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Abstract. Populated coastal regions in the Mediterranean are
known to be severely affected by extreme weather events.
Generally, they are initiated over maritime regions, where
a lack of in situ observations is present, hampering initial
condition estimations and, hence, forecast accuracy. To face
this problem, data assimilation (DA) is used to improve the
estimation of initial conditions and their respective fore-
casts. Although comparisons between different DA methods
have been performed at global scales, few studies have been
conducted at high resolution, focusing on extreme weather
events triggered over the sea and enhanced by complex topo-
graphic regions. In this study, we investigate the role of as-
similating different types of conventional and remote sensing
observations using the three-dimensional variational (3D-
Var) approach and the ensemble Kalman filter (EnKF), which
are the most common DA schemes used globally at national
weather centers. To this aim, two different events are cho-
sen because of both the different areas of occurrence and
the triggering mechanisms. Both 3D-Var and EnKF are used
at convection-permitting scales to improve the predictabil-
ity of two high-impact coastal extreme weather episodes that
were poorly predicted by numerical weather prediction mod-
els: (a) the heavy-precipitation event IOP13 and (b) the in-
tense Mediterranean tropical-like cyclone Qendresa. Results
show that EnKF and 3D-Var perform similarly for the IOP13
event for most of the verification metrics, although, looking
at the receiver operating characteristic (ROC) curve and the
area under the ROC curve (AUC) scores, EnKF clearly out-
performs 3D-Var. However, the ensemble mean of EnKF is
generally worse than that of 3D-Var for Qendresa, although
some of the ensemble members of EnKF individually out-
perform 3D-Var, allowing for information to be gained on

the physics of the event and hence the benefits of using an
ensemble-based DA scheme.

1 Introduction

The Mediterranean Basin is recognized as one of the geo-
graphical regions most frequently affected by high-impact
weather events in the world (Petterssen, 1956). The Mediter-
ranean region has a natural disposition for these events be-
cause of its singular orographic features, which include hav-
ing a relatively warm sea surrounded by complex terrain.
This geographical configuration forces the warm and moist
airflow to lift, favoring condensation and triggering convec-
tion. Hazardous weather events in this region, such as heavy
precipitation (e.g., flash floods, snowstorms), cyclogenesis,
and windstorms (e.g., squall lines, tornadic thunderstorms),
cause huge economic losses, injuries, and fatalities in pop-
ulated coastal regions (e.g., Romero et al., 1998; Llasat et
al., 2010; Jansa et al., 2014; Flaounas et al., 2016; Pakalidou
and Karacosta, 2018; Amengual et al., 2021). Since 1900,
more than EUR 500 billion associated with total damages to
property and over 1.3 million fatalities related to hydrome-
teorological disasters have been registered in the EM-DAT
international disaster database (https://www.emdat.be/, last
access: 29 August 2025). These effects underscore the criti-
cal need for accurate and rapid high-resolution weather fore-
casting systems, aimed at extending the lead time of severe
weather warnings, thereby enabling the implementation of
effective mitigation strategies to reduce fatalities and eco-
nomic losses. However, while the accuracy of weather fore-
casting has significantly improved in recent years, with better
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representation of physical processes and dynamics, the ac-
curate prediction of high-impact weather events in terms of
their location, timing, and intensity remains a major chal-
lenge for the scientific community (Stensrud et al., 2009;
Mass et al., 2002; Bryan and Rotunno, 2005; Yano et
al., 2018; Torcasio et al., 2021). For this reason, improving
the forecast of high-impact weather events is an imperative
goal.

