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Abstract. With rapid urbanization, the scientific assessment
of disaster risk caused by flooding events has become an es-
sential task for disaster prevention and mitigation. However,
adaptively selecting optimal machine learning (ML) mod-
els for flood risk assessment and further conducting spatial
and temporal analyses of flood risk characteristics in urban
agglomerations remain challenging. This study establishes
an H–E–V–R risk assessment index system that integrates
hazard, exposure, vulnerability, and resilience based on the
factors influencing flood risk in the Yangtze River Delta
Urban Agglomeration (YRDUA). Utilizing automated ma-
chine learning (AutoML) and the analytic hierarchy process
(AHP), a comprehensive flood risk assessment model is con-
structed. Results indicate that, among the different assess-
ment models, the accuracy, precision, F1 score, and kappa
coefficient of the categorical boosting (CatBoost) model for
flooded point identification are the highest. Among the flood
hazard factors, elevation ranks highest in importance, with a
contribution rate of up to 68.55 %. The spatial distribution of
flood risk in the study area from 1990 to 2020 is heteroge-
neous, with an overall increasing risk trend. This study is of
great significance, advancing disaster prevention, mitigation,
and sustainable development in the YRDUA.

1 Introduction

Under global climate change and accelerated urbanization,
China has been experiencing pervasive flooding ever more
frequently (Tang et al., 2024). Floods threaten people’s lives,
hinder social development, and cause huge economic losses
in China (Anon, 2021; Echendu, 2020; Milanesi et al., 2015).
Flood formation has been exacerbated by climate change
and urbanization, leading to increased frequency, extent, and
intensity of urban flooding and impacting urban flood risk
(Mahmoud and Gan, 2018; Khadka et al., 2023; Scott et al.,
2023; Seemuangngam and Lin, 2024). Modern human soci-
ety is faced with the possibility of serious flood hazards and
associated challenges, and in addition to post-disaster emer-
gency management, the scientific assessment of disaster risks
arising from flood events has gradually become a crucial as-
pect of preventing and mitigating disasters.

Currently, most research in the field of flooding focuses on
the flood risks of individual cities (Wang et al., 2021, 2023b;
Guan et al., 2024). However, in recent years, the frequency
and intensity of urban flooding in China have increased dra-
matically, and individual cities are no longer able to indepen-
dently mitigate the risks arising from floods. Studies indicate
that China’s flood risk management needs to be transformed
from the scale of isolated individual cities to the scale of ur-
ban agglomerations, conducted in a regionally coordinated
manner (Morales-Torres et al., 2016; Wang et al., 2023a).

Published by Copernicus Publications on behalf of the European Geosciences Union.



3088 Y. Gao et al.: Evaluating Yangtze River Delta Urban Agglomeration flood risk

City clusters, constituting the spatial organizational structure
of cities that have reached an advanced stage of development,
have become key areas for regional disaster management and
sustainable development. Due to the unique geographical lo-
cation and climate conditions of the Yangtze River Delta Ur-
ban Agglomeration (YRDUA), as well as the impact of ur-
banization over the past 30 years, the frequency and inten-
sity of flood disasters have been increasing, posing a seri-
ous threat to the sustainable development of cities. Therefore,
implementing relevant emergency management strategies for
flood risks is urgently needed. Furthermore, the region com-
prises multiple cities, among which distinct resource interac-
tions, such as population mobility and risk transfer, exist (Lu
et al., 2022). Thus, it is essential to assess both the overall
flood risk characteristics and changes in the urban agglom-
eration as well as the spatial correlations of flood risks be-
tween cities, to explore the mutual influences and interaction
mechanisms among regional disaster risks, and to provide a
scientific basis for sustainable development within the urban
agglomeration (Xu et al., 2024).

Statistical analyses of historical disaster statistics (Lang
et al., 2004), indicator system methods (Wang et al., 2018b),
scenario simulation methods (Yang et al., 2018), and data-
driven methods (Abu-Salih et al., 2023) are the primary flood
risk assessment methods currently. With the development of
artificial intelligence technology, data-driven methods, such
as machine learning, deep learning, and artificial neural net-
works, have emerged, providing new opportunities to im-
prove traditional flood risk assessment methods (Liu and
Zhang, 2015). Ensemble methods are a class of machine
learning (ML) techniques that combine multiple base learn-
ers to form a stronger predictive model (Webb and Zheng,
2004). They are designed to overcome several limitations of
individual models, such as high variance, overfitting, sensi-
tivity to noise, and poor generalization (Yang et al., 2013). By
aggregating the outputs of weak learners, ensemble methods
significantly enhance model stability, accuracy, and robust-
ness – especially in high-dimensional and complex classifi-
cation or regression tasks (Kazienko et al., 2015). Various
ensemble ML techniques, including bagging (e.g., random
forest), boosting (e.g., extreme gradient boosting (XGBoost),
categorical boosting (CatBoost)), and stacking, have been
widely used in hydrology, with boosting algorithms in par-
ticular showing strong performance in flood prediction and
risk assessment (Shafizadeh-Moghadam et al., 2018; Mirzaei
et al., 2021; Yan et al., 2024). However, ensemble ML tech-
niques often lack preprocessing and feature selection abil-
ities, and their application effects vary considerably across
different regions. To fully mine data and discover more effec-
tive features, experts have proposed other solutions, namely
hybrid models such as ANFIS, LSTM-ALO, and LSSVM-
GSA (Nayak et al., 2004; Yuan et al., 2018; Adnan et al.,
2017). These methods have achieved good performance for
given hydrological time series, focusing more on data pre-
processing and feature selection. Although research on data-

driven urban flood risk assessment methods has increased,
certain limitations remain. For example, the physical impor-
tance of urban hydrological processes is often ignored in the
model assessment process, interpretation of the assessment
results is weak, and quantifying the boundaries and scales is
challenging (Abu-Salih et al., 2023; Guo et al., 2022).

Furthermore, attempting to combine the data processing
and feature selection abilities of hybrid models with those
of ensemble models remains challenging (Li et al., 2017).
While ML algorithms have demonstrated strong performance
in many domains, no single algorithm consistently performs
best across all types of problems (Wolpert and Macready,
1997). Therefore, to achieve optimal performance, it is es-
sential to carefully configure key components of the ML
pipeline, including feature engineering, model selection, and
hyperparameter tuning (Li et al., 2017; Raschka, 2020).
Hence, ML applications require the participation of many ex-
perts, leading to disproportionate costs for ML development
and improvement (Wagenaar et al., 2020; Sarro et al., 2022;
Rashidi Shikhteymour et al., 2023). The effectiveness of ML
improves with experience, where “experience” refers to the
model’s iterative exposure to training data and its ability to
learn patterns from labeled examples (Jordan and Mitchell,
2015; Nagarajah and Poravi, 2019). One key challenge ad-
dressed in this study is how to automatically optimize model
components such as feature selection and algorithm config-
uration in flood risk prediction while maintaining high ac-
curacy and adaptability across complex hydrological condi-
tions. Automated machine learning (AutoML) is an innova-
tive ML framework that automates key stages of the model
development pipeline, including feature selection, model se-
lection, hyperparameter tuning, and ensemble learning (He
et al., 2021). By addressing these challenges, AutoML re-
duces reliance on expert knowledge and minimizes subjec-
tivity in model building (He et al., 2021; Consuegra-Ayala
et al., 2022). In the context of this study, AutoML enables
the automatic optimization of hazard factor selection, model
construction, and parameter adjustment for flood risk assess-
ment tasks, thereby improving efficiency, objectivity, and re-
producibility in model development. However, AutoML has
not been widely applied in the fields of hydrology and disas-
ter risk management, and research has mainly focused on op-
timizing the ensemble model to achieve better performance
(Özdemir et al., 2023). Continuous research has highlighted
the potential role of AutoML in flood risk detection and as-
sessment (Guo et al., 2022; Vincent et al., 2023; Munim
et al., 2024). Guo et al. (2022) compared AutoML with three
single ML algorithms (CatBoost, XGBoost, and BPDNN)
and concluded that AutoML performed better at building
rapid-warning and comprehensive analysis models for urban
waterlogging. A model based on AutoML can be applied to
areas without water level monitoring and achieve accurate
predictions and rapid warnings of waterlogging depth (Guo
et al., 2022; Yan et al., 2024). Abu-Salih et al. (2023) pro-
posed a data-driven flood risk area detection model that com-
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bined the ensemble model with the AutoML tool and suc-
cessfully solved the problems of data balance and strategy
modeling while reducing the complexity of flood risk area
prediction. Previous studies have provided a theoretical basis
and scientific reference for the application of AutoML meth-
ods to flood risk assessment. However, the use of AutoML
for research purposes is a complex issue, and many new op-
portunities and challenges remain regarding its specific ap-
plications.

