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Abstract. Informative landslide hazard estimates are needed
to support landslide mitigation strategies to reduce landslide
risk across the United States. Whereas existing national-
scale landslide susceptibility products assess where land-
slides are likely to occur, they do not address how often,
which is a critical element of landslide hazard and risk as-
sessments. In particular, the U.S. Federal Emergency Man-
agement Agency’s National Risk Index (NRI) requires land-
slide frequency estimates to inform expected annual loss es-
timates. We present county-level landslide frequency (land-
slides per area per year) estimates for the 50 US states. We
applied Bayesian negative binomial regression to estimate
both the expected (average) reported landslide frequency and
full distribution of annual landslide counts for each county.
We compared a suite of models that used combinations of
landslide-susceptible area, probability of potentially trigger-
ing earthquakes, frequency of potentially triggering precip-
itation, and ecological region as predictors. We trained our
models with landslide inventory data from counties with
the most comprehensive records available nationwide and
used zero-inflated negative binomial distributions as an in-
completeness model to correct for temporal reporting gaps.
We selected a preferred frequency model to inform the NRI
based on information criteria and physically plausible pa-
rameter estimates. The model showed that average annual
reported landslide frequencies vary by 5 orders of magnitude
across US counties, ranging from 0.002 (0.00015–0.05) land-
slides 1000 km−2 yr−1 in Kusilvak Census Area, Alaska, to
29 (19–46) landslides 1000 km−2 yr−1 in Lake County, Cal-
ifornia, reflecting the country’s strong variations in landslide
susceptibility, earthquake probability, and other factors for
which ecological region serves as a proxy. Counties with es-

timated frequencies in the top 20 % of all counties are pre-
dominately along the West Coast of the continental United
States, in mountainous regions of the Pacific Northwest and
Intermountain West, in locally steep or earthquake-prone re-
gions of the Midwest and Southeast, along the Appalachians,
in southern and southeastern Alaska, and on some Hawaiian
islands. By examining the number of landslides predicted in
99th percentile years for each county, we identified that 26 %
of US counties likely have potential for widespread lands-
liding with more than 10 landslides 1000 km−2 yr−1, even
when such large events have not been reported in the train-
ing data for that county. Overall, our results better represent
the range of possible landslide frequencies and spatial vari-
ations than previous national-scale estimates reported in the
NRI, and our approach can inform other risk-reduction and
loss-mitigation efforts across the United States and globally.

1 Introduction

Informative landslide hazard estimates are needed to sup-
port landslide mitigation strategies and reduce landslide risk
across the United States (Godt et al., 2022). Landslides claim
lives annually in the United States (Froude and Petley, 2018;
National Research Council, 1985), and the landslide-related
economic losses estimated decades ago (Schuster, 1996)
would amount to USD 3–6 billion annually in 2024 US dol-
lars (U.S. Bureau of Labor Statistics, 2024). Changes in cli-
mate and land use, including urban development in steeper
terrain, are expected to have increased these losses in re-
cent years and are likely to continue to do so in the future,
unless effective mitigation practices are implemented (Gar-
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iano and Guzzetti, 2016; Ozturk et al., 2022). To address
this major economic disruption, the United States Geologi-
cal Survey (USGS) developed a National Strategy for Land-
slide Loss Reduction (Godt et al., 2022). This strategy calls
for developing a publicly accessible national landslide haz-
ard and risk database to ensure that decision-makers have ac-
cess to nationwide information on landslide hazards and risk,
among other goals. In this context, the USGS is working with
the Federal Emergency Management Agency (FEMA) to im-
prove the quantitative characterization of landslide hazards in
ongoing updates to their National Risk Index (NRI) (Federal
Emergency Management Agency, 2023a; Zuzak et al., 2022).

The NRI is a relative metric of community-level risk as-
sessed across 18 natural hazards, including landslides (Zuzak
et al., 2022). The index combines expected annual loss esti-
mates for each of these hazards with social vulnerability and
community resilience scores for each US county and cen-
sus tract (Federal Emergency Management Agency, 2023b).
Expected annual loss is a common metric used to quantify
risk from natural hazards and results from multiplying the
expected, or average, frequency of a hazard with the popu-
lation exposed and a historical loss ratio that quantifies loss
resulting from past events.

Landslide frequency, which we define as landslides per
area per time interval (Corominas and Moya, 2008), is a crit-
ical component of expected annual loss and thus risk but has
rarely been assessed, particularly at the scale of the entire
United States (Corominas et al., 2014; Glade and Crozier,
2005). Many studies have assessed landslide susceptibility at
local to continental scales (Reichenbach et al., 2018), which
indicates how prone an area is to landsliding and addresses
the question “where are landslides likely to occur?” For ex-
ample, the USGS recently published the National Landslide
Susceptibility Model, which estimates landslide susceptibil-
ity based on topographic characteristics for the 50 US states
and Puerto Rico (Mirus et al., 2024). Few studies, however,
have assessed frequency, which incorporates temporal prob-
ability and addresses the question “how often are landslides
likely to occur in a given area?” (Corominas and Moya, 2008;
Dahal et al., 2024a; Guzzetti et al., 2005; Ko and Lo, 2018;
Lombardo et al., 2020). Differences in the frequency of oc-
currence of landslide-triggering conditions, the most com-
mon of which in the United States are large earthquakes and
precipitating storms, can drive differences in landslide fre-
quency between areas that are equally susceptible to lands-
liding. For example, a steep area in an earthquake-prone wet
region will likely have a higher landslide frequency than a
similarly steep area in a non-earthquake-prone dry region.
When combined with estimates of magnitude (how large are
landslides likely to be?), susceptibility and frequency make
up the key components of the most widely accepted defini-
tion of landslide hazard (Crozier and Glade, 2005; Dahal et
al., 2024a; Guzzetti et al., 2005).

Landslide hazard estimates typically rely on either
physics-based models of landslide processes or statistical

models trained with historical records of landslide occur-
rences over time (Corominas et al., 2014). Physics-based
models attempt to explicitly account for the geotechnical at-
tributes of hillslopes to estimate the frequency of conditions
that will lead to slope failure (Baum et al., 2010; Frattini et
al., 2009; Iverson, 2000; Jibson, 2011; Salvatici et al., 2018).
Consequently, these methods require detailed in situ data of
local hillslopes to be accurate. Such data are highly hetero-
geneous and hard to estimate remotely, making it difficult to
obtain accurate results over regions larger than catchment-
scale. Alternatively, statistical and machine learning models
analyze the patterns of past landslide events to estimate land-
slide hazard (Bordoni et al., 2021; Dahal et al., 2024b; Di
Napoli et al., 2023; Guzzetti et al., 2005; Lari et al., 2014;
Marc et al., 2017; Segoni et al., 2018). These methods are
generally preferred for assessing landslide hazard over re-
gions larger than a few catchments because they require less
data compared to physics-based models.

Nevertheless, both data-driven and physics-based meth-
ods require accurate inventories of landslide timing and lo-
cation over a sufficiently long temporal range to evaluate
the validity of estimated landslide frequency (Corominas and
Moya, 2008; Lombardo et al., 2020). The need for accurate
landslide data presents a substantial challenge, because land-
slide reporting is often spatially and temporally heteroge-
neous, even over small regions. As a result, application of
statistical hazard models has generally been reserved for re-
gional analyses in data-rich parts of the world (Bordoni et al.,
2021; Guzzetti et al., 2005; Ko and Lo, 2018; Lombardo et
al., 2020). Landslide inventory data are presence-only data,
meaning that although inventories document reported land-
slides, some landslides that occur may go unreported. Land-
slide inventories thus reflect a combination of physical land-
slide processes and reporting processes. Failing to account
for the reporting process can bias models and lead to incor-
rect estimates (Steger et al., 2021).

The USGS maintains a National Landslide Inventory
(Mirus et al., 2020), which is compiled from multiple fed-
eral, state, and local agencies, as well as academic publica-
tions and historical records from across the United States.
The compilation is updated intermittently, and the current it-
eration (version 3.0, February 2025) compiled reported land-
slides from 55 local, state, and national-scale inventories (Be-
lair et al., 2025). These reports are vector geospatial data
containing points or polygons that represent slope failures
along with a diverse set of attributes that may include time of
occurrence. We use “landslide” as an overarching term to de-
scribe the range of slope failure types reported in these inven-
tories which, where documented, include slides, falls, flows,
and complex movements, among others. Inventories included
in the compilation have different reporting approaches that
capture different aspects of landslide frequency. Inventories
compiled by transportation departments, like the Alaska De-
partment of Transportation inventory (Alaska Department of
Transportation and Public Facilities, 2022), for example, cap-
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ture only landslides that impacted the road network but may
do so consistently over a given timeframe. In contrast, event-
based inventories, like the USGS San Francisco Bay region
2016–2017 inventory (Corbett and Collins, 2023b), often
map landslides triggered by storms or earthquakes during a
short time period from optical imagery or high-resolution
topographic data and tend to be more spatially complete
over the domain mapped, but they only capture individual
events in time. Bringing such diverse inventories together
to estimate landslide frequencies over broader regions has
shown promise in the Pacific Northwest region of the United
States (Luna and Korup, 2022) but has yet to be attempted
at the near-continental scale. However, an additional chal-
lenge is that many landslide-susceptible regions of the United
States completely lack temporal constraints on when land-
slides have occurred. Previous releases of the NRI estimated
landslide frequency from events reported between 2010 and
2021 in the National Aeronautics and Space Administration
(NASA)’s Cooperative Open Online Landslide Repository
(COOLR), which compiled landslides from news and citi-
zen reports (Juang et al., 2019). As the reporting method of
this catalog captures only events reported in the news or by
citizens, it represents a small subset of all landslides that oc-
curred over the reporting period and does not capture the high
numbers of landslides triggered during widespread events.
Noting that many landslide-susceptible regions of the United
States had no reported landslides in this catalog, the NRI au-
thors chose a default minimum value of 0.01 landslides per
year for census tracts in these areas, which were later ag-
gregated to county level (Federal Emergency Management
Agency, 2023b). This approach likely misrepresents the true
number of landslides, and hence landslide frequencies, and
may not adequately portray the spatial pattern of landslide
hazard across the United States.

