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Abstract. During 2023, the state of Rio de Janeiro experi-
enced unprecedented maximum temperatures, resulting in a
substantial increase in human mortality. This study aims to
analyze the contribution of global warming to changes in the
distribution of annual maximum temperatures and their sub-
sequent impact on mortality rates. Our analysis of extreme
temperatures reveals that a non-stationary model, in which
the location parameter shifts linearly as a function of global
warming and/or the El Nifio-Southern Oscillation (ENSO),
provides a significantly better fit to the data than its station-
ary counterpart. The northern region of the state exhibited
the strongest response to climate change, while ENSO effects
were most pronounced in the eastern region. Events as likely
as the 2023 record were estimated at about 2 °C colder in pre-
industrial times. Under a 2 °C global warming scenario, the
probability of experiencing maximum temperatures equal to
2023 increases by at least a factor of 3. These findings high-
light climate change as the primary driver of extreme temper-
ature intensification, with ENSO acting as a secondary but
significant factor in the eastern region. As global warming
approaches 2 °C, Rio de Janeiro is projected to experience
heat waves of that magnitude approximately every 4 years.
Climate change has contributed to one in three heat-related
deaths recorded during the peak of the event. Without adapta-
tion and mitigation measures, global warming would further
increase the death toll during extreme events of the same fre-
quency to those experienced in 2023.

1 Introduction

From the early austral spring of 2023 to the late summer
of March 2024, central and southern Brazil experienced ex-
tremely high daily maximum air temperatures (TX). This pe-
riod recorded the warmest spring in at least 63 years for the
region, with TX exceeding 43 °C locally, which was 5-8 °C
higher than the 1991-2020 climatology (Kew et al., 2023;
Perkins-Kirkpatrick et al., 2024). The intense heat persisted
throughout the season and peaked in November, when TX
anomalies reached 49 °C in some areas of southern Brazil.
Finally, from 15 to 18 March 2024, the region again reg-
istered another exceptional heat wave, with temperatures
climbing to unprecedented levels (~ 42 °C in Rio de Janeiro)
for early autumn (Faranda and Alberti, 2024).

This unusual season was accompanied by El Nifio, the
warm phase of the El Nifio—Southern Oscillation (ENSO),
which modulates the temperature and precipitation of tropi-
cal South America (Cai et al., 2020). During El Nifio events,
the descending branch of the Walker circulation shifts toward
the tropical Atlantic Ocean and northeastern South Amer-
ica, encompassing the eastern Amazon region and northeast-
ern Brazil (Reboita et al., 2021). In addition to modifica-
tions in the Walker circulation, ENSO-related impacts over
South America are also modulated by tropical-extratropical
teleconnections. This mechanism involves stationary Rossby
wave trains, initiated by anomalous convection over the trop-
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ical Pacific, which propagate into the mid-latitudes, gener-
ating alternating centers of high and low atmospheric pres-
sure (Cai et al., 2020). Nevertheless, the influence of El Nifio
on precipitation in the state of Rio de Janeiro is weak (de
Oliveira-Junior et al., 2018; Sobral et al., 2019). In terms
of temperature, this region experiences discernible warm
anomalies during the El Nifio phase throughout the year, ex-
cept for the austral winter (Cai et al., 2020). In particular,
in the city of Rio de Janeiro, TX is ~ 1 °C warmer than the
climatology during intense El Nifio events, although this in-
crease is not statistically significant (Wanderley et al., 2019).

Besides the influence of El Nifio, the extreme tempera-
ture conditions of 2023 occurred in the context of an in-
creasingly warming planet (IPCC, 2023, Summary for Pol-
icymakers). In Brazil, de Barros Soares et al. (2017) found
an overall warming, with observed near-surface air tempera-
tures increasing by up to 1 °C per decade between 1975 and
2004. Over the ocean near the coasts of Rio de Janeiro and
Sdo Paulo, TX also shows significant annual and seasonal
positive trends (de Oliveira et al., 2021). Furthermore, the
frequency of occurrence of warm extremes has significantly
increased over Brazil during the period 1961-2018, while the
opposite is true for cold extremes (Regoto et al., 2021). It is
also noteworthy that the largest increases in warm extremes
occur during spring and austral summer, coinciding with the
period of exceptional warmth in 2023-2024. A more detailed
analysis of trends in the state of Rio de Janeiro for the pe-
riod 1961-2012 reveals significant warming in mean TX (be-
tween +0.01 and +0.08 °C yr~!) over the metropolitan area
and in the northern and northwestern regions of the state,
as well as upward trends in the percentage of warm nights
and days (between +0.1 % dyr~! and +0.6 % d yr—!) for al-
most the entire state (Silva and Dereczynski, 2014). How-
ever, when the six largest cities in Brazil are considered, Rio
de Janeiro shows the lowest increases in the number of heat
wave days between 1961-1980 and 1981-2014, with positive
but non-significant trends (Geirinhas et al., 2018).

In light of the reported changes over this region, it be-
comes pertinent to ask to what extent climate change con-
tributes to the observed long-term trend in temperature and
associated extremes. Using global climate models, de Abreu
et al. (2019) found that anthropogenic activities account for
a substantial fraction of the observed temperature trends in
southeastern Brazil, with no significant contribution from
natural or other sources.

In addition to the attribution of trends in mean and extreme
temperature, recent studies also focused on the attribution
of individual extreme events to climate change (NAS, 2016;
Jézéquel et al., 2018; Otto, 2017; Stott et al., 2016). Attribut-
ing individual extreme events was considered unfeasible un-
til Allen (2003) outlined a methodology for evaluating the
influence of external factors on the probability of a specific
extreme weather event. Subsequently, Philip et al. (2020) de-
scribed a protocol that relies heavily on statistical methods
within the extreme value theory (EVT). To model the tail
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of the distribution, classical EVT fits a stationary probabil-
ity density function (PDF) to extreme values; however, in
the context of global warming, the stationary assumption is
not valid (Ouarda et al., 2020). Therefore, the protocol pro-
poses a non-stationary approach in which the PDF shifts lin-
early as a function of a covariate (Katz, 2013; Robin and
Ribes, 2020; Slater et al., 2021). Using global warming (a
clear indicator of anthropogenic activities) as a covariate en-
ables the modeling of its effect on the behavior of the tail.
By applying this protocol to attribute the early spring 2023
heat in South America, Kew et al. (2023) estimated that the
event would have been 1.4 to 4.3 °C cooler if humans had
not warmed the planet by burning fossil fuels. Moreover, the
authors stated that the direct contribution of ENSO to the ex-
treme heat is small compared to the climate change signal.
On the other hand, by using historical analogs of the event,
Faranda and Alberti (2024) claimed that both anthropogenic
climate change and natural climate variability played a role in
intensifying the March 2024 heat wave in Brazil. These two
rapid early- and late-season heat attribution analyses con-
ducted in southeastern Brazil yielded varying conclusions re-
garding the extent to which internal variability contributes to
the intensification of high temperatures. Furthermore, they
employed gridded observations and reanalyses, which may
lead to an underestimation of hot extreme events due to spa-
tial averaging (Balmaceda-Huarte et al., 2021; Sheridan et
al., 2020).

