (2021)

Transparency Papathoma-Köhle et al. (2021)

Environmental Vegetation cover/Land use Eriksen and Kelly (2007), O’Brien et al. (2004), Sibilia et al. (2024)

Water quality and availability Eriksen and Kelly (2007), Rockstrom (2013)

Air pollution level Cohen et al. (2017), Eriksen and Kelly (2007)

banisation, residential population and social vulnerability in-
dicators. The altimetric zone of a settlement, which refers to
their elevation and topographical features, can be considered
a proxy of access to the main services – or equally distance
to services centres (institutional vulnerability, see Table 1).
Accessibility of services of general interest can be particu-
larly challenging in certain contexts (e.g. mountain regions,
islands) due to their geomorphological and settlement struc-
ture conditions (Bertram et al., 2023). These accessibility is-
sues can also complicate evacuation efforts and the delivery
of emergency services during a disaster. Likewise, degree of
urban centeredness, which reflects the spatial characteristics
and distribution of urban areas, is associated with the avail-
ability of public services and the level of spatial connect-

edness, as it measures the distance and travel time to major
service centres (institutional vulnerability, see Table 1). The
degree of urban centeredness significantly influences the re-
sponse and resilience of urban systems by affecting resource
availability, infrastructure robustness, community networks,
and emergency preparedness (Giuliano and Narayan, 2003;
Schwanen et al., 2004). Ensuring effective access to essential
public services, such as healthcare and education, is chal-
lenging even under normal circumstances. However, it be-
comes even more crucial during crises like natural disasters,
when the demands on these services and their operating con-
ditions become significantly more complex (Fan et al., 2022;
Loreti et al., 2022; Tariverdi et al., 2023). The level of pe-
ripherality of the areas with respect to the network of urban
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centres influence may determine not only difficulties of ac-
cess to basic services but also lower quality of life of citizens
and their level of social inclusion (Oppido et al., 2023).

Residential population and degree of urbanitation are
linked to exposure and physical vulnerability dimensions,
and specifically to population density (physical vulnerability,
see Table 1). While population density cannot capture the full
range of structural vulnerability factors of the built environ-
ment, it reflects both the intensity of exposure and the sys-
temic vulnerabilities inherent to high-density urban environ-
ments (e.g., emergency response complexity and evacuation
challenges, increased likelihood of cascading infrastructure
failures during hazard events, overburdened urban services
that exacerbate systems’ physical fragility – healthcare, wa-
ter systems, mobility – under stress), consistent with its in-
terpretation in urban risk literature (e.g., Balk et al., 2018;
Marzi et al., 2019; Opach et al., 2020; Zhao et al., 2017).
Residential population significantly influences the exposure
to natural hazards, determined not only by the higher pres-
ence of people and housing, but also of infrastructure, pro-
duction capacities, species or ecosystems, and other tangible
human assets in places and settings that could be adversely
affected by one or multiple hazards. Greater population not
only increases the potential for human and property losses,
but also complicate evacuation efforts, and strains emergency
response resources (Zhao et al., 2017).

The degree of urbanization is often used to classify ar-
eas into cities, urban areas, and rural areas based on criteria
such as population density, concentration of human activi-
ties, and built environment (Balk et al., 2018; United Nations,
2019). Indeed, highly urbanized densely populated areas are
more likely to experience greater damage, congestion, and
strain on resources during emergencies. It affects the capac-
ity for evacuation and accessibility to essential services, due
to dense infrastructure, complex urban layouts and the po-
tential for cascading failures in infrastructure (Kendra et al.,
2008; Lall and Deichmann, 2012).

Finally, social vulnerability indicators include those pa-
rameters that influence both social and economic vulnera-
bility. Past events highlight that the elderly may be more
vulnerable due to reduced mobility, poor health, and com-
munication challenges (Ardalan et al., 2010; Carnelli and
Frigerio, 2017; Cutter et al., 2003), while education levels
can heighten vulnerability to natural hazards influencing risk
perception and awareness, knowledge, and skills related to
disaster preparedness (Alexander, 2012; Wachinger et al.,
2013). Still, minority groups, including migrants, and eth-
nic communities, often face heightened social vulnerability,
especially in high-risk areas, due to language barriers and
communication challenges that can hinder access to critical
emergency information (Carnelli and Frigerio, 2017; Pea-
cock et al., 2012). A comprehensive list of socio-economic
indicators considered is presented in Sect. 2.5, though some
indicators were not used for the final clustering process due

Table 2. Variable used in cluster analysis.

Variable Type Vulnerability
dimension

Degree of urbanisation Categorical Physical
Degree of urban centeredness Categorical Institutional
Residential Population class Categorical Physical
Altimetric zone Categorical Institutional
Aging index Numerical Social
Low educational index Numerical Social
Unemployed Numerical Economic
Commuting rate Numerical Social
Female employed Numerical Economic
Quality of buildings Numerical Social
Crowding index Numerical Social
Foreign resident Numerical Social

to their strong correlation with other selected variables (Ta-
ble 2).

It is worth mentioning that we only consider indicators
for which publicly available and authoritative data exist at
the municipal level. For example, since GDP per capita is
only available at national, regional, or provincial scales, it
is not included in this study. Similarly, many building char-
acteristics affecting physical vulnerability are either difficult
to detect or unavailable at the municipal scale (e.g., struc-
tural system and earthquake-resistant design level; Tocchi et
al., 2022). Moreover, building vulnerability indicators often
vary depending on the type of hazard (Kappes et al., 2012),
making it challenging to collect all relevant information for
multiple hazards across Italy. For these reasons, only popu-
lation density and general building quality are considered in
this study. Indicators suggested for the environmental vulner-
ability dimension are not included due to data limitations as
well. For instance, municipal-level air pollution data in Italy
is limited, as such data is only available for major cities with
monitoring stations.

Data on degree of urbanisation, the degree of urban cen-
teredness, altimetric zone, social vulnerability factors used
herein are primarily sourced from ISTAT (Italian National
Institute of Statistics). All data are collected at the municipal
level, aligning with the administrative boundaries adopted for
the analysis. The dataset includes 7960 objects, representing
the 7960 Italian municipalities, and 19 attributes (both nu-
merical and categorical) related to the vulnerability factors
outlined in Sect. 3.1 through 3.5.

2.1 Degree of urbanization

Eurostat (2021) proposed a grid-based approach, imple-
mented in geographic information systems (GIS), to deter-
mine the degree of urbanization based on a combination of
geographical contiguity and population density. First, raster
grid cells of 1 km2 are categorized according to their total
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population and population density. Second, small statistical
units are classified as urban centres (high-density units), ur-
ban clusters (moderate-density units) and rural cells (low
density units) based on population thresholds and density cri-
teria of groups of neighbouring cells. Finally, degree of ur-
banization of local administrative units is defined based on
the share of population living in urban centres, urban clus-
ters and rural grid cells: densely populated units (i.e., at least
50 % of population living in urban centres) are categorized as
cities, thinly populated units (i.e., at least 50 % of population
living in rural areas) as rural areas and intermediate density
units (i.e., less than 50 % of population living in rural areas
and urban centres) as towns and suburbs. In Italy, classifi-
cation of municipalities adopting the above-mentioned Eu-
rostat procedure is provided by ISTAT, the Italian National
institute of statistics (https://www.istat.it/classificazione/
principali-statistiche-geografiche-sui-comuni/, last access:
17 June 2024) and reported in Fig. 1.

It is found that only 3 % of Italian municipalities are clas-
sified as cities, yet they account for 33 % of the country’s
residential population. Conversely, rural areas make up 68 %
of municipalities but only represent 24 % of the population.
Towns and suburbs, which comprise 29 % of municipalities,
account for 43 % of the population.

2.2 Degree of urban centeredness

The degree of urban centeredness is used herein as a measure
of how centralized or decentralized an urban area is. Italian
territory is a polycentric territory, i.e., a territory character-
ized by a network of municipalities or aggregations of mu-
nicipalities (centres of offer of services) around which areas
characterized by different levels of peripherality gravitate.
These centres offer a wide range of essential services, capa-
ble of generating important catchment areas, even remotely,
and of acting as “attractors” (in the gravitational sense). The
methodology used to define the degree of urban centered-
nessof municipalities is based on the approach proposed by
the National Strategy for Internal Areas (SNAI, “Strategia
Nazionale per le Aree Interne” in Italian). This territorial pol-
icy aims to enhance the quality of citizen services and eco-
nomic opportunities in remote areas, which are characterized
by significant distances from major service centres and are at
risk of marginalization. The proposed methodology involves
two main phases: (i) identifying urban hubs based on their
capacity to provide essential services and (ii) classifying the
remaining municipalities as peri-urban areas and inner areas
based their distance from the hubs measured in travel time
(DPS, 2013).

More specifically, the selection of hubs, which can also be
defined as service offering centres, is based on service avail-
ability indicators for high school educational services (e.g.,
high schools, technical and professional institutes, and other
higher education institutions), health services (e.g., presence
of multiple health and emergency facilities, healthcare facil-

ities with at least 250 beds), and rail transport services (e.g.,
train stations with an average of more than 6000 travellers per
day and a high number of daily trains). Some neighbouring
municipalities are classified as intermunicipal hubs, mean-
ing that several contiguous municipalities collectively pro-
vide the required level of services in a network system. The
remaining municipalities are classified based on an accessi-
bility indicator measured in minutes to reach the nearest hub.
Peri-urban areas are less than 20 min away from the near-
est hub, while inner areas are more than 20 min away. Fur-
ther classification of the inner areas into three categories is
also provided: it is possible to distinguish between intermedi-
ate areas, that are approximately 20 to 40 min away, periph-
eral areas, that are between 40 and 75 min away, and ultra-
peripheral territories, that are more than 75 min away. Fig-
ure 1 (right) shows the classification of Italian municipalities
based on their degree of urban centeredness.

Most of the Italian population resides in peri-urban ar-
eas (37 %) and urban hubs (35 %), which account for 44 %
and 3 % of municipalities, respectively. Intermediate, periph-
eral and ultra-peripheral areas account for 16 %, 6 % and 1 %
of population, respectively, and represent 28 % (intermedi-
ate), 19 % (peripheral), and 4 % (ultra-peripheral) of Italian
municipalities. Intermunicipal hubs represent only 2 % of
municipalities and house 5 % of the population. Population
density generally decreases from hubs to peripheral munic-
ipalities. High-density cities comprise 35 % of hubs, while
medium-density towns and suburbs make up 57 %. Only 8 %
of hubs are low-density rural areas. Intermunicipal hubs ex-
hibit medium-high population density, with 23 % classified
as cities, 50 % as towns and suburbs and 27 % as rural ar-
eas. Peri-urban municipalities exhibit medium-low popula-
tion density, with 5 %, 45 % and 50 % classified as cities,
towns and suburbs and rural areas, respectively. Intermedi-
ate, peripheral, and ultra-peripheral municipalities are mostly
low-density rural regions (83 %, 91 %, and 96 %, respec-
tively).