In this study, we estimated landslide frequency distribu-
tions for all counties in the 50 US states as input to the
2025 update of the NRI. We introduced a pragmatic and
adaptable Bayesian statistical modelling framework for esti-
mating landslide frequency distributions, modelled as counts
per area per year, at a near continental scale. We compared
models trained with the best available landslide inventory
data from 316 counties nationwide and varying combina-
tions of relative indicators of county-level landslide suscep-
tibility, frequency of potentially landslide-triggering precip-
itation, probability of potentially landslide-triggering earth-
quakes, and ecology as predictors. We then predicted land-
slide frequencies for all 3144 counties in the 50 US states
and the District of Columbia (U.S. Census Bureau, 2023a),
the majority of which lacked landslide records with reported
timing. Bayesian statistical models have advantages for es-
timating components of landslide hazard from spatially and
temporally heterogeneous inventory data (Bryce et al., 2022;
Korup et al., 2024; Lombardo et al., 2020; Luna and Ko-
rup, 2022; Woodard et al., 2023). First, Bayesian statistical
models are conditional on the available data, the model, and

prior knowledge about parameter values. The obtained pos-
terior parameter distributions, which show the probability of
possible parameter estimates, allow us to transparently re-
port model uncertainty given the available landslide inven-
tory data (McElreath, 2020; van de Schoot et al., 2021). Sec-
ond, by incorporating prior knowledge about a model’s pa-
rameters to estimate final values, models can consider the
users’ expectations of what a parameter value should be to
overcome sparse data issues in some regions (Patton et al.,
2023; Woodard et al., 2023). Finally, Bayesian models pro-
vide frameworks that allow for updating model parameters
in light of new data, meaning that if new landslide data are
collected in the future, parameter estimates can be seamlessly
updated. Our modelling approach can thus overcome some of
the limitations associated with spatially and temporally het-
erogenous landslide inventory data. However, we emphasize
that we estimate what reported landslide frequencies would
be if each county had available landslide inventory data like
counties with the most comprehensive data nationwide. Our
consistent estimates across counties are reported to promote
an equitable allocation of resources and support improved re-
silience to landslide hazards (Dowling and Santi, 2014; Pol-
lock and Wartman, 2020; Santi et al., 2011).

2 Data and methods

We used Bayesian negative binomial regression trained on
the best available landslide inventory data nationwide and
physically relevant predictors to estimate county-scale land-
slide frequency distributions. To do so, we

– collected landslide inventory data with reported annual
timing,

– selected training counties based on data quality and cov-
erage criteria,

– corrected historical inventory time series for reporting
gaps using zero-inflated negative binomial distributions
as an incompleteness model,

– chose physically relevant predictor variables at county
scale,

– fit a series of Bayesian negative binomial regression
models with varying combinations of predictors to
training counties,

– compared models using information criteria to identify
a preferred model with the highest estimated out-of-
sample predictive accuracy and physically plausible pa-
rameter estimates,

– used the preferred negative binomial regression model
to predict landslide frequency distributions for all coun-
ties,
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– evaluated the model fit by comparing predictions to ob-
servations and its robustness by performing training–
test cross-validation,

– compared our results to previous landslide frequency es-
timates from the NRI.

Our visualizations rely largely on color schemes from scien-
tific color maps (Crameri, 2023) and ColorBrewer (Brewer
et al., 2013).

2.1 Landslide inventory data with reported annual
timing

We used the most recent version of the USGS Landslide
Inventories Across the United States compilation (Belair et
al., 2025), which includes 991 272 landslides reported in
55 inventories created by local, state, and national entities.
These inventories reflect a variety of reporting protocols,
cover varying time periods and regions, and document a
range of slope failure types. For this analysis, we first subset
the compilation to landslides with a reported year of occur-
rence (189 282 landslides). We then removed duplicates by
(1) checking for points that overlap polygons and were re-
ported in the same year, which can happen in inventories that
include both point and polygon layers for the same slope fail-
ures, and (2) dissolving polygons that touch each other and
were reported in the same year, which can occur when in-
ventories map source and deposition areas separately for the
same landslide, for example. Limiting our spatial domain to
the 50 US states leaves 77 714 landslides from 33 inventories
for further analysis (Table A1). By examining the time se-
ries for each inventory, we categorized these inventories into
two classes with different reporting styles that affect the re-
sulting time series of landslide occurrences: historical and
event-based inventories. Historical inventories report land-
slides over an extended period of time that may include re-
porting gaps, and event-based inventories report landslides
from specific events, like individual earthquakes or storms.
For our training dataset, we selected counties that have at
least one landslide reported in a historical inventory created
by a state or local entity (Table A1), which gives 316 train-
ing counties with 62 720 reported landslides (Fig. 1). We
assumed that these inventories have more reliable reporting
over time than inventories created by national or other enti-
ties.

2.2 Constructing reporting-gap-corrected time series

We selected negative binomial distributions to model land-
slide frequency (landslides per area per year). Although neg-
ative binomial and related distributions have been widely
used in fields like ecology (e.g., Minami et al., 2007) and
public health (e.g., Rose et al., 2006), they have seen lit-
tle use in landslide research. Negative binomial distribu-
tions are suitable for modelling counts, which in our case

is the reported number of landslides in a year in a given
area (White and Bennetts, 1996). Distributions of annual
landslide counts per county in our dataset were typically
heavily right-skewed, with few years showing many reported
landslides and with many years showing few reported land-
slides, as well as over-dispersed, with variances that ex-
ceeded means (Fig. 2). The negative binomial distribution
can capture over-dispersion with its two parameters: a rate
parameter (µ) that indicates the expected or average fre-
quency and a shape parameter (ϕ), which together control
the variance. We therefore preferred it to the Poisson dis-
tribution, an alternative count distribution that requires the
mean and variance to be equal (White and Bennetts, 1996).
To train our landslide frequency models (refer to Sect. 2.4),
we needed time series of landslide counts by county.

Historical landslide inventory time series often feature re-
porting gaps that, if unaccounted for, can lead to underesti-
mated landslide frequencies. These gaps arise from the re-
porting protocols used to construct the inventory. We chose
to correct for these gaps at the inventory level to take advan-
tage of information on reporting contained in the inventory
time series before breaking these down to the county level.
Conceptually, we consider that for each inventory there is a
switch that turns recording “on”, resulting in a period dur-
ing which landslide occurrences are documented, or “off”,
resulting in a reporting gap. Knowing the position of this
switch at any given time is needed for accurate landslide
frequency estimates but is rarely documented in landslide
inventory data. For event-based inventories, which are de-
signed to capture individual events, the position is always
known: if landslides are reported, the switch is on; if no
landslides are reported, the switch is off. For historical in-
ventories, however, the position is only known when it is
on: if landslides are reported, the switch is on; if no land-
slides are reported, the position is unknown, unless other-
wise documented. The California Geological Survey (2019)
landslide inventory, for example, has documented landslides
between 1906 and 2011 but contains several multiple-year
periods with no reported landslides (Fig. 2a). These periods
can occur either because recording was on but no landslides
occurred or because recording was off. Without documen-
tation of when reporting gaps occurred, we are left to esti-
mate these from the inventory time series itself. Two simple
solutions to this challenge present disadvantages: (1) taking
the full time series from the first reported to last reported
landslide will likely lead to underestimated frequencies, be-
cause too many zeros resulting from reporting gaps enter
the model, but (2) assuming that all zeros result from re-
porting gaps and removing these from the time series would
likely lead to overestimation, as some years with few to no
landslides could be expected, e.g., during droughts. Instead,
we designed a statistical incompleteness model to estimate
the fraction of zeros in each inventory time series that are
true non-occurrences and the fraction that is due to reporting
gaps.
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Figure 1. Reported landslides with annual timing in counties covered by state or local historical landslide inventories. (a–c) Total number of
reported landslides with annual timing. ND= no data. (d–f) Length of records from earliest to latest reported landslide. ND= no data. Base
map data in panels (a)–(f): US counties from U.S. Census Bureau Cartographic Boundary Files 1 : 500 000 (U.S. Census Bureau, 2023b),
non-US administrative boundaries from Natural Earth (Natural Earth, 2022). Landslide inventory data subset from the USGS Landslide
Inventories across the United States dataset (Belair et al., 2025). Projection and datum: (a, d) continental United States – Albers North
American Datum 1983 (EPSG:5070); (b, e) Alaska – Albers North American Datum 1983 (EPSG:3467); (c, f) Hawaii – Old Hawaiian
(EPSG:4135).

