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Abstract. We assess the ability of a regional weather gener-
ator to represent the extremity of heavy-precipitation events
(HPEs) across spatial and temporal scales. To this end, we
implement a multi-site non-stationary regional weather gen-
erator (nsSRWG) for the area of Germany and generate 100
sets of synthetic daily precipitation data spanning 72 years.
The weather extremity index (WEI) and its recent cross-scale
modification (XWEI) are applied to quantify the cross-scale
extremity of synthetic and observed HPEs and to compare
their distributions. The results show that the nsSRWG excels
in replicating the extremity patterns for almost all seven du-
rations (ranging from 1 to 7 d) considered. The frequency of
small-scale 1d rainfall is, however, slightly overestimated.
The nsRWG aptly reproduces the potential influential areas
of HPEs, whether of a short or long duration. It is capa-
ble of generating precipitation events mirroring the extremity
patterns observed during past disaster-causing HPEs in Ger-
many, while simultaneously accommodating their variations.
This study demonstrates the potential of the nsSRWG for sim-
ulating HPE-related hazards and assessing flood risks.

1 Introduction

Heavy-precipitation events (HPEs) are rare weather phe-
nomena which accumulate exceptional amounts of rainfall,
within hours to days, over areas ranging from a few to tens of
thousands of square kilometers. As the main cause of dam-
aging floods and landslides, HPEs are the costliest natural
disasters in Europe (GvoZzdikova et al., 2019; NatCatSER-
VICE, 2023; Swiss Re Institute, 2024). Climate change is
expected to increase the frequency, intensity, and spatial ex-

tent of HPEs (Christensen and Christensen, 2003; Lenderink
and Fowler, 2017; Matte et al., 2022; Yang et al., 2023) and
their associated impacts (Merz et al., 2021).

Germany has experienced several notable HPEs in recent
years (Hu and Franzke, 2020). For example, in August 2002,
heavy precipitation led to record-high water levels in the Elbe
River and its tributaries (Kreibich et al., 2017; Thieken et
al., 2022). In July 2021, a widespread HPE hit the western
and southern parts of Germany as well as neighboring coun-
tries and caused one of the most devastating flood events in
German history, with more than 180 fatalities and EUR 33
billion in damages (Apel et al., 2022; Szonyi et al., 2022;
Mohr et al., 2023).

To understand the physical mechanisms and to assess the
potential consequences of HPEs, analyses of past events can
be carried out (e.g., Caldas-Alvarez et al., 2022; Mohr et
al., 2023). Alternatively, large ensembles of climate model
simulations (e.g., Ehmele et al., 2022) or synthetic weather
fields can be generated to extract a set of plausible HPEs.
The latter option represents a more computationally efficient
approach by deploying stochastic weather generators (WGs).
WGs are stochastic models that are capable of generating
synthetic spatiotemporal fields of weather variables such as
precipitation, temperature, and humidity, retaining the statis-
tical properties of observed or climate model data on which
WGs are conditioned, such as autocorrelation, spatial co-
variance, and multi-variable dependence. A large number of
WG models have been introduced so far, based on various
statistical methods; among others, reshuffling and perturb-
ing analogue weather fields or applying multi-variate auto-
regressive models (for a review, see Maraun et al., 2010;
Haberlandt et al., 2011; Serinaldi and Kilsby, 2014; Benoit
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and Mariethoz, 2017; Nguyen et al., 2021). WGs can be in-
strumental in generating synthetic HPEs, thereby support-
ing flood risk management and climate adaptation (Breinl
et al., 2013; Chen and Brissette, 2014; Harris et al., 2014;
Sairam et al., 2021). WGs are widely used for estimating hy-
drological design values (Winter et al., 2019), downscaling
climate model output (Fatichi et al., 2011; Kiem et al., 2021),
climate impact assessments on water resources (Harris et
al., 2014; Najibi et al., 2024), and flood risk assessments
(Sairam et al., 2021), providing long-term datasets for sce-
narios where observational data may be limited and where
downscaled future climate projections are needed. WGs are
particularly effective when integrated with other models to
better understand and prepare for HPEs and their conse-
quences (Mehrotra and Sharma, 2010; Zhou et al., 2020). For
instance, long-term synthetic weather fields (like precipita-
tion and air temperature) generated by WGs can be used as
meteorological forcing for hydrological models in order to
quantify HPE-related floods and damages (Apel et al., 2016;
Qin and Lu, 2014; Sairam et al., 2021). This approach allows
researchers to develop exceptional flood events needed for
flood design or disaster management planning, as the gener-
ation of very long time series of flood flows and inundation
increases the probability of obtaining situations where the
unfortunate superposition of the different flood-generating
processes leads to severe impacts (Falter et al., 2015). Such
situations are rarely encountered in measured time series that
are usually very limited in length.

