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Abstract. Earthquake is a major natural disaster triggered by
the accumulation and release of crustal stress, and the ac-
curate extraction of pre-seismic anomaly signals is crucial to
improve the earthquake prediction capability. In this study, an
anomaly detection method for borehole strain data based on
the combination of Segmented Variational Modal Decompo-
sition (SVMD) and Informer network is proposed, and a pre-
seismic anomaly extraction study is carried out for the 2021
Maduo M; 7.4 earthquake in Qinghai. The SVMD method
effectively solves the memory limitation problem of tradi-
tional Variational Modal Decomposition (VMD) when deal-
ing with large-scale data through the sliding-window mecha-
nism, and at the same time maintains the correlation between
the data. The Informer network significantly reduces the
computational complexity of the long-series prediction and
realizes the high-precision one-time long-time series predic-
tion by utilizing its ProbSparse self-attention mechanism and
self-attention distillation. By analyzing the borehole strain
data from the Menyuan station, this study identifies the accel-
erated anomaly accumulation phenomenon in the two stages
before the Maduo earthquake: in the first stage, the num-
ber of anomalous days shows an accelerated growth start-
ing from about 3 months before the earthquake (13 February
2021); in the second stage, the anomalous accumulation ten-
dency is further intensified since the second month before
the earthquake (the end of March 2021), and the accumu-
lation curve shows a typical S-shape growth characteristic.
The results are highly consistent with the time windows of
the index of microwave radiation anomaly (IMRA), outward

long-wave radiation (OLR) and geoelectric field anomalies,
and with the subsurface-to-atmosphere multilayer anomalies
(e.g., Benionff strain, CO concentration, electron concen-
tration anomalies), which indicate that the borehole strain
anomalies are closely related to the gestation process of the
Maduo earthquake. This study provides a new method for the
extraction of pre-seismic anomalies based on machine learn-
ing, and provides an important basis for understanding earth-
quake precursors.

1 Introduction

Earthquakes are caused by the release of accumulated
stresses in the Earth’s crust beyond the strength of the rocks
during plate interactions and collisions. Once the stress in
the earth’s crust exceeds a certain critical threshold, the crust
will rupture, releasing seismic waves reflected through the
ground, which can cause great damage (Kanamori and Brod-
sky, 2001; Fan et al., 2021). They can damage infrastructure
such as ground, transportation, and buildings, and may lead
to secondary disasters such as volcanic eruptions (Seropian
et al., 2021), tsunamis (Koshimura and Shuto, 2015), and
landslides (Fan et al., 2019). Meanwhile, seismic hazards
not only threaten human lives (Potter et al., 2015), but also
have far-reaching impacts on socioeconomic development
and quality of life (Peptan et al., 2023). Studies have shown
that more than 80 % of earthquakes of magnitude 5.0 and
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above in mainland China in 2022 occur within the annual
seismic hazard zone (Yu et al., 2024a). Therefore, it is cru-
cial to study the anomalies that precede earthquakes.

Researchers around the world have now explored a wide
range of phenomena before and after earthquakes, covering
different structural levels of the Earth, including the sub-
surface, surface and atmospheric realms. Ma et al. (2022)
identified geodetic anomalies prior to the Maduo earthquake
through observed GPS values and computationally analyzed
b-values, and verified that the pre-seismic anomalies of GPS
data, b values, and stress and strain accumulations were asso-
ciated with the Maduo earthquake. Liu et al. (2023) used out-
ward longwave radiation (OLR) data to find that thermal in-
frared anomalies synchronized with the tidal stress cycle pre-
ceded the 2023 M 7.8 earthquake in Turkey, possibly reflect-
ing the thermal response of tectonic stresses as they accu-
mulate to a critical state. Guo et al. (2015) found significant
anomalous ionospheric disturbances prior to the 11 April
2012 Sumatra My 8.6 and Mexico M 6.7 earthquakes us-
ing global total ionospheric electron content (TEC) data. In
addition, other scholars have also studied fields such as ge-
omagnetism (Li et al., 2019), microwave bright temperature
(MBT) (Qi et al., 2021), CO (Cui et al., 2024), and electron
density (Han et al., 2023). The above studies provide abun-
dant data support and theoretical basis for the exploration of
earthquake precursors, and are of great significance to our
understanding of earthquake mechanisms and potential im-
pacts.