Figure 2. Constructing reporting-gap-corrected county-level time series. (a) Example time series and (b) histogram of reported landslides
from the California Geological Survey (2019) landslide inventory, showing the effect of the reporting-gap-correction model. (c) Example
time series and (d) histogram of reported landslides in Marin County, California (CA) (Fig. 1a), showing how a county-level time series is
constructed.
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We chose zero-inflated negative binomial distributions as
an incompleteness model to characterize these gaps at the
inventory level for each historical inventory. Assuming that
landslide counts follow a negative binomial distribution,
zero-inflated negative binomial distributions are able to es-
timate the share of zeros that result from reporting gaps
(Bürkner, 2017). Zero-inflated negative binomial distribu-
tions are a mixture of a binomial and a negative binomial
distribution and have an additional parameter (z). This pa-
rameter represents the zero inflation: the fraction of zeros in
a dataset that would not be expected according to a negative
binomial distribution. For a year with no reported landslides,
this is the model’s estimate for the probability that the record-
ing switch was in the “off” position. We fit zero-inflated neg-
ative binomial distributions (ZINB) to each historical inven-
tory to estimate this share of zeros (zv) (Table A1).

yi,v ∼ ZINB(µv,φv,zv) , (1)

where yi,v is the number of reported landslides in an inven-
tory per year, µv is the expected (average) number of land-
slides per inventory per year, ϕv is a shape parameter, and
zv is the zero-inflation. We assumed that the posterior me-
dian share of zeros (zv) arose from reporting gaps and re-
moved them from the time series. For the California Geolog-
ical Survey (2019) landslide inventory, for example, we esti-
mated that 73 % of zeros are due to reporting gaps (Fig. 2a,
b; Table A1). We note that because we modelled these dis-
tributions with stationary parameters over time and assume
consecutive years to be independent, the exact timing of the
reporting gaps is not relevant, but rather the share of gaps in
the time series. The gaps in Fig. 2a are schematic examples.
This procedure produced a zero-inflation corrected time se-
ries for each historical inventory.

To create a time series for each training county, we used
the zero-inflation corrected time series for the historical state
or local inventories that contained landslides in that county
as a base time series (Fig. 2, Table A1, Eq. 1). We then
added landslides reported in the county from other event-
based inventories to this time series. For example, in Marin
County, California, the base time series came from the histor-
ical California Geological Survey (2019) landslide inventory
and landslides reported in the USGS California San Fran-
cisco Bay 2022–2023 event-based inventory (Brien et al.,
2023) were added to the time series (Fig. 2c). We reserved the
NASA COOLR catalog (Juang et al., 2019), which formed
the basis of the 2023 NRI release, as independent test data
and did not include it in these time series. These steps re-
sulted in a time series for each training county that we used
to train our negative binomial regression models (Sect. 2.4).

2.3 County-level landslide frequency predictors

We modelled landslide frequency as a function of landslide
susceptibility, ecological region (ecoregion), and the two
primary triggering factors at a continental scale: precipita-

tion and earthquakes (Fig. 3). For landslide susceptibility
(Fig. 3a–c), we calculated the percent area of each county
considered susceptible to landslides from the USGS Na-
tional Landslide Susceptibility Model, which estimates land-
slide susceptibility at 10 m resolution based on a slope–relief
threshold and topographic data (Belair et al., 2024; Mirus et
al., 2024). We used county boundaries from the U.S. Cen-
sus Bureau Tiger/Line 2023 dataset (U.S. Census Bureau,
2023a) and excluded water bodies from each county’s area
with the U.S. National Atlas Water Feature Areas dataset
(ESRI, 2022).

We used a simplified version of the Level I ecoregions
(Fig. 3d–f) as a proxy for regional factors that may influ-
ence landslide frequency that we do not explicitly consider in
our model and which the topography-based USGS National
Landslide Susceptibility Model does not account for. Ecore-
gions are areas of general similarity in ecosystems that result
from a classification that integrates major ecosystem compo-
nents including geology, physiography, vegetation, climate,
and soils (Omernik, 2004). Because we expect these factors
to also influence landslide activity (Corominas et al., 2014;
Reichenbach et al., 2018), we chose ecoregion as a proxy
to delineate areas likely to have broadly similar conditions
that contribute to landslide frequency. Ecoregions have previ-
ously been explored for applications in automated landslide
mapping and continental scale landslide susceptibility as-
sessment (Nagendra et al., 2022; Woodard et al., 2023). Four-
teen Level I ecoregions have been identified in the continen-
tal United States and Alaska (U.S. Environmental Protection
Agency, 2010), which we further simplified using proximity
to avoid having small regions with no available landslide in-
ventory data. Specifically, we combined Eastern Temperate
Forests (1766 counties), Tropical Wet Forests (5 counties),
and Northern Forests (156 counties) into Eastern Forests;
North American Deserts (140 counties), Southern Semi-Arid
Highlands (3 counties), and Temperate Sierras (5 counties)
into Deserts; and Tundra (7 counties) and Taiga (2 counties).
This resulted in seven regions, which we term Deserts (DS),
Eastern Forests (EF), Great Plains (GP), Marine West Coast
Forest (MF), Mediterranean California (MC), Northwestern
Forested Mountains (NM), and Tundra and Taiga (TT). No
Level I ecoregion classification is available for Hawaii (HI),
so we considered it to be its own region. We assigned each
county to the ecoregion with greatest overlap.

For precipitation, we calculated the average number of
times that the Guzzetti et al. (2008) global rainfall thresh-
old for shallow landslides and debris flows was exceeded
at 24 h duration annually. This intensity–duration threshold
quantifies a minimum rainfall intensity above which land-
slides have been observed worldwide and thus serves as a
conservative indicator of potentially triggering rainfall. Al-
though local rainfall thresholds exist for a few regions of the
United States (Baum and Godt, 2010; Collins et al., 2012;
Patton et al., 2023; Scheevel et al., 2017), no nationwide
threshold or methods to interpolate spatially between regions
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Figure 3. Landslide frequency predictor data for US counties. (a–c) Percentage of county area that is susceptible to landslides from the U.S.
Geological Survey National Landslide Susceptibility Model (Belair et al., 2025). (d–f) Simplified ecoregions: Deserts (DS), Eastern Forests
(EF), Great Plains (GP), Hawaii (HI), Marine West Coast Forest (MF), Mediterranean California (MC), Northwestern Forested Mountains
(NM), and Tundra and Taiga (TT). Modified from Level I ecoregions of North America (U.S. Environmental Protection Agency, 2010).
(g–i) Average number of times the Guzzetti et al. (2008) global rainfall threshold for shallow landslides and debris flows was exceeded
at 24 h duration annually from 2002 to 2021 (continental United States (CONUS), Hawaii) and 2002 to 2019 (Alaska). Precipitation from
Analysis of Record for Calibration (AORC) dataset for CONUS and Alaska (Fall et al., 2023) and Global Historical Climatology Network
Daily dataset for Hawaii (National Centers for Environmental Information, 2024). (j–l) County average probability of an earthquake with
modified Mercalli intensity =VI in 100 years from the U.S. 50-State National Seismic Hazard Model (Petersen et al., 2023). (a–l) US
counties from U.S. Census Bureau Cartographic Boundary Files 1 : 500 000 (U.S. Census Bureau, 2023b), non-US administrative boundaries
from Natural Earth (Natural Earth, 2022). Projection and datum: (a, d, g, j) CONUS – Albers North American Datum 1983 (EPSG:5070);
(b, e, h, k) Alaska – Albers North American Datum 1983 (EPSG:3467); (c, f, i, l) Hawaii – Old Hawaiian (EPSG:4135).
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are available, so we chose a global threshold. For the con-
tinental United States (CONUS) and Alaska, we relied on
precipitation estimates from the Analysis of Record for Cali-
bration (AORC) version 1.1 dataset from 2002 through 2021
for CONUS and from 2002 through 2019 for Alaska, when
the Alaskan record ends. AORC is a gridded hydrometeo-
rological dataset with 4.76 km spatial resolution and hourly
temporal resolution (Fall et al., 2023). Although the AORC
dataset includes a variety of data sources and slightly dif-
ferent processing methodologies over its period of record
(refer to Fall et al., 2023, for full details), the period from
2002 through 2024 relies heavily on input data from radar-
based precipitation products, primarily the National Centers
for Environmental Prediction (NCEP) Stage IV dataset (Du,
2011; Nelson et al., 2016). As such, in this study we focus
on the period from 2002–2021 to take advantage of the use
of radar data in the dataset. AORC 4.76 km data are stored in
regional files for individual River Forecast Centers (RFC),
which were combined onto single grids for CONUS and
Alaska before identifying the annual number of instances in
each grid cell when the Guzzetti et al. (2008) threshold was
exceeded. For each county, we then averaged across grid cells
and years to obtain a final value for average annual thresh-
old exceedances per year (Fig. 3g–i). For Hawaii, which
AORC does not cover, we relied on meteorological station
data from the Global Historical Climatology Network Daily
dataset (GHCNd) (National Centers for Environmental Infor-
mation, 2024). We calculated the annual number of thresh-
old exceedances at 24 h duration for all stations in Hawaii
from 2002 through 2021 for consistency with CONUS. We
used only years with at least 360 days with reported data. We
then assigned each station within 15 km of a county to that
county and calculated the average annual exceedances across
stations and years.

We used the probability of occurrence of an earthquake
with a modified Mercalli intensity (MMI) greater than or
equal to VI in 100 years to indicate potential for landslide-
triggering earthquakes. The MMI scale measures the effect of
an earthquake on the Earth’s surface and ranges from I, indi-
cating a level of shaking that is not felt, to X, indicating ex-
treme shaking. We selected an MMI threshold of VI to indi-
cate landslide-triggering potential based on a global study of
earthquake-triggered landslides that showed that more than
80 % of reported landslides were triggered at or above this
level (Tanyaş et al., 2017). We calculated the average prob-
ability of occurrence of an earthquake with an MMI=VI
in 100 years across each county using data from the 2023
U.S. National Seismic Hazard Model (NSHM) (Petersen et
al., 2023, 2024) (Fig. 3j–l).