It is worth mentioning that only three classes are consid-
ered for the degree of urban centeredness, namely urban hubs
(represented by both hubs and intermunicipal hubs, shades
of red in Fig. 1), peri-urban areas (green in Fig. 1) and in-
land areas (that includes intermediate, peripherical and ultra-
peripherical areas, shades of blue in Fig. 1), according to the
main classification proposed by ISTAT. This simplification
is adopted in order to: (i) minimize noise and variability in
the data, leading to more stable and reproducible clusters;
(ii) prevent the model from overfitting to minor variations,
improving generalizability; (iii) enhance interpretability.

2.3 Altimetric zone

ISTAT classifies Italian municipalities into three altimet-
ric zones based on elevation: mountain (> 600 m a.s.l.),
hill (300–600 m a.s.l.), and lowland (< 300 m a.s.l.) (ISTAT,
2020). Elevation data is derived from a Digital Elevation
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Figure 1. Italian municipalities classified based on degree of urbanisation (left) and degree of urban centeredness (right). Data used for the
classification are derived from ISTAT (https://www.istat.it/classificazione/principali-statistiche-geografiche-sui-comuni/).

Model (DEM) developed by ISPRA (Italian Institute for En-
vironmental Protection and Research) for a 20 m grid. Us-
ing the DEM, statistics such as average, sum, minimum, and
maximum elevation within the municipal boundaries are cal-
culated using a zonal statistics tool in GIS software. The
municipality’s altimetric zone is then determined based on
the surface prevalence criterion. Municipalities could be also
subdivided to account for the moderating influence of the sea
on the climate, as coastal or inland areas. However, only the
main three altimetric classes are adopted in this study (i.e.,
mountain, hill and lowland), not considering the classifica-
tion in coastal and inland zones. Indeed, coastal zones repre-
sent a minority of municipality (almost 90 % of municipal-
ities are located in inland areas, while only 10 % in coastal
areas) and this can lead to the model becoming more likely to
fit to noise, reducing its generalizability to new data. Further-
more, despite some correlation existing between urban vul-
nerability and coastal/inland areas (e.g., a coastal city with
strong infrastructure and preparedness may be less vulner-
able than an inland town with weak governance and high
poverty), generally the distinction between coastal and in-
land areas is primarily linked to the types of natural hazards
affecting these regions rather than inherent differences in ur-
ban vulnerability. Figure 2 shows the classification of Italian
municipalities by population classes and altimetric zones.

Geographically, 31 % of municipalities are in mountainous
areas (30 % inland, 1 % coastal), accounting for just 12 % of
the population (10 % inland, 2 % coastal). Hill areas encom-
pass 43 % of municipalities, with 33 % in inland hills and
10 % in coastal hills, representing 23 % and 16 % of the Ital-
ian population, respectively. Lowland areas include 26 % of
municipalities (24 % inland, 2 % coastal) and home to 49 %
of the population (34 % inland, 15 % coastal).

Many densely populated cities are located in lowland areas
(75 %), while only 22 % are situated in hilly regions and 3 %
in mountainous areas. Low-density or rural municipalities
are predominantly found in mountainous (39 %) and hilly re-
gions (42 %), compared to only 19 % in lowlands. Medium-
density towns and suburbs are mostly located in lowlands
(38 %) and hills (45 %), with only 17 % in mountainous ar-
eas. Similarly, hubs (including intermunicipal hubs) and peri-
urban municipalities are primarily situated in lowland (47 %
and 44 %, respectively) and hilly areas (44 % and 41 %), with
only 9 % of hubs and 15 % of peri-urban municipalities in
mountainous regions. In contrast, most inner municipalities
are in mountainous (47 %) and hilly regions (44 %), while
only 9 % are found in lowlands.
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Figure 2. Italian municipalities classified based on altimetric zone (left) and population (right). Data used for the classification are derived
from ISTAT (https://www.istat.it/classificazione/principali-statistiche-geografiche-sui-comuni/).

2.4 Residential population

Three population classes (Cpop) were introduced by ISTAT
to classify municipalities according to the number of inhabi-
tants (ISTAT, 2020). The classes (Fig. 2) are defined using the
following population thresholds: small municipalities (less
than 5000 inhabitants,Cpop= 1); medium municipalities (be-
tween 5001 to 250 000 inhabitants, Cpop= 2); big municipal-
ities (more than 250 000 inhabitants, Cpop= 3). ISTAT pro-
vides updated statistics on the resident population per mu-
nicipality every year. In this study information on population
per municipality is updated to 2018, along with the most re-
cent data on urbanization, centrality, and altitude zones, all
referring to the same year.

A significant proportion of municipalities fall into the low-
est population class, with 33 % having between 501 and 2000
inhabitants, 26 % having between 2001 and 5000 inhabitants
and 11 % being very sparsely populated, with fewer than
500 residents. The remaining municipalities belong to the
medium population class (30 %), including 15 % with pop-
ulation between 5001 and 10 000 inhabitants, 13 % between
10 001 and 50 000, and 2 % between 50 001 and 250 000.
Only 0.2 % belong to the high population class, representing
Italy’s largest cities such as Rome and Milan.

As expected, 91 % of hubs (including intermunicipal hubs)
are found in higher population classes, with 87 % in popula-
tion class 2 and 4 % in population class 3, highlighting their
concentration in highly populated areas. In contrast, 84 % of
inner municipalities fall within the lowest population cate-
gories, with only 16 % classified in class 2. Similarly, densely
populated cities tend to have larger populations, with 73 %
in classes 2 and 3 (41 % having between 10 001 and 50 000
inhabitants, and 32 % exceeding 50 001 inhabitants). Mean-
while, 88 % of rural areas are also sparsely populated, with
the vast majority (88 %) having fewer than 5000 inhabitants.

2.5 Social vulnerability indicators

Parameters commonly used to assess social vulnerability,
such as gender, age, education, socioeconomic status, public
health condition, employment status, and access to resources,
need to be tailored to the local context to accurately reflect
place-specific dimensions (Chen et al., 2013; Cutter et al.,
2003; Guillard-Gonçalves et al., 2015; Mesta et al., 2022).
The variables representing social vulnerability adopted in
this study are derived from the study conducted by Frige-
rio et al. (2018). These variables encompass seven demo-
graphic and socio-economic indicators pertinent to the Ital-
ian context. and specifically: age, population growth, level
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of education, family structures, commuting rate, quality of
buildings, race/ethnicity and employment. Age indicator in-
cludes the percentage of children (under 15) and elderly (over
65), the ageing index, calculated as ratio of elderly to chil-
dren (Preedy and Watson, 2010), and the dependency ratio,
i.e., ratio of nonworking-age people to working-age people
(Simon et al., 2012), calculated in this study as those un-
der 15 and over 65. The family structure indicator measures
the proportion of families with more than five members. In-
deed, evidence shows that the larger the family the lower the
income (ISTAT, 2024). The education indicator consists of
the low educational index, calculated as number of people
with at most a secondary school diploma compared to the
total population aged over 15, and the high educational in-
dex, calculated as people with at least a university degree
compared to the total population aged over 30. The com-
muting rate is the ratio of commuters to working-age peo-
ple (those over 15), while building quality indicator is cal-
culated as the proportion of buildings in poor condition. In
the census database, building quality is classified based on
four categories of preservation: very good, good, bad, or very
bad. For this study, the number of buildings in bad or very
bad condition at the municipal level is used as a representa-
tive variable for building quality. The employment indicators
cover both unemployment, employment, and female employ-
ment rates among working-age people (those over 15). The
crowding index is calculated herein as the number of persons
per dwelling. The race/ethnicity indicator is defined in terms
of percentage of foreign population (i.e., not Italian citizens).
It is important to note that only 12 of the 14 previously pre-
sented social vulnerability indicators are used in this study
(Table 2), as a correlation analysis – described in Sect. 3.1 –
was conducted. Each variable is derived from last census (IS-
TAT, 2011) at census tract level and aggregated at municipal
level.

It was observed that aging index, dependency ratio, low
educational index and the percentage of buildings in poor
conditions tends to increase from hubs to ultra-peripheral ar-
eas (average values of 1.7, 0.55, 0.51 and 14 % for hubs, av-
erage values of 2.7, 0.61, 0.60 and 20 % for ultra-peripheral
areas, respectively), while high educational index, percent-
age of employed and female employed as well as crowding
index tend to decrease (average values of 0.17, 50 %, 44 %
and 2.4 for hubs, average values of 0.08, 44 %, 38 % and 2.2
for ultra-peripheral areas, respectively). Rural municipalities
exhibit a higher aging index (2.2) compared to towns (1.4)
and cities (1.2), along with larger values of low educational
index (0.61 vs. 0.58 in towns and 0.55 in cities) and depen-
dency ratios (0.58 vs. 0.52 in towns and 0.50 in cities). Con-
versely, these rural areas show smaller values of high edu-
cational index (0.09 compared to 0.11 in towns and 0.15 in
cities), employment rates (0.48 vs. 0.52 in towns and cities),
and crowding index (2.3 compared to 2.5 in towns and 2.6 in
cities).

Social vulnerability is often expressed through a compos-
ite index known as the Social Vulnerability Index (SoVI),
which aggregates different metrics affecting it (e.g., Cutter
et al., 2003; Frigerio et al., 2018). Using a unique index
to represent social vulnerability provides a comprehensive
and easily interpretable measure that encapsulates multiple
dimensions of vulnerability, facilitating communication and
policymaking. In this study the individual indicators affect-
ing social vulnerability are considered in the cluster analysis,
while the aggregated SoVI index is used to provide a syn-
thetic description. This approach allows for a more nuanced
understanding of the different dimensions of vulnerability.
By analysing each indicator separately, cluster analysis can
capture the unique contributions and relationships between
factors like income, education, health, and housing quality,
which may be masked in a single composite index. Addition-
ally, considering individual indicators enables the identifica-
tion of distinct patterns or subgroups within the data, leading
to more effective archetype identification. In contrast, an ag-
gregated index may oversimplify these dynamics and over-
look important variations across clusters.

3 Cluster analysis

To identify archetypes by grouping entities based on shared
characteristics, clustering analysis is widely used. Cluster-
ing refers to unsupervised learning techniques used to find
subgroups (or clusters) within a data set by organizing el-
ements according to their similarities. This method is de-
signed to group together observations that are highly similar,
while separating those that differ into distinct clusters. Unlike
supervised classification algorithms, which rely on labelled
training data to categorize new information into predefined
classes, clustering uncovers natural structures in the data by
analysing similarities between data points without the need
for predefined labels.

In this study clustering is adopted to group human settle-
ments based on their potential exposure and vulnerability-
related factors to define risk-oriented urban and rural settle-
ments archetypes, proposing an application for Italian mu-
nicipalities as a case. We conducted a two-step clustering ap-
proach. A first cluster analysis is performed with a sub-set of
attributes, specifically demographic and geographic param-
eters representative of physical and institutional vulnerabil-
ity dimensions. The aim is to allow a first broad definition
of archetypes, simple and highly interpretable. In the second
step, a nested clustering approach is applied to further differ-
entiate sub-clusters based on socio-economic attributes.