Deficiencies in the accurate prediction of the location
(spatial and temporal), intensity, and phenomenology of ex-
treme weather events are closely related to the accuracy of
the initial conditions of the system (Wu et al., 2013). The
initial conditions of the hazardous weather events affect-
ing populated coastal regions are typically poorly estimated,
mainly because these weather systems originate over the sea,
where there is a lack of in situ observations. Enhanced rep-
resentations of initial conditions are typically achieved by
blending information from observations into numerical mod-
els through sophisticated data assimilation (DA) techniques
(Kalnay, 2003), which accounts not only for the nominal val-
ues of the observations and the model, but also for their re-
spective error statistics. DA has been widely used and ap-
plied to global numerical weather prediction (NWP) prob-
lems (e.g., Lorenc, 1981; Le Dimet and Talagrand, 1986; Ra-
bier et al., 2000; Whitaker et al., 2008; Carrassi et al., 2018;
Albergel et al., 2020). However, less attention has been paid
to convective-scale NWP problems, especially those associ-
ated with small-scale convective phenomena initiated over
regions with sparse observational data coverage, such as
the extreme weather events affecting coastal regions in the
Mediterranean Basin (Carrié and Homar, 2016; Amengual et
al., 2017; Carri6 et al., 2019; Lagasio et al., 2019; Amengual
et al., 2021; Mazzarella et al., 2021; Torcasio et al., 2021;
Capecchi et al., 2021). To improve forecasts of such extreme
weather events, accurate high-resolution numerical weather
models that solve convective-scale processes are required,
along with dense observations at high spatial and temporal
resolutions. These will provide accurate information regard-
ing the convective systems themselves or their environmental
conditions. One of the most important sources of convective-
scale information are ground weather radars that provide 3D
data related to storms at high spatial (order of hundreds of
meters) and temporal (order of a few minutes) resolutions.
In addition, weather radars provide thermodynamic and dy-
namic information on thunderstorms, which is crucial for
understanding and forecasting convective structures. Due to
the high spatio-temporal variability of convective structures,
a rapid update cycle of the initial state (i.e., analysis) us-
ing weather radar observations is required to reduce errors
and keep physical balances in the initial conditions. Several
studies have shown the positive impact of forecasting se-
vere weather events by assimilating weather radar informa-
tion (e.g., Xiao and Sun, 2007; Lee et al., 2010; Wheatley et
al., 2012; Yussouf et al., 2015; Carrié et al., 2019; Mazzarella
et al., 2021).
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During the last few decades, different DA algorithms have
been developed with the aim of improving weather fore-
casts by making use of all available observations in the best
possible way. In this context, most of the developed DA
methods are based on exploiting Bayes’ theorem (Lorenc,
1986) and making use of different types of approximations.
Generally, DA algorithms can be classified into the follow-
ing three Bayesian-based families: (a) variational DA (e.g.,
3D-Var, Barker et al., 2004, or 4DVar, Huang et al., 2009);
(b) ensemble-based DA, which is based on the ensemble
Kalman filter (EnKF; Evensen, 1994); and (c) Monte Carlo
DA methods. Variational DA minimizes a cost function to
obtain the analysis (i.e., the best estimation of the initial
conditions). More specifically, variational DA methods pro-
vide a (quasi-)optimal analysis based on an imperfect fore-
cast (prior state or background), a set of imperfect observa-
tions, and their respective error statistics that are prescribed
and assumed to be Gaussian, for simplicity. In addition, vari-
ational DA algorithms require a linearized and adjoint ver-
sion of the numerical model, which can be very difficult
to develop and maintain. This often involves the use of au-
tomatic differentiation tools or complex manual derivation,
both of which are error-prone and time-consuming. On the
other hand, ensemble-based DA algorithms do not require
the use of linearized or adjoint versions of the model, and
they do not use prescribed error statistics. Instead, they com-
pute error statistics from an ensemble of forecasts, with the
main property that these errors evolve in time as the system
evolves. The Monte Carlo DA method allows for the assim-
ilation of observations described with non-Gaussian errors.
Particle filters (PFs; Van Leeuwen, 2009; Poterjoy, 2016) are
a clear example of Monte Carlo DA algorithm. However, PFs
are not well-suited for large multidimensional systems, such
as the atmosphere, although a lot of improvements have been
achieved recently. In the present study, we focus on the most
widely used DA schemes typically used in major operational
weather centers, namely the variational and ensemble-based
DA schemes, leaving the Monte Carlo methods for future
work.