Previous studies have identified that heat waves in Brazil
have severe impacts on health, particularly among vulnerable
populations such as the elderly and those with pre-existing
conditions. In Rio de Janeiro, prolonged heat exposure ex-
acerbates chronic conditions and increases mortality from
cardiovascular and respiratory diseases (Ferreira et al., 2019;
Silveira et al., 2023). For example, events like the 2010 heat
wave led to excess mortality among older adults due to cir-
culatory diseases (Geirinhas et al., 2020). Urban factors (the
heat island effect) further amplify these risks by heightening
temperature anomalies in densely built-up areas (Kriiger et
al., 2024; Peres et al., 2018). Economic inequality also plays
a critical role, as low-income populations are disproportion-
ately vulnerable to the effects of extreme heat (Zhao et al.,
2019a). Furthermore, there is little evidence of thermal adap-
tation at the national level, raising concerns that the health
burden of heat exposure may escalate with global warming
(Zhao et al., 2019a; Zhao et al., 2019b).

In this study, we examine the contribution of climate
change and ENSO to the daily maximum temperatures ob-
served in November 2023, which were historical records over
the entire period (1971-2024). The analysis is conducted at
five meteorological stations in the state of Rio de Janeiro.
Additionally, we assess the probability of similar extreme
events occurring in the future and estimate their return pe-
riods for different global warming levels and ENSO phases.
To achieve this, we apply the EVT with a non-stationary ap-
proach (Begueria et al. 2023). This methodology allows us
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to account for temporal changes in the magnitude and fre-
quency of occurrence of extreme events. Finally, we assess
the impact of the scorching temperatures recorded during this
record-breaking event on mortality rates across the state and
the relative contribution of climate change to the death toll.

2 Data and methods
2.1 Data

We used a TX series from 53 weather stations in the state
of Rio de Janeiro, provided by the Brazilian National Insti-
tute of Meteorology (INMET). To ensure data quality, daily
minimum temperatures were also collected, enabling the re-
placement of TX values below the daily minimum with miss-
ing data codes. The dataset contained a substantial number
of gaps. Therefore, for this study, we selected stations from
1 January 1971 to 20 March 2024 with less than 15 % miss-
ing data, ensuring that their coverage includes the last seven
months of this period (from September 2023 to March 2024),
also with less than 15 % missing data. In total, five stations
met these criteria. This 15 % threshold was adopted as a
compromise to ensure both sufficient temporal coverage for
robust analysis and broad spatial representation across the
state. The selected stations are well distributed throughout
the state (see Fig. 1 and Table S1 in the Supplement) and
broadly represent the diverse climate conditions of the state
of Rio de Janeiro, which are spatially variable due to the
complex terrain characterized by hills, mountains, valleys, a
variety of vegetation, lowlands, and bays, as well as its prox-
imity to the Atlantic Ocean (Silva and Dereczynski, 2014).
Special attention was given to the Itaperuna station, which
exhibited the highest proportion of missing data among the
five stations. Between 1983 and 1989, no TX records are
available, representing the period with the highest concen-
tration of missing data at this station (Fig. S1 in the Supple-
ment). More recently, during the 2023-2024 season, missing
values are most frequent in March.

Once the weather stations were identified, we filled the
gaps of their TX time series by using the most similar station.
If both stations had missing data on the same day, the second-
most similar station was used. To determine station similar-
ity, we computed the correlation of the TX series after fil-
tering out their linear trends and annual cycles using moving
averages. Next, we built the empirical cumulative distribu-
tion functions (ECDFs) of the original and a similar station.
Missing data were then estimated using quantiles from these
distributions, a technique known as quantile mapping (Be-
gueria et al., 2019; Devi et al., 2019; Grillakis et al., 2020).
Compared to infilling by regression techniques, which tends
to smooth the estimated data, quantile mapping maintains the
extremes (tails) of the distribution more effectively (Begueria
et al., 2019). Additionally, using ECDFs in quantile mapping
helps to avoid potential biases between the two time series.
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Finally, we identified the extreme values of the completed
TX series by using the block maxima approach. This method
involves dividing the time series into non-overlapping blocks
and selecting the highest daily maximum temperature within
each block. As the region under study is located within a
tropical climate zone, we used annual blocks, therefore tak-
ing the TX value of the hottest day of the year (TXx). To
estimate the magnitude and the significance of the trend in
TXXx, we employed the non-parametric Sen’s slope estimator
(Sen, 1968) and the Mann—Kendall trend test (Kendall, 1975;
Mann, 1945), respectively.

As an indicator of global warming, we used the 1850-2023
global annual mean temperature anomalies (with respect to
the period 1850-1900) provided by HadCRUTS (MetOf-
fice, 2024). We applied LOESS smoothing (Cleveland et al.,
1992) to this series in order to filter out interannual variabil-
ity and emphasize slowly varying anthropogenic influences.
This LOESS model applies a smoothing span of 0.75, which
determines the proportion of data used in each localized fit.
The model employs a second-degree polynomial for local
regression and assumes normally distributed errors. From
this point on, we refer to these smoothed data as the Global
Warming Index (GWI). This index shows anomalies close to
0 °C until about 1950 and then increases rapidly to ~ +41.3 °C
in 2023 (Fig. S2). This smoothed global mean temperature
accounts for anthropogenic influence, but we cannot attribute
the changes to local forcings, such as aerosols and land-use
changes, which can also have large influences on extremes
(Avelar and Tokarczyk, 2014; Ferreira Correa et al., 2024;
Godoy et al., 2009; Solérzano et al., 2021).

To diagnose ENSO, we employed the monthly sea sur-
face temperature (SST) anomalies in the El Nifio 3.4 re-
gion (5°N-5°S, 120-170° W), which are provided by the
National Oceanic and Atmospheric Administration (NOAA,
2025). In order to obtain an annual value, we took the SST
anomalies from the month determining the TXXx value of each
year. This index, referred to as EN3.4 hereinafter, does not
exhibit a significant linear trend and is not significantly cor-
related with the GWI. The smoothing applied to the GWI ef-
fectively removes potential fluctuations in global mean tem-
perature due to ENSO. Therefore, the two covariates of the
TX series are independent. The sensitivity of our results to
the choice of the ENSO index was assessed by analyzing
both the Oceanic Nifio Index (ONI) — calculated as the three-
month running mean of SST anomalies in the Nifio 3.4 re-
gion — and the Southern Oscillation Index (SOI), using both
monthly and quarterly values. For the quarterly indices, the
relationship with TXx was established using the centered
month of each period.

Daily mortality data for the state of Rio de Janeiro are
publicly available from the Secretaria de Estado de Saude of
Rio de Janeiro on its website (Secretaria de Estado de Saude
of Rio de Janeiro, 2024). The period 2000-2024 was con-
sidered, but the years 2020 and 2021 were excluded from
the analysis to eliminate possible disrupting effects of the
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Figure 1. Weather stations in the Rio de Janeiro State. Stations with valid values in September 2023—March 2024 and less than 15 % of
missing data in the period 1971-2024 are identified with a black dot and the name. Elevation data were accessed via the Amazon Web
Services Open Data Terrain Tiles using the elevatr R package (Hollister et al., 2023).

COVID-19 pandemic. Moreover, for the 2023-2024 season
under study, additional information regarding age, sex, and
cause of mortality was also collected.