In the field of flood risk assessment, AutoML has been pre-
liminarily demonstrated to perform well in flood hazard pre-
diction (Guo et al., 2022). As an efficient “black-box” mod-
eling approach, AutoML provides strong support for flood
risk modeling through automated feature selection, model
training, and parameter optimization (Hutter et al., 2019; He
et al., 2021). In urban agglomerations, flood risk assessment
is a highly complex task involving diverse natural and so-
cioeconomic factors derived from heterogeneous and often
multisource datasets (Wang et al., 2023c). These factors –
such as rainfall, topography, land use, drainage, and popula-
tion density – differ in type and often interact in nonlinear
and uncertain ways (Shuster et al., 2005; Zhang et al., 2017;
Wang et al., 2018a). Under such complex circumstances,
AutoML struggles to systematically evaluate the multidi-
mensional indicators of flood risk. To address this limita-
tion, this study introduces a multi-criterion decision analy-
sis (MCDA) approach to quantify the importance of vari-
ous indicators within the evaluation framework (Pham et al.,
2021). MCDA facilitates the integration of heterogeneous in-
dicators into a unified evaluation framework by constructing
structured weighting schemes, thereby aligning the assess-
ment results more closely with real-world conditions and ex-
pert knowledge (Fernández and Lutz, 2010). In cases where
data are limited or certain indicators are difficult to quantify,
MCDA methods allow for the incorporation of expert judg-
ment through scoring systems and pairwise comparison ma-
trices, enhancing the practical applicability and robustness
of the model (Hites et al., 2006). The analytic hierarchy pro-
cess (AHP) is one of the most popular MCDA techniques
(Donegan et al., 1992). This technique emphasizes the im-
portance of the subjective judgment of decision makers and
the consistency of pairwise comparisons of standards in the
decision-making process (Saaty, 1980). Recent studies have
focused on integrated frameworks of ML models and MCDA
technology for flood hazard assessment (Kanani-Sadat et al.,
2019; Khosravi et al., 2019; Gudiyangada Nachappa et al.,
2020; Mia et al., 2023). However, research focusing on using
an integrated framework of AutoML and AHP techniques is
still limited.

This study develops a flood risk assessment model for the
YRDUA by analyzing the factors influencing flood risk and
integrating the AutoML and AHP methods. In this model,
AutoML is employed to construct the flood hazard submodel,
using indicators that represent natural environmental drivers
as input features. The hazard is modeled as a binary classifi-

cation problem (i.e., whether flooding occurs), and the result-
ing feature importance rankings provide an objective basis
for subsequent indicator weighting. Nevertheless, as a data-
driven approach, AutoML alone cannot structurally interpret
the relative influence of social and systemic factors within
a multidimensional flood risk assessment framework. There-
fore, this study incorporates the AHP to calculate the weights
of flood exposure, vulnerability, and resilience in the YR-
DUA based on expert knowledge and the existing literature.
A regional flood risk zoning map is then generated. A com-
parative analysis with observed inundation point data shows
a strong spatial alignment between the distribution of flooded
points and the high- to medium-high-risk zones, highlighting
the reliability and applicability of the proposed model. The
remainder of this paper is structured as follows: Sect. 2 de-
scribes the study area, data sources, and methodology; Sect. 3
presents the results and analysis; Sect. 3 discusses the find-
ings and their implications; and Sect. 4 concludes the study
with key insights and recommendations.

2 Materials and methods

In this section, the study area is briefly introduced (Sect. 2.1),
and each individual component of the study is further dis-
cussed, along with the basic geographic information, mete-
orology, social statistics, historical disaster data, and other
fields involved in the study of urban agglomeration flood dis-
asters and their risks (Sect. 2.2). The framework of the flood
risk assessment model is shown in Fig. 1. The factors influ-
encing flood risk in the YRDUA are explored, and a flood
risk assessment index system is established (Sect. 2.3). The
optimal model in AutoML is selected to calculate the im-
portance of flood hazard and hazard characteristic factors
(Sect. 2.4), and the model is combined with AHP to deter-
mine the weight of each risk indicator (Sect. 2.5). Ultimately,
a flood risk assessment model based on AutoML and AHP is
constructed.

2.1 Study area

The Yangtze River Delta Urban Agglomeration, located
in the eastern coastal region of China (27°04′–34°49′ N,
115°75′–122°95′ E), includes 27 cities: 8 in Anhui Province,
9 in Jiangsu Province, 9 in Zhejiang Province, and Shang-
hai (Fig. 2) (Yang et al., 2024). Influenced by the East Asian
summer monsoon, the study area features low-lying plains in
the northern region and higher hilly terrain in the southern
region, along with numerous waterways (Ding et al., 2021).
With recent accelerated climate change and urbanization, ex-
treme precipitation events in the Yangtze River Delta (YRD)
have been occurring ever more frequently, and the tempo-
ral and spatial distribution differences in precipitation have
increased. Additionally, the increase in impervious surfaces,
the narrow rivers on the plains, and poor drainage may result
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Figure 1. Flood risk assessment modeling framework.

in more frequent and widespread urban flooding and water-
logging disasters (Wan et al., 2013). This region is economi-
cally developed and densely populated, making it the largest
urban agglomeration in Asia (Sun et al., 2023). In 2008, the
gross domestic product (GDP) of the YRD accounted for
17.5 % of the GDP of the entire country, i.e., CNY 4.3 tril-
lion, and the per capita GDP was CNY 44 468, i.e., twice the
national average level. The population has reached 97.2 mil-
lion, i.e., 7.3 % of China’s total population, and the region’s
average population density is 877 persons km−2, i.e., approx-
imately twice the national average (Gu et al., 2011). There-
fore, the potential risks of flood and waterlogging disasters
are substantial.

2.2 Data sources and processing

2.2.1 Data sources

The study of flood disasters and their associated risks in ur-
ban agglomerations involves complex natural and socioeco-
nomic factors. Therefore, we collected and preprocessed data
from multiple fields, such as basic geography, meteorology,
social statistics, and historical disasters. Table 1 lists the data
types and resolutions collected for the research area.