Both hierarchical and partitioning clustering techniques
are employed in each step to enable comparison of cluster-
ing outputs and to identify nuanced patterns that may not be
captured by a single method. The adoption of two different
clustering techniques serves to enhance the robustness, relia-
bility, and interpretability of the archetypes identified in this
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study. Each method has distinct strengths and analytical ad-
vantages, which, when combined, allow for a more compre-
hensive exploration of patterns in the data. For instance, hi-
erarchical clustering is particularly useful for exploring data
structures without the need to predefine the number of clus-
ters. It produces a dendrogram that visually represents nested
groupings and their relationships, offering insights into how
clusters evolve as dissimilarity thresholds change. This is es-
pecially valuable for understanding the hierarchical nature
of urban/rural systems and guiding the selection of an ap-
propriate number of clusters. On the other hand, partitioning
clustering requires the number of clusters to be predefined,
but it typically performs better with larger datasets, produc-
ing compact, well-separated clusters when appropriately pa-
rameterized. It is computationally efficient and more suitable
for refining clusters, especially when working with both cat-
egorical and numerical data types. Using both techniques en-
ables cross-validation of clustering outputs, ensuring consis-
tency and increasing confidence in the identified archetypes.
Discrepancies between methods can highlight ambiguous
or transitional settlement types, while convergences confirm
stable, well-defined clusters.

More detailed information of algorithms used are reported
in Sect. 3.2 and 3.3. Results of first and second level clus-
tering analysis are presented in Sects. 4 and 5, respectively.
Rural and urban archetypes (presented in Sect. 6) are defined
based on the results of the most effective algorithm, selected
according to widely used clustering performance metrics (see
Sect. 4.2).

3.1 Data pre-processing

Data preprocessing is crucial for enhancing the quality of
clustering. Specifically, we performed: (i) outlier detection;
(ii) correlation analysis – to eliminate measurement redun-
dancy; (iii) normalization of numerical data values.

The detection of outliers is necessary to ensure high qual-
ity of clustering. An outlier is an object in a data set that devi-
ates significantly from the remaining data, Outlier detection
is essential for ensuring high-quality clustering, as extreme
values can distort normalization and affect cluster forma-
tion (Nowak-Brzezińska and Gaibei, 2022; OECD, EU and
ECJRC, 2008).Outliers are identified using the interquartile
range (IQR) method, where data points beyond 1.5 times the
IQR from the quartiles are considered outliers. In this study,
residential population had the highest number of outliers. In-
stead of removing them, which would compromise the analy-
sis, the population variable was transformed into categorical
classes (i.e. the population classes presented in Sect. 3.4) to
reduce its impact on clustering.

For the correlation analysis, the Pearson correlation coeffi-
cient (r) is used. This coefficient is a statistical measure used
to assess the strength and direction of the linear relationship
between two continuous variables (Cohen, 2013). It is one
of the most used methods for correlation analysis. While it

does not inherently assume normality, research indicates that
Pearson’s correlation is relatively robust to violations of nor-
mality, especially when sample sizes are large (Bishara and
Hittner, 2017). The value of r ranges between−1 and 1, with
values higher than 0 that indicate a positive correlation and
values lower than 0 a negative correlation. Values close to
0 indicate no linear correlation between variables (Cohen,
2013). Figure 3 shows the correlation matrix obtained for the
14 numerical variables presented in Sect. 2.5. The analysis
shows that there is a very strong correlation (|r|> 0.8) be-
tween age indicators, namely: proportion of population un-
der 15 aged and over 65 aged (r =−0.84); aging index and
proportion of people aged 65 and above (r =+0.81); depen-
dency ratio and proportion of population over 65 (r = 0.91).
Strong correlation (|r|> 0.5) is also observed for: aging in-
dex and dependency ratio to proportion of people under 15
(r equal to −076 and −0.55, respectively); dependency ra-
tio and aging index (r =+0.73); crowding index and depen-
dency ratio (r =−0.6); crowding index and proportion of
families with 5 or more components (r =+0.78), high and
low educational index (r =−0.78), proportion of commuters
and proportion of employed (r =+0.61); proportion of em-
ployed and proportion of over 65 aged (r =−0.58) and pro-
portion of under 15 aged (r =+0.54).

Based on the analysis results, the number of numerical at-
tributes used for clustering was reduced from 14 to the fol-
lowing 8: aging index, low educational index, proportion of
unemployed, proportion of commuters, proportion of female
employed, proportion of buildings in poor condition, crowd-
ing index and proportion of foreign resident. The attributes
selected for the clustering are thus divided into 4 categorical
(i.e., degree of urbanisation, population class, degree of ur-
ban centeredness and altimetric zone) and 8 numerical, listed
in Table 3.

Finally, numerical data are normalized to enhance the
quality of clustering by ensuring that all features contribute
equally to the analysis, regardless of their original scales.
Without normalization, features with larger ranges could
dominate the clustering process, leading to biased results
(Usman and Stores, 2020). As normalization method, the em-
pirical cumulative distribution function (ECDF) is adopted.
The empirical CDF approach ranks the data points by their
cumulative probability, effectively distributing them between
0 and 1 based on their relative positions within the dataset.
Compared to other normalization methods (e.g., min-max
normalization, z-score), ECDF normalization offers several
advantages: it effectively processes non-normally distributed
data, minimizes the impact of outliers, and provides a clear,
intuitive framework for interpreting data rankings relative to
the overall distribution (Hoffman et al., 2017).

3.2 Hierarchical clustering

Hierarchical clustering organizes data into tree-structured
clusters through either an agglomerative or divisive process
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Figure 3. Correlation matrix for numerical variables considered.

Table 3. Cluster and sub-clusters identified with relative average value of numerical attributes within the cluster or sub-cluster.
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(Han et al., 2011). In agglomerative clustering, each object
is initially assigned to an individual cluster (that is, if there
are n objects, the process will start with n clusters). Initial
clusters are gradually merged into larger clusters based on
their similarity (or dissimilarity), until a hierarchy of clus-
ters is built and only one cluster remains, which contains
all data points. The selection of an appropriate distance or
dissimilarity measure crucially affects the clustering solution
and depends on the nature of the considered variables. Most
distance measures concern the analysis of either continuous
only or categorical only data (e.g., Euclidean distance). The
Gower distance (Gower, 1971) is a flexible dissimilarity mea-
sure that can work both with numerical and categorical vari-
ables. For numerical variables, the Gower distance uses the
normalized absolute difference. If xil and xj l are the values
of the lth numerical attribute for objects i and j , the distance
between the two objects for attribute l is calculated as:

d lij =

∣∣xil − xj l∣∣
max(xl)−min(xl)

(1)

For categorical variables, the Gower distance assigns a value
of 0 if the values are the same and 1 if they are different:

d lij =

{
0 if xil = xj l
1 if xil 6= xj l

(2)

The Gower distance for a pair of objects i and j is calculated
as the average value of the individual attribute distances, ac-
cording to Eq. (3):

Dij =

p∑
l=1
wld

l
ij

p∑
l=1
wl

(3)

Where p is the number of attributes, d lij is the individual at-
tribute distance and wl is the weight for the lth attribute, set
to 1.

The main steps of agglomerative hierarchical clustering
process can be outlined as follows:

1. For each pair of data points i and j in the dataset, the
Gower distance is calculated. The result is an n× n

distance matrix where each entry (i, j ) represents the
Gower distance between objects i and j across all at-
tributes. This means that the values on the diagonal
of this matrix will be equal to zero, since the distance
between object i and itself is zero. It is important to
note that the Gower distance already normalizes numer-
ical variables, making additional normalization unnec-
essary.

2. Next, the two clusters with the smallest Gower distance
are merged, reducing the total number of clusters by
one.

3. The distance matrix is then updated to reflect the dis-
tance between the newly formed cluster and all other
clusters. The recalculation of distances depends on the
chosen linkage criterion (e.g., single, complete, average,
or ward linkage). In this study, complete linkage is em-
ployed, where all pairwise dissimilarities between ob-
servations in cluster A and cluster B are computed, and
the largest of these dissimilarities is recorded.

4. Repeat the merging process iteratively, continuing to
merge the closest clusters and updating the distance ma-
trix until all objects are grouped into a single cluster.

Optimal number of clusters

Throughout the merging process, a dendrogram is con-
structed – a tree-like diagram that visually represents the or-
der and levels at which clusters are merged. The height of
each node in the dendrogram corresponds to the Gower dis-
tance at which the clusters were merged. The dendrogram
can be analysed to determine the optimal number of clus-
ters, either visually by identifying the largest vertical dis-
tance (gap) between merges, known as the “cut” point (James
et al., 2017), or by evaluating the inconsistency coefficient
(Martin et al., 2022). The inconsistency coefficient measures
the similarity of clusters connected by each link, comparing
its length with the average length of other links at the same
level of the dendrogram (Jatain et al., 2013). A higher coeffi-
cient indicates less similarity between clusters. The relation-
ship between the inconsistency coefficient and the number
of clusters indicates that a lower number of clusters corre-
sponds to higher inconsistency, which suggests better clus-
tering since distinct clusters tend to have high inconsistency.
However, fewer clusters often lead to greater within-cluster
variance. To strike a balance between distinct clusters and
minimizing within-cluster variance, the variability of obser-
vations within each cluster is evaluated, and its trend is anal-
ysed as the number of clusters increases.

To evaluate the variability of the observations within each
cluster, a coefficient representing the within cluster distance
(WCD) is calculated as sum of the average values of dis-
tances between data points in a single cluster. Specifically,
for the lth numerical attribute WCDl is calculated by taking
the average of the squares of the differences between each
pair of values i and j in the cluster Ck (Gordon, 1986):

WCDl(Ck)=

∑n
i=1
∑n
j=1(xil − xj l)

2

n2− n
(4)

Where x1, x2, . . . , xn are n observations within the kth cluster
on a quantitative variable, x.

For the lth categorical attribute, the coefficient of unlike-
ability proposed by Perry and Kader (2005) is utilized as
measure of WCDk:

WCDl(Ck)=

∑
i 6=j c(xil,xj l)

n2− n
(5)
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Where:

c
(
xi,xj

)
=

{
1 if xil 6= xj l
0 if xil = xj l

(6)

And x1, x2, . . . , xn are n observations within the kth cluster
on a categorical variable, x.

The final value of WCD for the cluster Ck is given by the
average values across all p attributes:

WCD(Ck)=

p∑
l=1

WCDl(Ck)

p
(7)

While the overall value of WCD for the clustering – which
accounts for all m clusters – can be defined as the average
value:

WCD=

m∑
k=1

WCD(Ck)

m
(8)

The evaluation of variation of WCD with the increasing num-
ber of clusters together with the trend of inconsistency coef-
ficient allows the definition of the best number of clusters for
the specific case analyses.