2.2 Statistical methods
2.2.1 Extreme temperature attribution

To fit TXx, which represents the largest observation in a
large sample (also known as block maxima), we used the
generalized extreme value (GEV) distribution, as shown in
Eq. (1). The choice of this statistical distribution is consis-
tent with previous studies analyzing extreme temperatures
(Coles, 2001; Van Oldenborgh et al., 2022). To assess the
goodness of fit of the GEV distribution, we employed the
one-sample Kolmogorov—Smirnov test (Smirnov, 1948).

x—p -1/
P (x)=exp —(1—}—5?) €))]

The GEV distribution is characterized by three parameters:
u is the location parameter, o is the scale parameter, and &
is the shape parameter, which are related to the mean, vari-
ability, and tail behavior of the distribution, respectively. If
& > 0, the distribution belongs to the Fréchet family, which
has a long right tail, indicating that larger extreme events are
possible and have a high probability (Eastoe, 2017). If £ =0,
the GEV distribution becomes a Gumbel distribution, which
models exponential tails and has no upper or lower bound
on the extremes. Finally, if £ < 0, the distribution belongs to
the Weibull family, which has a finite upper (truncated) tail,
implying a maximum limit for extreme values (Belzile et al.,
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2023). This upper bound is estimated according to Eq. (2).

x + @)
max /"L |$ |

The GEV distribution expressed in Eq. (1) is stationary,
meaning that its parameters remain constant over time.
Therefore, to make the GEV distribution non-stationary, the
parameters must be expressed as a function of one or more
covariates. In the case of extreme temperatures, a reason-
able and conservative hypothesis presumes simple linear re-
lationships of the covariates with only the location parameter
(Eq. 3; Kharin and Zwiers, 2005; Philip et al., 2020). Chang-
ing the location parameter p simply shifts the distribution
of extremes and changes return levels uniformly at all return
periods by the same amount (Huang et al., 2016). The scal-
ing parameter of the GEV is typically regarded as stationary
when examining temperature extremes. However, Moham-
madi et al. (2024) investigated the possibility of consider-
ing this parameter to be varying exponentially with time, in
conjunction with a linearly varying location parameter. The
authors concluded that this particular fit to the data was not
appropriate. Regarding the shape parameter, it is a good prac-
tice to assume a stationary behavior, as otherwise it leads
to large uncertainties and a failed fit of the observations
(Friederichs and Hense, 2007).

In this study, we considered the stationary model (Mg s)
and three non-stationary models where only the location pa-
rameter is linearly changing (Eq. 3). These are as follows:
univariate dependent on GWI (M1_gyw;), univariate dependent
on EN3.4 (M3 en34), and multivariate dependent on GWI
and EN3.4 (M3 _muii)- Considering single and combined in-
fluences of two covariates is an approach little explored in
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South American attribution studies. For example, Pereira et
al. (2023) applied non-stationary GEV models to extreme
temperature analysis in Campinas, Brazil, using time as the
sole covariate to model changes in the location parameters:

M=ﬁo+2i=lﬂi2i+6, A3)
where f is the intercept, 8; (i =1, ..., [) are the coefficients
associated with the covariates Z;, and ¢ is the residual or
error (Begueria et al., 2023; Collazo 2024). The parameters
of the non-stationary GEV distribution, including the coeffi-
cients of the linear model in Eq. (3), were estimated simul-
taneously using maximum likelihood estimation. This was
implemented through the ismev package in the R program-
ming language, which provides specialized tools for fitting
extreme value models (Heffernan and Stephenson, 2018).

To test which of the models provided a better fit to the data,
we performed the likelihood ratio test (LRT; Coles, 2001),
which compares the goodness of fit of two models based on
the ratio of their likelihoods (Eq. 4):

D= -2(L(M;)—L(M;)), “

where L is the maximum of the log-likelihood function of
the considered model. The D statistic follows a chi-squared
distribution with degrees of freedom equal to the difference
between the lengths of the two models. A 5 % significance
level is used.

As an additional model selection criterion, we also com-
puted the Akaike information criterion (AIC), which consid-
ers both the goodness of fit, which increases with the number
of covariates, and a penalty factor based on the complexity of
the model (Akaike, 1998; Cavanaugh and Neath, 2019). Fur-
thermore, we estimated the Bayesian information criterion
(BIC), which similarly balances goodness of fit with model
complexity but applies a stricter penalty for the number of
parameters (Schwarz, 1978). A lower AIC and BIC indicate
a better model, i.e., a better balance between goodness of
fit and model complexity (Eq. 5). In practical terms, differ-
ences of more than 2 units in AIC or BIC are generally con-
sidered meaningful, with larger differences (e.g., > 10) pro-
viding strong evidence in favor of the model with the lower
criterion value (Burnham and Anderson, 2002):

AIC =2k —21n(L)
BIC = In(n)k — 2In(L), 5)

where k is the number of parameters in the model, L is the
maximum of the log-likelihood function of the considered
model, and » is the number of observations.

Once the optimal model was identified, the probability of
occurrence of an event of a given magnitude and its return
period (the inverse of the probability) can be estimated from
the GEV distribution. The 90 % confidence intervals (ClIs)
of these quantities were obtained following a bootstrap ap-
proach by repeating the fitting 1000 times with random pairs
of samples (TXXx, covariate) drawn from the original sample
with replacement.
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2.2.2 Heat-related mortality attribution

To establish the relationship between temperature and mor-
tality, we calculated the daily TX as a weighted averaged
across the five meteorological stations, with weights based on
the proportion of the population in each city. This weighted
temperature was then analyzed alongside the total number of
daily deaths in the state of Rio de Janeiro over the period
2000-2019. While the primary focus is on the temperature—
mortality relationship, we included time as a covariate in
our analysis to account for important long-term trends and
seasonal effects that could influence both temperature and
mortality rates. Specifically, we fitted a generalized additive
model with a negative binomial distribution, modeling time
using a natural cubic spline with 8 degrees of freedom per
year (Ferreira et al., 2019). Moreover, we considered non-
linear and time-lag effects by using a distributed-lag non-
linear model (DLNM; Gasparrini, 2011; Gasparrini et al.,
2010). In this model, we selected a natural spline with 5
degrees of freedom for the exposure-response function and
a polynomial function with an intercept and 4 degrees of
freedom for the lag-response function. This selection was
made to enhance model flexibility, in accordance with the
approach proposed by Ferreira et al. (2019). The model in-
cluded lag estimates of up to 7d (Tobias et al., 2023). A
sensitivity analysis confirmed small effects of varying lags
and degrees of freedom (Table S2). The resulting fit repre-
sents the exposure—lag—response associations, which capture
the complex relationship between temperature exposure and
mortality. This relationship is typically visualized as a U-
or J-shaped curve (depending on the geographical location),
whose minimum is designated as the minimum mortality
temperature (MMT). To estimate the uncertainty, a bootstrap-
ping procedure with 1000 repetitions was employed (Tobias
etal., 2017).