2.2.2 Data standardization and preprocessing

Due to variations in data sources and formats, the flood dis-
aster risk data collected exhibit differences in spatial resolu-
tion, dimensions, and magnitude. To ensure consistency and
comparability, standardization of both spatial scale and nu-
merical range was performed before using these datasets as
flood risk indicators.

1. Unification of spatial scale means aligning data within
the same coordinate range and resolution. The research
data are standardized through projection transforma-
tion, converting all datasets into the same geographic
and projected coordinate systems. To generate contin-
uous spatial surfaces from discrete data points, we ap-
plied the ordinary kriging interpolation method, which
assumes a constant but unknown local mean (Cressie,
1990). A spherical semivariogram model was adopted
to capture spatial autocorrelation, as it is widely used
in environmental geostatistics for its bounded range
and smooth continuity (Webster and Oliver, 2007).
The interpolation process was carried out using Ar-
cGIS 10.8. Finally, if the spatial data have different res-
olutions, resampling is performed to standardize all data
to the same resolution, which in this study is unified to
30 m× 30 m.

2. Normalization of the numerical range can be achieved
using a normalization process. In this study, the min–
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Figure 2. The schematic map of the YRDUA.

max normalization method is applied. Specifically, the
minimum and maximum values of each feature are com-
puted only from the training set, and both the training
and test sets are then normalized using these training-
derived parameters. This ensures that the normalized
values in the training set are scaled to the range of [0,1],
while the values in the test set may exceed this range if
they fall outside the training set’s value distribution. The
formula is as follows:

x′ =
x− xtrain

min

xtrain
max − x

train
min

. (1)

2.3 Historical flood inundation point extraction

The historical flood inundation map of the study area is
shown in Fig. 3a. The flood inventory map used in this
study was created based on inundation data from the Global
Flood Database and the EM-DAT flood disaster database and
was further verified through satellite imagery, Google Earth,
and documented historical flood records. The actual flooded
areas were delineated from flood traces in the inundation
dataset and image interpretation. A flooded point is defined
as a location that lies within the inundation extent of at least

one recorded flood event during the study period. Based on
this definition, 278 flooded points were randomly selected
from the validated inundated areas. These points serve as
the foundation for subsequent statistical analysis and model
training, with their spatial distribution shown in Fig. 3b.
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Table 1. Description of the datasets used for flood risk assessment, their characteristics, and data sources.

Category Details Resolution Data source

Basic geographic
information data

Administrative boundaries and river
network density data.

30 m – : Resources and Environmental
Science and Data Center, CAS
(RESDC, 2022).

– USGS (https://earthexplorer.usgs.
gov/, last access: 19 January
2023)

– Wuhan University CLCD dataset
(https://zenodo.org/records/
8176941, last access: 6 October
2023)

– National Ecosystem Science Data
Center (https://nesdc.org.cn)

Digital elevation model (DEM) based on
SRTM1 (30 m), mosaicked and clipped to the
study area (27 core cities).

Land use data from CLCD (30 m), includes
seven categories: farmland, forest, shrubland,
grassland, water, bare land, and impervious sur-
faces.

NDVI data (2000–2020) calculated using the
GEE platform.

Meteorological
data

Hourly precipitation data from 120 meteorolog-
ical stations. Data preprocessed for outlier re-
moval and missing value handling.

Station data National Meteorological Information
Center, China Meteorological Adminis-
tration

Social statistics Population, unemployment, GDP, and health-
care statistics at the prefecture level.

Prefecture level Provincial and municipal statistical
yearbooks and bulletins

Urbanization rate calculated using the urban
population proportion.

GDP density and per capita GDP derived from
total GDP and land area/population.

Historical disaster
data

Flood inundation data from the MODIS-based
Global Flood Database (2000–2018), processed
to focus on the YRDUA region. To ensure com-
prehensive selection of inundation points, the
inundated areas within the time frame were
overlaid to produce a historical flood map.

250m Global Flood Database (https://www.
emdat.be/, last access: 25 January 2023)

To calculate flood hazard, it is necessary to select train-
ing samples. The task of identifying flooded and non-flooded
points using AutoML is essentially a binary classification
problem, which requires a balanced number of samples. An
imbalanced ratio of positive and negative samples can re-
sult in unreliable classification outcomes. Previous studies
(Pham et al., 2021; Bostan et al., 2012) have shown that
the best classification performance is achieved when the ra-
tio of flooded to non-flooded points is 1 : 1. Therefore, af-
ter selecting the flooded points, 278 non-flooded points were
randomly sampled to ensure a balanced 1 : 1 ratio, excluding
high-altitude areas based on the region’s actual characteris-
tics. Finally, the flooded and non-flooded points were used
as sample data and were divided into a 7 : 3 ratio (70 % for
training and 30 % for testing) for model training.

2.4 Establishment of a flood risk assessment indicator
system

Although risk is a universal concept, it has no universal def-
inition (Aven, 2016; Mishra and Sinha, 2020). Based on the

hazard–exposure–vulnerability (H–E–V) disaster risk frame-
work, we considered the particularity of flood risk research at
the urban agglomeration scale, incorporated resilience indi-
cators into the existing framework, and constructed a four-
dimensional flood risk assessment framework of hazard–
exposure–vulnerability–resilience (H–E–V–R) that can as-
sess regional flood risks more comprehensively and system-
atically. The conceptual description of flood risk in this study
can be expressed as Eq. (2):

Risk= f (H,E,V,R)

=

∑a

i=1
ωHHi +

∑b

i=1
ωEEi

+

∑c

i=1
ωV Vi +

∑d

i=1
ωRRi, (2)

where H , E, V , and R represent the danger of, exposure to,
vulnerability to, and resilience in response to floods, respec-
tively; ωH , ωE , ωV , and ωR are the weights of danger, expo-
sure, vulnerability, and resilience, respectively; Hi , Ei , Vi ,
and Ri are the values of items i of the indicators; and a, b, c,
and d are the numbers of the indicators.
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Figure 3. (a) Flood inundation map of the study area. (b) Spatial distribution of flooded and non-flooded points in the YRDUA.

Figure 4. Flood risk assessment index system for the YRDUA based on the H–E–V–R framework.

We constructed a flood risk assessment index system for
the YRDUA based on the H–E–V–R framework, the ac-
tual situation in the study area, the formation mechanisms
of flood disasters, and the findings of relevant studies (Gain
et al., 2015; Criado et al., 2019; Hsiao et al., 2021). We se-
lected 4 first-level indicators (i.e., the hazard, exposure, vul-

nerability, and resilience indices) and 19 second-level indica-
tors. A detailed description of the flood risk assessment index
system is presented in Fig. 4.

The hazard indicators consisted of six markers: aver-
age annual precipitation (PREC), annual cumulative heavy-
rainfall duration (DURA), a digital elevation model (DEM),
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slope, drainage density (DD), and the normalized difference
vegetation index (NDVI). Rainfall is the primary factor lead-
ing to flooding, particularly extreme rainstorms caused by
climate change. According to the Meteorological Bureau’s
definition, a heavy-rainstorm event is characterized by rain-
fall of 50 mm or more within 24 h. DURA is defined as the
total number of days with heavy-rainstorm events occurring
at all meteorological stations within the study area each year.
The more days heavy rainstorms accumulate and the longer
their duration, the greater the likelihood of flooding and other
disaster events. DEM and slope are important topographical
indicators. Areas with low DEM and slope values are gener-
ally more susceptible to flood threats. DD refers to the area
of rivers or lakes per unit of land surface area and is a crucial
indicator of a watershed’s structural characteristics. It deter-
mines the watershed’s capacity to withstand flooding. The
higher the DD, the greater the likelihood of flooding and the
higher the potential flood risk. Vegetation plays a role in wa-
ter storage, retention, and infiltration. The lower the vege-
tation coverage, the weaker the buffering capacity, making it
more likely for surface water to accumulate. The NDVI index
measures the relative abundance of green vegetation, with
values ranging from−1 to 1. The higher the value, the greater
the vegetation coverage and the lower the risk of flooding.