Since the implementation of the U.S. Earth Lens Program,
a large amount of open data has been accessed and utilized,
and the Plate Boundary Observations (PBO) program has
contributed to the development of strain techniques. Bore-
hole strain observations have received unprecedented atten-
tion because of their high resolution and sensitivity (Lou
and Tian, 2022; Roeloffs, 2010; Barbour and Agnew, 2012).
Borehole strain observation is superior to GPS and laser
strain gauges in capturing short- and medium-term strain
changes and pre-seismic anomalies (Qiu and Shi, 2004), and
is an important means to study crustal deformation and stress
field changes. As the main observation equipment of China’s
digital seismic observation network, China’s self-developed
YRY-4 four-component borehole strain gauge is usually in-
stalled at the bottom of bedrock at 40 m, and has the capa-
bility of minute-level strain sampling, which can continu-
ously record high-resolution stress and strain changes (Qiu et
al., 2013). The high-resolution recordings provided by bore-
hole strain gauges allow us to capture minute strain changes,
thus providing accurate data to gain insight into crustal defor-
mation processes (Lou and Tian, 2022). In addition, the bore-
hole strain gauge not only provides four-component data, but
also records ancillary observations such as solid tides, air
temperature, and air pressure (Chi, 2009; Tang et al., 2023b).
In addition to the application in earthquake precursor re-
search, the borehole strain observation data also play an ir-
replaceable role in the research fields of slow earthquakes,
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co-seismic stress triggering, tremor, earth free oscillation,
and seismic wave propagation, and many unique results have
been achieved (Qiu, 2014).

Numerous scholars have accumulated rich research expe-
rience and results in extracting and identifying pre-seismic
anomalous signals using borehole strain observation data.
Chi (2013) inferred that these anomalies were closely re-
lated to the strain precursors in the preparation of two earth-
quakes by analyzing the tidal anomalies recorded by bore-
hole strain gauges during the preparation of Wenchuan and
Lushan strong earthquakes. Zhu et al. (2020) studied the
anomalous characteristics of the borehole strain data be-
fore the Wenchuan earthquake by using principal compo-
nent analysis. By analyzing the first eigenvalue and the first
eigenvector of the borehole strain data, the characteristics
of pre-earthquake crustal strain changes are revealed. Yu
et al. (2020) constructed a complex network using multi-
channel singular spectrum analysis (MSSA) using borehole
strain data from the southwestern terminus of the Sichuan-
Yunnan Longmenshan rift zone, and the results showed that
the network provides a powerful tool for earthquake precur-
sor monitoring. Wu (2012) revealed the intrinsic evolution-
ary characteristics of the seismic process through quantitative
simulation of cluster sub-statistical equations and established
a link between them and the dynamic change of earthquake
precursors. Liu et al. (2014) used the S-transform method
to analyze the observation data of four-component borehole
strain gauges at Guzantai before and after the Lushan M, 7.0
earthquake, and found that two clusters of high-energy clus-
ters in the time-frequency domain may be related to the seis-
mic activity in Lushan. In addition, Chi et al. (2019) extracted
the Wenchuan earthquake borehole strain data anomalies by
decomposing the borehole strain signal into multiple modes
using VMD and using a new state-space model to deter-
mine the number of decomposed modes, and then calculat-
ing eigenvalues used to detect anomalies associated with the
earthquake by using the anomaly detection method of princi-
pal component analysis (PCA). These studies show that bore-
hole strain observations have significant advantages in pre-
cursor anomaly extraction and seismic correlation analysis.

Borehole strain observation can capture the subtle phe-
nomena during seismic activities in a timely manner, and
its observation data can reflect the stress-strain changes in
rocks, thus providing a potential method for extracting strain
anomalies before earthquakes. However, due to the high pre-
cision and wide bandwidth characteristics of borehole strain
observation, it is highly susceptible to interference from ex-
ternal environmental factors. To address this problem, re-
searchers have conducted in-depth studies on how to re-
move external interference from borehole strain data. Qiu et
al. (2011) extracted pre-earthquake borehole strain anoma-
lies by using high-pass filtering to remove the interference
from seasonal variations and long-period signals. Subse-
quently, Zhang et al. (2019) performed first-order difference
processing on the borehole strain data to significantly at-

https://doi.org/10.5194/nhess-25-3603-2025



S. Dong et al.: Pre-seismic anomalies in borehole strain of the Maduo earthquake

tenuate the low-frequency effects such as solar and lunar
gravitational tidal forces in the measured data, and mean-
while, wavelet transform based on the first-order difference
data enhanced the short-periodic component of the strain
signal. In a recent study, Zhu et al. (2020) used harmonic
analysis to eliminate the effects of solid tidal and seasonal
trends on borehole strain data. Yu et al. (2021) used state-
space modeling to remove the strain response due to seasonal
trends, barometric pressure, solid tides, and water level varia-
tions, thus effectively isolating non-tectonic disturbances. Li
et al. (2025) successfully extracted the pre-seismic anoma-
lies of the M 7.0 earthquake in Jiuzhaigou by removing the
effects of seasonal trends and tides on the borehole observa-
tions based on the Variational Modal Decomposition (VMD)
and combining with the Graph WaveNet model to process
the multi-station data. In addition, Zhu et al. (2024) firstly
removed the long-term background trend and cyclic trend of
the borehole strain observation data before the Lushan earth-
quake by time-series decomposition, secondly, decomposed
the data by multi-channel singular spectrum analysis to elim-
inate the strain response due to water level and air pressure,
and finally extracted the pre-earthquake negentropic anomaly
in the borehole strain data.