Using the coefficients estimated from the DLNM, we then
calculated the daily attributable fraction (AF) of deaths due to
excessive heat (Eq. 6), following the methodology proposed
by Gasparrini and Leone (2014). The AF represents the pro-
portion of deaths that can be attributed to heat exposure on a
given day, considering both same-day and lagged effects. To
compute the AF, we utilized the R code developed by Gas-
parrini and Leone (2014), implementing a backward perspec-
tive. This approach links daily mortality to both current and
past temperature exposures, capturing the cumulative and de-
layed effects of heat on mortality. Furthermore, the AF was
estimated for hypothetical scenarios, considering the temper-
atures the event would have experienced in a pre-industrial
climate and a future climate. These hypothetical tempera-
tures were derived by accounting for the intensity changes
of the event, as inferred from the non-stationary GEV model
(Sect. 2.2.1). In this case, we assumed that the heat-mortality
relationship is constant for all climate conditions, which al-
lows a straightforward comparison of the potential effects of
different levels of warming on mortality. This approach does
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not account for demographic changes (especially population
aging) or adaptation (Liithi et al., 2023).

AFigciovana = 1 — ¢ Zi0Psoi, (©)
where B,,_, are the coefficients derived from the DLNM
given an exposure X (i.e., temperature) at lag /, ¢ is the current
day for which the AF is being calculated, / ranges from O to
L (where L is the maximum lag considered in the model),
and x;_; is the exposure on day ¢ — /.

To estimate the confidence intervals of the daily AF, we
accounted for two key sources of uncertainty associated with
the model coefficients and the temperature estimates under
different climate scenarios. First, we generated 1000 temper-
ature perturbations based on the 90 % confidence interval of
temperature uncertainty. Then, for each temperature pertur-
bation, we simulated 1000 sets of model coefficients using
the estimated variance—covariance matrix from the DLNM.
For each combination of perturbed temperature and simu-
lated coefficients, we recalculated the daily AF. This process
resulted in a distribution of AF estimates that jointly captures
the uncertainty from both temperature projections and model
parameters.

3 Results

3.1 Contribution of climate change and ENSO to
extreme temperatures

To put the 2023 hot days into context, the historical daily
records of the TX series at the weather stations of Fig. 1
are analyzed (Table 1). In November 2023, all stations, ex-
cept Cordeiro in the central region, registered new histori-
cal records in daily TX. In Cordeiro, TX was just 1/10 of a
degree Celsius below the record of 2015. Furthermore, the
city of Resende, in the west of the state, surpassed its previ-
ous historical TX, set in 1977, in two non-consecutive days.
Remarkably, the southernmost station of Alto da Boa Vista
beat its previous record, set in 1980, by 1 °C. The hottest day
across the state of Rio de Janeiro was 18 November 2023,
which broke all-time records in three out of the five stations,
stressing the large spatial extent of the heat wave. The spa-
tial average of TX across the five stations reached 39.4 °C on
that day, surpassing the temperature recorded on 12 Novem-
ber 2023 by 0.4 °C and exceeding the estimated value for
16 October 2015 by 0.6 °C. These findings highlight the
exceptionally warm conditions experienced during Novem-
ber 2023. Given the proportion of missing data at some sta-
tions, we additionally verified that observations were avail-
able from all five stations on 18 November 2023. This con-
firmation strengthens our conclusion that the recorded maxi-
mum is based on actual observations and is not an artifact of
gap-filling at any station.

To determine whether these outstanding TX values were
isolated events or part of a broader warming trend, we exam-
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ined the time series of TXx from 1971 to 2023 (Fig. 2). All
stations, except Campos, exhibit a significant upward trend
(at the 5 % significance level) for the annual hottest day. Our
findings indicate an increase of ~ 0.3 °C per decade in TXXx,
with Itaperuna exhibiting the most pronounced trends within
the state. However, it is important to note that a time inter-
val of its series (1983-1989) was infilled using data from
neighboring stations. Although the infilled data lies in the
mid years of the time series — preserving the observed end-
points and thus supporting the integrity of long-term trend es-
timation — uncertainty remains regarding the accurate repre-
sentation of local extremes during this period. Consequently,
while the strong trends observed at Itaperuna are robust in
their positive direction, results for extreme values within the
infilled interval should be interpreted with caution.

Besides the long-term trends, the time series depicted in
Fig. 2 exhibit substantial interannual variability. The Spear-
man correlation between TXx and different ENSO indices
(Table 2) was evaluated after filtering the trends of all series.
This revealed strong links with ENSO at the two easternmost
stations (Campos and Itaperuna), with El Nifio favoring the
increase in TXx. For the remaining stations, no significant
correlation with ENSO was identified. Moreover, our find-
ings are robust, regardless of the ENSO index or temporal
resolution considered, with no substantial changes observed
in the results. It is worth mentioning that, by definition, the
SOI has the opposite sign to those based on SST; that is, an
El Nifio phase is associated with positive values in SST-based
indices, while the SOI, which is based on atmospheric pres-
sure, exhibits negative values during the El Nifio phase.

Subsequently, the TXx data of each station were fitted to
the GEV models described above. At all stations, the null hy-
pothesis of the Kolmogorov—Smirnov test was not rejected
for the stationary fit, suggesting that the observed data align
well with the GEV distribution. However, this fit can be en-
hanced by incorporating additional covariates, based on the
results of the LRT (Table S3) and the AIC and BIC (Tables 3
and S4).

In Alto da Boa Vista and Cordeiro, the AIC suggests that
the M3_puyi is only marginally better than the M;_gwi. Con-
versely, the BIC, which favors simpler models, identifies the
GWI model as the optimal choice. Since the LRT does not
indicate that one model significantly outperforms the other,
and given the absence of a significant correlation between
TXx and EN3.4 at these stations, we opted to use the sim-
pler M_gwi in subsequent analyses. On the other hand, in
the northernmost station of Itaperuna, characterized by a sig-
nificant influence of the two covariates (GWI and EN3.4),
the M3 _mui is the one with the lowest AIC and BIC val-
ues. In the easternmost station of Campos, the BIC sug-
gests that M s is the optimal choice, while the AIC favors
M3 _muii as the better option. However, the latter was cho-
sen based on the results of the LRT, which demonstrates
that the model incorporating the two covariates significantly
outperforms the stationary model, even in the absence of a
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Table 1. Historical maximum temperature records in Rio de Janeiro, with the two warmest days and their dates at the weather stations of the
state of Rio de Janeiro based on the period 1971-2024, regardless of whether both occurred in the same year.