2.4 Estimating landslide frequency distributions with
Bayesian negative binomial regression

We applied Bayesian negative binomial regression to esti-
mate the distribution of landslide counts per year for each

county (Luna and Woodard, 2025). Negative binomial re-
gression is a generalized linear model that estimates landslide
frequency as a function of predictors (Eq. 2). Other exam-
ples of generalized linear models include logistic regression,
which relies on the binomial distribution to model probabil-
ities, and Poisson regression, which uses the Poisson distri-
bution to model frequencies or rates (McElreath, 2020). We
chose the negative binomial distribution because it is well
suited to over-dispersed count data (refer to Sect. 2.2).

We compared a series of negative binomial regression
models that included landslide susceptibility, frequency of
potentially landslide-triggering precipitation, probability of
potentially landslide-triggering earthquakes, and ecoregion
as predictors. We trained these models using zero-inflation
corrected time series for 316 counties covered by state or lo-
cal inventories (Sect. 2.2). With the trained models, we pre-
dicted the expected, or average, landslide frequency (land-
slides 1000 km−2 yr−1) and the distribution of counts across
years for 3144 counties, including many with no available
landslide timing information, by using their known predictor
values. We considered two sets of models: national models,
which pooled training counties across the country together
to estimate parameters, and regional models, which further
considered differences by ecoregion.

The national models had the following general form:

yi,c ∼ NB(µc,φ)

ln(µc)= β0+β1 (Lc)+β2 (Mc)+β3 (Pc)+ ln(Ac) , (2)

where yi,c is the number of reported landslides in a given
county (c) per area per year, NB indicates the negative bi-
nomial distribution, µc is the expected (average) number of
landslides per area per year, and ϕ is a shape parameter that,
together with µc, controls the variance of the negative bino-
mial distribution. β0 serves as an intercept for the general-
ized linear model and refers to the natural logarithm of the
frequency if all other predictors are at their mean value. Lc is
the standardized percent landslide-susceptible area,Mc is the
standardized probability of potentially landslide-triggering
earthquakes, and Pc is the standardized frequency of po-
tentially landslide-triggering precipitation. We standardized
each of these predictors by subtracting the mean and dividing
by the standard deviation across all counties. βj=1,2,3 repre-
sents these predictors’ coefficients. We included an offset of
the natural logarithm of the county’s area (Ac) to account
for differences in area between counties, as larger counties
should have higher frequencies than smaller counties given
the same predictor values.

The regional models were multi-level models that included
the simplified Level I ecoregion as a varying intercept, some-
times called a random effect. Multi-level models estimate pa-
rameters within and between groups. We chose to include
ecoregion as a grouping variable that served as a proxy for
the many factors that may influence landslide frequency that
we do not explicitly include in our models, e.g., climate,

Nat. Hazards Earth Syst. Sci., 25, 3279–3307, 2025 https://doi.org/10.5194/nhess-25-3279-2025



L. V. Luna et al.: Constraining landslide frequency across the United States 3287

land cover, and geology. In contrast to the pooled models
that estimated parameters for the whole domain (Eq. 2), these
multi-level models explicitly modelled regional variation in
landslide frequency by learning a different intercept for each
ecoregion (β0,r ), while simultaneously learning the mean
(β0,p) and standard deviation (σr ) of intercepts among ecore-
gions (Eq. 3). This means that for a fixed set of predictor
values, the estimated landslide frequency is allowed to vary
by ecoregion if the data support this. Nevertheless, because
each ecoregion’s intercept must belong to the population-
level distribution, the model is guarded from overfitting re-
gions with many counties with reported landslides and esti-
mates for areas with less available data are informed by data
rich regions, which generally improves predictions (McEl-
reath, 2020). These models have the following general form:

yi,c ∼ NB(µc,φ)

ln(µc)= β0,p +β0,r +β1 (Lc)+β2 (Mc)+β3 (Pc)

+ ln(Ac)
β0,r ∼ Normal(0,σr) , (3)

where β0,p is a population-level intercept that indicates the
mean intercept across ecoregions. β0,r is a group-level inter-
cept for each ecoregion that belongs to the overarching dis-
tribution of intercepts across all ecoregions, which we mod-
elled as a normal (Gaussian) distribution with a mean of zero
and standard deviation σr . We compared models with various
combinations of predictors (Sect. 2.5).

We emphasize that these generalized linear models used
standardized predictors for percent landslide-susceptible area
(Lc), probability of potentially landslide-triggering earth-
quakes, and frequency of potentially landslide-triggering
precipitation (Pc). This means that the expected landslide fre-
quency (µc) for each county is estimated as a function of the
county’s characteristics relative to other counties not the ab-
solute values of the predictor variables shown in Fig. 3. If a
county has a percent landslide susceptibility that is 1 standard
deviation above the mean across counties (Lc = 1), for exam-
ple, the natural logarithm of expected frequency ln(µc) will
change by β1 relative to a county with mean percent landslide
susceptibility (Lc = 0).

Our national models required priors for ϕ and βj=0,1,2,3.
In Bayesian inference, priors can encode previous knowledge
or beliefs about parameter values. Whereas uninformative
priors consider all possible parameter values equally prob-
able, weakly informative priors assign a probability to possi-
ble parameters but do not exclude any values that might be
learned from the data (Kruschke, 2014; McElreath, 2020).
We chose the following weakly informative priors:

φ ∼ logNormal(0,1) ,

β0 ∼ Normal(−4.5,3) ,
βj=1,2,3 ∼ Normal(0,1) . (4)

Our regionalized models required an additional prior for σr ,
and we chose the same prior for β0,p as for β0.

β0,p ∼ Normal(−4.5,3) ,

σr ∼ HalfStudentt(3,0,2.5) . (5)

Our choices of a log-normal prior for ϕ and a half Student-
t prior for σr are consistent with the need for a positive
shape parameter and standard deviation. As ϕ→∞, the neg-
ative binomial distribution’s variance decreases, approach-
ing a Poisson distribution; as ϕ→ 0, variance approaches
∞. Our choice of prior for ϕ acknowledged overdispersion
in landslide count data compared to a Poisson distribution
and constrained variance to a reasonable range. Our choice
of prior for β0 encodes our belief that landslide frequencies
will be well below 1 landslide km−2 yr−1 in areas with aver-
age predictor values. Through the log-link function that re-
lates β0 to µc (Eqs. 2, 3), the mean prior for β0 of −4.5
corresponds to 0.01 landslides km−2 yr−1 when all other pre-
dictors are at their mean. Our choice of priors for βj=0,1,2,3
allow for both positive or negative correlations between fre-
quencies and predictor values. For datasets with many obser-
vations, like ours, these priors primarily serve as a starting
point for the fitting algorithm (refer to next paragraph), and
the posterior parameter estimates are generally insensitive to
the exact choice of prior parameter values (Kruschke, 2014;
McElreath, 2020).

Posterior distributions are probability distributions of all
parameters that are consistent with the data, prior, and model.
This is an advantage of Bayesian inference: we obtain a dis-
tribution of estimates for each parameter rather than, for ex-
ample, a single maximum likelihood estimate. Bayesian sta-
tistical models thus inherently provide transparent estimates
of parameter uncertainty (Kruschke, 2014; McElreath, 2020;
van de Schoot et al., 2021) but require advanced algorithms
to estimate the posterior distributions. To do so, we used
Markov chain Monte Carlo (MCMC) implemented via the
R package brms v2.21.0 (Bürkner, 2017), which calls STAN
v2.32.6, a statistical programming language that uses the
No U-Turn Sampler (NUTS) Hamiltonian Monte Carlo fit-
ting algorithm (Stan Development Team, 2023). MCMC is a
stochastic process that samples from the posterior distribu-
tion and the NUTS Hamiltonian Monte Carlo algorithm is an
MCMC method that generates efficient transitions that span
the posterior (McElreath, 2020; Stan Development Team,
2023). We ran four independent chains, or sequences of sam-
ples, for 4000 iterations, discarding the first 1000 iterations
as warm up, for a total of 12 000 post-warmup draws, or
samples from the posterior. The Gelman–Rubin coefficient
(R-hat) was 1.00 for all parameters, indicating that the four
chains converged around the same distribution. All model di-
agnostics indicated acceptable fitting algorithm performance
(Kruschke, 2014; McElreath, 2020).

We report median posterior parameter estimates, which
is the median of the posterior distribution, and 95 % quan-
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tile interval (QI) as credibility intervals, which encompass
95 % of the posterior distribution. Wider posterior distribu-
tions (higher 95 % QI) indicate more parameter uncertainty,
whereas narrower posterior distributions indicate less param-
eter uncertainty (lower 95 % QI). Posterior predictive distri-
butions are simulations from the model that use the full pos-
terior parameter distributions. In this way, when we make
predictions with Bayesian models, for example, by simulat-
ing the distribution of landslide counts for each county, we
naturally propagate parameter uncertainty into our predic-
tions.

2.5 Model comparison

We compared 10 total national and regionalized model se-
tups with differing combinations of predictors to arrive at
a preferred landslide frequency model (Table 1). We used
two criteria for our selection: (1) leave-one-out (LOO) in-
formation criterion (IC) and (2) physically plausible param-
eter values. LOO estimates the out-of-sample predictive ac-
curacy of each model (Vehtari et al., 2017). A lower LOO
value indicates better estimated out-of-sample predictive ac-
curacy, and vice versa. Although we also considered error
as a goodness-of-fit measure in our additional evaluation of
the preferred model (Sect. 2.6), we preferred information
criteria for model comparison because this approach penal-
izes models with higher numbers of parameters that may
achieve better fits to the training data but worse generaliz-
ability (overfitting). We required that parameter estimates for
βj=0,1,2,3 reflect physically plausible, positive relations be-
tween the chosen predictors and landslide frequency. Based
on these criteria, we selected a regionalized model that in-
cluded landslide-susceptible area and probability of poten-
tially triggering earthquakes as our preferred model.