Although variational DA schemes have been used in
numerical weather prediction for many years (Courtier et
al., 1994; Park and Zupanski, 2003; Rawlins et al., 2007),
allowing for the assimilation of a wide range of different ob-
servations, they present a well-known limitation. This lim-
itation is related to the use of a climatological background
error covariance matrix to characterize error statistics, which
is kept constant along the assimilation window, where the
different observations are distributed at different times. This
weakness is specifically linked to the 3D-Var method, which
typically uses the National Meteorological Center (NMC)
method (Parrish and Derber, 1992) to generate those static
background error covariances using forecast differences over
a period of time reasonably close to the event. The error
statistics derived from such DA schemes are static, isotropic,
and nearly homogenous, misrepresenting the true error statis-
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tics in space and time, which are inherently flow dependent,
resulting in less accurate analysis. On the other hand, the
EnKF DA scheme is designed to provide flow-dependent
background error covariances. Some studies have shown the
potential of EnKF to spread information from the observa-
tions in a flow-dependent manner in comparison with 3D-Var
(Yang et al., 2009; Gao et al., 2018). On the other hand, 3D-
Var techniques require fewer computational resources, and
there is no need to build an ensemble, as in EnKF, or even
simulate the model trajectory, as in 4D-Var. Therefore, as-
similation with 3D-Var takes only a few tens of minutes,
making this technique particularly suitable for operational
purposes.

To resolve convective-scale (i.e., grid spacing of a few
kilometers) physical processes associated with extreme
weather phenomena, high-resolution numerical simulations
and high-resolution initial conditions are required. This leads
to performing computationally expensive high-resolution
simulations, which poses a significant challenge by limit-
ing the number of ensemble members that can be used in
EnKF DA schemes, potentially hindering the estimation of
the background error covariance matrix. Determining which
DA method yields greater accuracy — 3D-Var using an ad
hoc background error covariance matrix versus EnKF with
a flow-dependent low-rank background error covariance de-
rived from a finite ensemble — remains challenging under
constrained computational resources.

Recent convective-scale DA studies have primarily fo-
cused on the mature stage of weather events (e.g., Tong and
Xue, 2005; Fujita et al., 2007; Dowell et al., 2011; Jones et
al., 2013; Wheatley et al., 2015; Jones et al., 2016; Gao et
al., 2016; Ballard et al., 2016; Gustafsson et al., 2018; Car-
rid et al., 2019; Mazzarella et al., 2020; Yussouf et al., 2020;
Federico et al., 2021; Wang et al., 2022). However, at this
stage, the system is already well-developed and likely im-
pacting the population, limiting the effectiveness of DA in
terms of forecast lead time. In such cases, the potential for
early warnings and mitigation actions is significantly re-
duced, as there is little time left to respond and minimize
socio-economic impacts. Despite its potential benefits, only
a handful of studies have explored the impact of DA using
high-resolution numerical models in the developing stage
(e.g., Carri6 et al., 2019, 2022; Corrales et al., 2023), and
even fewer have done so over data-sparse maritime regions,
where early assimilation could be most valuable, provid-
ing advanced warnings and allowing decision-makers to act
proactively. This study fills that gap by directly comparing
two widely used DA techniques — 3D-Var and EnKF - in
high-resolution, pre-convective assimilation experiments for
two extreme weather events that initiated over the sea and af-
fected populated coastal regions in the Mediterranean Basin.
It is important to emphasize that this study does not aim to
derive statistically significant conclusions. Instead, the main
objective is to compare the performance of EnKF and 3D-Var
in two distinct extreme weather events, each characterized by
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unique atmospheric conditions and observational limitations.
The two extreme weather events selected for this study are
(a) the heavy-rainfall episode IOP13, which affected coastal
regions of Italy during October 2012 (Pichelli et al., 2017),
and (b) the low-predictability Mediterranean tropical-like cy-
clone (medicane) Qendresa, which affected Sicily in Novem-
ber 2014 (Pytharoulis et al., 2017; Pytharoulis, 2018; Cioni
et al., 2018; Di Muzio et al., 2019).
Overall, this study aims to do the following:

a. assess the impact of 3D-Var in comparison with the
EnKF system in predicting small-scale extreme weather
events initiated over maritime regions with a lack of
in situ observations

b. compare the forecast impact from assimilating in situ
conventional observations versus high-spatial- and
high-temporal-resolution data from remote sensing in-
struments

c. provide a quantitative assessment between the different
DA schemes using several statistical verification meth-
ods.