ID Station Warmest  Date of the warmest  Second warmest  Date of the second warmest
TX [°C] TX [yyyy-mm-dd] TX[°C] TX [yyyy-mm-dd]
83007  Alto da Boa Vista 39.6  2023-11-18 38.6  1980-12-05
83695 Itaperuna 42.8 2023-11-18 42.0 2012-10-31
83698  Campos 418  2023-11-12 41.6 2012-10-31
83718  Cordeiro 387  2015-10-16 386 2023-11-18
83738 Resende 39.6  2023-11-18 394 2023-09-24
Alto da Boa Vista (83007) Itaperuna (83695) Campos (83698)
43- 43 -
Trend: 0.36 [°C per decade] * Trend: 0.43 [°C per decade] * Trend: 0.12 [°C per decade]
41 - 41 -
O 39~ O 39-
S 37~ _ S 37 -
35 - 35 -
33 N I I 1 1 1 1 33 - I 1 I I I } 33 - I I I I I I
1970 1980 1990 2000 2010 2020 1970 1980 1990 2000 2010 2020 1970 1980 1990 2000 2010 2020
Year Year Year
Cordeiro (83718) Resende (83738)
43 - 43 -
Trend: 0.24 [°C per decade] * Trend: 0.27 [°C per decade] *
41 - 41 -
O 39- O 39-
= =
2 37- 2 37- =
35~ 7 35 -
33 - 33 -
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I 1 I I I I
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Figure 2. Long-term trends in annual maximum daily temperatures (TXx) at weather stations in the state of Rio de Janeiro for the period
1971-2023. The figure shows linear trends (°C per decade) in the temperature of the hottest day recorded each year at each station. Stations
with significant trends, as determined by Sen’s slope and a Mann—Kendall test at the 5 % significance level, are marked with an asterisk.

significant trend in TXx. This indicates that incorporating
GWI along with ENSO captures additional variability that
is not accounted for by ENSO alone, thereby enhancing the
model’s performance. Finally, in Resende, M_gw; was cho-
sen because both criteria coincide in indicating it as the best-
performing model. This is consistent with Fig. 2 and Table 2,
which demonstrate a significant trend in TXx and no signifi-
cant ENSO signals at this station.

The parameters of the GEV distribution associated with
the optimal models are shown in Table 4. For stations lo-
cated further east (Campos and Itaperuna) and no change in
GWI, TXx increases by 0.2 to 0.4 °C for each unit increase
in the EN3.4 index according to the g coefficient. Regard-
ing the relationship with the GWI, all stations except for
Campos have a warming rate in TXx higher than that of the
global mean temperature. In particular, Itaperuna stands out
because it warms 2.5 times faster than the globe. Several fac-
tors may account for this warming rate, which highly exceeds
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the global average. First, annual mean near-surface temper-
atures are increasing more rapidly over land than over the
ocean, indicating a significant increase in extreme land tem-
peratures (Joshi et al., 2008; Sutton et al., 2007; Wallace and
Joshi, 2018). Furthermore, the intensification of temperature
variability in tropical land areas due to climate change exac-
erbates the warming of extreme temperatures (Olonscheck et
al., 2021; Rehfeld et al., 2020).

The scale parameter, which reflects the dispersion of the
extreme values in the fitted model, varies between 1.08 and
1.21 °C, with maximum at the Alto da Boa Vista station (Ta-
ble 4). The shape parameter of the GEV distribution is neg-
ative in our analysis of temperature extremes, meaning that
the probability of an event decreases rapidly as it approaches
the upper boundary and is zero above it (Wehner et al., 2018).
The theoretical upper bounds of the extreme temperatures, as
determined by the non-stationary GEV distributions, are pre-
sented in Fig. S3. It should be noted that these bounds are
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Table 2. Association between ENSO and extreme temperatures. Spearman correlation between the hottest day of the year (TXx) and different
ENSO indices, after filtering the linear trends of both series. An asterisk indicates the significant correlations at 5 %.

ID Station EN3.4 (monthly) ONI (season)  SOI (monthly)  SOI (season)
83007  Alto da Boa Vista 0.19 0.17 —0.17 —0.18
83695 Itaperuna 0.32* 0.33% —0.38* —0.38*
83698 Campos 0.31* 0.32* —0.26 —-0.22
83718  Cordeiro 0.19 0.21 —0.24 —-0.22
83738 Resende 0.06 0.06 —0.03 —0.01

Table 3. The best GEV fit. Cells show the AIC and BIC for each GEV model. An asterisk indicates the best model for each criterion.

Criterion Mos M gwi Mz en3a M3 _muni
Alto da Boa Vista (83007) AIC 182.91 175.72 182.70 175.69*
BIC 188.82  183.60* 190.59 185.55
Itaperuna (83695) AIC 188.25 177.74 186.19 173.40*
BIC 194.16 185.62 194.07 183.25*
Campos (83698) AIC 177.53 178.09 176.54 176.48*
BIC 183.44* 185.97 184.42 186.33
Cordeiro (83718) AIC 182.47 178.01 183.12 177.91*
BIC 188.38  185.89* 191.01 187.76
Resende (83738) AIC 176.24  169.89* 177.94 171.70
BIC 182.15 177.77* 185.82 181.55

linearly dependent on the covariates under consideration for
the shift of the GEV location parameter. In the pre-industrial
climate, this upper limit for extreme temperatures is approx-
imately 39 °C, increasing to about 42 °C in the present cli-
mate.

After fitting the best GEV model, the return periods of an
event as intense as the 2023 TXx were estimated under dif-
ferent conditions of the covariates (GWI and ENSO). For the
three stations where the M;_gw; model is the optimal one,
the return period is estimated under pre-industrial conditions
(GWI=0.00°C), the present climate (GWI of 2023, which
has a value of 1.29 °C), and a world 2 °C warmer than the av-
erage temperature between 1850 and 1900 (GWI=2.00 °C).
The latter global warming level is in line with the goals set by
the 2015 Paris Agreement (United Nations Framework Con-
vention on Climate Change, 2015).

We start describing the results for the three stations having
M_gyw; as the best-performing model. Figure 3 demonstrates
that the 2023 TXx event would have been virtually impos-
sible under pre-industrial conditions in Alto da Boa Vista,
with return periods exceeding 10000 years (Fig. 3a), and
extremely rare in Resende, where return periods span from
several hundred to thousands of years (Fig. 3c). In contrast,
in Cordeiro, the 2023 TXx had a low probability of occur-
rence under a pre-industrial climate, with a likelihood of up
to 1.5 %, corresponding to a return period of 915.16 years
(CI > 67.93 years; Fig. 3b).
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Nevertheless, the situation is substantially altered in the
present climate, as the return periods for the 2023 TXx
event decrease considerably (Fig. 3). In both Alto da Boa
Vista and Resende, what was once deemed nearly impossi-
ble under pre-industrial conditions is now expected to occur
approximately once every 25 years (ClaltwdaBoa Vista 11.06—
4369.58 years, Clresende > 10.22 years). This value is ob-
tained by identifying the point where the horizontal line
representing the observed 2023 event temperature intersects
the present-day return-period curve in Fig. 3. Similarly, in
Cordeiro, the return period has decreased to 19.30 years (CI
7.85-77.98 years).

Looking ahead to a future climate with a GWI of 2°C,
an event of these magnitudes (38.6°C in Cordeiro and
39.6°C in the other two stations) would occur every 4 to
5 years (ClAlwdaBoaVista 1.42—39.45 years, Clcordeiro 1.54—
27.67 years, Clregende 1.34-27.69 years).

Moreover, events with these observed return periods
(around 1 in 25 years) in the present climate are now about
2.2 °C warmer compared to the pre-industrial climate (Fig. 3
and Table 5). Furthermore, in the future climate, such events
are projected to be about 1.2 °C more intense than in 2023 at
these stations (Fig. 3 and Table 5). Finally, the rate of change
in the probability of an event like the one in 2023 between the
current and future climates ranges from 3.9 times in Cordeiro
to 7.9 times in Alto da Boa Vista, with Resende experiencing
a 5.5-fold rise (Table S5). On average, this means that in the
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Table 4. Estimated GEV parameters and standard errors for the best-fitting model based on maximum likelihood estimation. Asterisks denote
parameters that are significantly different from zero at the 5 % level (¢ test).