Land area (AREA), population density (DPOP), GDP den-
sity (DGDP), and building density (DBUI) were selected as
exposure indicators to assess the degree of vulnerability of
both the natural environment and social systems to flooding.
The land area for each administrative unit at the prefecture-
level city is calculated individually. A larger land area cor-
responds to a greater extent exposed to flooding. DPOP and
DGDP represent the concentrations of population and assets,
respectively. Areas with higher DPOP and DGDP are more
susceptible to potential threats from pluvial flooding. DBUI,
the ratio of total building area to total land area in a region,
indicates the building density. A higher DBUI reflects greater
exposure to flooding.

Vulnerability indicators focus more on the social aspects
of flood disasters. This study selects four vulnerability indi-
cators: proportion of child population (PPOP_CHI), propor-
tion of elderly population (PPOP_ELD), proportion of un-
educated population (PPOP_UEDU), and urbanization rate
(UR). Age is a key feature of social vulnerability, and the
population aged 0–14 and those over 65 are considered vul-
nerable groups, as these age groups are more susceptible to
flood damage. The uneducated population generally has a
weaker awareness of disaster risks and lower self-protection
capacity, which makes this group more vulnerable to flood-
ing. The urbanization rate refers to the proportion of the ur-
ban population in the total resident population of a region.
This indicator is inversely related to flood vulnerability. In
general, a higher urbanization rate indicates greater social
development and stronger protective capacities, which can
reduce vulnerability to flooding to some extent.

The resilience indicators selected in this study include
gross domestic product (GDP) per capita, unemployment rate
(UEMP), number of doctors (DOCS), number of medical in-
stitutions (INSTS), and number of hospital beds (BEDS).
GDP per capita is the ratio of a region’s GDP to its total
resident population over a specified period, reflecting the re-
gion’s economic condition. A higher GDP per capita indi-
cates a more developed economy, which is associated with a
greater capacity to recover quickly after a flooding event. The
unemployment rate (UEMP) measures the proportion of the
idle labor force, indirectly reflecting the stability of urban de-
velopment. A high unemployment rate signals economic in-
stability, which weakens the capacity to cope with floods and
extends the time required for post-disaster recovery, thus im-
peding disaster response efforts. The indicators DOCS, IN-
STS, and BEDS provide insights into a region’s healthcare
and medical support capabilities. Areas with stronger health-
care systems are better positioned to manage flood risks and
recover more effectively from such disasters.

2.5 Flood risk calculation method based on AutoML

2.5.1 Feature selection

The flood inventory map in this paper was developed using
inundation data from the Global Flood Database and flood
disaster data from the EM-DAT database, supplemented by
satellite and Google image interpretation and verified against
existing historical flood records. The actual flood-affected ar-
eas were delineated based on flood traces from the inundation
datasets and image interpretations. For this study, 278 flood
inundation points were randomly selected within the inun-
dation data range during the study period, and the location
of each point was used as the basis for subsequent statisti-
cal analysis of flood events. The main factors affecting flood
risk were considered during input feature selection. Rainfall
and rainstorms are important factors that lead to floods, and
flooding is closely related to topography, slope, vegetation
cover, and hydrological conditions. Therefore, six indicator
factors, namely PREC, DURA, DEM, slope, NDVI, and DD,
were selected as the input features of the model. To verify the
model, 70 % of the data in the sample were set as the training
dataset and the remaining 30 % of the data were set as the
testing dataset through random sampling.

When the number of samples is small, data balancing is
essential to ensure uniform sampling and reduce the devi-
ations among the training, validation, and original datasets.
Data balancing refers to the process of achieving a balanced
distribution of data for each labeled category; it is partic-
ularly important when the number of observations in each
class is significantly different. One way to address an imbal-
anced dataset is to oversample the minority classes. In this
study, we assessed flood risk based on the identification of
flooded points in the sample, which is essentially a binary
classification problem; therefore, the output features are 0,

Nat. Hazards Earth Syst. Sci., 25, 3087–3108, 2025 https://doi.org/10.5194/nhess-25-3087-2025



Y. Gao et al.: Evaluating Yangtze River Delta Urban Agglomeration flood risk 3095

i.e., negative categories (non-flooded points), vs. 1, i.e., pos-
itive categories (flooded points). The processed dataset com-
prised 278 positive samples (flooded points) and 278 nega-
tive samples (non-flooded points), with each label consisting
of 278 points representing the entire dataset.

2.5.2 Model training and hyperparameter optimization

Training samples were generated using the data from flooded
and non-flooded points in the study area, and Auto-Sklearn
was used for model training; its principles are is shown in
Fig. 5. The Auto-Sklearn framework has multiple built-in
machine learning algorithms. We selected nine models that
are more typical or have better performance in flood haz-
ard research: random forest (RF), extreme gradient boosting
(XGBoost), light gradient boosting machine (LightGBM),
categorical feature boosting (CatBoost), extra trees, decision
tree, nearest neighbors, multilayer perceptron (MLP) neu-
ral network, and linear regression. The training and testing
datasets were used to train the nine machine learning mod-
els, and the hyperparameters were continuously adjusted and
optimized.

Hyperparameter optimization is an important step in ML
model training. The aim of this step is to determine a hyper-
parameter combination to generate an ML model that per-
forms well on a specific dataset and reduces the effect of
the predefined loss function on a given dataset. In this study,
we used a grid search strategy for optimization. For each set
of hyperparameter combinations, k-fold cross-validation was
used to evaluate the model. To quantify the balance between
precision and recall, the F1 score was used as the primary
evaluation metric. The hyperparameter combination corre-
sponding to the model with the highest average F1 score was
selected as optimal. Briefly, the training dataset was divided
into k parts, of which one was selected as the test set and
the rest were used as the training set. The cross-validation
was repeated k times and the results were averaged k times.
The model with the best average result among all models was
selected as the optimal model, and the final classification pre-
diction result was the output. In this study, we used five-fold
cross-validation.

It is important to note that the five-fold cross-validation
was employed at two distinct stages in this study. First, it was
conducted within the training set during hyperparameter tun-
ing as part of the AutoML model selection process. Second,
following the final model selection, an independent five-fold
cross-validation was applied to the entire dataset to evalu-
ate the generalization performance of the model and iden-
tify potential overfitting. The data partitions used in the two
stages were entirely separate, ensuring that no data leakage
occurred.