2.6 Model evaluation

We evaluated our preferred model results with three criteria:
fit (estimated compared to reported), robustness (training–
test cross-validation), and comparison to previous landslide
frequency estimates from the NRI. To evaluate fit, we cal-
culated reported landslide frequency for our training coun-
ties by dividing the total number of reported landslides by
the number of years in the zero-inflation corrected time se-
ries for that county and the county’s area. We then com-
puted error (residuals) by subtracting the reported frequency
from the model’s posterior median estimated frequency. To
evaluate robustness, we performed k-fold training–test cross-
validation, randomly splitting our training counties further
into training (80 % of counties) and testing (20 % of coun-
ties) folds. We refit the model to the training fold and used
it to predict the average landslide frequency for counties in
both the training and testing folds. We then computed error
(predicted minus reported) for each of these folds, repeating
the process 10 times. A similar error distribution indicates

that the model is robust and not overly influenced by the
training counties selected, whereas a markedly different error
distribution indicates that the model is sensitive to the train-
ing counties selected. We also compared our model’s county-
level average landslide frequency estimates to those reported
in the March 2023 release of the NRI (Federal Emergency
Management Agency, 2023a). Because the NRI is based on
NASA’s COOLR dataset (Juang et al., 2019), we excluded
this dataset from our training data. The NRI thus serves as an
independent comparison.

3 Results

We found that average annual landslide frequencies varied
by 5 orders of magnitude across US counties, reflecting the
country’s strong variation in landslide susceptibility, earth-
quake probability, and other factors for which ecoregion
serves as a proxy, based on our preferred model (Fig. 4a–
c). Frequency estimates ranged from 0.002 (0.0001–0.05)
landslides 1000 km−2 yr−1 in Kusilvak Census Area, Alaska,
a county with low landslide susceptibility (17 % suscepti-
ble area) and low triggering earthquake potential located
in the Tundra and Taiga ecoregion, to 31 (21–43) land-
slides 1000 km−2 yr−1 in Lake County, California, a county
with high landslide susceptibility (93 % susceptible area) and
high triggering earthquake probability located in the Mediter-
ranean California ecoregion (Figs. 3 and 4). Here we refer
to frequencies per area, which allows for a fairer comparison
between large counties and small counties. For reference, US
county areas range from 120 km2 (Hudson County, New Jer-
sey) to 377 055 km2 (Yukon-Koyukuk Census Area, Alaska).
Estimated uncertainties, shown as the range of the 95 %
quantile interval, generally followed the pattern of estimated
frequencies (Fig. 4d–f). Low uncertainties in areas with low
estimated frequencies express the model’s confidence that
few landslides are likely to be reported, whereas higher un-
certainties in high-frequency areas reflect the model’s pre-
diction that many landslides are likely, but exactly how many
earthquakes is difficult to pinpoint. Particularly high uncer-
tainties in earthquake-prone areas likely demonstrate the po-
tential for high numbers of landslides in widespread events
but few reported events in the training data. The Tundra and
Taiga ecoregion shows low estimated frequencies with rel-
atively high uncertainties, reflecting the few reported land-
slides but relevant landslide susceptibility and triggering
earthquake probability in this region.

Counties with the highest estimated frequencies tend to
have high percentages of landslide-susceptible area and
are in areas with high triggering earthquake probability,
landslide-prone ecoregions, or both (Figs. 3 and 4). Coun-
ties with estimated frequencies in the top 20 % of all coun-
ties from our preferred model are predominately along the
West Coast of CONUS, in mountainous regions of the Pa-
cific Northwest and Intermountain West, in locally steep
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Figure 4. Average annual landslide frequency by county. (a–c) Posterior median expected (average) annual landslide frequency
1000 km−2 yr−1 for 50-state US counties. Lake County, California (CA) had the highest estimated frequency and Kusilvak Census Area,
Alaska (AK) the lowest. (d–f) Range of posterior 95 % quantile interval (QI). Base map data in panels (a)–(f): US counties from U.S. Census
Bureau Cartographic Boundary Files 1 : 500 000 (U.S. Census Bureau, 2023b), non-US administrative boundaries from Natural Earth (Nat-
ural Earth, 2022). Projection and datum: (a, d) continental United States – Albers North American Datum 1983 (EPSG:5070); (b, e) Alaska
– Albers North American Datum 1983 (EPSG:3467); (c, f) Hawaii – Old Hawaiian (EPSG:4135).

or earthquake-prone regions of the Midwest and Southeast,
along the Appalachians, in southern Alaska, and on some
Hawaiian islands (Fig. 5). Model parameter estimates from
our preferred model showed that both percent susceptible
area and potentially triggering earthquake probability had a
credibly positive effect on landslide frequency (Fig. A1), but
the effect of susceptible area is larger. With 1 standard de-
viation increase in percent susceptible area, the natural log-
arithm of landslide frequency, ln(µ), was estimated to in-
crease by 0.96 (0.83–1.1) (β1); with 1 standard deviation in-
crease in potentially triggering earthquake probability, the
natural logarithm of landslide frequency was estimated to
increase by 0.45 (0.35–0.56) (β2). Considering equal per-
cent susceptible area and potentially triggering earthquake
probability, counties in the MC, MF, EF, and GP ecoregions
had above-average posterior median landslide frequency es-
timates, whereas counties in the ND, NM, and TT ecoregions
had below-average estimates (Fig. A1b). However, only TT
was credibly distinguishable from the mean across all ecore-
gions when taking into account the full posterior distribu-
tions (95 % QI). Given the lack of available training data, HI
took the mean across ecoregions. Overall, we observed that
learning from landslide inventory data substantially reduced
parameter uncertainty compared to the prior (Fig. A1).

Comparing models with different combinations of predic-
tors provided insights into factors that influence landslide
frequency at national and regional scales and led us to a
preferred model that considered susceptible area, earthquake
probability, and ecoregion. The national model that consid-
ered only landslide-susceptible area had a lower estimated
out-of-sample predictive accuracy (LOO IC) than national
models that included susceptible area along with potentially
triggering earthquake probability or precipitation frequency
(Table 1). This indicates that susceptible area alone provides
limited information about landslide frequency at a national
scale. Including earthquake probability markedly improved
estimated predictive accuracy and resulted in positive param-
eter estimates for β1 and β2, indicating estimated increases
in landslide frequency with increasing susceptible area and
earthquake probability. Adding precipitation frequency, how-
ever, led to minimal further improvement in predictive accu-
racy and resulted in a counterintuitive and physically implau-
sible negative relationship between landslide frequency and
potentially triggering precipitation frequency. This indicates
that the average frequency of daily precipitation above the
global threshold used is too general a metric to add informa-
tion on national-scale landslide frequency after susceptibil-
ity and earthquake probability are accounted for. In contrast,
a regionalized model that included landslide susceptibility
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Figure 5. Landslide frequency distribution across counties. (a–c) Quantile class of county-level landslide frequency (average landslides
1000 km−2 yr−1) compared to other counties. For example, counties in the 80–100 class have frequencies higher than the other 80 % of
counties. The 50 US states and their abbreviations are Alabama (AL), Alaska (AK), Arizona (AZ), Arkansas (AR), California (CA), Colorado
(CO), Connecticut (CT), Delaware (DE), Florida (FL), Georgia (GA), Hawaii (HI), Idaho (ID), Illinois (IL), Indiana (IN), Iowa (IA), Kansas
(KS), Kentucky (KY), Louisiana (LA), Maine (ME), Maryland (MD), Massachusetts (MA), Michigan (MI), Minnesota (MN), Mississippi
(MS), Missouri (MO), MT (Montana), Nebraska (NE), Nevada (NV), New Hampshire (NH), New Jersey (NJ), New Mexico (NM), New
York (NY), North Carolina (NC), North Dakota (ND), Ohio (OH), Oklahoma (OK), Oregon (OR), Pennsylvania (PA), Rhode Island (RI),
South Carolina (SC), Tennessee (TN), Texas (TX), Utah (UT), Vermont (VT), Virginia (VA), Washington (WA), West Virginia (WV),
Wisconsin (WI), and Wyoming (WY). Base map data in panels (a)–(c): US counties from U.S. Census Bureau Cartographic Boundary
Files 1 : 500 000 (U.S. Census Bureau, 2023b), non-US administrative boundaries from Natural Earth (Natural Earth, 2022). Projection and
datum: (a) continental United States Albers North American Datum 1983 (EPSG:5070); (b) Alaska Albers North American Datum 1983
(EPSG:3467); (c) Old Hawaiian (EPSG:4135).

and a varying intercept by ecoregion showed better estimated
predictive accuracy than any national model. This indicates
relevant regional differences in landslide frequency at simi-
lar susceptibility levels and that ecoregions serve as a useful
proxy for factors that influence landslide frequency but were

not explicitly modelled. Including earthquake probability in
this model improved predictive accuracy further, indicating
that earthquake probability is relevant even after accounting
for susceptible area and ecoregion, whereas, as in the na-
tional model, precipitation frequency had a negligible effect
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on predictive accuracy. Based on its comparatively high esti-
mated predictive accuracy and physically plausible parame-
ter estimates, we selected the regionalized, multi-level model
with susceptible area, earthquake probability, and ecoregion
as our preferred landslide frequency model.