3.3 Partitioning clustering

Partitioning clustering is a method that divides a dataset into
a predefined number of clusters by assigning each data point
to a single cluster based on similarity. The most used parti-
tioning clustering technique is the k-means algorithm (Mac-
Queen, 1967). To perform k-means clustering, the number
k of clusters must be predefined, and k objects, represent-
ing the initial cluster centroids, are arbitrarily chosen. The
remaining objects are then iteratively assigned to these clus-
ters in a way that minimizes the distances of points to their
respective centroids, thereby minimizing the within-cluster
variance. The position of each centroid is updated each itera-
tion by the mean value of the objects in a cluster. One of the
main drawbacks of k-means algorithm is that it only works
on numeric values, prohibiting its use to cluster data con-
taining categorical values. The k-modes algorithm is an ex-
tension of k-means algorithm that employs a simple match-
ing dissimilarity measure to handle categorical data, replac-
ing cluster means with modes and using a frequency-based
approach to update these modes during the clustering pro-
cess (Huang, 1998). These modifications enable the k-modes
algorithm to cluster categorical data in a manner similar to
k-means. The k-prototypes algorithm combines elements of
the k-means algorithm and the K-modes algorithm, allowing
for the clustering of objects characterized by both numeric
and categorical attributes (Huang, 1998). Like the k-means
algorithm, this technique requires the user to set the number
of clusters (k), while initial cluster centroids are chosen ar-
bitrarily. Observations are iteratively assigned to the closest

centroid in a way that minimizes within-cluster variance. To
define the closeness between two objects, this method applies
Euclidean distance to numeric attributes and uses a distance
function simple matching dissimilarity (δ = 0 if the values
match, δ = 1 if they do not) for categorical attributes. Thus,
dissimilarity measure for a data point i and centroid j can be
calculated as:

D(i,j)=
∑

numerical
(xil −µkl)

2
+ γ

∑
categorical

δ(xil,µkl) (9)

Where xil is the value of the lth attribute of the ith data point,
µkl is the relative value for the kth cluster centroid, and γ
is a weighting factor to balance numerical and categorical
distances (a value of 1 is adopted for γ ). The centroids are
updated after each iteration by taking the average values of
numerical variables of the objects within a cluster and eval-
uating the modes for categorical attributes, i.e., the category
with the highest frequency.

As one of the main drawbacks of this clustering techniques
is that the clustering is very sensitive to the selection of ini-
tial centroid, the random selection of initial centroids and the
clustering are repeated t times (t = 10) and each iteration t
the performance of the clustering algorithm is evaluated by
calculating WCD. Among t different clustering obtained, the
best clustering is determined based on WCD value (i.e., the
clustering providing the lower WCD value).

4 First level analysis: clustering based on physical and
institutional vulnerability parameters

A preliminary cluster analysis is conducted using only demo-
graphic and geographic attributes representative of physical
and institutional vulnerability dimensions, namely: degree of
urbanisation, residential population, centeredness degree and
altimetric zone. It is important to note that all these attributes
are categorical (see Table 2). Consequently, hierarchical clus-
tering is performed using Eqs. (2) and (3), while partitioning
clustering is applied using the dissimilarity measures for cat-
egorical variables presented in Eq. (9).

The optimal number of clusters is determined following
the procedure outlined in Sect. 3.2. The inconsistency coef-
ficient reaches its highest values (> 4) when considering be-
tween 4 and 12 clusters. Conversely, the within-cluster dis-
persion (WCD) exhibits an inverse relationship with the in-
consistency coefficient: as the number of clusters increases,
WCD decreases. Specifically, WCD declines from 1.26 with
4 clusters to 0.70 with 10 clusters, remaining constant at 0.70
between 10 and 12 clusters. To achieve a balanced trade-off
between the inconsistency coefficient and WCD, 10 clusters
are selected as the optimal number for this dataset. Since par-
titioning clustering requires a predefined number of clusters,
the optimal number identified through this methodology is
also adopted for the partitioning clustering approach.

https://doi.org/10.5194/nhess-25-3665-2025 Nat. Hazards Earth Syst. Sci., 25, 3665–3692, 2025



3678 G. Tocchi et al.: Identifying urban and rural settlement archetypes

4.1 Results of hierarchical cluster analysis

Figure 4 shows the representativeness of clusters in terms of
attributes considered. Clusters 1, 2, 3 and 6 represent rural
municipalities with low (1, 2 and 3) and medium (6) popu-
lation. Among them, cluster 1 identifies hubs (more specifi-
cally intermunicipal hubs), cluster 2 peripheral areas, cluster
3 peri-urban areas while cluster 6 includes both peripheral
and peri-urban municipalities – with a very small portion of
intermunicipal hubs.

Clusters 4, 5 and 7 identifies medium-density towns and
suburbs with medium (4), medium-low (7) and low popula-
tion (5). Cluster 4 is represented by hubs (specifically, inter-
municipal hubs), cluster 7 by peripheral areas while cluster
5 in majority by peri-urban areas. Clusters 8 and 9 include
high density cities, that are medium (8) and high (9) pop-
ulated areas. Cluster 9 includes all the major Italian cities
with more than 250’000 inhabitants (e.g., Rome, Milan and
Naples), while cluster 8 includes cities located in peri-urban
areas. Finally, cluster 10 includes all medium-populated mu-
nicipalities not included in the other clusters, most of the
medium-densely populated and located in peri-urban and pe-
ripheral areas.

Regarding the altimetric zone, most peripheral areas (e.g.,
clusters 2 and 7) are located in hilly and mountainous re-
gions, whereas densely populated cities (e.g., clusters 8 and
9) are primarily situated in lowland areas. Cluster 4 distinctly
represents towns and suburbs in hilly regions, while Cluster 6
includes rural municipalities in mountainous areas. Cluster 1
groups intermunicipal hubs found in both hilly and moun-
tainous areas. However, the classification of municipalities
in clusters 3, 5, and 10 is less clearly defined.

The attributes’ importance for clustering is evaluated
adopting simplified procedure proposed in Fraiman et
al. (2008). The methodology is based on an iterative removal
of variables, to assess their contribution to clustering based
on the performance metric selected. In other words, variables
are removed one at a time and the impact of the removal on
the overall model is measured. The greater the impact of re-
moving a variable, the more important it is considered. In
this study we consider WCD as the performance metric. Fig-
ure 5a shows that the most important attribute for the cluster-
ing is the degree of urbanisation, followed by the population
class and the centeredness degree, while the less important
attribute is the altimetric zone.

A significant number of municipalities are classified
within rural clusters, with Cluster 2 encompassing 3305
municipalities and Cluster 3 including 1632 municipalities
(Fig. 5b). This aligns with the fact that 68 % of Italian mu-
nicipalities are categorized as rural areas (see also Sect. 3.4).
The least populated cluster is Cluster 1, which contains only
5 municipalities, followed by Cluster 4 (35 municipalities),
Cluster 9 (51 municipalities), and Cluster 6 (89 municipali-
ties). Meanwhile, Clusters 8, 7, 5, and 10 include 166, 347,
615, and 1715 municipalities, respectively.

4.2 Results of partitioning cluster analysis

Results of partitioning clustering are presented in Fig. 6,
highlighting the representativeness of different attributes.
Clusters 3 and 10 represent low populated peripheral munic-
ipalities in rural areas, specifically located in mountainous
(3) and hilly (10) regions. Clusters 1, 6 and 8 also include
low populated municipalities in rural areas but classified as
peri-urban, located in hilly (1), lowland (6) and mountainous
areas (8). Clusters 4 and 9 identify low populated suburban
municipalities in peri-urban areas, with cluster 4 representing
those in mountainous and hilly regions, and cluster 9 those in
lowland areas. Clusters 2 and 5 characterize medium-low (5)
and medium populated (2) towns in peripheral and peri-urban
areas. Municipalities in cluster 5 are predominantly located
in mountainous regions, while those in cluster 2 are mainly
found in hill and lowland areas. Finally, cluster 7 includes
medium to high populated cities, encompassing both hubs
and peri-urban municipalities, primarily located in lowland
regions.

The attribute importance analysis (Fig. 7a) indicates that
degree of urbanisation is the most influential factor in ac-
curately distinguishing clusters, followed by altimetric zone,
centeredness degree, and population classification.

The distribution of municipalities across clusters varies
significantly (Fig. 7b). Cluster 3 is the largest, comprising
1976 municipalities, followed by Cluster 2 with 1,655 mu-
nicipalities and Cluster 10 with 1520 municipalities. Clus-
ter 1 includes 740 municipalities, while Cluster 6 and Clus-
ter 8 contain 618 and 341 municipalities, respectively. Clus-
ter 4 and Cluster 5 represent smaller groups, with 503 and
216 municipalities. The smallest clusters are Cluster 9 with
148 municipalities and Cluster 7 with 243 municipalities, in-
dicating distinct groupings within the dataset.

4.3 Comparison of clustering algorithms

In order to evaluate quality of clustering techniques, measure
of intra-cluster distance (i.e., WCD presented in Sect. 3.2) as
well as inter-clusters distance are investigated. Specifically,
the coefficient WCD is adopted to evaluate the performance
of the clustering for each single attribute. The value of WCDl
for the attribute lth across all clusters is calculated as follows:

WCDl =
∑m
k=1WCDl(Ck)

m
(10)

Where WCDl(Ck) is the value of WCD for the lth attribute
and the kth cluster, calculated according to Eqs. (4) and (5),
and m is the total number of clusters. The lower the WCDl
value, the better the performance of the algorithm with re-
spect to the considered attribute.

Inter-cluster distance (ICD) measures the separation be-
tween clusters in a clustering solution and is useful for eval-
uating how distinct the clusters are. To calculate inter-cluster
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Figure 4. Representativeness of clusters resulting from hierarchical clustering in terms of degree of urbanisation (a), degree of urban cen-
teredness (b), population class (c) and altimetric zone (d).

Figure 5. Attribute importance in terms of variation of WCD (a); number of Italian municipalities belonging to each cluster (b).
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Figure 6. Representativeness of clusters resulting from partitioning clustering in terms of degree of urbanisation (a), degree of urban cen-
teredness (b), population class (c) and altimetric zone (d).

Figure 7. Attribute importance in terms of variation of WCD (a); number of Italian municipalities belonging to each cluster (b).
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distance, we adopt Centroid-to-Centroid Distance:

ICDl =

∑
i 6=j

∥∥µi,l −µj,l∥∥
m

(11)

Where µi,l and µj,l are the centroids values (i.e., the mode
of the objects within a cluster) of clusters i and j for the lth
attribute. Unlike WCD, a higher ICD indicates better algo-
rithm performance, as it reflects greater differentiation be-
tween clusters.

From Fig. 8, it can be observed that the hierarchical clus-
tering algorithm achieves better WCD performance for the
centeredness degree attribute. However, it performs worse
than partitioning clustering for the population class attribute
and significantly worse for the altimetric zone attribute. Re-
garding degree of urbanisation, both clustering methods ex-
hibit high and comparable WCD performance. Overall, con-
sidering the average WCD across all attributes, the hierarchi-
cal algorithm shows a higher WCD (0.18) compared to the
partitioning algorithm (0.13). Despite this difference, both
clustering approaches demonstrate relatively good perfor-
mance. In terms of ICD, hierarchical clustering outperforms
partitioning clustering across all attributes, except for the al-
timetric zone, where both methods yield the same ICD value.
Overall, hierarchical clustering demonstrates superior perfor-
mance in terms of ICD, with a value of 0.62, compared to
0.49 for partitioning clustering.