2.5.3 Performance evaluation

To better compare the performance of the nine selected ML
models in the Auto-Sklearn framework for flood risk assess-
ment, multiple evaluation indicators were used to assess the
test dataset. The following combinations of the true category
of the sample point and the category predicted by the clas-
sifier were used: true positive (TP) – the sample point is a
flooded point, and the model classifier also predicts that it
is a flooded point; true negative (TN) – the sample point is
a non-flooded point, and the model classifier also predicts
that it is a non-flooded point; false positive (FP) – the sample
point is a non-flooded point, and the model classifier mis-
takenly predicts that it is a flooded point; and false negative
(FN) – the sample point is a flooded point, and the model
classifier mistakenly predicts that it is a non-flooded point.
Therefore, four related indicators were selected: precision,
recall, and F1 score, and the consistency metric of the Kappa
coefficient. The calculation formulas are as follows:

Precision=
TP

TP+FP
, (3)
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Figure 5. Principles of Auto-Sklearn.

Recall=
TP

TP+FN
, (4)

F1 score=
2TP

2TP+FP+FN
. (5)

Among the indicators, precision refers to the proportion
of correctly predicted flooded points among all predicted
flooded points, reflecting the model’s ability to avoid false
positives. Recall measures the proportion of correctly iden-
tified flooded points among all actual flooded points, rep-
resenting the model’s sensitivity. F1 score is the harmonic
mean of precision and recall, providing a balanced evaluation
of both metrics and reflecting the overall recognition perfor-
mance of the model.

The Kappa coefficient is a statistical consistency metric
used to measure classification performance, which is calcu-
lated based on the confusion matrix of true and predicted cat-
egories. Its value is in the range of [−1,1]: a Kappa value
of 1 indicates perfect agreement, 0 means that the classifica-
tion is no better than random guessing, and negative values
suggest that the classification is worse than random predic-
tion. Kappa is calculated using Eq. (6), where Pe is given by
Eq. (7).

Kappa=
Po−Pe

1−Pe
, (6)

Pe =
(TP+FP)(TP+FN)+ (TN+FN)(TN+FP)

(TP+FP+TN+FN)2
, (7)

where Pe represents the expected agreement by chance.
Combining multiple indicators allows for a more compre-

hensive evaluation of models within the Auto-Sklearn frame-
work for flood point identification and flood risk assessment.

2.6 Method for determining flood risk index weights
based on AHP

2.6.1 Establishing a hierarchical model

According to the decision-making objectives, factors, and ap-
plications in decision-making problems, the AHP can be di-

Table 2. The pairwise comparison point-based rating scale of AHP.

Ranking Importance level

1 Equally important
3 i is slightly more important than j
5 i is much more important than j
7 i is considerably more important than j
9 i is extremely important compared to j
2, 4, 6, 8 Intermediate value of two adjacent judgments
Reciprocal Comparative judgment of j vs. aji = 1/aij

vided from bottom to top into the target, criterion, and ap-
plication layers. Among them, the target layer is the problem
to be solved (i.e., final flood risk). The criterion layer is the
intermediate link, including the factors to be considered and
the decision-making criteria. The factors can be divided into
different evaluation indicators, including 4 first-level indica-
tors (danger, exposure, vulnerability, and resilience) and the
corresponding 19 second-level indicators. The criterion layer
comprises various weight combination schemes linked to the
target layer. The application layer is the final optional scheme
and the specific application of the decision. The final weight
scheme and evaluation results of this study were applied to
the YRDUA.

2.6.2 Constructing the judgment matrix

After the hierarchical structure was established, a judgment
matrix was constructed based on the relationship between the
criteria and indicators. Different elements in the sub-level
were compared pairwise, and the relative importance of all
elements in the current layer and previous layer were com-
pared. Typically, a pairwise comparison matrix is used as a
representative model. In this study, we adopted the 1–9-scale
method as the importance measurement standard. The impor-
tance comparison relationship is presented in Table 2, where
the matrix element aij represents the comparison result of the
ith element relative to the j th element.
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2.6.3 Solving the eigenvector of the judgment matrix

Based on the judgment matrix, the square root method was
used to solve the eigenvector and eigenroot. The first step
is calculating the square root aij of the product of each row
of the judgment matrix n, then normalizing it, and finally
calculating the maximum eigenroot of the judgment matrix.
The formulas are Eqs. (8)–(10).

Mi =
n

√∏n

j=1
aij (8)

Wi =
Mi∑n
i=1Mi

(9)

λmax =
∑n

i=1

(AW)i

nWi

(10)

2.6.4 Consistency check?

After the eigenvector calculation is completed, a consistency
test is required to reduce the subjectivity in the judgment ma-
trix and to enhance the scientific nature of the data and calcu-
lations. In a pairwise comparison matrix, consistency means
that the decision-maker’s judgments must exhibit logical co-
herence and transitivity. Specifically, if option A is consid-
ered more important than option B, and option B is consid-
ered more important than option C, then consistency requires
that option A must also be judged more important than op-
tion C (Saaty, 1984).

The consistency indicator (CI) is used to measure the de-
viation of the judgment matrix from the consistency: the
smaller the CI, the greater the consistency of the judgment
matrix. When CI= 0, the judgment matrix is completely con-
sistent. The CI calculation formula is given as Eq. (11).

CI=
λmax− n

n− 1
(11)

To quantify the standard, the relative consistency (CR) in-
dex was further calculated as Eq. (12).

CR=
CI
RI
, (12)

where the average random consistency index (RI) repre-
sents the average random consistency, which depends only
on the order of the judgment matrix. The RI values for judg-
ment matrices of orders 1 to 10 are shown in Table 3.

CR was determined based on the RI value. When
CR< 0.1, the consistency of the judgment matrix is consid-
ered good. When CR> 0.1, the consistency of the judgment
matrix is unacceptable, and the judgment matrix must be ad-
justed and modified. In such cases, the corresponding judg-
ment matrix was further constructed, and the eigenvector and
eigenvalue were calculated using Eqs. (11) and (12).

Finally, the judgment matrix that passed the consistency
test was used to calculate the weights of the indicators at the
different levels.

2.7 Determination of flood risk levels

The classification of flood risk levels often involves manu-
ally setting thresholds, which can introduce subjectivity and
influence the accuracy of the risk assessment outcomes (Ma
et al., 2022). To calculate the flood risk, we employed the
natural-breakpoint classification method, which groups data
into classes based on natural divisions within the dataset (Lin
et al., 2019). This method works by identifying points where
the data distribution changes most significantly and dividing
the data into ranges based on these breaks. Unlike clustering
methods, which do not focus on the number and range of el-
ements in each group, the natural-breakpoint method ensures
that the range and number of elements in each group are as
balanced as possible (Ma et al., 2022).

3 Results and discussion

3.1 Model flood risk results and evaluation

3.1.1 AutoML optimal model selection

In the experiment, nine typical ML models under the Auto-
Sklearn framework were used to process the sample dataset,
with 70 % of the sample set being used as the training dataset
and 30 % being used as the testing dataset. The results of
the comparative analysis of the model performance based on
the test dataset are presented in Table 4. A comprehensive
analysis of the results on the testing data revealed that, in
terms of precision, CatBoost had the highest value (0.9030),
followed by LightGBM (0.8960) and extra trees (0.8893).
Meanwhile, CatBoost had the highest recall rate of 0.8883,
followed by that of extra trees at 0.8870. The probability
thresholds for precision, recall, and the F1 score are in the
[0,1] range, while the Kappa coefficient range is [−1,1]. The
F1 score and Kappa coefficient of the CatBoost model were
also markedly higher than those of the other models, reflect-
ing the model’s good consistency. A comprehensive compar-
ison showed that the precision, F1 score, and Kappa coeffi-
cient of the CatBoost model were the highest, with its preci-
sion reaching 0.9030, indicating that the recognition and pre-
diction precision of the flooded points in the study area based
on the CatBoost model were obviously better than those of
other common machine learning models.