Our model evaluation showed that for 76 % of counties
(239 of 316 training counties) our estimates of average an-
nual landslide frequency (median QI) were within 1 land-
slide 1000 km−2 yr−1 of rates estimated by dividing the to-
tal number of reported landslides by the number of years
on record in the training data (Fig. 6a). The remaining 24 %
were divided between overprediction (49 counties, 15 % of
total) and underprediction (28 counties, 9 % of total). Coun-
ties where the model substantially overpredicted compared to
reported data are in some parts of the West Coast and south-
ern Alaska (Figs. 6b–d and A2a–c). Notably, these coun-
ties are near counties with very low error, which could in-
dicate that true landslide rates are higher than reported in
these areas. Counties where the model substantially under-
predicted are sprinkled through Vermont, North Carolina,
northern California, Oregon, and Idaho, with no notable spa-
tial pattern. These isolated counties may have more detailed
reporting than their neighbors, have experienced an excep-
tional widespread event during the reporting period, or have
local conditions that cause rates of landsliding to be higher
than similar counties. We evaluated robustness or the model’s
sensitivity to the specific training data using k-fold training–
test cross-validation (Fig. A2d). We found that the distribu-
tion of errors between the training and test splits were nearly
identical in 10 different folds, indicating that the model is ro-
bust and is not overly influenced by specific counties in the
training data.

Negative binomial regression models predict not just the
expected or average frequency shown in Fig. 4 but also the
full distribution of landslide counts per year in each county.
Both predicted and reported distributions of annual landslide
counts were heavily right-skewed, meaning that many years
had few or no landslides and that few years had many land-
slides. As such, any individual year may be far from the aver-
age. Marin County, California, for example, had 58 years on
record after zero-inflation correction with 82 total reported
landslides, giving an average of 1.4 landslides per county
per year (Fig. 2). However, 0 landslides were reported in
56 of those years, and the 2 years with reported landslides
had 68 and 16 reported landslides, demonstrating that it is
worthwhile to consider the full predicted distributions rather
than only the averages. Figure 7 shows the posterior pre-
dictive distributions of annual landslide counts 1000 km−2

for a random selection of 50 example counties compared to
reported data. Median predicted counts 1000 km−2 yr−1 are
zero in all counties, meaning that the model predicted no re-
ported landslides for half of the years in a simulated time se-
ries. This result is consistent with the training data for most
counties; 96 % of training counties (including Marin County,
California) had median reported annual counts of zero. In

contrast, 99th percentile years were predicted to have hun-
dreds of landslides in some counties and fewer than 10 in
others (Fig. 7). Although the range of predicted 99th per-
centile years was within the range of observed values across
counties, in some counties, like Multnomah County, Oregon,
for example, the model underpredicted high-magnitude years
compared to observed data, whereas in others, like Kodiak
Island Borough, Alaska, the model overpredicted compared
to observed data. Counties where the model overpredicted
may have less complete reporting than counties with simi-
lar characteristics, may be prone to widespread events that
have not occurred during the reporting period, or may have
local processes that lead to lower-than-average rates of land-
sliding that our national-scale model does not capture. Coun-
ties where the model underpredicted, in turn, may have more
complete reporting, have experienced more extreme landslid-
ing events during the period of record, or have local processes
that lead to higher-than-average rates of landsliding.

Although isolated landslides can be extremely destruc-
tive if they impact populated areas, widespread landslide
events with tens to thousands of landslides cause regional
effects. Figure 7a–c shows the estimated number of land-
slides 1000 km−2 for the 99th percentile (most extreme 1 %)
of predicted years for each county, which could serve as
an indicator of a county’s potential for widespread land-
sliding. We observed that the range of magnitudes across
counties was much larger than when we considered the av-
erage, whereas averages ranged from near 0 to ∼ 30 land-
slides 1000 km−2 yr−1; 99th percentiles ranged from 1 to
more than 700 landslides 1000 km−2 yr−1. High intensi-
ties have been reported in both earthquake and rainfall-
triggered widespread events: for example, strong winter
storms triggered 2315 landslides 1000 km−2 yr−1 in Contra
Costa County, California, in 2016, and the Northridge earth-
quake triggered 692 landslides 1000 km−2 yr−1 in Los An-
geles County, California, in 1994. Counties with high 99th
percentile years are located in areas with high landslide sus-
ceptibility and/or high earthquake hazard; these counties also
have high predicted average frequencies because of the influ-
ence of years with many landslides.

Many counties with predicted potential for widespread
landslide events had no such events reported in the invento-
ries we considered in our training dataset. Figure 7d–f shows
counties with more than 10 landslides 1000 km−2 yr−1 pre-
dicted in 99th percentile years compared to whether such a
year was reported in our training dataset. These results show
that our model was able to identify areas with potential for
widespread landsliding, even when such large events were
not reported in the training data for that county. We found
that 756 (24 %) of US counties had predicted 99th percentile
years with > 10 landslides 1000 km−2 yr−1 but had no such
years in our training dataset; in total, 27 % of counties had
this potential, including those where they have been reported.
We observed that many counties with predicted potential for
widespread landsliding but no reported events (dark brown in
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Figure 6. Model evaluation. (a) Reported versus predicted average annual landslide frequencies (points; error bars show 95 % quantile
intervals). Dashed line is a visual guide at a 1 : 1 ratio, indicating zero error. Dotted lines are visual guides at errors of −1 and 1 landslides
1000 km−2 yr−1. Colors correspond to absolute error scale from panel (d). (b–d) County-level error calculated as the absolute difference
between predicted and reported average annual landslide frequencies shown on a log10 scale to better display counties with low errors. Base
map data in panels (b)–(d): US counties from U.S. Census Bureau Cartographic Boundary Files 1 : 500 000 (U.S. Census Bureau, 2023b),
non-U.S. administrative boundaries from Natural Earth (Natural Earth, 2022). Projection and datum: (b) continental United States Albers
North American Datum 1983 (EPSG:5070); (c) Alaska Albers North American Datum 1983 (EPSG:3467); (d) Old Hawaiian (EPSG:4135).

Fig. 7d–f) are near counties with similar characteristics that
have had reported widespread events (light brown in Fig. 7d–
f). For example, although years with more than 10 landslides
1000 km−2 yr−1 have been reported in most Vermont coun-
ties, neighboring counties in New Hampshire had no reported
landslides in our training data; our model predicts that these
New Hampshire counties have widespread landsliding po-
tential. In 13 counties, years with more than 10 landslides
1000 km−2 yr−1 have been reported but are not predicted by
our model. These isolated counties in Arizona, Minnesota,
Vermont, and the Pacific Northwest likely have local land-
slide processes that our national-scale model was unable to
capture. For example, some of the larger reported events in
Arizona were post-fire debris flows, which occur under con-
ditions that our model did not explicitly consider.

Our landslide frequency estimates were generally higher
and more variable than the landslide frequency estimates re-
ported in the March 2023 release of the NRI (Fig. 8) (Fed-
eral Emergency Management Agency, 2023a). The NRI esti-
mates were calculated for census tracts, which are smaller
than counties, and relied on 3637 landslides reported be-
tween 2010 and 2021 in NASA’s COOLR database. A min-
imum annual frequency of 0.01 landslides per tract per year
was used to fill in gaps for tracts with no reported landslides,

and census tract level estimates were aggregated to county
level using area-weighted averages. As a result, NRI land-
slide frequency estimates ranged from 0 to 1.3 landslides per
county per year (Fig. 8) (Federal Emergency Management
Agency, 2023b). Our estimates, which used 62 720 landslides
reported over varying time periods as training data (Table A1,
Fig. 1) and statistical modelling to fill gaps, ranged from 0
to 177 landslides per county per year (median QI). We did
not include reported landslides from the COOLR database in
our training data, such that it serves as an independent vali-
dation. Our results showed elevated landslide frequencies in
many counties with low estimated frequencies in the NRI and
were also more spatially consistent because our model took
susceptibility and controls on triggering conditions into ac-
count rather than relying on a small and dispersed sample of
reported landslides. We also provided estimates for the state
of Alaska, which has counties with some of the highest es-
timated frequencies nationwide and was not included in the
previous NRI release.
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Figure 7. Predicted distributions of landslide counts per year. (a–c) 99th percentile of the posterior predictive distribution for each county.
The top 1 % of years is estimated to have landslide counts at this level or higher. (d–f) Counties with more than 10 landslides 1000 km−2 yr−1

predicted in 99th percentile years compared to whether such a year was reported in our training dataset. (g) Posterior predictive distributions
for 50 randomly selected counties compared to reported data. These counties are in the states of Alaska (AK), Arizona (AZ), California (CA),
Kentucky (KY), Minnesota (MN), Nebraska (NE), New Jersey (NJ), North Carolina (NC), Oregon (OR), Vermont (VT), and Washington
(WA) (refer to Fig. 5). Base map data in panels (a)–(f): US counties from U.S. Census Bureau Cartographic Boundary Files 1 : 500 000 (U.S.
Census Bureau, 2023b), non-US administrative boundaries from Natural Earth (Natural Earth, 2022). Projection and datum: (a, d) continental
United States – Albers North American Datum 1983 (EPSG:5070); (b, e) Alaska – Albers North American Datum 1983 (EPSG:3467);
(c, f) Hawaii – Old Hawaiian (EPSG:4135).
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Figure 8. Comparison to county-level landslide frequencies from the National Risk Index (NRI) March 2023 release. (a–c) Average land-
slide frequencies (landslides per county per year; posterior median) for 50-state US counties from this study. Note that these results are
not normalized by area for consistency with the NRI; large counties will have higher estimated frequencies than small counties with the
same landslide susceptibility and triggering characteristics. (d–f) Average landslide frequencies (landslides per county per year) for 50-state
US counties from the Federal Emergency Management Agency (FEMA)’s National Risk Index (NRI) March 2023 release (Federal Emer-
gency Management Agency, 2023a). Base map data in panels (a)–(c): US counties from U.S. Census Bureau Cartographic Boundary Files
1 : 500 000 (U.S. Census Bureau, 2023b), non-US administrative boundaries from Natural Earth (Natural Earth, 2022). (d–f) US counties
and landslide frequency estimates from FEMA National Risk Index March 2023 release (Federal Emergency Management Agency, 2023a),
non-US administrative boundaries from Natural Earth (Natural Earth, 2022). Projection and datum: (a, d) continental United States – Albers
North American Datum 1983 (EPSG:5070); (b, e) Alaska – Albers North American Datum 1983 (EPSG:3467); (c, f) Hawaii – Old Hawaiian
(EPSG:4135).
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4 Discussion