This paper is organized as follows. Section 2 briefly de-
scribes the meteorological characteristics of the two events
used for comparing the impact of 3D-Var and EnKF. In
Sect. 3 the observational dataset assimilated by the different
DA methods is presented. Section 4 briefly explains the main
characteristics of the two DA algorithms that are used in this
study. The numerical model configuration and the design of
the different experiments for the two different case studies
are then described in Sects. 5 and 6, respectively. Section 7
describes the verification methods used in this study. Results
of the different numerical experiments for both meteorologi-
cal situations are summarized in Sect. 8. Finally, conclusions
are presented in Sect. 9.

2 Brief description of case studies

Two different extreme weather systems, occurring in the
Mediterranean region and affecting populated coastal re-
gions, are considered in this study. The first extreme weather
event was associated with heavy rainfall that affected cen-
tral and northern Italy during October 2012 (IOP13), while
the second extreme weather event was associated with Medi-
cane Qendresa, affecting southern Sicily, Lampedusa, Pantel-
leria, and Malta during November 2014. Both systems were
poorly forecasted, making them perfect candidates for this
intercomparison study to assess the impact of data assimila-
tion techniques.

2.1 The IOP13 heavy-precipitation episode

IOP13 occurred during the first special observation pe-
riod (SOP1) of the international Hydrological cycle in the
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Mediterranean Experiment (HyMeX) project (Drobinski et
al., 2014), which was mainly designed to better understand
heavy-rainfall and flash flooding episodes occurring in the
Mediterranean region. The heavy-precipitation IOP13 event
took place between 14 and 16 October 2012, and it was
characterized by a frontal precipitation system associated
with a deep upper-level trough extending from northern
France towards northern Spain (Fig. 1). It initially affected
coastal areas in southern France, and afterward it also af-
fected the northern and central parts of Italy. During 15 Oc-
tober, the Italian rain gauge network registered 24 h accu-
mulated precipitation with peaks reaching 60 mm in central
Italy, 160 mm in northeastern Italy, and 120 mm in Liguria
and Tuscany. During the night of 14 October, a cold front af-
fected the western Mediterranean region, and during 15 Oc-
tober, the system rapidly moved from France to Italy, ad-
vecting low-level moisture towards the western coast of Italy
and Corsica, destabilizing the atmosphere and favoring deep
moist convective activity. More details on the synoptic situ-
ation and observational data collected during IOP13 can be
found in Ferretti et al. (2014).

2.2 The Qendresa tropical-like cyclone episode

Among the wide spectrum of maritime extreme weather
events, tropical-like Mediterranean cyclones, a.k.a. medi-
canes (Emanuel, 2005), draw particular attention to the com-
munity mainly because they share similar morphological
characteristics to tropical cyclones. Given their tendency
to impact densely populated and economically critical ar-
eas around the Mediterranean Basin, enhancing the accu-
racy and reliability of medicane forecasts has become an ur-
gent priority. Here, we focus on the 7 October 2014 medi-
cane (Qendresa; Cioni et al., 2018) that affected the islands
of Lampedusa, Pantelleria, and Malta and the eastern coast
of Sicily. This event was recognized by the community for
its limited predictability (Carri6 et al., 2017), making it a
compelling case study for investigating the performance of
the 3D-Var and EnKF DA methods. In situ observations lo-
cated in Malta’s airport registered gust wind values exceed-
ing 42.7ms~! and a sudden and deep pressure drop greater
than 20 hPa in 6 h. Satellite imagery during its mature phase
showed a well-defined cloud-free eye surrounded by axisym-
metric convective activity, which resembles the morphologi-
cal properties of classic tropical cyclones.

A deep upper-level trough associated with a cyclonic flow
at mid-levels characterized the synoptic situation in the west-
ern Mediterranean from 5 to 8 November 2014. The upper-
level trough was associated with an intense potential vorticity
(PV) streamer extending from northern Europe to southern
Algeria, and the cyclonic flow at mid-levels was dominated
by a strong ridge over the Atlantic and a deep trough mov-
ing along western Europe. Late on 7 November, the upper-
level trough became negatively tilted, evolving into a deep
upper-level cutoff low, and the PV streamer disconnected
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from the northern nucleus (Fig. 2). A small well-defined
spiral-to-circular cloud shape formed just south of Sicily and
evolved east-northeastward, reaching its maximum intensity
over Malta, at midday. Finally, the cyclonic system dissi-
pated as it crossed the Catania (eastern) coast of Sicily. More
details on the synoptic situation and observational data col-
lected during this event can be found in Carri6 et al. (2017).