Evaluating the performance of a WG is crucial to ensure
that it accurately represents historical weather data and pro-
duces synthetic weather sequences that are adequate for the
application context, e.g., flood estimation, drought assess-
ment, climate change impact assessment (Tseng et al., 2020).
The evaluation process helps to identify biases or limitations
in the model output and fosters model improvements (e.g.,
Breinl et al., 2013; Serinaldi and Kilsby, 2014; Nguyen et
al., 2021). Widely used metrics to evaluate synthetic precip-
itation data include the mean, standard deviation and skew-
ness, lag-1 autocorrelation, frequency of wet (or dry) days,
and precipitation intermittency (Steinschneider and Brown,
2013; Tseng et al., 2020; Zhou et al., 2020; Nguyen et
al., 2021). Additionally, the performance of WGs in simulat-
ing the extremity of precipitation events is of special interest.
The extremity of precipitation events is usually described by
intensity, duration, and spatial extent statistics (Beniston and
Stephenson, 2004; Jeferson de Medeiros et al., 2022; Miiller
and Kaspar, 2014; Zhang et al., 2011). The spatial consis-
tency of multi-site WGs is sometimes evaluated based on the
areal mean of the synthetic field within a region, e.g., the
average rainfall of the catchment (Ullrich et al., 2021). How-
ever, this method may underrepresent the variability in the
affected area, particularly when calculated in a fixed region,
as the areal mean underestimates the extremity when only
part of the region is heavily affected (Miiller and Kaspar,
2014; Voit and Heistermann, 2022). To address these issues,
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the correlation between multiple sites can be used to measure
the spatial dependence structure of the precipitation amount
across a region (Breinl et al., 2013; Gao et al., 2021; Tseng et
al., 2020). Furthermore, the continuity ratio, expressed as the
ratio between the average precipitation at one location when
another location is dry or wet, can capture the spatial co-
herence of precipitation between adjacent locations (Wilks,
1998; Breinl et al., 2013). However, both the correlation co-
efficient and the spatial continuity ratio are dominated by the
bulk of the precipitation events rather than by the extreme
values.

HPEs can vary in duration, from short intense down-
pours to prolonged periods of heavy rainfall. Quantile-based
thresholds of block maxima of precipitation totals and empir-
ical probability distribution plots are typically used to char-
acterize WG performance for extremes (Breinl et al., 2013;
Zhou et al., 2020; Nguyen et al., 2021; Ullrich et al., 2021).
Such methods are usually applied separately for different du-
rations, neglecting the temporal coherence of HPEs, which in
reality can be simultaneously extreme at different temporal
and spatial scales, triggering different types of flooding over-
laying each other (Ramos et al., 2017). For instance, during
the 2002 Elbe flood, small-scale extreme precipitation caused
flash floods in several small Elbe tributaries. During the same
event, extreme rainfall over large spatial scales and longer
durations triggered fluvial flooding, with widespread inunda-
tion and finally long-lasting groundwater flooding in the city
of Dresden (Kreibich et al., 2005; Thieken et al., 2022). The
ability of WGs to represent these cross-scale characteristics
of precipitation events is thus essential for flood risk model-
ing. Up to now, no single measure has been used to evaluate
the ability of WGs to capture the cross-scale extremity of
rainfall.