While WCD is slightly higher in hierarchical clustering
compared to partitioning clustering, the overall clustering
quality remains good in both methods. However, the signifi-
cantly higher ICD (0.62 vs. 0.49) for hierarchical clustering
suggests that it produces more distinct and well-separated
clusters, making it the preferable choice for this analysis.
Therefore, the results of hierarchical clustering are used
for the initial broad definition of archetypes (presented in
Sect. 5) and serve as the input for the second step of the anal-
ysis, namely the nested clustering, which is discussed in the
following section.

5 Second level analysis: nested clustering based on
socio-economic parameters

Nested clustering identifies clusters within clusters, unveil-
ing data structures at multiple levels of granularity. This
method is particularly valuable for detecting complex pat-
terns in data, providing a more detailed understanding of the
underlying relationships. In this study, for each first-level
cluster (or broad archetype) identified in the previous sec-
tion, we analyse nested clusters to capture the heterogeneity
of urban/rural settlements in terms of socio-economic vul-
nerability. To achieve this, we consider eight socio-economic
attributes – aging index, low educational index, proportion
of unemployed individuals, proportion of commuters, pro-
portion of female employees, proportion of buildings in poor

condition, crowding index, and proportion of foreign resi-
dents – selected based on the correlation analysis results pre-
sented in Sect. 4.1.

Both partitioning and hierarchical clustering algorithms
are applied within each cluster to further refine the sub-
groups. The optimal number of sub-clusters for each cluster
is determined using WCD and the inconsistency coefficient,
as detailed in Sect. 3.2. Based on the clustering performance
metrics (i.e., WCD and ICD), partitioning clustering proves
to be the most suitable approach for this second-level clus-
tering. As results, we identified 3 sub-clusters for cluster 2
and cluster 3, 2 sub-clusters for cluster 4, 8, 9 and 10 and
no sub-clusters for cluster 1, 5, 6 and 7 due to homogeneity
of socio-economic data within the cluster. The list of clus-
ters and sub-clusters with the average values of numerical
attributes for each of the sub-clusters identified is reported in
Table 4.

While cluster names are derived from the geographical and
demographic characteristics analysed (e.g., peri-urban set-
tlements, peripheral rural areas), sub-cluster names are as-
signed based on the mean value of the Social Vulnerability
Index (SoVI) within each sub-cluster, which reflects demo-
graphic and socio-economic conditions of the settlements.
Additionally, if necessary, sub-cluster names may also in-
corporate the specific social vulnerability factors that con-
tribute most significantly to the SoVI value. For example,
both sub-clusters 2a and 2b exhibit high social vulnerability;
however, sub-cluster 2b has the highest aging index among
all sub-clusters, leading to its classification as “aged commu-
nities with high social vulnerability”. Similarly, sub-clusters
3a (“aged communities with high social vulnerability”) and
3b (“high household density settlements with high social
vulnerability”) both exhibit high SoVI values, but the for-
mer is characterized by a high aging index, while the latter
has a high crowding index. Understanding the influence of
individual socio-economic indicators within each archetype
can support the prioritization and tailoring of risk mitiga-
tion strategies and resilience policies. The SoVI indicator
is calculated following the procedure proposed by Frigerio
et al. (2018), utilizing the same socio-economic variables
adopted in this study for clustering. The criteria used to
identify the different socio-economic condition categories is
based on SoVI values and specifically: a value lower than
1 corresponds to low social vulnerability (dark green in Ta-
ble 4), value between 1 and 1.20 to moderate social vulnera-
bility (light green in Table 4), values between 1.20 and 1.40
to intermediate social vulnerability (yellow in Table 4), val-
ues between 1.40 and 1.60 to high social vulnerability (light
red in Table 4), values higher than 1.60 to very high social
vulnerability (dark orange in Table 4). The average values
of individual variables for each sub-cluster are provided in
Table 4.
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Figure 8. Comparison of clustering algorithms in terms of WCDl (a) and ICDl (b).

6 Urban and rural settlements archetypes in Italy

The first-level clustering provides a “broad” definition of
archetypes, considering only geographic and demographic
attributes. Clusters 1, 2 and 3 (“Low populated intermunic-
ipal hubs in rural areas”, “Low populated peripherical rural
areas” and “Low populated peri-urban settlements in rural
areas”, see Table 4) represent archetypes of low populated,
rural urban settlements in peripherical (2) and peri-urban
(3) areas or close to urban hubs (1). Cluster 5 (“Low Popu-
lated peri-urban suburbs”) also represents archetypes for low
populated settlements but characterized by higher popula-
tion density. Clusters 4, 6, 7 and 10 (“Medium-populated in-
termunicipal hubs”, “Medium-populated peri-urban and pe-
ripheric suburbs”, “Peripheric suburbs medium-low popu-
lated” and “Medium-populated towns”) are archetypes for
medium-populated peri-urban and peripheric suburbs (6, 7,
10) and towns that are intermunicipal hubs (4). Clusters
8 and 9 (“Peri-urban cities”, “Major urban hubs”) repre-
sent archetypes for densely populated peri-urban settlements
(8) and hubs (9). These broad archetypes are mapped in
Fig. 9. Notably, altimetric classification is not included in the
archetype definition, as it exhibits high within-cluster vari-
ance and is the least significant attribute, making its contri-
bution negligible in defining urban and rural archetypes.

The proposed archetypes are obtained considering both
first-level clusters and sub-clusters. Specifically, 18 urban
and rural archetypes are defined (listed in Table 5), character-
ized by geographic, demographic, and socio-economic fea-
tures. Each archetype is identified by an alphanumeric code
and a designation, derived from the combination of the codes

and names of the clusters and sub-clusters from which they
are obtained.

Archetype 1 represents rural settlements characterized by
low population, low population density and medium-low so-
cial vulnerability, functioning as intermunicipal hubs. No-
tably, only few municipalities fall into this archetype, be-
cause it represents a small minority of urban hubs in rural
areas with very low population (< 500 inhabitants). The ma-
jority of human settlements archetypes in peripheral and rural
areas (i.e., those with low population density) are character-
ized by low population and medium to high social vulnera-
bility (e.g., archetypes 2a, 2b, 3a, 3b and 3c). Archetype 2a
includes peripherical, low populated rural areas (< 2000 in-
habitants) with high social vulnerability, mainly due to a
medium-high aging index, high low educational index, high
unemployment rate and high crowding index. Archetype 2b
represents sparsely populated rural, aging communities, ex-
hibiting the highest average aging index and low educational
index, along with significantly high proportion of buildings
in poor conditions and low percentage of female employed,
all contributing to a high SoVI value. In contrast, archetype
2c, which also represents low populated peripheral settle-
ments characterized by very high aging index, shows lower
SoVI value thanks to the lower percentage of commuters, a
lower low educational index and higher proportion of female
employed.

Archetypes 3a, 3b and 3c represent low populated, socially
vulnerable settlements in peri-urban areas, exhibiting high
low educational index, high percentage of unemployed (3b),
high percentage of buildings in bad state of preservation (3a
and 3b), high crowding index (3b and 3c) and high proportion
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Table 4. Urban and rural archetypes identified. The number of municipalities belonging to each archetype and the related population share
are provided in the last columns.

Archetypes no. Population
municipalities share (%)

1 Low populated intermunicipal hubs in rural areas with intermediate social vulnerability 5 0.03

2a Low populated, peripherical rural settlements with high household density and high social
vulnerability

2237 7.56

2b Low populated peripherical rural settlements with socially vulnerable aged communities 525 0.54

2c Low populated peripheral rural settlements with moderately socially vulnerable aged
communities

543 1.16

3a Medium-Low populated peri-urban settlements in rural areas with socially vulnerable aged
communities

457 1.1

3b Medium-Low populated, high household density peri-urban settlements in rural areas with
high social vulnerability

220 1.47

3c Medium-Low populated peri-urban settlements in rural areas with high social vulnerability 955 4.13

4a Medium-populated intermunicipal hubs with intermediate social vulnerability 20 0.64

4b Medium-populated intermunicipal hubs with high social vulnerability 15 0.64

5 Low Populated peri-urban suburbs with high social vulnerability 615 2.92

6 Medium-populated peri-urban and peripheric suburbs with moderate social vulnerability 89 1.17

7 Peripheric suburbs medium-low populated with high social vulnerability 347 5.14

8a Peri-urban cities with very high social vulnerability 63 2.35

8b Peri-urban cities with intermediate social vulnerability 103 2.22

9a Major urban hubs with low social vulnerability 31 15.89

9b Major urban hubs with intermediate social vulnerability 20 6.61

10a Medium-populated towns with high social vulnerability 429 13.2

10b Medium-populated towns with intermediate social vulnerability 1286 33.23

of foreign resident (3c). Archetypes 4a and 4b are medium-
populated intermunicipal hubs with slightly different level of
social vulnerability: medium-low social vulnerability the for-
mer, medium-high social vulnerability the latter. While both
show quite high crowding index, archetype 4b shows higher
crowding index, high unemployment rate and medium-high
percentage of buildings in poor conditions.

Low populated peri-urban suburbs are represented by
archetype 5 and show high social vulnerability, primarily
due to medium-high unemployment rate, high percentage
of commuters and high crowding index. Archetype 6 cor-
responds to medium-populated peri-urban and peripheric
suburbs with relatively favourable demographic and socio-
economic conditions, benefiting from medium-high educa-
tional level (i.e., medium-low value of low educational in-
dex), low percentage of commuters, high percentage of fe-
male employed, that compensate for the medium-high value
of buildings in bad state of preservation and high crowding

index. Archetype 7, representing medium-low populated pe-
ripheral suburbs, shares the same average values of archetype
6 regarding buildings in poor conditions and crowding in-
dex. However, it is characterized by higher percentage of
commuters and higher percentage of unemployed, leading to
higher SoVI.

Archetypes 8a represents densely populated peri-urban
settlements with the highest social vulnerability, driven by
the highest percentage of unemployed, the highest percent-
age of buildings in poor conditions and the highest crowd-
ing index. In addition, this archetype also shows high low
educational index and low percentage of female employed.
Archetype 8b also represents densely populated peri-urban
settlements but with lower social vulnerability (higher per-
centages of female employed, lower percentage of buildings
in bad state of preservation), despite being characterized by
the highest percentage of commuters.

https://doi.org/10.5194/nhess-25-3665-2025 Nat. Hazards Earth Syst. Sci., 25, 3665–3692, 2025



3684 G. Tocchi et al.: Identifying urban and rural settlement archetypes

Figure 9. Broad urban and rural archetypes across Italian territory. On the right the map with the Italian regions is reported.

Archetypes 9a and 9b correspond to the largest densely
populated cities, yet with contrasting degree of social vul-
nerability: archetype 9a has low SoVI (the lowest), attributed
to the lowest value of low educational index, the highest per-
centage of female employed, together with low percentage of
buildings in poor conditions; archetype 9b has intermediate
social vulnerability, due to the higher percentage of unem-
ployed, higher percentage of buildings in poor conditions and
higher crowding index. Archetypes 10a and 10b represent
medium-populated towns (with medium-population density)
that can function as hubs or be located in peri-urban and
peripheral areas. These towns exhibit relatively high social
vulnerability, influenced by high percentage of unemployed
(10a), medium-high percentage of commuters (10b), rela-
tively low percentage of female employed (10a), high per-
centage of buildings in bad state of preservation (10b) and
high crowding index.