Flood data often involve various environmental factors
and complex interactions, but the CatBoost model is highly
effective at handling these nonlinear relationships and fea-
ture interactions. Additionally, the model incorporates mul-
tiple regularization mechanisms during tree construction,
which helps reduce overfitting and enhances the model’s
generalization ability. As shown in Table 4, most models
performed well on the training set, but their performance
slightly declined on the test set, highlighting variations in
generalization ability. CatBoost demonstrated strong robust-
ness, achieving precision of 0.9319 on the training set and
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Table 3. Consistency index (RI) for a randomly generated matrix.

n 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49

Table 4. Comparative analysis of the performance of different ML models.

Models Dataset Precision Recall F1 score Kappa

CatBoost Training set 0.9319 0.9307 0.9547 0.8614
Testing set 0.9030 0.8883 0.8960 0.7915

XGBoost Training set 0.9017 0.8827 0.8818 0.8640
Testing set 0.8748 0.8640 0.8624 0.7256

LightGBM Training set 0.9349 0.9307 0.9306 0.8616
Testing set 0.8960 0.7890 0.8015 0.7324

Random forest Training set 0.8922 0.8747 0.8745 0.7484
Testing set 0.8482 0.8320 0.8309 0.6662

Extra trees Training set 0.8524 0.8240 0.8735 0.7695
Testing set 0.8893 0.8570 0.8877 0.7751

Decision tree Training set 0.8886 0.8640 0.8621 0.8040
Testing set 0.8810 0.8720 0.8708 0.7419

Linear regression Training set 0.8636 0.8533 0.8525 0.7073
Testing set 0.8682 0.8480 0.8450 0.6926

Nearest neighbors Training set 0.7301 0.7907 0.7987 0.6009
Testing set 0.7747 0.7440 0.7390 0.4937

MLP neural network Training set 0.8998 0.8880 0.8873 0.7765
Testing set 0.8682 0.8480 0.8450 0.6926

0.9030 on the test set. Additionally, LightGBM and XGBoost
showed relatively consistent performance between the train-
ing and test sets, suggesting better generalization. However,
models such as decision tree and nearest neighbors exhibited
a more significant performance drop on the test set, indicat-
ing a higher sensitivity to overfitting. Interestingly, in a few
cases (e.g., extra trees), the test set performance slightly ex-
ceeded that of the training set for certain metrics. This is not
uncommon in small, balanced datasets and may result from
a combination of factors such as random sampling variation,
slightly easier test samples, or appropriate regularization that
reduces overfitting in the training set. To further evaluate
overfitting, we used five-fold cross-validation by comparing
the performance of the training and testing sets. The experi-
mental results indicate that while most models showed some
decline in performance on the test set, CatBoost maintained
relatively stable performance, suggesting that the model does
not exhibit significant overfitting and has good generalization
ability.

By comparing the performance of the nine models, we
found that the CatBoost model was more effective at iden-
tifying flooded points. To further verify the excellent per-

formance of the model, the receiver operating characteristic
(ROC) curve and area enclosed by the coordinate axes (cor-
responding area under the curve (AUC) value) were plotted
based on the test dataset to assess the model’s binary classifi-
cation effectiveness: the larger the AUC value, the better the
model distinguishes between classes. When AUC> 0.8, the
model prediction effect is very good (Sinha et al., 2008). In
this study, both micro- and macro-average ROC curves were
plotted. The micro-average ROC curve aggregates the con-
tributions of all classes to compute the average ROC curve,
treating each instance equally, while the macro-average ROC
curve computes the ROC curve for each class independently
and then averages the results. These two methods are com-
monly used for multiclass classification problems, but in this
study, they were used to give a more comprehensive com-
parison of model performance. The verification results are
shown in Fig. 6. The AUC value of the CatBoost model
reached 0.91, guaranteeing the performance and prediction
reliability of the CatBoost model. Based on this, the Cat-
Boost model was selected to calculate the flood risk in the
YRDUA.
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Figure 6. Receiver operating characteristic (ROC) curves and corresponding area under the curve (AUC) values of the CatBoost model.

3.1.2 Importance and interpretability analysis of
hazard factors

In this study, the AutoML model was used specifically to as-
sess flood hazard, which represents the physical likelihood
of flood occurrence and is directly driven by environmental
factors such as rainfall, topography, and drainage character-
istics. Therefore, only the six second-level indicators under
the hazard dimension were used as input features in the Au-
toML model. This approach allowed us to focus the model
on identifying the key natural drivers of flooding, while the
other dimensions – exposure, vulnerability, and resilience –
were later incorporated via the AHP method for comprehen-
sive flood risk evaluation.

To better understand the contribution of different hazard
indicators to flood risk in the YRDUA, we conducted impor-
tance ranking analysis using the CatBoost model and inter-
pretability analysis based on shapley additive explanations
(SHAPs).

The CatBoost model was used to quantify the relative im-
portance of six key hazard indicators. The results, shown
in Fig. 7, reveal significant differences in their influence.
DEM was identified as the most critical factor, contributing
68.55 %, which far exceeds the other factors, which is also in
line with the findings of many researchers within the region
(Mei et al., 2021; Wan et al., 2013). Low-lying areas natu-
rally function as water accumulation zones, increasing flood
vulnerability. Additionally, urban areas in the YRDUA are
dominated by impervious surfaces, limiting infiltration and
exacerbating flood risks. While PREC is a primary factor in
storm-induced flooding, its direct contribution to flood risk

Figure 7. Importance ranking of hazard factors based on the Cat-
Boost model.

was relatively low compared to DURA, which accounted for
10.07 %. This highlights the fact that the persistence of ex-
treme rainfall events is a stronger predictor of flood hazard
than total annual precipitation.

To further analyze the interpretability of the model and
understand the impact of individual flood hazard indicators
on the model’s classification results, this paper calculates
SHAPs to indicate the contribution of each feature to the
sample (Lundberg and Lee, 2017). SHAP, a game-theory-
based post hoc interpretation method, quantifies the marginal
impact of each feature on model predictions. The SHAP
summary plot in Fig. 8a ranks features based on their abso-
lute SHAP values, consistent with the CatBoost importance
ranking. Each row represents a feature, where red indicates
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Figure 8. (a) Scatter plot of hazard indicators from SHAP analysis. (b) SHAP dual-dependence analysis of elevation and slope factors.

higher feature values and blue indicates lower values. The
results show that DEM, slope, and NDVI negatively impact
flood risk, meaning that higher elevation, steeper slopes, and
greater vegetation coverage reduce flood hazards. In contrast,
DD, DURA, and PREC positively impact flood risk, indi-
cating that higher drainage density, longer durations of ex-
treme rainfall, and increased precipitation levels contribute
to higher flood hazards. Among these, DEM has the highest
absolute SHAP value, with a strong clustering below zero,
reinforcing its dominant role in flood risk determination.

To directly capture the interaction effects between paired
indicator factors, this study used SHAP interaction values
based on game theory, ensuring consistency while also ex-
plaining the interaction effects of individual predictions. For
the DEM feature, which had the highest importance in the
SHAP analysis, the factor most strongly correlated with it
was slope. Therefore, to illustrate how one feature interacts
with another to affect the model training results, this study
used DEM and slope as examples to plot the SHAP inter-
action scatter plot, representing the dependency of the DEM
feature. The results are shown in Fig. 8b. This dependency
plot takes the form of a logarithmic function, indicating that
as DEM increases, the flood hazard decreases. Additionally,
the slope has a negative effect on the flood hazard in relation
to elevation; that is, at lower elevations and gentler slopes,
the flood hazard is greater.