We present the first map of landslide frequencies for the
entire United States, which we report at the county level
across all 50 states. Our probabilistic estimates result from
a Bayesian statistical model trained with data from coun-
ties with high-quality landslide inventories and account for
gaps in reporting over time. We incorporated spatial infor-
mation on terrain susceptibility and the relative frequency
of potential-landslide-triggering conditions, which allowed
for a consistent and accurate estimate of landslide hazard,
even in areas without temporal constraints on landsliding.
This approach offers advantages over approaches that as-
sume that landslide inventories are complete in space and
time. For example, Yuan and Chen (2023) applied a machine-
learning model over CONUS and demonstrated that it pre-
dicted landslides only in those regions where they have been
previously observed, but not in regions without any landslide
timing data. Our model, in contrast, predicted the full distri-
bution of landslide counts per year for each county, includ-
ing for regions with known landslide susceptibility, but few
or no landslides with reported timing. Furthermore, we re-
port transparent uncertainty ranges for our estimates of an-
nual landslide frequency and evaluate potential for the most
extreme widespread landsliding events. These uncertainties
reflect the difficulty in constraining a complex hazard that
involves both landscape evolution processes over geologic
time and the stochastic triggering conditions that are criti-
cal on the shorter timescale of concern for human effects.
Comparing models with differing sets of predictor variables
highlighted the utility of interpretable data-driven models for
landslide frequency estimation, as they allowed us to identify
and exclude models with satisfactory predictive accuracy but
physically implausible parameter estimates.

Our results are largely consistent with available reported
ranges of landslide recurrences from studies over smaller
regions based on localized data and models. For exam-
ple, Wooten et al. (2016) showed that widespread landslide
events with hundreds of landslides occur every 9 years and
thousands of landslides every 25 years across southern Ap-
palachia. Cordeira et al. (2019) found at least 254 landslide
days in 142 years of records for the San Francisco Bay Area,
although they clarify that the actual number of landslides dur-
ing this interval is known to be incomplete. Overall, three-
quarters of our model predictions are within 1 landslide of
the observed rates from our inventory. The remaining one-
quarter that are less consistent with observations include pre-
dicted larger events with numerous landslides, where the ob-
served number can vary considerably depending on many
conditions from reporting biases to storm or earthquake size
and extent and whether such events have occurred during the
observation period.

One noteworthy advantage of using negative binomial dis-
tributions is that it enables us to consider the potential for
extreme events, even for areas where they have not yet been

recorded; this results in a much broader and realistic range
of landslide frequencies than previous estimates. In contrast,
the existing NRI model took a simpler approach to address-
ing landslide frequency by dividing the number of landslides
reported in an inventory based on news and citizen scientists
by the length of the record between 2010 and 2021, and then
assigning a constant value to areas without sufficient data
(Federal Emergency Management Agency, 2023b). This re-
sulted in an underestimated and overly narrow range of land-
slide frequencies. Our model’s predictions were higher, more
variable, and more realistic as indicated by the more com-
plete inventory data (Belair et al., 2025). Given the episodic
and dispersed nature of landslides, as well as the incomplete
and sparse historical records relative to other geologic haz-
ards such as volcanic eruptions, earthquakes, and tsunamis,
accounting for extreme events is important when considering
estimates of annualized losses and planning risk mitigation
efforts.

Our approach makes advances toward providing consistent
landslide frequency estimates at a continental scale across
the entire United States. However, limited understanding of
how specific triggering conditions influence landslide ac-
tivity across different regions of the country presented a
considerable challenge to developing locally accurate esti-
mates of landslide frequency. Accounting for these knowl-
edge gaps required simplifying assumptions when selecting
predictor variables to characterize seismic and hydrometeo-
rological triggering conditions. Further research on regional
landslide-triggering conditions could ultimately lead to ma-
jor improvements in local estimates of landslide hazard. In
the United States, rainfall thresholds for shallow landslides
are known to vary regionally (e.g., Baum and Godt, 2010),
but this variability has not been linked to specific environ-
mental or terrain attributes that could be used to constrain
thresholds across the entire country. Indeed, our model com-
parison showed that including the frequency of daily pre-
cipitation above a global threshold added little additional
information on landslide frequency and resulted in a coun-
terintuitive negative relationship between precipitation and
landslide frequency. One explanation for this is that infre-
quently occurring storms with high precipitation accumu-
lations have triggered widespread landsliding in areas that
are often dry, e.g., atmospheric rivers in the San Francisco
Bay Area (Corbett and Collins, 2023a; Thomas et al., 2018).
Linking landslide occurrences to both frequency and mag-
nitude of precipitation beyond a single intensity–duration
threshold could improve estimates, but additional research
would be needed to characterize the hydrometeorological
conditions that are relevant for triggering landslides across
the country. Thus, expansion beyond currently existing local
studies would be needed (e.g., Collins et al., 2020; Oakley
et al., 2017). For example, landslide frequency estimates for
Hong Kong SAR, which has an area smaller than many US
counties (1110 km2), were based on predicted landslide re-
sponse to specific triggering storm scenarios. The estimated
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recurrence intervals of those storms were then used to con-
strain landslide frequency (Ko and Lo, 2018). Nevertheless,
including ecoregion in our model served as an effective proxy
for climate and other conditions that we did not explicitly in-
corporate, improving predictive accuracy.

Similarly, linking earthquake-triggered landslide activity
to seismological parameters in specific regions (Luo et al.,
2022; Marc et al., 2017; Meunier et al., 2007; Tanyaş et al.,
2017) could allow for improved landslide frequency estima-
tion. Our model comparison showed that including the 100-
year probability of earthquakes with MMI=VI improved
predictive accuracy beyond models that considered only sus-
ceptible area and ecoregion, demonstrating its utility as a
county-level indicator at a continental scale. However, as
with precipitation, considering both frequency and magni-
tude of triggering earthquakes beyond a simple threshold
would likely provide additional detail. The USGS Ground
Failure product, for example, relies on peak ground velocity
and a suite of other factors to predict areas expected to ex-
perience landslides from specific earthquakes (Allstadt et al.,
2022; Nowicki Jessee et al., 2018). Integrating this knowl-
edge with estimated earthquake frequencies from the NSHM
could improve frequency estimates for earthquake-triggered
landslides. We also acknowledge that areas with high earth-
quake probability tend to have higher uplift and erosion rates
that likely correlate with increased landslide frequency, even
in the absence of specific triggering earthquake events in our
inventory data for some counties. Moreover, differentiating
by slope failure type could improve characterization of fre-
quencies based on the expected range of triggering condi-
tions associated with these types: our model may not ade-
quately capture the isolated large deep-seated landslides trig-
gered by prolonged low-intensity rainfall over several weeks
or months, for example. Given the uncertainty in the spatial
and temporal controls that drive landsliding over an area as
vast as the United States, our pragmatic approach provides a
framework and benchmark at continental scales, and we ex-
pect that improved regional sub-models would likely lead to
further improvements in our estimates.

Overall, our landslide frequency estimates are likely con-
servative, as reported landslides are known to be a small sub-
set of all landslides, and our historical records include only
a few truly extreme events relative to the geologic timescale
of landscape evolution. Although we acknowledge that these
records are likely incomplete, we consider it unlikely that
the observed right-skewed distributions result from report-
ing bias, given the consistent occurrence of such distribu-
tions across counties covered by different inventories. The
influence of underreporting on average landslide frequency
estimates is, however, particularly pronounced in the Tundra
and Taiga ecoregion in Alaska, which has few reported land-
slides in our inventory data despite substantial potential for
landsliding, e.g., due to permafrost degradation (Patton et al.,
2019). Nevertheless, we do offer estimates of reported land-
slide frequency for all counties if those counties had land-

slide inventory data like the counties with the most com-
prehensive information available nationwide and account for
the spatial distribution of landsliding by including terrain
and triggering characteristics in our model. Our results suc-
cessfully addressed the primary objective of providing im-
proved input on landslide frequencies for pending revisions
to FEMA’s national-scale risk assessment and can also in-
form other risk-reduction and loss-mitigation efforts across
the United States (Godt et al., 2022).