From a geographical perspective, we found that many low
populated peripheric and peri-urban settlements in rural ar-
eas (archetypes 2b, 2c, 3a, 3b and 3c) are primarily located
in northern region of Piemonte (20 %) and Lombardy (15 %).
Archetypes 2a, which also represents low populated periph-
erical rural areas, includes several municipalities in Sar-
dinia (12 %), Calabria (9 %), Lombardy (9 %) and Piemonte

(7 %) regions. Archetype 4a (“Medium-populated intermu-
nicipal hubs with intermediate social vulnerability”) is ex-
clusively found in the northern regions (i.e., Piemonte, Lom-
bardy, Veneto, Liguria, Tuscany and Marche). Conversely,
Archetype 4b (“Medium-populated intermunicipal hubs with
high social vulnerability”) is present only in the south-
ern regions, specifically Abruzzo, Campania, Apulia and
Sicily. Many municipalities (48 %) represented by archetype
5 (“Low Populated peri-urban suburbs with high social vul-
nerability”) are in Lombardy region, while a notable percent-
age of municipalities represented by archetype 6 (“Medium-
populated peri-urban and peripheric suburbs with moderate
social vulnerability”) are in Trentino (20 %), Tuscany (11 %)
and Basilicata (11 %) regions. Archetype 7 (“Peripheric sub-
urbs medium-low populated with high social vulnerability”)
includes a high concentration of municipalities in Lombardy
(27 %) and Sicily (15 %) regions.

“Peri-urban cities with very high social vulnerability”
(archetype 8a) can be found exclusively in the southern re-
gions, with almost all cases located in Campania (61 out of
63 municipalities). In contrast, “Peri-urban cities with inter-
mediate social vulnerability” (archetype 8b) are concentrated
in the northern regions, specifically in Lombardy (99 %) and
Piemonte (1 %). Similarly, “Major urban hubs with low so-

Nat. Hazards Earth Syst. Sci., 25, 3665–3692, 2025 https://doi.org/10.5194/nhess-25-3665-2025



G. Tocchi et al.: Identifying urban and rural settlement archetypes 3685

cial vulnerability” (archetype 9a) are in the northern part of
the country, covering Piemonte, Valle d’Aosta, Lombardy,
Trentino, Veneto, Friuli-Venezia Giulia, Liguria, Emilia-
Romagna, Tuscany and Lazio regions, while “Major ur-
ban hubs with intermediate social vulnerability” (archetype
9b) predominantly located in the southern regions, includ-
ing Molise, Campania, Apulia, Sicily and Sardinia regions.
Archetype 10a (“Medium-populated towns with high so-
cial vulnerability”) is also primarily found in the southern
regions (93 %), while archetype 10b (“Medium-populated
towns with intermediate social vulnerability”) is distributed
across the entire country, with a significant percentage in
Lombardy (27 %) and Veneto (16 %) regions.

Archetypes’ vulnerability profiles

Composite indices are widely used to measure multidimen-
sional concepts, as they enable the integration of various
sub-indicators representing different dimensions that lack a
common unit of measurement (OECD, EU. and ECJRC,
2008). Social vulnerability and community resilience are of-
ten quantified through composite indices (e.g., Cutter et al.,
2003; Frigerio et al., 2018; Bruneau et al., 2003; Marin Ferrer
et al., 2017).

To investigate the level of exposure and vulnerability as-
sociated with each identified archetype, this study adopts a
composite index-based framework. We define an Impact Sus-
ceptibility Index (ISI) which describes the potential for expe-
riencing adverse consequences given existing vulnerabilities
and exposure levels, without implying the occurrence of a
specific hazard. The construction of the composite indicator
involves four main stages: selection of sub-indicators, nor-
malization, choice of aggregation method, and assignment of
weights to the sub-indicators. The indicators used are those
applied in the cluster analysis and described in Sect. 2.1 to
2.5. Normalization – required to make the variables com-
parable and suitable for aggregation – is carried out by as-
signing categorical scores to each indicator, following ap-
proaches used in previous studies (e.g., Greiving et al., 2006).
Scores range from 1 to 3, where 1 indicates low exposure or
vulnerability and 3 indicates high exposure or vulnerability,
hence contributing more to the susceptibility to impact for
the given variable. For example, peripheral areas are consid-
ered the most vulnerable due to their greater distance from
essential services and are therefore assigned a score of 3.
Peri-urban areas receive a score of 2, and urban hubs are as-
signed a score of 1. Similarly, since high population density
is linked to greater physical vulnerability, cities are scored as
3, towns and suburbs as 2, and rural areas as 1. The high-
est population class (municipalities with over 250 000 inhab-
itants) is also assigned the highest exposure and vulnerability
score, while the lowest class (less than 5000 inhabitants) re-
ceives the lowest score. In terms of social vulnerability, three
categories – high, medium, and low – are defined based on
the Social Vulnerability Index range (0.84–2.01, see Table 4),

Figure 10. Average ISI value for each archetype (a); boxplot show-
ing full distribution of ISI values, median (line in red), and outliers
(blue circles) (b).

and scores are assigned accordingly. The final ISI for each
municipality is obtained by summing the individual scores
for each vulnerability dimension (e.g., Greiving et al., 2006),
and therefore range between 4 and 10. Figure 10 displays the
resulting ISI at the municipal level and the average ISI for
each archetype.

The highest average ISI is observed for Archetype 8a
(mean ISI= 9.86), which includes densely populated peri-
urban municipalities characterized by very high social vul-
nerability. Other archetypes with notably high average ISI
values include Archetype 7 (mean ISI= 8.69), character-
ized by their relative remoteness (100 % peripheral munic-
ipalities), medium-high population density (100 % classi-
fied as towns and suburbs) and high social vulnerability;
Archetype 8b (mean ISI= 8.67), marked by high popula-
tion density (cities), peri-urban location and medium social
vulnerability; and Archetype 10a (mean ISI= 8.32), largely
driven by poor accessibility to services (only 12 % of mu-
nicipalities are classified as hubs), medium-high population
and high social vulnerability. In several cases, social vul-
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nerability is the primary driver of high ISI values, as ob-
served in Archetypes 8a, 10a, 7 and Archetypes 2a, 2b
and 2c. The latter (i.e., Archetypes 2a, 2b, and 2c) share
the same geographic and demographic profiles yet differ in
ISI values – with 2a and 2b showing higher ISI than 2c –
due solely to differences in their SoVI scores. In this con-
text, SoVI emerges as the only influencing factor driving
ISI variation among these archetypes. Conversely, for other
archetypes, demographic and geographic characteristics play
a more significant role in shaping ISI outcomes. For instance,
Archetype 9b presents the lowest SoVI but a relatively high
ISI, which can be attributed to its high population density. In
contrast, Archetype 3b shows one of the highest mean SoVI
scores, second only to Archetype 9b, but results in a rela-
tively low ISI, primarily due to its low population density
and geographic remoteness.

The box plot in Fig. 10b illustrates the distribution of ISI
values across the identified urban archetypes, providing in-
sights into both central tendency and internal variability; the
red and black lines represent the median and min-max val-
ues of ISI for each archetype, blue boxes the dispersion (±
standard deviation) and the dots are outliers, in case they are
present. Archetype 1 exhibits the lowest median ISI and min-
imal variability, suggesting a consistently low level of expo-
sure and vulnerability across its municipalities. In contrast,
Archetype 8a displays the highest median ISI with a very
narrow spread, indicating strong internal homogeneity and
high susceptibility to impacts. The few outliers with an ISI
value of 9 highlight minor deviations but do not significantly
affect the overall pattern. Archetype 9b shows the greatest
dispersion, reflecting a high degree of internal heterogene-
ity. This wide variability suggests the presence of municipal-
ities with both relatively low and high ISI values within the
same archetype, potentially complicating uniform policy in-
terventions. Archetypes 3a, 3b, and 3c present identical me-
dian, mean, and interquartile ranges, which align with their
shared geographic and demographic features, as well as sim-
ilar SoVI scores (see Table 3). However, their comparable
SoVI estimates result from distinct socio-economic compo-
sitions, as discussed in Sect. 5, underscoring the multidimen-
sional nature of social vulnerability.

Figure 11 highlights that many municipalities with high
ISI values are concentrated in the regions of Apulia, Sicily
and Lombardy, with average regional ISI values of 7.8, 7.7,
7.6, respectively. In details, 37 % of Apulia’s municipali-
ties fall under Archetype 10a; 25 % of Sicily’s municipal-
ities are categorized as Archetypes 10a while 14 % belong
to Archetype 7. In Lombardy, 22 % of municipalities be-
long to Archetype 10b, 19 % to Archetype 5 and 14 % to
Archetype 2a. These archetypes all show medium-high av-
erage ISI values: 7.78, 7.29, and 7.15, respectively. Overall,
the ISI tends to be higher in southern regions of Italy, with an
average value of 7.3, compared to 6.9 for central and north-
ern regions. The lowest average VI values are observed in the
Valle d’Aosta (ISI= 6.4) and Piedmont (ISI= 6.7) regions.

Figure 11. Map of ISI value at municipal level.

7 Discussion

The proposed study of human settlements archetypes lever-
ages the framework and guidelines set forth by Piemontese
et al. (2022) to ensure a robust and reliable archetype analy-
sis, focusing on six dimensions of validity: conceptual va-
lidity, construct validity, internal validity, empirical valid-
ity, external validity, and application validity. The proposed
archetypes conform to each of these dimensions as follows.

Conceptual Validity is achieved by ensuring the research
problem and questions are scientifically sound and relevant
to real-world issues. In this study we addressed the need to
categorize urban and rural areas based on geographic, demo-
graphic, and socio-economic factors to understand urban/ru-
ral vulnerabilities better. By focusing on these pertinent as-
pects, this study aligns with the conceptual framework and
reflects real-world challenges faced by urban and rural set-
tlements in Italy.