ID Station Model Bo Blpnsa Bogwi Scale Shape
[OC] [OC Oc—l] [OC OC—l] [OC]

83007  Alto daBoa Vista ~ M|_gwi 34.79 +0.48* 1.81+£0.57* 1.21+0.13* —0.33 £0.09*

83695  Itaperuna M3 muig 36.234+049*  03740.14* 2544064 1.13£0.12* —0.27+£0.10*

83698 Campos M3 mug 37.59+047* 0.27+0.14 0.88+0.60 1.17+0.12* —0.28+0.09*

83718  Cordeiro M gwi 33.86+0.49* 1.62+0.61* 1.11+0.12* —0.15£0.10

83738 Resende M1 _gwi 34.92+0.48* 1.72+£0.58* 1.08+0.11* —0.22+0.08*

future, an event similar to that of November 2023 could be
5.8 times more likely to occur.

The remaining two stations, which are better described by
M3 _mulii, exhibit a return period dependent on the two covari-
ates (Fig. 4). The slopes of the return periods vary with the
station depending on the relative roles of GWI and EN3.4. At
Campos station, where sensitivity to GWI is the lowest, the
return period contour lines have steeper slopes compared to
Itaperuna, indicating greater variability based on the ENSO
phase at a fixed GWL

In Itaperuna, the TXx recorded in 2023 would have been
virtually impossible in a pre-industrial climate, regardless of
the ENSO phase, since return periods of thousands of years
are obtained (Fig. 4a). For the present-day climate and La
Nifa conditions (EN3.4 values lower than —0.5 °C), the oc-
currence of this event would also have been highly unlikely
(with return periods ranging from hundreds to thousands of
years). However, under the observed El Nifio conditions, the
return period decreases to 31.55 years (CI > 7.59 years) in
the present-day climate, and the observed temperature was
3.3°C (CI 0.7-5.4 °C) warmer than would be observed in a
pre-industrial climate (Table 5 and Fig. S4). In the future cli-
mate, an event of the magnitude registered in 2023 would
occur with a recurrence of 2.56 years for El Nifio conditions
(Fig. S4) and could even be recorded under La Nifia condi-
tions with a return period of less than two decades (Fig. 4a).
Furthermore, the probability of a TXx similar to that ob-
served in 2023 is approximately 3.2% in the current climate.
However, under El Nifio conditions in a future climate, this
probability rises to nearly 40 %, making it 12 times more
likely (Table S5). This positions Itaperuna as the location
with the highest rate of increase.

Differently, the 2023 TXx event in Campos could only
have occurred in a pre-industrial climate under El Nifio con-
ditions, although it would have been an extremely unlikely
event (a return period of more than 1000 years; Fig. 4b). In
the current climatic context, the return period strongly de-
pends on the EN3.4 index, ranging from values in excess of
a millennium under strong La Nifia events to ~ 28 years for
strong El Nifio events (CI > 17.11 years). In terms of mag-
nitude, the event would have expected to be 1.1 °C (CI 1.2—
2.7°C) less intense if it would have occurred under strong La
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Nifa conditions (Fig. S5). In the future, under stronger forc-
ing, the range of variability in the return period associated
with the ENSO phase is reduced and oscillates from approx-
imately 50 to 5 years (Fig. 4b). Additionally, it is noted that
Campos exhibits the smallest changes in the probability of
the event between the future and the present climate under El
Nifo conditions (Table S5).

In summary, the ENSO contribution to the 2023 TXX is
more relevant at Campos compared to the other stations,
where ENSO plays a secondary or negligible role, which is
especially weak at the westernmost stations. At these loca-
tions, the main driver of the increase in extreme temperature
is the climate change signal, consistent with the findings of
Kew et al. (2023).

3.2 Contribution of climate change to heat-related
mortality

Figure 5 shows the daily evolution of the number of deaths in
the state of Rio de Janeiro between July 2023 and June 2024.
Total daily mortality fluctuated at around 400 deaths per
day throughout the year and peaked at over 600 deaths on
18 November 2023, coinciding with the hottest day on record
(see Sect. 3.1). Notably, other heat events of the 2023-2024
season analyzed in earlier studies did not exhibit a compa-
rable effect on mortality (Faranda and Alberti, 2024; Kew et
al., 2023). These differences in mortality impact suggest dis-
proportionate exposure to heat stress conditions before and
during the 18 November 2023 event. In the seven days lead-
ing up to its peak, TX values exceeded or were close to the
95th percentile of the 2000-2019 period, indicating sustained
stress on the human body (Fig. S6). In contrast, the Septem-
ber 2023 and March 2024 events lacked such prolonged ex-
treme conditions, resulting in lower mortality.

For 18 November 2023, age-disaggregated data reveal that
the elderly were disproportionately affected, with their daily
mortality nearly doubling on that day compared to the annual
average. In contrast, children under 5 years old were largely
unaffected by the extreme heat (Fig. 5). In terms of gender,
we found a significant increase in the proportion of female
deaths on 18 November (51.42 %) compared to the rest of
the year (49.14 %), according to a proportions test (Infante
Gil and Zarate de Lara, 1984). As for the underlying causes,

Nat. Hazards Earth Syst. Sci., 25, 3221-3238, 2025



3230

S. Collazo et al.: Extreme heat and mortality in the state of Rio de Janeiro

Table 5. Change in the intensity of 2023-like events. Changes refer to events occurring with the same frequency as the 2023 TXx. The best
GEYV models are used for the estimation. For the multi-covariate model (M3_py)¢i) and all climate conditions (GWI values), we consider an

EN3.4 index equal to that observed in 2023 (EN3.4 =2.02 °C).

1D Station Model Intensity (pre-industrial-present) [°C]  Intensity (future—present) [°C]
83007  Alto da Boa Vista M| _gwi —2.4(CI —4.0to —0.8) 1.3 (CI -0.5t0 3.0)
83695 Itaperuna M3 s —3.3(CI —=5.4t0 —0.7) 1.8 (C1 —0.9to 4.4)
83698 Campos M3 mulg —1.1 (CI -3.7to —0.7) 0.7 (CI —1.8t03.4)
83718 Cordeiro M1 _gwi —2.1(CI -3.8t0 —0.4) 1.2 (CI =09 to 3.4)
83738 Resende M_gwi —2.2(CI —4.3to —0.7) 1.2 (CI -0.7t0 3.1)

18 and 19 November witnessed an increase in mortality as-
sociated with the aggravation of circulatory diseases. Addi-
tionally, there was a notable increase in deaths linked to en-
docrine disorders, the nervous system, and infections. Deaths
categorized under “other causes” also escalated during this
period (Fig. S7).