Variational Modal Decomposition (VMD), as an adap-
tive signal decomposition method, is able to effectively ex-
tract the features of nonlinear and nonsmooth signals in
the frequency domain, which is widely used in the analy-
sis of complex waveforms such as steps, jumps, and burrs,
and outperforms the traditional Empirical Modal Decompo-
sition (EMD) and its derivatives in seismic signal process-
ing (Rao et al., 2024; Li et al., 2018; Xue et al., 2019).
However, with the increasing size and complexity of ob-
served data, VMD has limitations such as high memory over-
head in large-scale data processing. For this reason, this pa-
per adopts the Segmented Variational Modal Decomposition
(SVMD) method, which effectively solves the memory limi-
tation problem through the sliding window mechanism while
ensuring the correlation between the data. The studies of Chi
et al. (2023) and Li et al. (2024) have shown that SVMD out-
performs the traditional VMD method in terms of computa-
tional efficiency and memory utilization when dealing with
large-scale data.

In recent years, machine learning techniques have become
promising tools for studying earthquake precursor data. Stud-
ies have been conducted using Random Forest (RF) models
(Tsuchiya et al. (2024), decision trees (Sikder and Munakata,
2009), Gated Recurrent Units (GRU) (Chi et al., 2023),
Long Short-Term Memory (LSTM) (Zhang and Wang, 2023,
2024), neural networks (Kail et al., 2022; Bilal et al., 2022),
and other methods that show significant potential in the pre-
diction of seismic events, for example, estimating earthquake
location and magnitude, while reducing the false alarm rate.
Despite the remarkable progress, challenges remain in terms
of data quality, scarcity, and heterogeneity. With the continu-
ous development and optimization of machine learning mod-
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els and the continued availability of high-quality data, the
accuracy and reliability of earthquake prediction is expected
to be further improved.

In this paper, we propose an innovative method based
on SVMD-Informer network for extracting pre-seismic
anomaly information from borehole strain data, and take the
Maduo earthquake as an example to analyze the borehole
strain data of Menyuan Terrace. The SVMD-Informer net-
work used in this paper is not only good at capturing the fea-
tures of the borehole strain data, but also demonstrates high
prediction accuracy. The prediction intervals are constructed
by statistical methods, thus realizing efficient anomaly de-
tection. The research in this paper can provide more accurate
pre-earthquake anomaly information for the earthquake early
warning system and improve the accuracy and timeliness of
earthquake prediction.

In order to analyze the correlation between the borehole
strain data from Menyuan station and the Maduo earthquake,
the process shown in Fig. 1 was used in this study. As shown
in Fig. 1, first, the four-component borehole data were con-
verted to strain data. Subsequently, the borehole strain data
were decomposed using the Segmented Variational Modal
Decomposition (SVMD) method, and the decomposition re-
sults were fused to remove the interference of influencing
factors such as the annual trend and the solid tidal response.
The fused data were used as inputs for training, validation
and prediction using the Informer model. In the prediction
stage, prediction intervals for the upper and lower bounds are
established based on the model output, and anomalous sig-
nals are identified by comparing the prediction intervals with
the original data. Finally, the pre-seismic anomalous cumu-
lative values in the borehole strain data from Menyuan sta-
tion were statistically analyzed, and the significant anoma-
lous signals were successfully extracted.

2 Observational data and earthquakes
2.1 Borehole strain data

In recent years, several studies have verified the reliability
of the sampled data from high-component borehole strain
gauges, demonstrating the ability of four-component bore-
hole strain gauges to record strained seismic waves from
earthquakes of different magnitudes (Tang et al., 2023a; Qiu
et al., 2015). As an ideal tool for crustal motion observation,
the observation technology of the four-component borehole
strain gauge is gradually maturing, which provides important
support for the identification of earthquake precursors (Qiu et
al., 2009). The YRY-4 four-component borehole strain gauge
is one of the core instruments for the observation of crustal
deformation in China, and it has the significant advantages
of high sensitivity, wide observation band, good data con-
sistency, and superior long-term stability. Borehole Strain
Gauge is to place the sensor in the borehole for observation,
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Figure 1. Framework for borehole strain data processing and pre-seismic anomaly extraction.

relative to the earth its observation is an extremely small part
of the crust deformation, can be approximated as a point of
deformation observation results. The four-component bore-
hole strain observation represents a relative observation that
is capable of detecting changes in the target observation, but
does not provide a complete measurement of the target ob-
servation. Its characterization is determined by the under-
lying principles of its model. The four probes on the bore-
hole strain gauge are evenly spaced at 45° intervals to en-
sure multi-directional monitoring of crustal deformation. The
measured value of any one element is recorded as S, rotated
by 45° in turn, and the remaining three elements are recorded
as 87, 83, and S4. The amount of change in the observed val-
ues of the four elements satisfies the self-consistent Eq. (1):

S1+8S3=k(S2+ Sg) (1)

This equation can be used to estimate the reliability of the
data. k is the self-consistency coefficient, and in the ideal
case k = 1. We consider the data to be reliable when k > 0.95.
Under plane strain conditions at or near the Earth’s surface,
only three independent variables are considered. Therefore,
we can derive the various strains from the Menyuan station
record using Eq. (2) as follows:

S13=81—-83
S4=58— 584 )
Sa=(S1+ 82+ 853+ 84)/2
All three substitutions are important. Among them, Si3 and
S»4 represent shear strains independent of each other, and S,
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is the surface strain. Compared with the shear strains S13 and
S»4, the surface strain S, is more representative of the four
components measured by the YRY-4 borehole strain gauge,
and therefore the data characterization of the surface strain
S, is taken as the object of study in this paper.