In this study, we demonstrate a new evaluation approach
for a WG based on the weather extremity index (WEI; Miiller
and Kaspar, 2014) and the cross-scale weather extremity in-
dex (xWEI) introduced by Voit and Heistermann (2022).
These indices quantify the extremity of an event, consider-
ing different duration levels and spatial extents. xXWEI addi-
tionally integrates the extremity over different duration levels
and spatial extents. Our aim is to evaluate how well the cross-
scale extremity of precipitation events is captured by a WG,
even if it is not specifically tailored or trained to do so.

2 Study area and data

The study area is Germany (Fig. 1), given its exposure to haz-
ards induced by heavy-precipitation events (HPEs), as high-
lighted in the introduction. A non-stationary regional weather
generator (nsSRWG) (Nguyen et al., 2024) is implemented for
the whole of Germany and parts of the upstream neighboring
countries, covering the five major river catchments — Elbe,
Rhine, Danube, Ems, and Weser — to produce long-term spa-
tially consistent synthetic precipitation and temperature data.
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Figure 1. The study area (Germany and adjacent regions) and its to-
pography, major rivers, and E-OBS grid nodes. The extent of where
the mean sea level pressure was extracted to classify the circulation
patterns (CPs) is shown in panel (a).

In this study, we focus on the ability of the WG to represent
the extremity of precipitation across scales. Weather genera-
tors that comprise several catchments and cover such a large
spatial area (more than 650 000 km?) are rare, and previous
studies have commonly implemented WGs at smaller scales
(Tseng et al., 2020; Ullrich et al., 2021; Gao et al., 2021).

Two datasets are used to parameterize the nsRWG:
(1) gridded precipitation data from E-OBS (version 25.0e;
Cornes et al., 2018) and (2) mean sea level pressure and daily
air temperature at a 2m height from the ERAS reanalysis
(Hersbach et al., 2020). Mean sea level pressure is used to
classify circulation pattern types for which the local distribu-
tions of precipitation are conditioned. Regionally averaged
daily temperature acts as a covariate of the local distribution
in order to consider changes in precipitation for the same cir-
culation pattern in a non-stationary warming world (Nguyen
et al., 2024). Both the E-OBS and ERAS datasets are avail-
able at a daily resolution, spanning from 1 January 1950 to
31 December 2021.

E-OBS is an ensemble gridded weather dataset and is
available on a regular 0.25° grid, covering Europe. It is based
on station data collated by the European Climate Assessment
& Dataset initiative (Cornes et al., 2018). To cope with the
high computational demands, we have resampled the grid
points to a reduced spatial resolution of 0.5°. The locations
of the extracted E-OBS grid points are given in Fig. 1.

The ERAS dataset, provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF), is a state-of-
the-art reanalysis dataset widely used in climate research
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(Hersbach et al., 2020). It provides a comprehensive and de-
tailed representation of atmospheric conditions at the global
scale. To classify the large-scale atmospheric situation, mean
sea level pressure is extracted over an extent (25-70°N,
15°W=-30°E; see Fig. la) that encompasses a substantial
portion of Europe and adjacent regions. The regional aver-
age 2m daily air temperature is computed for the domain
45.125-55.125°N and 5.125-19.125°E, which covers the
nsRWG setup area.

3 Methods

3.1 A stochastic multi-site non-stationary regional
weather generator (nsSRWG)

We adopt the non-stationary version of the multi-site re-
gional weather generator nsSRWG developed by Nguyen et
al. (2024). The nsRWG represents the spatiotemporal depen-
dence across sites using the first-order multi-variate auto-
regressive (MAR-1) model (Bardossy and Plate, 1992). The
type-1 extended generalized Pareto (extGP) distribution is
used to model daily non-zero precipitation amounts. This dis-
tribution is suitable not only for capturing both the lower bulk
of precipitation amounts and the extreme values but also for
providing a smooth transition along the precipitation range
(Naveau et al., 2016; Nguyen et al., 2021).