Construct Validity involves the careful selection of at-
tributes that define the archetypes, ensuring their connection
to the conceptual framework. We meticulously selected at-
tributes relevant to vulnerability of urban/rural systems and
their potential exposure to different hazards. These attributes
are justified based on existing literature, ensuring indicators
are theoretically and empirically linked to several vulnera-
bility dimensions, thereby reinforcing the construct validity
(Diogo et al., 2023; Nagel et al., 2024).
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Internal Validity is maintained through the rigorous ap-
plication of hierarchical and partitioning clustering meth-
ods. In previous studies, such as Bilalova et al. (2025), in-
ternal validity has been addressed through a transparent and
replicable methodology, incorporating widely used validity
metrics which measures how similar an object is to its own
cluster compared to other clusters like silhouette scores, and
evaluating both within-cluster and between-cluster cohesion.
Similarly, Nagel et al. (2024) assessed internal validity by
testing cluster robustness using R packages NbClust and
clValid. The NbClust package supports the determination of
the optimal number of clusters by computing and compar-
ing multiple internal validity indices (e.g., silhouette score,
Dunn index), while the clValid package enables the eval-
uation of clustering stability and comparative performance
across different algorithms (e.g., k-means, hierarchical clus-
tering). Building on these approaches, internal validity in this
study is ensured through: (i) the determination of the op-
timal number of clusters using established internal validity
indices – specifically, the inconsistency coefficient and the
WCD; (ii) the assessment of cluster robustness, by repeating
the partitioning clustering procedure multiple times with ran-
domized initial centroids and selecting the best-performing
result based on WCD, thus reducing sensitivity to initializa-
tion; (iii) the comparison of clustering algorithms, by apply-
ing both hierarchical and partitioning methods and evaluating
their performance using WCD and ICD to identify the most
internally coherent solution. This combination of techniques
ensures methodological rigor, reproducibility, and robustness
in the clustering process, thereby addressing the internal va-
lidity dimension as recommended in the literature (Piemon-
tese et al., 2022).

Empirical validity in archetype analysis is commonly sup-
ported through various means, including stakeholder surveys
(Nagel et al., 2024), the integration of diverse data sources
at different spatial resolutions, and cross-comparisons of
archetyping approaches at multiple scales (Diogo et al.,
2023). It may also be demonstrated through consistency with
prior empirical observations or theoretical expectations (Bi-
lalova et al., 2025). However, validating archetypes’ vulner-
ability profiles against observed impacts or risk outcomes
remains challenging. For example, many historical impact
datasets – such as those from EM-DAT – are available only
at national or regional levels and include only events meet-
ing specific severity criteria. As a result, they often exclude
smaller-scale, yet locally significant, events, introducing both
a selection bias and a scale mismatch that limit their utility
for validating local-level archetypes. Furthermore, expected
impact outputs from risk assessments are typically model-
driven, emphasizing hazard intensity and physical exposure,
while often overlooking the broader dimensions of vulnera-
bility (Cardona et al., 2012). These limitations highlight the
need for improved access to fine-grained, georeferenced im-
pact data and the potential value of complementing quanti-
tative validation with qualitative or stakeholder-informed in-

sights at the local level. Empirical validity in our research
is partially supported by stakeholder engagement-based risk
storylines, as outlined e.g. in Marciano et al. (2024). Mar-
ciano et al. (2024) present an exploratory case study using a
participatory approach to develop multi-risk storylines, illus-
trating the cascading effects of a heatwave followed by in-
tense rainfall in two Italian urban contexts: a peri-urban area
and a metropolitan area. Findings reveal that peri-urban set-
tlements face limited emergency resources and higher infras-
tructure failure risks, while metropolitan hubs have stronger
emergency systems but face coordination challenges in man-
aging large-scale events. The study highlights the varying
levels of vulnerability across different archetypes. While
these elements contribute to the empirical grounding of the
archetypes, we acknowledge that empirical validation re-
mains a limitation of this study. Further studies should ex-
plore the impacts of natural disasters on different archetypes,
revealing key differences in vulnerability and response capa-
bilities across the considered urban contexts.

External Validity assesses the generalizability of
archetypes beyond the studied cases. It is typically ad-
dressed by applying archetypes across multiple regions
and evaluating the consistency of resulting patterns across
different scales (e.g., Diogo et al., 2023; Nagel et al.,
2024) or linking archetypes to theoretical expectations or
global typologies (e.g., Bilalova et al., 2025). While this
study acknowledges the challenge of fully satisfying this
dimension, given that the identified archetypes are specific to
the Italian context and broader applicability requires further
investigation, it also provides a foundation for generaliza-
tion. The identification of archetypes across diverse Italian
regions, combined with the careful selection of relevant
variables and the use of a replicable methodology, may
serve as a valuable reference for archetype-based analyses
in other national or regional settings, particularly within
Europe. Notably, many of the variables adopted in this
study, such as degree o urbanisation, population class, and
census-based demographic and socio-economic indicators,
are also available at comparable spatial resolutions through
Eurostat, EUROPOP, or pan-European datasets such as
Urban Atlas, CORINE Land Cover, and GHSL (Global
Human Settlement Layer). Similarly, the degree of urban
centeredness, while constructed using national criteria in
Italy, relates closely to the concept of accessibility and
service availability, which can be captured using EU-wide
datasets on transport networks, healthcare access, and
educational infrastructure. Therefore, the consistent use
of open-source and harmonized data sources enhances the
potential for applying the methodology beyond the Italian
context, fostering comparative analyses and supporting the
construction of cross-country urban and rural archetypes
within Europe.

Application Validity evaluates the practical usefulness of
the archetypes. This dimension can be addressed emphasiz-
ing practical applications of archetypes in policy, planning,

https://doi.org/10.5194/nhess-25-3665-2025 Nat. Hazards Earth Syst. Sci., 25, 3665–3692, 2025



3688 G. Tocchi et al.: Identifying urban and rural settlement archetypes

and governance, for instance, by presenting results to gov-
ernment officials and researchers, guiding inform local pol-
icy discussions, with archetypes guiding differentiated policy
interventions (Nagel et al., 2024). “Archetypes’ vulnerabil-
ity profiles” in Sect. 6 illustrates the potential of urban/rural
archetypes to enhance risk communication through the as-
signment of a simplified impact susceptibility index to each
identified archetype. Additionally, the exploratory case study
presented in Marciano et al. (2024) highlights how these
archetypes can support stakeholder engagement by inform-
ing the development of multi-risk storylines. By categoriz-
ing human settlements into distinct archetypes, it becomes
possible to assess how different hazard scenarios may un-
fold in each context, considering their specific vulnerabili-
ties, exposure levels, and adaptive capacities. This structured
approach enables policymakers to design tailored interven-
tions and resilience strategies based on specific vulnerabil-
ity profiles. However, to further strengthen resilience plan-
ning and develop targeted mitigation measures, it is crucial
to consider not only exposure and vulnerability but also haz-
ard data for each archetype – particularly the level of expo-
sure of a settlement to various natural hazards. Although in
this study we did not yet integrate hazard information, there
is a clear need for future research to incorporate this aspect
and conduct GIS-based analyses for a more comprehensive
assessment of risk (e.g., Tocchi et al., 2024).

8 Conclusion

This study presents a set of archetypes for urban and ru-
ral settlements in Italy, based on geographic, demographic
and socio-economic factors that cover different vulnerabil-
ity dimensions. Using a two-step cluster analysis, ten broad
archetypes were first defined according to structural features
(e.g., location, size, density), further refined into 18 nested
archetypes to account for socio-economic diversity.

The proposed archetypes were developed by applying
the six dimensions of validity outlined by Piemontese et
al. (2022), offering a robust and replicable methodology for
vulnerability-oriented archetype analysis. While several of
these validity dimensions was successfully addressed (con-
ceptual, construction, internal and application validity), em-
pirical and external validity were only partially addressed.
Conceptual, construct, and internal validity are robustly es-
tablished through scientifically sound research questions,
careful attribute selection, and rigorous clustering methods.
Empirical validity of proposed archetypes may be hardly sat-
isfied, as discussed, due to the lack of fully integrated so-
cial and institutional vulnerability data, as well as limita-
tions of risk modelling. External validity remains an open
challenge: while the archetypes are context-specific to Italy,
the use of open and harmonized data sources (e.g., Urban
Atlas, CORINE Land Cover, Eurostat demographic indica-
tors, GHSL datasets) enhances the potential for replicating

the methodology in other European contexts, fostering fu-
ture comparative studies. Application validity was demon-
strated by linking each archetype to an Impact Susceptibility
Index, providing a tool for prioritizing areas for risk reduc-
tion strategies. The archetypes also offer structured support
for developing multi-risk storylines and informing resilience
planning efforts.

Despite some limitations, this study provides a valuable
framework for simplifying complex urban and rural vulner-
ability patterns. It lays a strong foundation for both scien-
tific advancements and practical applications in the field of
multi-risk assessment, resilience planning, and targeted pol-
icy design. Defining urban and rural archetypes based on vul-
nerability factors may help identify areas with higher sus-
ceptibility to natural hazards and socio-economic challenges,
supporting better resource allocation for disaster prepared-
ness and response. It also highlights critical areas for fu-
ture research. In particular, integrating hazard-specific ex-
posure data and further empirical validation through ob-
served impact data are needed to fully realize the potential
of archetype-based approaches in disaster risk management
and climate change adaptation.
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Nowak-Brzezińska, A. and Gaibei, I.: How the Out-
liers Influence the Quality of Clustering?, Entropy, 24,
https://doi.org/10.3390/e24070917, 2022.

Oberlack, C., Sietz, D., Bürgi Bonanomi, E., de Bremond, A.,
Dell’Angelo, J., Eisenack, K., Ellis, E. C., Epstein, G., Giger, M.,
Heinimann, A., Kimmich, C., Kok, M. T., Manuel-Navarrete, D.,
Messerli, P., Meyfroidt, P., Václavík, T., and Villamayor-Tomas,
S.: Archetype analysis in sustainability research: meanings, mo-
tivations, and evidence-based policy making, Ecology and Soci-
ety, 24, 26, https://doi.org/10.5751/ES-10747-240226, 2019.

Oberlack, C., Pedde, S., Piemontese, L., Václavík, T., and
Sietz, D.: Archetypes in support of tailoring land-use
policies, Environmental Research Letters, 18, 060202,
https://doi.org/10.1088/1748-9326/acd802, 2023.

O’Brien, K., Leichenko, R., Kelkar, U., Venema, H., Aan-
dahl, G., Tompkins, H., Javed, A., Bhadwal, S., Barg,
S., Nygaard, L., and West, J.: Mapping vulnerability
to multiple stressors: climate change and globalization
in India, Global Environmental Change, 14, 303–313,
https://doi.org/10.1016/j.gloenvcha.2004.01.001, 2004.

OECD,European Union and EC-JRC: Handbook on Construct-
ing Composite Indicators: Methodology and User Guide,
https://doi.org/10.1787/9789264043466-en, 2008.

Opach, T., Scherzer, S., Lujala, P., and Ketil Rød, J.: Seek-
ing commonalities of community resilience to natural
hazards: A cluster analysis approach, Norsk Geografisk
Tidsskrift – Norwegian Journal of Geography, 74, 181–199,
https://doi.org/10.1080/00291951.2020.1753236, 2020.

Oppido, S., Ragozino, S., and Esposito De Vita, G.: Peripheral,
Marginal, or Non-Core Areas? Setting the Context to Deal with
Territorial Inequalities through a Systematic Literature Review,
Sustainability, 15, 10401, https://doi.org/10.3390/su151310401,
2023.

Papathoma-Köhle, M., Thaler, T., and Fuchs, S.: An institutional
approach to vulnerability: evidence from natural hazard manage-
ment in Europe, Environmental Research Letters, 16, 044056,
https://doi.org/10.1088/1748-9326/abe88c, 2021.

Perry, M. and Kader, G.: Variation as Unalikeability, Teach-
ing Statistics, 27, 58–60, https://doi.org/10.1111/j.1467-
9639.2005.00210.x, 2005.