2.2 Maduo earthquake

According to the China FEarthquake Networks Center
(CENC), the M 7.4 magnitude earthquake occurred at
02:04:03 local time (LT) on 22 May 2021, in Maduo County,
Qinghai Province, with an epicenter located at 98.34°E,
34.59°N, about 70-80km from the East Kunlun Fracture
Zone, at a depth of 17km (Zhu et al., 2021). This great
earthquake is located in the Bayankala block, which is one
of the main blocks of the Qinghai Tibet Plateau orogeny
and one of the regions with the most frequent seismic ac-
tivity in China (L et al., 2022). The sudden-onset earth-
quake was the largest earthquake to occur in China since
the 2008 Wenchuan M 7.9 earthquake. As of 08:00LT 9d
after the earthquake, the China Earthquake Administration
recorded a total of 2979 aftershocks, including one Mg 5.1,
13 My 4.0-4.9, and 63 M, 3.0-3.9, which caused severe dam-
age to buildings and roads in the area (Wang et al., 2021).

Dobrowolski’s estimate of the radius of influence of pre-
cursors for earthquakes of different magnitudes is shown in
Eq. (3) (Dobrovolsky et al., 1979):

o= 100.43M km, (3)
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Figure 2. Location of the Menyuan observatory relative to the epi-
center of the Maduo earthquake. The blue triangle represents the lo-
cation of the borehole strain observatory. The purple star represents
the location of the epicenter of the Maduo earthquake, while the red
line inscribes the East Kunlun Fault Zone. This map was generated
by GMT software, v. 6.0.0rc5 (https://gmt-china.org/, last access: 4
August 2025).

where M denotes the magnitude and p denotes the radius
of influence of an M magnitude earthquake. The radius of
influence of the Maduo earthquake is about 1377.2km. In
order to analyze the seismic effects near the epicenter, we se-
lected the Menyuan station, which is closer to the epicenter
of the Maduo earthquake, with a distance of 422.06 km from
the epicenter. By analyzing the data collected at Menyuan
station, we extracted 34 anomalous signals. This result indi-
cates that the Menyuan station has the potential and ability to
monitor earthquake-related anomalies. Figure 2 visually de-
picts the geographic location of the Menyuan station relative
to the epicenter of the Maduo earthquake.

3 Method

3.1 Segmented variational modal decomposition
(SVMD)

Since the introduction of VMD by Dragomiretskiy and Zosso
(2014), it has achieved better results in dealing with data non-
linear, nonsmooth, and nonsmoothed signals. VMD is a fully
implicit, adaptive, and completely nonrecursive approach to
modal variational and signal processing. VMD is developed
based on the classical Wiener filter denoising and Fourier
transform, which aims to decompose the time series data into
a series of intrinsic modal functions (IMFs) with finite band-
width. The decomposition process essentially involves solv-
ing the variational problem, and the variational model can be
expressed as follows:
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In Eq. (4) {uk} =uijun,...,ug and {a)k} =wiw2,...,wK are
the corresponding center frequencies of the £k modal func-
tions and signal decompositions, respectively. Similarly,
> := YK, is a shorthand notation for all modes and their
center frequencies, respectively.

The quadratic penalty term « and the Lagrange multiplier
A(t) are introduced in the VMD in order to solve the con-
straint problem, which benefits from both the good conver-
gence properties of the finite power quadratic penalty and
the strict enforcement of the constraint by the Lagrange mul-
tiplier. Thus, the augmented Lagrangian is introduced:

L (fur}, {wr}, 1) X
= 0‘25:1’ 0 [(8(5) + ?) X uk(t)] e~ Jort )
+Hf(t) — Yo i k() H2 + (A(r), f@) - Z,leuk(;)>

®)

In the equation L denotes the Lagrange promotion opera-
tor, o denotes the data fidelity constraint function, and X de-
notes the Lagrange multiplier. Meanwhile the alternating di-
rection multiplier method (ADMM) is used in the VMD to
find ug, wi, A and to solve the updated iterative optimization
of Eq. (9).

Although VMD has the advantages of good performance
and greater robustness to sampling and noise relative to ex-
isting mode decomposition models, when faced with a large
number of data computations, problems such as slow data
processing and computer memory limitations may arise be-
cause the VMD method requires a global search and solves
the variational segmentation problem. Therefore, in this pa-
per, we adopt a method that applies Variational Modal De-
composition (VMD) to data segments by combining sliding
windows (SVMD). This method not only effectively solves
the above problems in VMD. And through the sliding win-
dow mechanism, the correlation between data points can be
effectively maintained (Chi et al., 2023).