In the nsRWG, the precipitation distribution at each site
is conditioned on the large-scale circulation pattern as a la-
tent variable and the regional average daily temperature as
a covariate of the extGP distribution scale parameter. In this
way, climate variability and climate change due to changes
in dynamic and thermodynamic properties of the atmosphere
are considered. Atmospheric circulation is classified into six
circulation patterns based on mean sea level pressure for the
winter (1 November—30 April) and summer (1 May-30 Oc-
tober) seasons (12 patterns in total). We use the objective
classification algorithm Simulated ANnealing and Diversi-
fied RAndomization (SANDRA) based on the k-means clus-
tering approach (Philipp et al., 2007) for circulation pattern
classification. Further details about the nsRWG algorithm
and configuration can be found in Nguyen et al. (2024).

The cross-scale precipitation performance of the nsSRWG
is evaluated for the E-OBS grid cells in the study area for
the period from 1 January 1950 to 31 December 2021. We
generate 100 realizations of synthetic precipitation datasets
with a time series length of 72 years, corresponding to the
length of the E-OBS dataset to ensure comparability.

3.2 WEI and xWEI

The weather extremity index (WEI) quantifies the extremity
(a product of spatial extent and rarity) of an event, as well as
the spatial extent and temporal duration at which the event
reached its maximum extremity (Miiller and Kaspar, 2014).
In this context, the spatial extent of an event is not conceived
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as an area of spatially contiguous grid cells but as a num-
ber of (potentially disjoint) cells in the study region (here,
Germany) that exceeds a certain return period. The computa-
tion of WEI for individual HPE:s is illustrated in Fig. 2. For
a given spatial domain (in this case, Germany), it starts with
the estimation of the return periods P ; at each grid cell i for
durations from 1 to ¢ days. For each duration ¢, the grid cells
in the spatial domain are sorted in decreasing order, based on
their return period P;; (in years) and then aggregated over
increasing areas A (in km?) by using Eq. (1): first, E; 4 is
computed for the most extreme grid cell (n =1). Then, the
following grid cells are added to the computation of E; 4, in-
creasing the value of n by 1 until the estimated return period
from every grid cell is computed once. For each step, the area
A equals the area of one single grid cell multiplied by n. In
the final step, A corresponds to the size of the entire spatial
domain. Finally, this procedure yields, for each duration #, a
curve that shows E; 4 as a function of A. The value of WEI
is then defined by the maximum value of E; 4 for all curves,
and the spatial extent and duration at which the event was
most extreme corresponds to the values of # and A, for which
this maximum of E; 4 is achieved. Note that the E; 4 curves
typically have a well-defined maximum: for low values of A,
the steep increase of \/A/m (the radius of a circle of size
A) causes an increase of E; 4 with A. For larger values of
A, the decrease in return periods dominates the behavior and
causes the E; 4 curve to decrease. The corresponding area
where the E; 4 curve reaches its peak (WEI) is denoted here
as WEI area, which represents the spatial scale most severely
affected by the HPE. The WEI area is always much smaller
than the area over which the HPE precipitation totals exceed
0 mm. Rather, it is a weighted measure indicating the area in
the domain that is heavily influenced by the HPE and hence
prone to HPE-related impacts.

n
E,,Azxzi:%rl(})t’l)-,/A/nA:gridsizexn 1)
As each E; 4 curve represents how the extremity of an event
extends across spatial scales, Voit and Heistermann (2022)
proposed a cross-scale weather extremity index (xWEI) by
integrating E; 4 over duration (In(¢)) and extent (A). xWEI
quantifies how much the extremity of an event extends across
both space and time (instead of the event just being extreme
at one specific duration and extent). Hence, XWEI corre-
sponds to the volume under the surface which is spanned by
the E; 4 curves (Fig. 2f) and placed on a grid:

XWEI = / / E; 4dAd(In(?)). )

For the exemplary HPE shown in Fig. 2, the analysis high-
lights the fact that the daily extremity (in terms of 1d rain-
fall intensity) occurs on the fourth day, with the highest E; 4
curve among the 7d (Fig. 2d). Comparing extremity across
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durations, the HPE is most extreme for a 1d duration, af-
fecting an area of over 10000km? (WEI area). For longer
durations (>3 d), the HPE consistently is extreme approxi-
mately for the same areas, showing a stabilization in spatial
extent for these durations.