5 Conclusions

We present a novel framework for estimating landslide fre-
quency across vast areas by leveraging available landslide in-
ventory data with reported timing and using statistical mod-
elling to make predictions for areas with limited landslide
records. Our approach uses Bayesian negative binomial re-
gression to estimate county-level landslide frequency as a
function of landslide susceptibility, probability of potentially
landslide-triggering earthquakes, and ecoregion as a proxy
for factors influencing landslide frequency that we do not
explicitly consider in our model. Our method enables accu-
rate estimates of very low landslide frequencies and consid-
ers the potential for extreme, widespread landsliding events.
Our results are consistent with existing landslide occurrence
data and previous local frequency estimates but represent the
range of possible landslide frequencies and spatial variations
across the entire United States more accurately than previous
national estimates reported in the NRI. These contributions
represent an advance for the United States by taking a ma-
jor step beyond the current national landslide susceptibility
map that shows only where landslides are likely (regardless
of timescale) to quantifying how landslide frequency (how
often) varies across the entire nation. This step toward a na-
tional landslide hazard model is limited by data availability
and process understanding of regionally specific landslide re-
sponse to triggering conditions. As such, by incorporating
future data collection and research advances, our framework
can be updated to drive further improvements in continental-
scale modelling of landslide frequency for hazard and risk
assessments.
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Appendix A

Figure A1. Parameter distributions. (a) Prior and posterior parameter distributions. Points and bars show the median and 95 % quantile
interval (QI), respectively. In the generalized linear model, β0,p is the population level intercept, β1 is the coefficient of standardized percent
landslide-susceptible area, and β2 of is the coefficient of standardized probability of potentially landslide-triggering earthquakes. ϕ is the
shape parameter of the negative binomial distribution, and σr describes the spread between ecoregion groups. (b) Expected value of the
posterior distribution at mean probability of potentially landslide-triggering earthquakes by ecoregion: Deserts (DS), Eastern Forests (EF),
Great Plains (GP), Marine West Coast Forest (MF), Mediterranean California (MC), Northwestern Forested Mountains (NM), and Tundra and
Taiga (TT). Lines show the mean and shaded regions the 95th percentile QI. These counterfactual plots visualize how the average landslide
frequency changes with varying standardized susceptible area in each ecoregion, assuming a constant triggering earthquake probability
(the mean across counties, 0.15 probability of an earthquake with modified Mercalli intensity (MMI) =VI in 100 years). A standardized
susceptible area of 0 indicates the mean percent susceptible area across counties (41 %), with 1 indicating 1 standard deviation above the
mean and with −1 indicating 1 standard deviation below the mean.
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Figure A2. Error distribution. (a–c) County-level error calculated as the difference between predicted and reported average annual landslide
frequencies. (d) Error distributions for one example training and testing cross-validation split. Dotted lines are visual guides at errors of
−1 and 1 landslides 1000 km−2 yr−1. Base map data in panels (a)–(c): US counties from U.S. Census Bureau Cartographic Boundary
Files 1 : 500 000 (U.S. Census Bureau, 2023b), non-US administrative boundaries from Natural Earth (Natural Earth, 2022). Projection and
datum: (a) continental United States Albers North American Datum 1983 (EPSG:5070); (b) Alaska Albers North American Datum 1983
(EPSG:3467); (c, f) Old Hawaiian (EPSG:4135).
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Table A1. Landslide inventory overview.

Inventory Earliest Latest Record Number of Event State or Zero-inflation (zv) Reporting gap Citation
year Year length reported based local median (95 % corrected years

landslides quantile interval) on record

Alaska Department
of Transportation

2003 2022 20 6408 FALSE TRUE 0.03 (0.001, 0.16) 20 Alaska Department
of Transportation
and Public Facilities
(2022)

Arizona Geological
Survey

2004 2018 15 1833 FALSE TRUE 0.47 (0.24, 0.71) 11 Arizona Geological
Survey (2017)

California
Geological Survey

1906 2011 106 3493 FALSE TRUE 0.73 (0.64, 0.81) 57 California
Geological Survey
(2019)

Idaho Geological
Survey

1996 2018 23 1053 FALSE TRUE 0.77 (0.58, 0.90) 10 Lifton et al. (2021)

Kentucky
Geological Survey

1971 2021 52 1156 FALSE TRUE 0.36 (0.24, 0.49) 43 Crawford (2022)

Maine Geological
Survey

1815 2018 204 45 FALSE TRUE 0.87 (0.83, 0.91) 44 Halsted (2020)

Missouri
Department of
Natural Resources

1982 2016 35 11 FALSE TRUE 0.79 (0.64, 0.90) 15 Missouri
Department of
Natural Resources
(2025)

North Carolina
Geological Survey

1877 2024 148 2602 FALSE TRUE 0.61 (0.53, 0.68) 92 Bozdog (2023)

University of
Nebraska – Lincoln

1983 2005 23 58 FALSE TRUE 0.31 (0.16, 0.51) 21 Institute of
Agriculture and
Natural Resources
(2025)

New Jersey
Geological Survey

1782 2018 237 275 FALSE TRUE 0.70 (0.64, 0.75) 109 New Jersey
Geological and
Water Survey
(2018)

Oregon
Department of
Geology and
Mineral Industries

1889 2023 135 7996 FALSE TRUE 0.50 (0.41, 0.58) 98 Oregon Department
of Geology and
Mineral Industries
(2024)

U.S. Forest Service
Alaska Tongass

1960 2023 64 569 FALSE TRUE 0.41 (0.30, 0.53) 59 U.S. Forest Service
(2024)

USGS Alaska
Glacier Bay

1985 2016 32 23 FALSE FALSE 0.65 (0.48, 0.80) 19 Bessette-Kirton and
Coe (2016)

USGS Alaska St.
Elias

1985 2019 35 263 FALSE FALSE 0.07 (0.02, 0.18) 35 Bessette-Kirton et
al. (2020)

USGS California
Crow Creek 1998

1997 1997 1 3537 TRUE FALSE Coe et al. (2004)

USGS California
Dixie Fire Debris
Flows

2013 2022 10 1352 TRUE FALSE Thomas et al.
(2023)

USGS California
East San Francisco
Bay 2016–2017

2016 2016 1 8450 TRUE FALSE Corbett and Collins
(2023a)

USGS California
Los Angeles
County Jan 2019

2019 2019 1 281 TRUE FALSE Rengers (2020)
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Table A1. Continued.

Inventory Earliest Latest Record Number of Event State or Zero-inflation (zv) Reporting gap Citation
year Year length reported based local median (95 % corrected years

landslides quantile interval) on record

USGS California
Montecito Jan 2018

2018 2018 1 12 TRUE FALSE Kean et al. (2019)

USGS California
San Francisco Bay
December
2022–January 2023

2022 2022 1 162 TRUE FALSE Brien et al. (2023)

USGS California
Walpert Ridge
1998

1998 1998 1 529 TRUE FALSE Coe and Godt
(2002)

USGS Colorado
Front Range July
1999

1999 1999 1 428 TRUE FALSE Godt and Coe
(2007)

USGS Earthquake-
Triggered Ground
Failure

1971 2020 49 25 105 TRUE FALSE Schmitt et al. (2017)

USGS Michigan
North Manitou

2014 2014 1 27 TRUE FALSE Ashland (2022a)

USGS Michigan
South Manitou

2014 2015 2 26 TRUE FALSE Ashland (2022b)

USGS Minnesota 1852 2019 168 672 FALSE TRUE 0.78 (0.71, 0.83) 69 DeLong et al.
(2021)

USGS Oregon
Southern Coast
Range Nov 1996

1996 1996 1 207 TRUE FALSE Coe et al. (2011)

USGS Post-Fire
Debris Flows

2000 2013 14 316 FALSE FALSE 0.17 (0.04, 0.40) 14 Staley et al. (2016)

USGS Seismogenic
Mass Movements

1977 2023 47 174 FALSE FALSE 0.41 (0.28, 0.54) 39 Collins et al. (2022)

Vermont
Geological Survey

1969 2019 51 3049 FALSE TRUE 0.80 (0.67, 0.89) 23 Vermont Agency of
Natural Resources
(2020)

Seattle Department
of Construction
and Inspections

1897 2041 145 1409 FALSE TRUE 0.26 (0.20, 0.34) 137 Seattle Department
of Construction and
Inspections (2023)

Washington
Geological Survey

1906 2022 117 2245 FALSE TRUE 0.50 (0.41, 0.59) 88 Washington
Geological Survey
(2023)

Code availability. The code used to perform the
analysis is archived as a USGS software release
(https://doi.org/10.5066/P142ZLDX, Luna and Woodard, 2025).

Data availability. All data used in this study are publicly available
from the following sources:

– This dataset includes all landslide inventories listed in Ta-
ble A1. USGS Landslide Inventories Across the United States
compilation, version 3: https://doi.org/10.5066/P14AJF8I (Be-
lair et al., 2025),

– U.S. Census Bureau Cartographic Boundary Files 1 : 500 000:
https://www.census.gov/geographies/mapping-files/
time-series/geo/cartographic-boundary.html (last access:
11 September 2024),

– Natural Earth Administrative Boundaries: https://www.
naturalearthdata.com/downloads/50m-cultural-vectors/ (last
access: 11 September 2024),

– USGS National Landslide Susceptibility Model:
https://doi.org/10.5066/P13KAGU3 (Belair et al., 2024),
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– U.S. Census Bureau Tiger/Line Counties 2023: https:
//www.census.gov/cgi-bin/geo/shapefiles/index.php (last ac-
cess: 19 September 2024),

– U.S. National Atlas Water Feature Areas dataset:
https://www.arcgis.com/home/item.html?id=
0eb5f7b586ea4e08b5003b3554032453 (last access: 24 July
2023),

– Level 1 Ecoregions of North America: https://www.epa.gov/
eco-research/ecoregions-north-america (last accesss: 15 Jan-
uary 2025),

– Analysis of Record for Calibration (AORC) v1.1:
https://hydrology.nws.noaa.gov/pub/AORC/V1.1/ (last
access: 17 January 2025),

– Global Historical Climatology Network Daily: https://
www.ncei.noaa.gov/pub/data/ghcn/daily/by_station/ (last ac-
cess: 15 October 2024),

– U.S. 50-State National Seismic Hazard Model:
https://doi.org/10.5066/P9GNPCOD (Petersen et al., 2023).
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