3 Observation description

In this study, a combination of remote sensing and in situ
observations was assimilated for both case studies. Specifi-
cally, the following three types of observations were assim-
ilated: (a) conventional in situ data from surface meteoro-
logical stations, maritime buoys, rawinsondes, and aircraft
measurements; (b) high temporal and spatial reflectivity data
from two Doppler weather radars; and (c) satellite-derived
3D wind speed and direction data. A summary of the assimi-
lated observations, including their data sources, assimilation
frequency, coverage, and additional processing, is provided
in Table 1.

3.1 1I0OP13 observations

For I0P13, we assimilated both in situ conventional data
and remote sensing observations from two Doppler weather
radars. While Italy has a dense national network of radar and
in situ stations, most of these datasets are not publicly avail-
able. To ensure reproducibility and accessibility, we exclu-
sively used freely available data. For radar observations, we
assimilated data from the only two radars providing coverage
over the maritime region where the event initiated. Specif-
ically, we used data from (a) the Aleria radar (42.129°N,
9.496°E; 63ma.s.l.), located on Corsica, and (b) the Nimes
radar (43.806°N, 4.502°E; 76 ma.s.l.), located in southern
France (Fig. 3a). These two Météo-France polarimetric S-
band Doppler weather radars, strategically positioned, ensure
good spatial coverage over the Ligurian Sea, the area where
triggering and intensification of deep convection occurred,
and provide key information about the 3D structure of the
convective systems at high spatial and temporal resolutions.
The Aleria and Nimes radars perform five and nine elevation
scans every 5 min, respectively, and their data are available
on HyMeX’s official website (see https://www.hymex.org/,
last access: 9 December 2024). Specifically, the Aleria radar
provides data at five elevation angles: 0.57, 0.96, 1.36, 3.16,
and 4.57°, with a mean frequency of 2.8 GHz. In comparison,
the Nimes radar provides data at nine elevation angles: 0.58,
1.17, 1.78, 2.38, 3.49, 4.99, 6.5, 7.99, and 89.97°, also at the
same frequency. It is worth mentioning that Aleria and Nimes
radar reflectivity data are provided by the Météo-France op-
erational radar network and undergo rigorous data quality
control. This ensures that common radar error sources, such
as signal attenuation, ground clutter, or beam blocking, are
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Figure 1. IOP13 ERAS analyses: 500 hPa geopotential height (solid black lines), 925 hPa temperature (dashed grey lines), and total column
water vapor (color-shaded areas) at (a) 12:00 UTC on 14 October and (b) 00:00 UTC on 15 October 2012.
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Figure 2. Qendresa ERAS analyses: 500 hPa geopotential height (solid black lines), 500 hPa temperature (dashed grey lines), and 300 hPa
potential vorticity (color-shaded areas) at (a) 00:00 UTC on 7 November and (b) 00:00 UTC on 8 November 2014.

meticulously identified and corrected. Radial velocity from
the Aleria and Nimes Doppler radars was also available, but
because of the low reliability of the data (not quality con-
trolled properly), it was not used in this study. Addition-
ally, conventional in situ observations were obtained from the
National Oceanic and Atmospheric Administration (NOAA)
Meteorological Assimilation Data Ingest System (MADIS),
a global dataset that provides high-quality, quality-controlled
meteorological observations. In particular, we assimilated
pressure, temperature, humidity, and horizontal wind speed
and direction from in situ instruments, such as METARs,
maritime buoys, rawinsondes, and aircraft (Fig. 3a).

Overall, the following observations were assimilated for
this event:

https://doi.org/10.5194/nhess-25-2999-2025

— Conventional in situ data were assimilated hourly over
the entire model domain (Fig. 3a).

— Reflectivity data from the Aleria and Nimes weather
radars were assimilated every 15 min (Fig. 3a).

The high spatial resolution of the reflectivity data poses
significant challenges for their direct assimilation, potentially
leading to detrimental analysis related to signal aliasing and
the violation of the uncorrelated observational error assump-
tions used in the derivation of the 3D-Var and EnKF anal-
ysis equations. To mitigate the adverse effects associated
with these issues, the Cressman objective analysis technique
(Cressman, 1959) was used to interpolate raw radar obser-
vations to a regularly spaced 6 km horizontal grid, as sug-
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Table 1. Summary of assimilated observations for each case study, including observation type, data sources, assimilation frequency, spatial

coverage, and additional processing details.