To estimate the return periods required to obtain E; 4, we
use the generalized extreme value (GEV) distribution, which
has been found suitable for modeling precipitation extremes
(Fowler and Kilsby, 2003) and has also been used in pre-
vious WEI studies (Gvozdikova et al., 2019; Minarova et
al., 2018; Miiller and Kaspar, 2014). The computation of
xWETI requires return periods for multiple durations (1 to 7d
in our case). We use the duration-dependent GEV (dGEV)
method (Koutsoyiannis et al., 1998) to estimate the return
periods consistently across durations for each grid cell. Pre-
vious studies have shown that this method preserves the tail
behavior of precipitation extremes across durations and mod-
ifies the scale and location parameters of the GEV distribu-
tion to explicitly account for dependency on the duration of
events. This allows for more accurate modeling of precipita-
tion intensity—duration—frequency relationships and reduces
the uncertainty (Ulrich et al., 2020; Fauer et al., 2021). The
parameters of the dGEV distribution at each grid cell are ob-
tained by maximum likelihood estimation using the R pack-
age IDF (Ulrich et al., 2021) based on the annual maximum
series of rainfall across considered durations.

To assess the extremity of HPEs across Germany, dura-
tions from 1 to 7 d are selected, as they are sufficient in cap-
turing the events responsible for disastrous flood damage in
the region (Ganguli and Merz, 2019). While WEI and xWEI
can be extended to sub-daily scales (Voit and Heistermann,
2022), this analysis is conducted at the daily scale due to
the limited availability of sub-daily precipitation observa-
tions. Additionally, short-duration high-intensity precipita-
tion events usually affect comparatively small areas, whereas
multi-day HPEs span larger regions and are more relevant for
this study (Lengfeld et al., 2019, 2021; Orlanski, 1975).

The most extreme HPEs for these seven durations across
Germany are identified by extracting the annual maximum
WEI values for each duration based on E-OBS precipitation
data for the historical period 1950-2021. The corresponding
WEI areas (the area where the E; 4 curve reaches its peak
WEI) of the most extreme HPEs annually for each duration
are categorized into six classes (Fig. 3) in order to analyze the
spatial properties of HPEs in Germany. The same procedure
is carried out for each of the 100 realizations to evaluate the
performance of the nsSRWG in reproducing the cross-scale
properties of HPEs in Germany.

https://doi.org/10.5194/nhess-25-3075-2025



X. Guan et al.: Weather generator for cross-scale precipitation extremes

3079

) A
/ ,
* $ i
0
ts 1152453 ts4/ts 9 ts 0.1 7 s1 &&g&t}&t}ﬁy

100 200 300

rainfall (mm/d)
0 40 80 120 160

(d)

200~

return period (years)
(e)
200 -

duration (days)

-1

EtA [In(years)km]
g

EtA [In(years)km]
=]
g

50= 50+

' | [l ' '
1000 10000 1 10 100

Area (km?2)

100

Area (km?2)

XWEI

1000 10000

Figure 2. Calculation of the WEI and xWEI for an exemplary HPE: (a) maps of daily rainfall for a precipitation event lasting 7 d, (b) return
period at each individual grid cell of each map, (c) sorting of the return period estimates for each duration in decreasing order for each map,
(d) calculation of the E; 4 curves and selection of the curve with the highest peak to represent the extremity pattern of the precipitation for
the duration of 1d, (e) repetition of the procedures (a—d) for other durations (2, 3,..., 7d) to derive the E; 4 curves, and (f) 3D interpolated
surface of E, 4 for all durations and extents. XWEI is defined as the volume beneath the E; 4 surface.