3.1.3 Determination of flood risk index weights

A judgment matrix was constructed for the 19 indicator fac-
tors. A hazard index was constructed based on the feature
importance calculated using AutoML. The exposure, vulner-
ability, and resilience indicators were determined based on
the existing literature and relevant expert scores (Hsiao et al.,
2021). The judgment matrices were constructed using a hy-
brid approach. For the hazard indicators, feature importance
scores generated from the AutoML model were used to in-
form the pairwise comparisons. For the exposure, vulnera-

bility, and resilience indicators, the weights were determined
by the authors based on a combination of expert judgment,
a review of existing studies, and consideration of the local
conditions in the YRDUA. The Saaty 1–9 scale was applied
to assign the relative importance to each pair of indicators.
Finally, the judgment matrix results were tested for consis-
tency, and the CR value was 0.0058, i.e., � 0.100, indicat-
ing that the results passed the consistency test and that the
flood risk index weight values calculated using the AHP were
acceptable. The specific indicator weights and their corre-
sponding impacts on flood risk are shown in Table 5. The
“attribute” column represents the impact of each indicator on
flood risk, with “+” indicating a positive impact on flood risk
and “–” indicating a negative impact on flood risk.

The weighted results reflect the degrees of influence of the
different indicator factors on flood risk. Hazard was the de-
cisive factor affecting flood risk, with a weight of 0.4798,
followed by resilience and vulnerability. Exposure had a rel-
atively low impact on flood risk. In terms of hazard, the to-
pography and DURA were the main factors affecting the oc-
currence of flooding. These two indicators determined the
characteristics of flood disasters in the YRDUA from the per-
spective of disaster-prone environments and driving factors,
respectively. In terms of exposure, the YRDUA is a typical
area with rapid social, economic, and population growth in
China. High population and GDP densities increase the risk
of flood exposure. In addition, the uneven age distribution
and education levels of the population are important social
factors affecting the risk of flood disasters in urban agglom-
erations. In terms of resilience, improving health and medi-
cal infrastructure, developing the regional economy, and re-
ducing unemployment rates are conducive to improving the
overall disaster response capacity of the region and reducing
the risk of flood disasters in the YRDUA.

Nat. Hazards Earth Syst. Sci., 25, 3087–3108, 2025 https://doi.org/10.5194/nhess-25-3087-2025



Y. Gao et al.: Evaluating Yangtze River Delta Urban Agglomeration flood risk 3101

Table 5. Flood risk index weights.

Dimension Indicator Unit Attribute Weight (%)

Hazard PREC mm + 4
(0.4798) DURA d + 10.8

NDVI – 7.6
DEM km – 22.99
Slope ° – 6.4
DD kmkm−2

+ 3.2

Exposure AREA km2
+ 1.1

(0.1083) DPOP people km−2
+ 4.32

DGDP CNY 10 000 km−2
+ 3.84

DBUI km2
+ 1.16

Vulnerability PPOP_CHI % + 4.92
(0.1312) PPOP_ELD % + 3.04

PPOP_UEDU % + 2.11
UR % – 2.05

Resilience GDP per capita CNY 100 million per 10 000 people – 4.43
(0.2807) UEMP % + 5.04

DOCS Per person – 4.13
INSTS Each – 0.45
BEDS Per bed – 6.28

3.1.4 Model result verification

Based on CatBoost under the AutoML framework and AHP,
the levels of flood hazard, exposure, vulnerability, and re-
silience were calculated for floods in the YRDUA, and the
spatial distribution of flood risks in the region was obtained
according to the weights determined by the model. Com-
bined with the natural-breakpoint classification method, a
flood risk zoning map of the YRDUA was constructed. The
extracted flood points were superimposed on the map to ver-
ify whether the model exhibited good flood risk assessment
capabilities. The results are shown in Fig. 9, indicating that
the distribution of flood points was consistent with the distri-
bution of high- and medium-to-high-risk areas in the region,
with the model assessment results corresponding well with
the actual flooding situation. To specifically illustrate the cor-
respondence of the results, the proportion of flood points dis-
tributed in high- and medium-to-high-risk areas was quanti-
tatively calculated. The value obtained was 87.45 %, indicat-
ing that the flood risk assessment results of the model in this
study were highly credible, and subsequent analysis could be
conducted.

As shown in Fig. 9, the high- and medium-to-high-risk ar-
eas of the YRDUA were mainly located in the northern part
of the region, concentrated in Chizhou, Anqing, Ma’anshan,
and Xuancheng cities in Anhui province; Yancheng and
Yangzhou cities in Jiangsu province; and Taizhou city in Zhe-
jiang province. Meanwhile, most areas of Hangzhou city had
the lowest risk. The flood risks in cities such as Shanghai,
Nanjing, and Jinhua were also relatively low. The overall

analysis showed that the flood risk in the study area was low
in the southwest and high in the northeast, determined largely
by natural terrain and meteorological factors. The spatial dis-
tribution of the flood hazard class was similar to the distribu-
tion of flood risks; exposure decreased stepwise from Shang-
hai into the surrounding areas, reflecting the fact that densely
populated and economically developed cities have higher ex-
posure. Areas with higher vulnerability were mainly con-
centrated in Chizhou, Anqing, Xuancheng, Chuzhou, and
Yancheng cities. The number of vulnerable people in these
cities was relatively high. Vulnerability has aggravated the
flood risks in Chizhou and Anqing cities on the basis of flood
risk. Meanwhile, Shanghai had the best resilience perfor-
mance, followed by that of Hangzhou, Suzhou, and Nanjing
cities, greatly lessening the flood risks in these cities.

3.2 Analysis of changes in the spatiotemporal
characteristics of flood risk

The flood risk results for the YRDUA from 1990 to 2020
were obtained based on the flood risk assessment model pro-
posed in this study. The differences in flood risk among cities
in the YRDUA over the past few decades are primarily due
to a complex interplay of various factors, including geo-
graphic and climatic conditions, urbanization processes, so-
cioeconomic factors, ecological changes, and historical flood
events. The topography and precipitation patterns of different
cities affect their capacity for rainwater drainage and accu-
mulation, while urbanization leads to an increase in imper-
vious surfaces and variations in infrastructure development,
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Figure 9. Flood risk level distribution and verification results based on a flood risk assessment model. The flood hazard, exposure, vulner-
ability, and resilience of the YRDUA were calculated using CatBoost under the AutoML framework and AHP. The flood hazard level (a),
flood exposure level (b), flood vulnerability level (c), flood resilience level (d), and flood risk spatial distribution (e) were derived through
natural-breakpoint classification in the ArcGIS software based on model-determined weights, resulting in a flood risk zoning map for the
Yangtze River Delta region.

impacting flood management capabilities. Additionally, dif-
ferences in DPOP, economic development levels, and flood
management policies can exacerbate flood risk. Furthermore,
the increasing frequency of extreme weather events due to
climate change further elevates flood risk. These factors de-
termine the varying levels of flood risk among cities within
the YRDUA.