Piemontese, L., Neudert, R., Oberlack, C., Pedde, S., Roggero,
M., Buchadas, A., Martin, D. A., Orozco, R., Pellowe, K.,
Segnon, A. C., Zarbá, L., and Sietz, D.: Validity and vali-
dation in archetype analysis: practical assessment framework
and guidelines, Environmental Research Letters, 17, 025010,
https://doi.org/10.1088/1748-9326/ac4f12, 2022.

Preedy, V. and Watson, R.: Aging Index. In Handbook of Disease
Burdens and Quality of Life Measures, Springer New York,
4140–4140, https://doi.org/10.1007/978-0-387-78665-0_5051,
2010.

Riach, N., Glaser, R., Fila, D., Lorenz, S., and Fünfgeld, H.: Climate
risk archetypes. Identifying similarities and differences of mu-

https://doi.org/10.5194/nhess-25-3665-2025 Nat. Hazards Earth Syst. Sci., 25, 3665–3692, 2025

https://doi.org/10.1007/s10518-006-9024-z
https://doi.org/10.1093/wbro/lkr006
https://doi.org/10.1007/s10584-021-03094-0
https://www.ipcc.ch/site/assets/uploads/2018/03/SREX-Chap1_FINAL-1.pdf
https://www.ipcc.ch/site/assets/uploads/2018/03/SREX-Chap1_FINAL-1.pdf
https://doi.org/10.1038/s41598-022-04927-3
https://scispace.com/pdf/some-methods-for-classification-and-analysis-of-multivariate-4pswti19oz.pdf
https://scispace.com/pdf/some-methods-for-classification-and-analysis-of-multivariate-4pswti19oz.pdf
https://doi.org/10.1016/j.ijdrr.2024.104972
https://doi.org/10.2760/08037
https://doi.org/10.1016/j.jbiomech.2022.111136
https://doi.org/10.1371/journal.pone.0221585
https://doi.org/10.1038/s41598-022-09347-x
https://doi.org/10.1007/s13753-022-00454-x
https://doi.org/10.1007/s13753-022-00454-x
https://doi.org/10.1016/j.crm.2021.100365
https://doi.org/10.1088/1748-9326/ad2e71
https://doi.org/10.3390/e24070917
https://doi.org/10.5751/ES-10747-240226
https://doi.org/10.1088/1748-9326/acd802
https://doi.org/10.1016/j.gloenvcha.2004.01.001
https://doi.org/10.1787/9789264043466-en
https://doi.org/10.1080/00291951.2020.1753236
https://doi.org/10.3390/su151310401
https://doi.org/10.1088/1748-9326/abe88c
https://doi.org/10.1111/j.1467-9639.2005.00210.x
https://doi.org/10.1111/j.1467-9639.2005.00210.x
https://doi.org/10.1088/1748-9326/ac4f12
https://doi.org/10.1007/978-0-387-78665-0_5051


3692 G. Tocchi et al.: Identifying urban and rural settlement archetypes

nicipal risks for the adaptation process based on municipalities
in Baden-Wuerttemberg, Germany, Climate Risk Management,
41, 100526, https://doi.org/10.1016/j.crm.2023.100526, 2023.

Rocha, J., Malmborg, K., Gordon, L., Brauman, K., and DeClerck,
F.: Mapping social-ecological systems archetypes, Environmen-
tal Research Letters, 15, 034017, https://doi.org/10.1088/1748-
9326/ab666e, 2020.

Rockstrom, J.: Balancing Water for Humans and Nature, Routledge,
https://doi.org/10.4324/9781849770521, 2013.

Schwanen, T., Dieleman, F. M., and Dijst, M.: The Impact of
Metropolitan Structure on Commute Behavior in the Nether-
lands: A Multilevel Approach, Growth and Change, 35, 304–333,
https://doi.org/10.1111/j.1468-2257.2004.00251.x, 2004.

Sibilia, A., Eklund, G., Marzi, S., Valli, I., Bountzouklis, C., Roes-
lin, S., Rodomonti, D., Salari, S., Antofie, T.-E., and Corbane,
C.: Developing a multi-level european-wide composite indica-
tor to assess vulnerability dynamics across time and space, In-
ternational Journal of Disaster Risk Reduction, 113, 104885,
https://doi.org/10.1016/j.ijdrr.2024.104885, 2024.

Simon, C., Belyakov, A. O., and Feichtinger, G.: Minimizing the de-
pendency ratio in a population with below-replacement fertility
through immigration, Theoretical Population Biology, 82, 158–
169, https://doi.org/10.1016/j.tpb.2012.06.009, 2012.

Tariverdi, M., Nunez-del-Prado, M., Leonova, N., and Rentschler,
J.: Measuring accessibility to public services and infrastructure
criticality for disasters risk management, Scientific Reports, 13,
1569, https://doi.org/10.1038/s41598-023-28460-z, 2023.

Thywissen, K.: Core terminology of disaster reduction: A compara-
tive glossary, Measuring Vulnerability to Hazards of Natural Ori-
gin – Towards Disaster Resilient Society, eidted by: Birkmann,
J., UNU Pres, 448–472, ISBN 81-7993-122-6, 2006.

Tocchi, G., Polese, M., Di Ludovico, M., and Prota, A.: Re-
gional based exposure models to account for local building
typologies, Bulletin of Earthquake Engineering, 20, 193–228,
https://doi.org/10.1007/s10518-021-01242-6, 2022.

Tocchi, G., Polese, M., Del Gaudio, C., and Peresan, A.: Multi-
hazard exposure characterization of urban settlements: a clus-
tering proposal using open source data, EGU General Assem-
bly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19858,
https://doi.org/10.5194/egusphere-egu24-19858, 2024.

Tocchi, G., Pittore, M., and Polese, M.: Italian urban
archetypes (Tocchi et al., 2025) (1.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.14888733, 2025.

UNDRR: Terminology on Disaster Risk Reduction, https://www.
undrr.org/drr-glossary/terminology (last access: 24 September
2024), 2023.

United Nations: Department of Economic and Social Affairs, Pop-
ulation Division, World Urbanization Prospects: The 2018 Re-
vision (ST/ESA/SER.A/420), New York: United Nations, ISBN
978-92-1-148319-2, eISBN 978-92-1-004314-4, 2019.

Usman, D. and Stores, F. S.: On Some Data Pre-processing
Techniques for K-Means Clustering Algorithm, Journal of
Physics: Conference Series, 1489, https://doi.org/10.1088/1742-
6596/1489/1/012029, 2020.

Van Westen, C. and Woldai, T.: The RiskCity train-
ing package on multi-hazard risk assessment, Interna-
tional Journal of Applied Geospatial Research, 3, 41–52,
https://doi.org/10.4018/jagr.2012010104, 2012.

Vidal Merino, M., Sietz, D., Jost, F., and Berger, U.: Archetypes of
Climate Vulnerability: a Mixed-method Approach Applied in
the Peruvian Andes, Climate and Development, 11, 418–434,
https://doi.org/10.1080/17565529.2018.1442804, 2019.

Villagrán de León, J. C. Vulnerability: a conceptual and method-
ological review, UNU Institute for Environment and Human
Security, SOURCE Series No. 4/2006, ISBN 3-9810582-4-0
(print), ISBN 3-9810582-5-9 (electronic), 2006.

Wachinger, G., Renn, O., Begg, C., and Kuhlicke, C.: The Risk
Perception Paradox – Implications for Governance and Com-
munication of Natural Hazards, Risk Analysis, 33, 1049–1065,
https://doi.org/10.1111/j.1539-6924.2012.01942.x, 2013.

Peacock, W.G., Gladwin, H. and Morrow, B.H. (Eds.): Hurricane
Andrew, Routledge, https://doi.org/10.4324/9780203351628,
2012.

Wang, S., Zhang, M., Huang, X., Hu, T., Sun, Q. C., Corcoran,
J., and Liu, Y.: Urban–rural disparity of social vulnerability
to natural hazards in Australia, Scientific Reports, 12, 13665,
https://doi.org/10.1038/s41598-022-17878-6, 2022.

Wicki, S., Black, B., Kurmann, M., and Grêt-Regamey, A.:
Archetypes of social-ecological-technological systems for man-
aging ecological infrastructure, Environmental Research Letters,
19, 014038, https://doi.org/10.1088/1748-9326/ad1080, 2024.

Wisner, B., Blaikie, P., Cannon, T., and Davis, I.: At risk: Natural
hazards, people’s vulnerability and disasters, 2nd edn., Rout-
ledge, https://www.preventionweb.net/files/670_72351.pdf?
startDownload=true (last access: 11 September 2024), 2004.

Zhao, X., Xu, W., Ma, Y., Qin, L., Zhang, J., and Wang,
Y.: Relationships Between Evacuation Population Size, Earth-
quake Emergency Shelter Capacity, and Evacuation Time, In-
ternational Journal of Disaster Risk Science, 8, 457–470,
https://doi.org/10.1007/s13753-017-0157-2, 2017.

Nat. Hazards Earth Syst. Sci., 25, 3665–3692, 2025 https://doi.org/10.5194/nhess-25-3665-2025

https://doi.org/10.1016/j.crm.2023.100526
https://doi.org/10.1088/1748-9326/ab666e
https://doi.org/10.1088/1748-9326/ab666e
https://doi.org/10.4324/9781849770521
https://doi.org/10.1111/j.1468-2257.2004.00251.x
https://doi.org/10.1016/j.ijdrr.2024.104885
https://doi.org/10.1016/j.tpb.2012.06.009
https://doi.org/10.1038/s41598-023-28460-z
https://doi.org/10.1007/s10518-021-01242-6
https://doi.org/10.5194/egusphere-egu24-19858
https://doi.org/10.5281/zenodo.14888733
https://www.undrr.org/drr-glossary/terminology
https://www.undrr.org/drr-glossary/terminology
https://doi.org/10.1088/1742-6596/1489/1/012029
https://doi.org/10.1088/1742-6596/1489/1/012029
https://doi.org/10.4018/jagr.2012010104
https://doi.org/10.1080/17565529.2018.1442804
https://doi.org/10.1111/j.1539-6924.2012.01942.x
https://doi.org/10.4324/9780203351628
https://doi.org/10.1038/s41598-022-17878-6
https://doi.org/10.1088/1748-9326/ad1080
https://www.preventionweb.net/files/670_72351.pdf?startDownload=true
https://www.preventionweb.net/files/670_72351.pdf?startDownload=true
https://doi.org/10.1007/s13753-017-0157-2

	Abstract
	Introduction
	Selection of key indicators of vulnerability dimensions
	Degree of urbanization
	Degree of urban centeredness
	Altimetric zone
	Residential population
	Social vulnerability indicators

	Cluster analysis
	Data pre-processing
	Hierarchical clustering
	Partitioning clustering

	First level analysis: clustering based on physical and institutional vulnerability parameters
	Results of hierarchical cluster analysis
	Results of partitioning cluster analysis
	Comparison of clustering algorithms

	Second level analysis: nested clustering based on socio-economic parameters
	Urban and rural settlements archetypes in Italy
	Discussion
	Conclusion
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