The principle of SVMD method is shown in Fig. 3. We
choose the sliding window mechanism with a size of 7d and
a sliding step of 1d to realize the data segmentation. First
we set the initial window as all the data from the first day to
the seventh day and perform VMD decomposition of the data
within that window. Starting from the second sliding window,
only the results of the VMD decomposition of the current
window are retained and superimposed with the decomposi-
tion results of the previous window, and in this logical order,
the data are processed sequentially, and finally the complete
dataset processed by SVMD is obtained.

Nat. Hazards Earth Syst. Sci., 25, 3603-3618, 2025
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Figure 3. Schematic diagram of the Segmented Variational Modal Decomposition (SVMD).

3.2 Informer network

In recent years, deep learning techniques have been widely
used in the field of seismic hazard recognition and predic-
tion, injecting new vigor into the development of earthquake
science. Although traditional sequence models, such as long
short-term memory networks (LSTM), gated recurrent units
(GRU), and recurrent neural networks (RNN), have made
significant contributions to time series prediction, they still
have limitations in capturing long-range dependencies when
handling long sequence time series prediction (LSTF) tasks.
In contrast, the Transformer model, with its self-attentive
mechanism, is able to reduce the maximum path length of
network signals to a theoretical minimum while avoiding
the complexity of the loop structure, thus showing great
potential for LSTF problems (Vaswani et al. (2017). How-
ever, there are some serious issues with the traditional Trans-
former model that hinder its application to LSTF, includ-
ing quadratic time complexity, high memory usage, inher-
ent limitations of the encoder-decoder architecture, and the
drawback of needing to rely on the previous prediction result
for the current prediction. To address these issues, this paper
employs the Informer model, which significantly improves
the performance of long-series time series prediction while
maintaining efficient computation.

Since the Informer model was proposed by Zhou et
al. (2021), it has been widely used in the fields of river runoff
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time series prediction (Tepetidis et al., 2024), long-term pre-
diction of indoor air quality (Long et al., 2023), wind power
series prediction (Wei et al., 2023), financial time series pre-
diction (Zhang et al., 2024), automatic driving trajectory pre-
diction (Chen et al., 2023), etc. These applications fully show
that Informer model has significant prediction performance
advantages. The efficiency and accuracy of Informer model
provide innovative ideas for earthquake research, especially
in the analysis and prediction of earthquake precursor data,
which shows great potential.

As shown in Fig. 4, the Informer model consists of three
main components: encoder layer, decoder layer and predic-
tion layer. Compared to the traditional self-attention meth-
ods, the encoder mainly deals with longer sequence inputs by
using sparse self-attention. Self-attention distilling refers to
distilling extracted from attention operations, which not only
capture long-range dependencies in long input sequences
but also reduce the model’s dimension and network parame-
ters. Multi-Head ProbSparse self-attention denotes the self-
attention extracted block, which is used to stitch together the
feature maps. Finally, the decoder processes the inputs from
the long time series and zeroes out the target elements, to get
the predicted results.

The attention mechanism calculates the relevance between
positions in a sequence by generating query (q), key (k), and
value (v) vectors for the input sequence. Its core lies in ob-
taining attention scores through scaled dot products, thereby

https://doi.org/10.5194/nhess-25-3603-2025
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allocating attention weights. Based on this, Informer uses
formula (7) instead of formula (6) in traditional Transformer
for the calculation of attention. This enables the ProbSparse
self-attention mechanism to significantly reduce the cost of
self-attention computation while maintaining its effective-

ness.
Attention (Q, K, V) = soft QK” % ©6)
ention (Q, K, V) = softmax
Vd

Attention (Q, K, V) = softmax oK A\ @)
U N

(_2, K, V in Eq. (7) are the input matrices of the attention
mechanism, where d denotes the dimensionality of the query
and key vectors (dimensionality of the inputs) and Q in
Eq. (7) contains only Top-u queries under the sparsity metric
M(q;,K). where for M(q;, K) an empirical method is pro-
posed to effectively measure query sparsity, which is com-
puted by a method similar to the Kullback—Leibler scattering.
The calculation formula is as follows:

q;k] 1 i gk}
vd | Lk Vd

Jj=1

M (q;, K) = max { (8)
j

Here for every (query) q; € R? and k; € R? in the set
of key K, we have the bound as InLgx < M (q;K) <
max ik /Vd) - X0 (@K] /Vd)+InLg. The
formula also holds when ¢; € K.