As the interannual difference in flood risk in the region
was small and the change response was weak, we selected
the flood risk results for 1990, 2000, 2010, and 2020 to an-
alyze the changes in the spatiotemporal pattern. In this anal-
ysis, variables such as PREC and DURA exhibit clear tem-
poral variability, as they change year by year due to weather
patterns. However, other factors like DEM, slope, and NDVI
and urbanization indicators such as DPOP and GDP are spa-
tial variables that do not exhibit direct temporal changes, but
their effects on flood risk are influenced by changing socioe-
conomic and ecological conditions.

Regarding spatial patterns (Fig. 10), the flood risk in the
YRDUA showed clear spatial heterogeneity. The southwest-
ern part of the study area and Shanghai have shown low flood
risk over the past 30 years, whereas the central and north-
ern parts of the region have been more likely to face flood

risks depending on the natural conditions, population, eco-
nomic conditions, and recovery capacity of the region. Re-
garding temporal patterns, from 1990 to 2010, areas with
high and medium-to-high risk decreased markedly. By 2010,
most of the YRDUA (except for a few areas) was in a state
of medium risk or below, with the southwestern region ex-
hibiting a large range of low risk levels. The correspond-
ing areas for each risk level are shown in Fig. 11. From
1990 to 2010, areas of low- and low-to-medium-risk levels
gradually increased, maximizing in 2010, whereas areas of
medium risk and above continued to decrease. By 2020, the
number of high-risk areas for flooding had increased. There
is a tendency for areas of medium-to-high risk in the cen-
tral region to shift towards high-risk areas in 2020, as com-
pared to the state in 1990. Meanwhile, high-risk areas for
floods also appeared in Chizhou and Anqing cities in Anhui
province, which was mainly due to the intensification of ex-
treme weather, unbalanced population distribution, and rapid
economic development in recent years.

To further analyze the changes in flood risk in the region,
we calculated the change rate of the area of different risk lev-
els every 10 years and the overall change rate over 30 years.
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Figure 10. Spatial distributions of flood risk in the YRDUA in different years between 1990 and 2020.

Figure 11. Areas at different levels of flood risk in the YRDUA in
different years between 1990 and 2020.

The interannual rate of change is expressed in Eq. (13).

Rl,ij =
riskl,j − riskl,i

riskl,i
× 100%, (13)

where Rl,ij is the rate of change in the flood risk area of
a certain level l in a certain year, i and j are different years,

and riskl,j and riskl,j are the areas corresponding to the flood
risk of this level in different years.

The interannual variation rate of the flood risk is shown
in Table 6. Results showed that the interannual variation be-
tween the areas of low and high risk was relatively large. The
low-risk area was at a maximum in 2010, and bothR2000–1990
andR2010–2000 showed a positive variation rate. The high-risk
area showed the largest interannual variation rate from 2010
to 2020, reaching 12.22 % and causing the high-risk flood
area in 2020 to spread, resulting in a large high-risk area.

Analyzing the flood risk of the entire urban agglomeration
does not reveal the spatial-scale effect of flood risk, nor does
it consider the correlation and impact of flood risk at differ-
ent spatial scales. To reflect the distribution of and changes
in flood risk at different spatial scales within the region, the
risk intensity of different provinces was further analyzed, and
the results are shown in Fig. 12. In Fig. 12, the average flood
risk reflects the differences in risk development of the provin-
cial administrative units in Shanghai, Anhui, Zhejiang, and
Jiangsu in terms of time and space. Overall, all administra-
tive units in the YRDUA exhibited the highest flood risk in
2020, and the overall risk trend increased. At the provincial
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Table 6. Interannual change rates of flood risk areas of different levels (expressed as percentages). The flood risk levels are classified into
five categories represented by Roman numerals: I (very low), II (low), III (moderate), IV (high), and V (very high).

R2000–1990 (%) R2010–2000 (%) R2020–2010 (%) R2020–1990 (%)

I 1.77 1.44 −0.67 1.21
II 0.54 0.15 −0.49 −0.10
III −0.11 −0.40 0.81 −0.03
IV −0.65 0.25 1.25 −0.02
V −0.53 −0.80 12.22 0.27

Figure 12. Distribution of average flood risk in each province of the
Yangtze River Delta Urban Agglomeration from 1990 to 2020.

level, Shanghai’s flood risk was consistently low, showing
a trend of first decreasing from 0.152 in 1990 to 0.123 in
2000 and then gradually increasing to 0.311 in 2020. Among
the other three provinces, Jiangsu and Anhui had relatively
high flood risks, reaching 0.525 and 0.516, respectively, in
2020, whereas Zhejiang had a relatively low flood risk, which
remained stable between 1990 and 2010, with no distinct
changes.

4 Conclusion

Flood risk assessment at the scale of urban agglomeration is
a hot research topic in the field of disaster prevention and
mitigation. In this study, the flood risk assessment indexes
for YRDUA were determined related to different dimensions
of hazard, exposure, vulnerability and resilience, and a flood
risk assessment model based on AutoML and AHP was con-
structed to study the changes in the spatial and temporal char-
acteristics of flood risk in the region in the last 30 years from
1990 to 2020, aiming to provide a scientific basis for the pre-
vention of damage and the resilience of the YRDUA. The
main conclusions of this study are as follows:

1. In the flood risk calculation, the CatBoost model has
the highest precision, F1 score, and Kappa, and its pre-
cision can reach 0.9030. Further analysis of the ROC
curve and the corresponding AUC value of the model
shows that its AUC value is 0.91, which indicates that
the CatBoost model has the best performance and pre-
diction reliability. Therefore, the CatBoost model was
selected to calculate the flood risk in the YRDUA.

2. Using the flood risk assessment model based on Au-
toML and AHP to obtain the flood risk of the YRDUA,
superimposed on the flooded point data for comparative
analysis, we found that the distribution of flooded points
in the study area is basically consistent with the distribu-
tion of high- and medium-to-high-risk areas of flooding,
and the proportion of the distribution is 87.45 %, which
indicates that the model in this study has a good perfor-
mance and credibility regarding the assessment of flood
risk.

3. The spatial distribution of flood risk in the YRDUA dur-
ing the 30-year study period shows obvious heterogene-
ity, with the southwestern part of the region and Shang-
hai city having a low flood risk, whereas the north-
central part of the region faces a relatively high prob-
ability of flood risk. Between 1990 and 2010, there was
a substantial decrease in the high- and medium-to-high-
risk flood zones, yet by 2020, there was an increase in
the high-risk flood zones. There is a tendency for the
medium-to-high-risk area in the center of the region to
shift to a high-risk area, whereas high-risk areas also
occur in the cities of Chizhou and Anqing in Anhui
province.

4. All administrative units of the YRDUA exhibited the
highest flood risk in 2020, with an overall trend of in-
creasing risk. At the provincial level, Jiangsu and Anhui
provinces possess relatively high flood risks, whereas
Zhejiang province has a relatively low flood risk.

5. The findings of this study provide valuable insights for
flood risk management and policy-making. The flood
risk maps generated in this study can serve as a sci-
entific basis for urban planning, infrastructure devel-
opment, emergency response, and disaster prevention
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strategies. By integrating these risk assessments into
decision-making processes, government agencies and
urban planners can optimize flood prevention measures
and enhance regional resilience. Furthermore, the Au-
toML framework used in this study can be applied to
other regions for flood risk assessment and can be in-
tegrated into future climate change scenarios to enable
long-term forecasting and proactive disaster mitigation
strategies.
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