4 Results and discussion
4.1 nsRWG performance for WEI

Figure 3 shows the frequency distribution of the observed (E-
OBYS) and simulated (nsSRWG) WEI areas of the annual maxi-
mum HPEs for seven different durations. The distributions of
the annual maximum WEI values are given in Fig. 4. The re-
sults show that more than half of the annual maximum HPEs
in Germany are events with WEI areas <20 x 103 km? for all
durations. HPEs with a larger spatial extent of 20 x 10° km?
or more have a frequency of less than 20 % in the past
72 years. However, these events are the most severe ones
regarding their WEI values (Fig. 4). The nsRWG is able to
reproduce the annual maximum WEI and its correspond-
ing areas for the seven durations. The boxplots in Figs. 3
and 4 show that the simulated distribution patterns are in
good agreement with the E-OBS observations. However, for
shorter durations (1 and 2 d), the frequencies of HPEs with
WEI areas < 20 x 103 km? are overestimated, while those
with larger WEI areas are underestimated (Fig. 3). For du-
rations of 3d and longer, the observed and simulated HPE
frequencies are more balanced.

https://doi.org/10.5194/nhess-25-3075-2025

The relation between the annual maximum WEI values
and their return periods derived from the nsSRWG data agrees
well with the E-OBS observations for the seven durations
(Fig. 5). This comparison confirms the ability of the nsSRWG
to simulate the occurrence probability of HPEs in Germany.
The observed probability plots (red dots in Fig. 5) are well
enclosed by the simulated ranges (shaded areas) from the
nsRWG realizations. This is especially true for high-return
periods, which demonstrates the good performance in simu-
lating HPEs for different durations. For short durations and
return periods of between 2 and about 10 years, as well as for
durations longer than 4 d with return periods between 10 and
20 years, the nsSRWG slightly underestimates the observed
WEL In contrast to traditional intensity-duration-frequency
curves, there is no systematic difference between the empir-
ical probability plots of the annual maximum WEI series of
different durations, as the WEI is based on return periods
rather than precipitation totals or averages. This makes the
WEI comparable across temporal scales. For example, for
HPEs with the same WEI values, the return period increases
with duration. This indicates that the occurrence probability
of an HPE with the same extremity becomes smaller with
increasing duration.
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4.2 nsRWG performance for xWEI

We compute the xWEI for HPEs in Germany for the period
1950-2021 and extract the annual maximum series from both
the E-OBS dataset and the nsSRWG realizations. The em-
pirical probability plots of annual maximum xWEI, based
on Weibull plotting positions (Makkonen, 2006), agree well
for both datasets: the cross-scale extremity index xWEI of
the observed data lies within the range of the 100 realiza-
tions (Fig. 6). However, for return periods between 2 and
5 years, the realizations of the nsSRWG tend to underestimate
the xWEI, similar to the performance of the WEL

Figure 7 shows the extremity pattern of a real HPE in Au-
gust 2002 — one of the most damaging events in Germany.
In addition, HPEs from the nsSRWG realizations with simi-
lar xWEI values to the August 2002 HPE are shown. Fig. 7b
demonstrates that the nsSRWG is able to generate HPEs with
spatial and temporal extremity patterns that are very similar
to the August 2002 event, characterized by the highest ex-
tremity for the durations of 1 and 2 d and an affected area of
approximately 20 000 km?. The other two nsRWG-generated
HPEs with xWEI values similar to the August 2002 event
show different cross-scale extremity patterns (emphasis on
longer durations of 3—4 d). The reproducibility of historical
HPE:s illustrates the ability of the nsSRWG in representing the
cross-scale extremity of HPEs in Germany. The variations
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Weibull plotting position is used to estimate the empirical return
periods. The gray shaded area indicates the upper and lower bound-
ary of simulated XWEI from the 100 nsSRWG realizations.

in synthetic events and the respective E; 4 surfaces further
demonstrate how the nsSRWG can generate synthetic events,
which are similar in terms of their cross-scale extremity but
have their emphasis at different spatial and temporal scales.
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(a) E-OBS 2002-08-07, xXWEI: 12386.5

(c) synthetic HPE 2, xWEI: 12860.6
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(b) synthetic HPE 1, xXWEI: 12566.7
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Figure 7. Cross-scale extremity pattern (interpolated E; 4 curves over duration and area) of HPEs for (a) the August 2002 event and (b—
d) three HPEs with similar xWEI values generated by the nsSRWG. The HPE in panel (b) shows great similarity in the cross-scale extremity
pattern with the August 2002 event in panel (a), while the HPEs in panels (c¢) and (d) display different extremity patterns, although their

xWEI values are similar to the actual event in August 2002.