As shown in Fig. 5, the encoder contains three parts
such as attention block(Attention Block), convolutional layer
(Convld) and maximum pooling layer (MaxPool) for encod-
ing the input data. After the main stack (Attention Block 1),
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Attention Block 2 and Attention Block 3 halve the input suc-
cessively, thus increasing the reliability of the distillation op-
eration, and the whole process continues by gradually reduc-
ing to 1/4 of the original length. At the end of the encoder, all
feature maps are concatenated and the output of the encoder
is directed to the decoder. In addition, a self-attention mech-
anism is employed to evaluate the main features and gener-
ate a unified self-attention feature map for subsequent levels.
Essentially, this process reduces the complex self-attention
mechanism in the Transformer model to a simpler, smaller
form that is suitable for integration into the Informer model.
In Fig. 4, the decoder consists of two identical multi-
head attention layers. The main difference is that predictions
are generated through a process called generative inference,
which greatly speeds up the long-term prediction process.
The decoder provides the following vectors:
X/;. = Concat (X]|

token® Xz)) € R(Lmke"—"_l‘y') X dmodel (9)

where X! | € RLwken>dmodel s the start marker and X' , €
RELy>dmodel ig a placeholder for the target sequence (set to 0).
The computation of ProbSparse self-attention is then tuned
by setting the inner product to —oo via the masked multi-
head attention mechanism, thus avoiding the involvement of
each position in subsequent positions. Finally, a fully con-
nected layer produces the final prediction.

For Informer model, mean square error (MSE) is used
as a loss function for back propagation during training.
A 0.2dropout is applied during training to enhance the
model generation. The Adam optimizer is used to update the
weights with a learning rate of 0.000001 and the number of
layers of the model is 128. The number of training rounds for
this model is set to 6. When the model does not decline in 3
rounds of loss, the training of the model is stopped. This con-
figuration allows the model to decay and effectively prevents

Nat. Hazards Earth Syst. Sci., 25, 3603-3618, 2025
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overfitting by reducing the parameter magnitude, resulting in
a better trained model.

Statistically based methods are widely used in construct-
ing prediction intervals, and they are capable of detecting
anomalies and analyzing anomalies in seismic precursors.
Zhang et al. (2023b) constructed confidence intervals for the
predicted values by calculating the residual values of raw in-
frared long-wave radiation (OLR) data. When the data ex-
ceeded the upper and lower limits of the confidence inter-
val, they were determined as cold or hot anomalies, respec-
tively. Chi et al. (2023) used the lower and upper bound
estimation (LUBE) method to directly construct prediction
intervals to extract anomalies in seismic precursors. Li et
al. (2025) utilized a nonparametric method of constructing
prediction intervals using data extremes to construct upper
and lower bounds of prediction intervals directly. In this pa-
per, the upper and lower limits of the predicted sequence out-
put from the decoder are determined using a normal distribu-
tion method. The upper and lower bounds of the prediction
intervals in the network are determined using the following
Eq. (10):

Lower = Predicition — Z x mad,

Upper = Predicition + Z x mad, (10)

where Predicition is the predicted value; Z is the Z score of
the normal distribution, which is approximately 1.44 at the
85 % confidence level; and mad denotes the median absolute
deviation.

4 Data processing

The borehole strain data used in this study were provided by
the Beijing Seismological Bureau. For short-term and pro-
seismic anomaly extraction from borehole strain data. The
borehole strain data of Menyuan station from 1 January 2020
to 31 May 2021 were selected for extracting the anoma-
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lous signals before the Maduo earthquake, taking into ac-
count the time of the earthquake that occurred in the Maduo
earthquake. The borehole strain data can effectively extract
anomalies in the short and medium term. In this paper, the
relatively stable data from the first 8 months of 2020 were
used as the training set and validation set, while the pre-
diction set was selected from the data from the 7 months
prior to the earthquake. The data from Menyuan station
were validated by the self-consistent equation, and the four-
component borehole strain data from Menyuan station were
converted into two shear strain components S13 and Sy4 and
one surface strain component S, by using the strain conver-
sion equation as shown in Fig. 6.

Subsequently, the S, data from the Menyuan station were
decomposed using the Segmented Variational Modal Decom-
position (SVMD). Five modes are selected in the decompo-
sition process, the decomposition parameters are set to 2000
bandwidths, and the convergence accuracy is set to 1077,
The decomposition results are shown in Fig. 6, where kl
represents the annual trend component, k2 represents the
tidal component, and the remaining three components are
summed up to obtain the final SVMD results. The decom-
position results are compared with the relevant influencing
factors, and the decomposition reveals that the method effec-
tively eliminates the influence of seasonal trends and solid
tides on the borehole strain data, and significantly improves
the extraction of anomalous signals.

5 Results and discussion

In this study, we use the SVMD-Informer network to ex-
tract the pre-seismic anomaly signals of the Maduo earth-
quake from the borehole strain data of the Menyuan station.
The analysis focuses on identifying pre-seismic anomalies
based on the obtained results. The anomalies were recog-
nized when the raw data exceeded the corresponding upper or
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lower bounds. The prediction results of the SVMD-Informer
network are shown in Fig. 7. From the figure, it can be seen
that the real values are highly compatible with the predic-
tion intervals, especially in the peak and valley regions of the
real data, and the prediction interval can better capture the
change trend of the data. This result indicates that we have
a high reliability in predicting the borehole strain data using
the SVMD-Informer network.