The cumulative relative risk as a function of TX for the
state of Rio de Janeiro is shown in Fig. 6a. The curve is
J-shaped, reflecting the tropical climate of the region, and
the risk increases with temperature, displaying an MMT at
27.6 °C. This model is able to explain 68% of the variance
of the data. On 18 November 2023, the state of Rio de
Janeiro experienced an average TX of 39.4 °C, which corre-
sponds to a relative risk of mortality of 1.45 (CI: 1.37-1.52).
Therefore, the risk of mortality was 45 % higher than for the
baseline temperature associated with minimum mortality risk
(Fig. 6a). By examining the expected temperatures under dif-
ferent climatic conditions, we can better understand the am-
plified risks posed by global warming. In a pre-industrial cli-
mate, with events’ temperatures approximately 2.3 °C colder
than recorded, the relative risk of mortality decreases to 1.30
(CI: 1.27-1.34). Conversely, in a future scenario with pro-
jected temperatures 1.3 °C warmer than today and no adapta-
tion, the relative risk climbs to 1.53 (CI: 1.44-1.64), reflect-
ing a marked increase in mortality risk. These results under-
score the critical influence of climate change on the severity
of heat-related health impacts.

Using the adjusted exposure-lag curves, we can estimate
the daily proportion of deaths attributable to heat exposure
(Fig. 6b). About 22.63 % (CI: 19.70 %-24.76 %) of the 633
deaths recorded on 18 November 2023 are linked to heat ex-
posure, equating to 143 deaths (CI: 125-157). Under pre-
industrial conditions, the daily AF would have been 15.04 %
(CI: 10.91 %—-18.01 %), about 8 % lower than current levels,
which highlights the impact of historical warming. A sce-
nario 1.3 °C warmer than 2023 is projected to result in a heat-
related mortality rate of 26.76 % (CI: 21.65 %-30.92 %),
roughly 4 % higher than today, emphasizing the additional
health risks posed by future climate change if adaptation
measures are not implemented.
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4 Discussion

This study analyzed the role of global warming and ENSO in
changing the probability of extreme temperatures in the state
of Rio de Janeiro. First, we evaluated whether these drivers
effectively modulate TXx through linear trends and correla-
tions. We observed that the annual extreme warm tempera-
tures have increased significantly over the last decades, ex-
cept for the Campos station. This finding is consistent with
regional trends identified in previous studies for different pe-
riods and datasets (Avila-Diaz et al., 2020; Regoto et al.,
2021).

However, we observed regional differences in the magni-
tude of TXx trends, which may be due to distinct drivers.
Byrne (2021) demonstrated that the projected warming of
temperature extremes is amplified over tropical lands, with
peaks in the interior of Brazil decreasing towards the coast.
The author further asserted that the projected intensifica-
tion of extreme maximum temperatures on land is largely
driven by the presence of drier soils. In this context, there
is a marked increase in the maximum number of consecutive
dry days from the coast (~30d) to the interior of the state
(~50d) (Luiz-Silva and Oscar-Jinior, 2022). Additionally,
recent studies report a significant trend in drought severity for
cumulative water imbalances on timescales of 12 months and
longer (Tomasella et al., 2022). In addition, Cordeiro has reg-
istered the largest precipitation reduction in the state of Rio
de Janeiro over the period 1979-2009 (Sobral et al., 2019).
This decline may have contributed to the observed trends in
TXXx, as soil-atmosphere feedback mechanisms could have
amplified these changes (Seneviratne et al., 2010). Another
factor of intra-regional differences is the elevation of the sta-
tions (Table S1). Previous research has confirmed that the
warming of annual mean temperature is considerably larger
at higher (> 500m above sea level) than at lower altitude
stations (Wang et al., 2016). Finally, we note that the urban
heat island effect varies across stations, causing the global
mean near-surface warming trend in the urban core to be
29 % higher than the rural background trend (Liu et al., 2022;
Table S1).

Regarding ENSO, considerable regional disparities are
also observed in the correlation between the EN3.4 index
and TXx. The EN3.4 index demonstrates a strong correla-
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Figure 3. Return period of extreme temperatures. Frequency—
magnitude curves of TXx under a pre-industrial (black line,
GWI=0.00°C), present (blue line, GWI=1.29°C), and fu-
ture (magenta line, GWI=2.00°C) climate according to a
non-stationary GEV (M|_gwi) for the Alto da Boa Vista (a),
Cordeiro (b), and Resende (c) weather stations. The corresponding
90 % confidence intervals are shown in shading. Observed extreme
temperature values are plotted as points and shown three times —
shifted to represent pre-industrial, present-day (2023), and future
climates — by subtracting or adding the product of the global warm-
ing index (GWI) and the estimated GWI coefficient from the non-
stationary GEV model’s location parameter. The x axis is displayed
on a logarithmic scale. The dashed horizontal line denotes the mag-
nitude of the observed event (in °C).
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tion with TXx in the eastern regions (Itaperuna and Campos).
However, this relationship weakens or becomes insignificant
in the western and central areas, indicating spatial hetero-
geneity in the influence of ENSO on extreme events within
the state. These results corroborate previous studies that have
performed similar analyses for elevated temperatures and
drought and found a weak link between ENSO and climate
variability in the state (de Oliveira-Junior et al., 2018; Sobral
et al., 2019; Wanderley et al., 2019). Furthermore, we tested
different ENSO indices (ONI and SOI) and considered both
monthly and seasonal scales but found no substantial differ-
ences in the spatial distribution of correlations. This indicates
that the observed spatial heterogeneity of ENSQO’s signal in
TXXx is robust, regardless of the specific index or temporal
resolution used.

Event attribution studies require the examination of ex-
treme weather and climate-related events as they would occur
in a world without human influence. Since observations of
such a world are unavailable, all studies must rely on physical
and statistical climate modeling, and thus these studies are
dependent on the assumption that the model accurately sim-
ulates the specific weather event being studied (Otto, 2017).
The approach employed in our work assumes a linear de-
pendence of the location parameter on the covariates (i.e., a
simple shift of the distribution), without additional changes
in the shape and scale of the GEV distribution. This assump-
tion is generally applicable to temperature data but not for
precipitation (Van Oldenborgh et al., 2022; van Oldenborgh
et al., 2018; Philip et al., 2020; Vautard et al., 2020). Apply-
ing this non-stationary model with GWI as a covariate allows
us to obtain return period estimates for observed (present-
day) events if they would have occurred in pre-industrial or
future climates. Similarly, it is possible to infer changes in the
magnitude of events that occur with a given frequency. In our
study, we observed that the differences in TXx intensity be-
tween the pre-industrial and current periods between 0.5 and
4 °C are consistent with the changes reported for the maxi-
mum temperatures of the September 2023 heat wave event in
southeastern Brazil (Kew et al., 2023).

Furthermore, these non-stationary models could include
additional covariates. While the relationship between TXx
and South Atlantic SST was examined, no significant corre-
lation at the 5 % level was found at any station. As a result,
it was not included as a covariate in the GEV distribution
fit (Table S6). However, other local forcings — such as soil
moisture content, local circulation patterns, topography, and
proximity to the sea — as well as tropical variability processes
like the Madden—Julian Oscillation (Alvarez et al., 2016) and
the South American monsoon (Grimm, 2003) could be ex-
plored as potential covariates. It is crucial to acknowledge
that the employed methodology does not account for un-
certain changes in dynamic factors such as teleconnections,
which may lead to an overestimation of attribution (Shep-
herd, 2016). Nonetheless, our approach allows for a focus
on the robust thermodynamic effects of climate change on
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Figure 4. Return period of extreme temperatures under two covariates. Panels denote the return period (in years) of the 2023 TXx as a
function of the GWI (x axis, in °C) and EN3.4 (y axis, °C) indices obtained from the non-stationary GEV model (M3_py1i). Dotted vertical
lines indicate the pre-industrial (gray) and present-day (blue) climate conditions.
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Figure 5. Daily mortality for the state of Rio de Janeiro between July 2023 and June 2024, broken down by total and age ranges.

the event (Begueria et al., 2023). Moreover, while an appar-
ent scaling of the changes in teleconnections between ENSO
and temperatures under different levels of warming was ob-
served across much of Brazil, the state of Rio de Janeiro did
not exhibit significant changes (McGregor et al., 2022). This
would mean that no large changes in ENSO teleconnections
are projected for the region, making our statistical approach
more robust.