Event Observation type ~ Data sources Assimilation ~ Coverage Additional
frequency processing
10P13 Conventional MADIS (NOAA) Hourly Entire domain Quality controlled
in situ data
10P13 Radar reflectivity =~ Météo-France Doppler Every 15min  Ligurian Sea and Quality controlled and
weather radars Gulf of Genoa interpolated using
(Aleria and Nimes) Cressman objective
analysis (6 km grid)
Qendresa  Conventional MADIS (NOAA) Hourly Mediterranean Quality controlled
in situ data region
Qendresa  Satellite-derived EUMETSAT (SEVIRI  Every 20min  Entire atmosphere over ~ Quality controlled,
winds (RSAMVs)  instrument the Mediterranean superobbing (128 x 128 km,
on board MSG) region 25 hPa vertical)

5w o 5°E 10°F 15° 20°E 25°E 30°E

Figure 3. (a) IOP13 episode: spatial distribution of in situ observations (gray and black markers) assimilated on the parent numerical domain
during the 24 h assimilation window from 00:00 UTC on 14 October to 00:00 UTC on 15 October 2012. Doppler weather radars located at
Nimes and Aleria and their coverage range, depicted in yellow and red circles, respectively. (b) Qendresa episode: spatial distribution of
in situ observations assimilated on an hourly basis during the 12 h assimilation window from 12:00 UTC on 6 November to 00:00 UTC on
7 November 2014. Publisher’s remark: please note that the above figure contains disputed territories.

gested by previous work (i.e., Wheatley et al., 2015; Yussouf
et al., 2015). It is important to note that reflectivity observa-
tions are typically obtained in polar coordinates, a prerequi-
site step before applying the Cressman interpolation, which
involves converting them to a Cartesian coordinate system.
We performed several sensitivity tests using different grid
space resolutions (e.g., 3, 6, 9km), and we found that us-
ing a 6 km grid space produces the best analysis. To reduce
spurious convective signals and remove excessive humidity,
the null-echo option, which allows for assimilation of no pre-
cipitation echoes, was adopted in the 3D-Var experiment.

Nat. Hazards Earth Syst. Sci., 25, 2999-3026, 2025

3.2 Qendresa observations

For the Qendresa event, two different observational sources
were publicly available: (a) conventional in situ observations
and (b) satellite-derived observations. Conventional in situ
observations were obtained from the MADIS database. How-
ever, only observations from buoys, METAR, and rawin-
sonde were used for this case. It is essential to highlight
that observation gaps persist across large areas of the region,
particularly over the sea (Fig. 3b), where Qendresa initiated
and evolved. As for IOP13, we were interested in Doppler
weather radar data to enhance the intensity and trajec-
tory forecasts of Qendresa. Unfortunately, Doppler weather
radars were not publicly available in the neighborhood of
the region where Qendresa initiated and evolved. Instead,
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we used an alternative high-resolution data source, so-called
rapid-scan atmospheric motion vectors (RSAMVs; Velden
et al.,, 2017). This dataset provides 3D wind information
throughout the entire atmosphere (both speed and direction)
at high spatial and temporal resolutions (i.e., every 20 min).
These observations were particularly valuable for capturing
wind field structures over the sea, where conventional obser-
vations were sparse or unavailable. This satellite product is
obtained using the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) instrument on board the Meteosat Second
Generation (MSG) satellite, which has a scanning frequency
as low as 5 min. The final product is indeed obtained by av-
eraging four consecutive images.

Hence, the following observations were assimilated for
this event:

— Conventional in situ data from buoys, METAR, and
rawinsonde for the entire Mediterranean region were as-
similated hourly.

— Wind speed and direction from rapid-scan atmospheric
motion vectors for the entire atmosphere at high spatial
and temporal resolutions were assimilated every 20 min.