To identify anomalies in the prediction of borehole strain
data, we used the following criteria: (a) detecting 15 points
outside the interval within a 30 min window; (b) identifying
interval bandwidths where the difference between the cen-
ter of the predicted interval and the actual value is more than
1.5 times the interval bandwidth (more than three such points
occurring in the same 30 min period). Days that meet these
conditions are considered anomalous (Chi et al., 2023). This
criterion can effectively distinguish random fluctuations from
significant anomalies, thus significantly improving the accu-
racy of anomaly identification and providing a more precise
basis for earthquake precursor analysis.

De Santis et al. (2017) first proposed an anomaly accumu-
lation analysis method based on the S-shaped fitting func-
tion by studying the Swarm satellite data of the 25 April
2015 Nepal earthquake, and found that the S-shaped fitting
function performs more superiorly in describing the anomaly
accumulation process compared to the traditional linear fit-
ting method. Similarly, Yu et al. (2024b) analyzed the ge-
omagnetic data by using a geomagnetic model converter
(ATGM) based on the self-attention mechanism and success-
fully extracted magnetic anomalies (MG-anomalies) in the
Wenchuan, Lushan, and Kangding earthquakes, and found
that the number of anomalies accumulating conformed to the
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S-type growth law. Li et al. (2024) used Graph WaveNet to
extract pre-earthquake anomalies from borehole strain data
of several stations near the earthquake source, from which
they found that the anomalies accumulated at several stations
before the Lushan earthquake showed an S-type accelerated
upward trend, and further explained their correlation with the
occurrence of the Lushan earthquake. Fan et al. (2024) used
the Sigmoid function to fit the anomaly accumulation results
of electron concentration, geomagnetic data, and their fusion
parameters in the Maduo earthquake, and the results showed
that the S-shaped curves can well reflect the process of pre-
seismic acceleration and post-acceleration deceleration re-
covery of the earthquake. These results provide important
theoretical support and reference basis for the anomaly ac-
cumulation analysis in this paper.

As shown in Fig. 8, the cumulative results of anoma-
lous days at the Menyuan station from before to the time
of the Maduo earthquake show a two-phase continuum of
change. The first phase shows that the number of anomalous
days from 13 February 2021 to the middle of the 2 months
prior to the earthquake accelerated from the beginning of
the anomaly on 13 February to the middle of March, and
then levelled off. The second phase shows that the number of
anomalous days has been in an accelerated increasing trend
from the end of March until the earthquake. The timing of the
first anomaly at Menyuan station coincides with the timing of
the first-order anomaly of the index of microwave radiation
anomaly (IMRA) found by Jing et al. (2022), which both ap-
peared in mid-February. The timing of the second anomaly
coincides well with the outward long-wave radiation (OLR)
anomalies reported by Zhang et al. (2023a, b), and the ob-
servation of the thermal anomalies reveals that the Menyuan

Nat. Hazards Earth Syst. Sci., 25, 3603-3618, 2025
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station is located within the range of the thermal anomalies
of 21 and 22 March, which suggests that there was interplate
thermal motion on the surface at this time. Moreover, the cor-
relation coefficients of the geoelectric field began to show
a significant decrease 2 months before the Menyuan earth-
quake (Xin and Zhang, 2021). Meanwhile Fan et al. (2024)
calculated the Benionff strain S 90d before the earthquake,
and the results showed that the time of acceleration in the
first stage was basically the same as the time when our sec-
ond stage began to accelerate, inferring that there might be
frequent lithospheric activities at this time. Therefore, the
anomalies we found in the borehole strain data have some
reliability and research value.

In addition, the two-stage accelerated growth of the bore-
hole strain accumulation results may reveal two preparatory
mechanisms prior to the mainshock. This is consistent with
the theory of fault synergistic process of Ma et al. (2014).
They found that the occurrence of earthquakes is closely re-
lated to the three-stage synergistic evolution of faults through
an indoor experimental study of plane-walk-slip faults. In the
first stage, the initial stress nonlinear divergence leads to lo-
calized weakening and the formation of discrete strain re-
lease zones. The second stage is characterized by an increase
in stress and a widening of the strain release zone. In the final
stage, the expansion of the strain-release region and the rapid
increase in the strain level in the strain-accumulation region.

Nat. Hazards Earth Syst. Sci., 25, 3603-3618, 2025

The anomalous cumulative acceleration about 3 months be-
fore the Maduo earthquake corresponds to the first and sec-
ond stages in the theory, which is manifested by the deviation
of the stress curve from linearity and the beginning of the
formation and slow expansion of the discrete release zone.
The acceleration 2 months before the earthquake reflects the
characteristic changes of the third stage, which is character-
ized by the accelerated expansion of the release zone and
the sharp increase of the strain in the accumulation zone.
Therefore, we believe that the anomalies observed before the
Maduo earthquake are related to the process of earthquake
incubation.