For the attribution of heat mortality, we used the well-
established DLNM, which are flexible in fitting and captur-
ing non-linear and delayed effects to heat exposure (Ferreira
et al., 2019; Gasparrini et al., 2010; Silveira et al., 2023; To-
bias et al., 2023). While the 20-year mortality dataset used
here may appear limited for climate attribution purposes,
it aligns with and even exceeds the duration of many epi-
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demiological studies examining temperature—mortality rela-
tionships, particularly in low- and middle-income countries
where long-term health data are often sparse (MEASURE
Evaluation, 2018). For example, recent multi-country anal-
yses of heat-related mortality and the response to climate
change have utilized observational periods ranging from 15
to 25 years, indicating that our analyzed period is consistent
with established methodologies in the field (Ballester et al.,
2023; Liithi et al. 2023). To make the analysis simple and
interpretable, the model only establishes the relationship be-
tween TX and the total number of deaths in the state of Rio de
Janeiro. We did not include relative humidity in the current
analysis due to substantial missing data across stations (Ta-
ble S7), which would have compromised the reliability of the
results. Additionally, the estimated changes in mortality for
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Figure 6. (a) Cumulated relative risks as a function of temperature for the state of Rio de Janeiro for the period 2000-2019. Shading denotes
the 95 % confidence interval inferred by a bootstrapping process. The minimum mortality temperature (MMT, dashed vertical red line), the
5th and 95th TX percentiles (dashed vertical green line), the TX observed on 18 November 2023 (dotted blue line), and estimated TX values
under pre-industrial (dotted gray line) and future (dotted magenta line) climates are also shown. (b) Daily fraction of deaths attributable to
heat exposure observed on 18 November 2023 for different levels of global warming.

different global warming levels (e.g., 2 °C colder) should not
be considered to be a predictive forecast. In future research,
the possibility of including other variables, such as the cause
of death and age group, will be explored. Similarly, the pro-
jections of the attributable mortality factor did not take into
account population aging, which has already been shown to
increase the mortality burden (Chen et al., 2024) and adapta-
tion.

5 Conclusions

In this paper, we have analyzed the contribution of the El
Niflo—Southern Oscillation (ENSO) and climate change to
the probability of daily maximum temperature (TX) ex-
tremes across five weather stations in the state of Rio de
Janeiro by fitting a non-stationary GEV distribution. In ad-
dition, we have estimated changes in the magnitude and
probability of occurrence of the record-breaking hot day of
November 2023 for different (past and future) climate con-
ditions and ENSO phases. The main findings can be summa-
rized as follows:

— At all stations, the non-stationary GEV model signifi-
cantly improved the fit to the annual TX maxima (TXx)
compared to the stationary model. This improvement
underscores the importance of including non-stationary
elements that account for temporal changes in the char-
acteristics of the data.

— The TXXx series in the state of Rio de Janeiro exhibit sub-
stantial regional differences in their response to ENSO
and climate change, probably influenced by the com-
plex topography and proximity to the sea. The greatest
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response to climate change is observed in Itaperuna, in
the north of the state, while the relationship with ENSO
maximizes in the east and progressively decreases to-
wards the west.

— At the westernmost (Resende and Alto da Boa Vista)

and central (Cordeiro) stations, the best non-stationary
GEV model is the univariate one that includes global
warming as the only covariate. At these stations, climate
change has made 2023-like events ~2.2°C warmer
than in the pre-industrial climate, when it would have
been virtually impossible to record such a high TX.

— For stations in the eastern parts of the state (Itape-

runa and Campos), the best fit is obtained with a mul-
tivariate non-stationary GEV. At these stations, both
global warming and El Nifio contributed to increasing
the probability of occurrence of the observed 2023 TXx.
Nevertheless, in none of the stations does the ENSO ef-
fect overwhelm the effect of climate change. At these
stations, climate change made 2023-like events up to
3.3 °C warmer than in the pre-industrial climate.

— In a world that is 2 °C warmer than the average temper-

ature between 1850 and 1900, the return period of TXx
equal to 2023 is projected to be approximately one event
4 four years at all stations, except at Campos, where the
return period is 9.29 years.

— The highest number of heat-related deaths in 2023 was

recorded on the day when the absolute TX records were
also documented. Climate change has made the daily
heat-related attributable factor about 1.5 times higher
than in a pre-industrial climate.
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Therefore, climate change is likely the primary factor driv-
ing the increase in TXx in the current climate, with El Nifio
playing a secondary but measurable role, particularly at the
two easternmost stations in the state. As global warming con-
tinues, the intensity of these events is expected to increase
by more than 1 °C, with the likely exception of the eastern-
most station (Campos), where a lower rate of warming has
been observed in the historical period. Consequently, Rio de
Janeiro will need to prepare for the associated impacts of the
increased frequency of these extreme weather events (Geir-
inhas et al., 2021), such as disruptions to agriculture and wa-
ter resources (Arreyndip, 2021; Luiz-Silva and Garcia, 2022)
and increased risks to public health and infrastructure (Bi-
tencourt et al., 2021; Prosdocimi and Klima, 2020). Proac-
tive measures, including urban planning, public health initia-
tives, and infrastructure resilience, will be essential to miti-
gate these challenges.

Code availability. The code used in this work for fitting a non-
stationary GEV to data from Rio de Janeiro is publicly available
in Collazo (2024, https://doi.org/10.5281/zenodo.13913445).

For the heat-related mortality analysis, we followed the code de-
veloped by Ferreira et al. (2019), available in the Supplement.

Data availability. Temperature station data for the state of Rio de
Janeiro are provided by the Brazilian National Institute of Me-
teorology (INMET) upon request at the following website: https:
//bdmep.inmet.gov.br/# (INMET, 2025). Global mean temperature
anomalies are available on the website of the Met Office of the
United Kingdom at https://www.metoffice.gov.uk/hadobs/hadcrut5/
(Met Office, 2024).

ENSO is characterized from the El Nifio 3.4 index, available on
the NOAA website at https://psl.noaa.gov/data/correlation/nina34.
anom.data (NOAA, 2025).

Mortality data in the state of Rio de Janeiro are publicly avail-
able, provided by the Secretaria de Estado de Saude of Rio de
Janeiro on its website at http://sistemas.saude.rj.gov.br/tabnetbd/
dhx.exe?sim/tf_sim_do_geral.def (Secretaria de Estado de Saude of
Rio de Janeiro, 2024).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/nhess-25-3221-2025-supplement.
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