5 Conclusions

In this study, we evaluate the ability of a multi-site stochastic
regional weather generator to capture the extremity of HPEs
across spatial and temporal scales. For this purpose, we set
up the nsRWG at a large scale (covering all of Germany and
riparian regions) and generate 100 realizations of 72 years
of synthetic precipitation data at a daily resolution. The per-
formance evaluation of the nsRWG in simulating precipita-
tion focuses on the event scale and extreme cases. This focus
complements typical proxy statistics (like mean and standard
deviation) that tend to represent only the general properties
of WGs in precipitation generation. Two indices, WEI and
xWEI, are used to measure the extremity of observed and
synthetic HPEs, both of them based on the spatial aggrega-
tion of return periods of precipitation totals for several du-
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rations of interest. While WEI quantifies the maximum ex-
tremity of an event that occurred at a specific spatial extent
and temporal duration, xXWEI integrates extremity across the
spatial and temporal scales of interest. The results demon-
strate that the nsRWG performs well in simulating the ex-
tremity patterns across most spatial and temporal scales of
HPEs in Germany. However, it tends to overestimate the fre-
quency of events with short durations and relatively small
spatial extents. Using the August 2002 event as an example,
we illustrate how the nsRWG is able to generate precipita-
tion events with spatiotemporal extremity patterns similar to
those of historical disaster-causing HPEs.

With regard to future research, we emphasize that the
choice of the spatial domain at which WGs are evaluated
(here, all of Germany) is always a trade-off: on the one hand,
the impacts of HPEs unfold at the catchment scale, and it
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would be an obvious next step to evaluate the ability of the
WG to reproduce the frequencies of WEI and xWEI occur-
rence at the scale of specific river catchments (at the cost
of computational effort, as this would require a higher spa-
tial resolution). On the other hand, we need to be aware
that an HPE that occurred in one catchment may potentially
also occur in a neighboring catchment, so that an analysis
at a larger spatial domain (than the present one) is certainly
warranted. Such considerations also show the links to “spa-
tial counterfactuals”, which have recently gained attention
(Merz et al., 2024; Voit and Heistermann, 2024; Vorogushyn
et al., 2025). Counterfactuals are scenarios that describe al-
ternative ways of how an event could have unfolded (Woo,
2019; Montanari et al., 2024). These scenarios could involve
conditions where specific factors, such as anthropogenic cli-
mate change, natural climate variability, or other boundary
conditions, are altered or removed (Gauch et al., 2020). Spa-
tial counterfactuals are a special case of counterfactual sce-
narios that consider the transposition of hazard characteris-
tics e.g., precipitation in space. Using spatial counterfactual
scenarios, we can investigate the impact of HPEs in the hy-
pothetical case that they had happened elsewhere. Weather
generators could be a useful tool in exploring how events
with similar extremity indices could unfold in different loca-
tions of the spatial domain or with different spatiotemporal
signatures, hence supporting the evaluation of counterfactual
scenarios.

Code and data availability. The code and data to exemplify
the computation of both WEI and xXxWEI can be found
at Zenodo: https://doi.org/10.5281/zenodo.6556463 (Voit, 2022).
The gridded precipitation data from E-OBS (version 25.0e;
Cornes et al.,, 2018) are available from the European Cli-
mate Assessment & Dataset (https://surfobs.climate.copernicus.eu/
dataaccess/access_eobs.php#datafiles, last access: 28 August 2025,
ECAD, 2025). The ERAS mean sea level pressure and daily
air temperature at 2m height covering Europe can be found at
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2023).
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