As shown in Fig. 9, related researchers have studied a va-
riety of anomalies that occurred prior to the Maduo earth-
quake. From the observations at the surface, the magnetic
field showed two accelerated phases, with the first phase
showing an accelerated growth trend from 38 to 24 d before
the main earthquake, and the second phase showing a signifi-
cant increase in the accumulation of magnetic field anomalies
from the beginning of the 24th day before the main earth-
quake to the time of the earthquake (Fan et al. (2024). In the
transition from the surface to the atmosphere, the CO con-
centration at the 600 hPa altitude fluctuated from 17 Febru-
ary, increased again after a small decrease on 5 March, and
showed the first anomaly peak on 21 March. The maxi-
mum anomaly of near-surface CO appeared in April, with
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a sudden increase on 14 April, and the anomaly increased
to the maximum level before and after the earthquake in
late April (Shi et al., 2024). It is noteworthy that the tim-
ing of the CO anomalies is highly consistent with the tim-
ing of our borehole strain anomalies. The temperature of
brightness blackbody (TBB) started to increase significantly
in the direction of the fracture zone north of the epicenter
about 1.5 months before the earthquake, reached its maxi-
mum intensity on 17 May, and the anomaly gradually weak-
ened during the earthquake (Yang et al., 2024). In the atmo-
sphere, the electron density and electron temperature showed
anomalous activity about 40 and 20 d before the earthquake
(Tian et al., 2023; Fan et al., 2024; Du and Zhang, 2022).
The synthesis in Fig. 9 contains anomalies covering a wide
range of phenomena from our borehole strains in the subsur-
face to electron concentrations and temperatures in the at-
mosphere. It can be found that the borehole strain anoma-
lies show a more comprehensive temporal coverage in the
short-term anomalies and proseismic anomalies. In this re-
gard, our study concludes that anomalies existed three to two
months before the Maduo earthquake. Therefore, we hypoth-
esize that the borehole strain anomalies may be related to the
Maduo earthquake.

Although borehole strain monitoring techniques are capa-
ble of accurately capturing crustal microstrain induced by
plate tectonic movements or seismic activity, they are sus-
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ceptible to factors such as temperature, air pressure, and rain-
fall. For this purpose we analyzed regional three-hourly vari-
ations of barometric pressure, air temperature and rainfall
in the Menyuan area (35.97 to 39.97°N, 99.4 to 103.4°E)
from NASA’s Giovanni-4 platform (https://giovanni.gsfc.
nasa.gov/giovanni, last access: 9 May 2025), with a time
frame of 1 January 2020 to 31 December 2021. In Fig. 10a,
the barometric pressure and air temperature fluctuate in-
versely within a certain range, while the rainfall gradually de-
creases year by year after peaking in summer, reflecting a sig-
nificant annual cyclicity. In the two abnormal phases marked
by dotted lines, meteorological factors showed obvious peri-
odic fluctuations, but there was no obvious correlation with
the borehole strain anomalies extracted in this paper. In ad-
dition, in order to minimize the influence of external factors
on the borehole strain data, we performed differential pro-
cessing on the three-hourly regional averages of barometric
pressure, air temperature, and rainfall in the Menyuan area.
Differential processing was utilized to remove the effect of
cyclic variations, thereby highlighting anomalies in the data.
The results are shown in Fig. 10b. In the two abnormal peri-
ods indicated by the dotted lines, the 3 h regional data for air
pressure, temperature, and precipitation in the Menyuan area
did not show any abnormal changes corresponding to this pa-
per. Therefore, we have excluded the influence of pressure,
temperature, and precipitation on the anomalies observed

Nat. Hazards Earth Syst. Sci., 25, 3603-3618, 2025
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in the pre-earthquake borehole data from Maduo. Thus, we
have reason to believe that the anomalies we extracted before
the Maduo earthquake are related to the earthquake genesis
process.

6 Conclusion

In this study, a SVMD-Informer network-based anomaly de-
tection method for borehole strain data is proposed, and the
2021 Maduo M, 7.4 earthquake is used as an example for
pre-seismic anomaly extraction. The method addresses the
issues of slow computation speed and memory limitations in
traditional VMD by adopting SVMD, and significantly im-
proves the accuracy and stability of long-sequence time se-
ries prediction by integrating the Informer network. By an-
alyzing the borehole strain data from the Menyuan station,
we successfully identified two distinct phases of anomalous
cumulative acceleration preceding the Maduo earthquake,
occurring approximately three and two months before the
event, respectively. The cumulative anomaly curves exhib-
ited a characteristic S-shaped growth pattern. This finding
is consistent with the fault synergy process theory proposed
by Ma et al. (2014), further supporting the correlation be-
tween borehole strain anomalies and the Maduo earthquake.
With the continued progress of machine learning technology
and the ongoing accumulation of seismic observation data,
this method is expected to provide higher-precision technical
support for earthquake prediction and help reduce seismic
disaster risk.
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