Recent studies have shown that upper-level dynamics
played a key role in the genesis and the development of Qen-
dresa (Carri6 et al., 2017; Carrié et al., 2022), so the as-
similation of RSAMVs is expected to significantly improve
its predictability. Here, the infrared channel from RSAMVs
(10.8 um), which contains information throughout the entire
atmosphere, was selected to be assimilated (Fig. 4). How-
ever, before assimilating RSAMVs, a quality control check
to reject non-physical and outlier observations, which could
deteriorate the quality of the analysis and the successive fore-
cast, was applied. In addition, to minimize the effect of hav-
ing spatially correlated observation errors associated with
high-density observations, the superobbing technique, con-
sisting of reducing data density by spatially averaging ob-
servations within a predefined prism, is applied (i.e., Pu et
al., 2008; Romine et al., 2013; Honda et al., 2018). Based
on the most accurate analysis obtained by multiple sensi-
tivity experiments (not shown) for Qendresa, the RSAMV
data are thinned using a prism with a horizontal resolution of
128 x 128 km? and 25 hPa in the vertical.

Observations from aircraft (i.e., ACARS) were not assim-
ilated in this case because preliminary assimilation tests in-
dicated a worsening of the results, which led to a poorer esti-
mation of the atmospheric state. Buoy, METAR, and rawin-
sonde observations covering the entire Mediterranean region
were assimilated hourly.

Finally, the observational errors used for the assimilation
of the observations associated with both IOP13 and Qendresa
are motivated by Table 3 in Romine et al. (2013), with the
following minor changes: METAR altimeter (1.5 hPa), ma-
rine altimeter (1.20hPa), METAR and marine temperature
(1.75K), and RSAMV wind observations (1.4 ms~!). These
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minor changes are found to provide better data assimilation
analysis for the IOP13 and Qendresa extreme weather events
in the Mediterranean region. The remaining observation er-
rors are the same as the ones in Romine et al. (2013).

4 Data assimilation schemes

In the present study, two widely used data assimilation algo-
rithms are used to improve the forecast of extreme weather
events that initiated and developed over poorly observed
maritime regions and affected densely populated coastal ar-
eas. We refer to the ensemble adjustment Kalman filter and
the 3D-Var data assimilation schemes, which are briefly de-
scribed below.

4.1 The ensemble adjustment Kalman filter (EnKF)

The ensemble adjustment Kalman filter (EAKF; Anderson,
2001), which is implemented in the Data Assimilation Re-
search Testbed (DART) facility (http://www.image.ucar.edu/
DAReS/DARTY/, last access: 24 August 2024), is used in this
study as the formerly mentioned ensemble-based data assim-
ilation technique. The EAKF provides an optimal estima-
tion, in a least squares error sense, of the true probability
distribution of the state of the atmosphere by merging two
main sources of information: (a) the available observations
and (b) an ensemble of forecasts (a.k.a. background) valid
at the analysis time. In particular, the EAKF assimilates the
observations serially. This means that the analysis ensemble
obtained by the EAKF after the assimilation of the first ob-
servation at a given time is then used as the background for
the next observation at the same analysis time. This is done
recursively until all the observations valid at the same analy-
sis time are finally assimilated.

Ensemble covariances used in real case studies, where
only a limited number of ensemble members is feasible,
suffer from sampling error, resulting in the generation of
spurious correlations that hamper the analysis (Hacker et
al., 2007). The detrimental effects of these spurious corre-
lations are mitigated by employing covariance localization
functions that go to zero as the distance between the assimi-
lated observation and the grid model point where the analy-
sis occurs increases (Houtekamer and Mitchell, 1998). In our
case, a fifth-order piecewise rational Gaussian localization
function is used (Gaspari and Cohn, 1999). For this study,
after several sensitivity simulations, it was found that using a
half radius' of 230km in the horizontal and a half radius of
4km in the vertical for the horizontal and vertical localiza-
tions, respectively, results in the best performance of the DA
scheme.

IThe half radius (or cutoff term) is defined here as 0.5 times the
distance at which the impact of the assimilated observation goes
to zero. Multiplying the half radius by 2 results in the maximum
distance at which an observation can modify the model state.

Nat. Hazards Earth Syst. Sci., 25, 2999-3026, 2025


http://www.image.ucar.edu/DAReS/DART/
http://www.image.ucar.edu/DAReS/DART/

3006

D. S. Carrié et al.: A comparison between 3D-Var and EnKF

55°N |-

50°N

45°N —

40°N |=

30°N

oOm/s > 950 hPa 80(5—950 hPa 650-800 hPa .2500—650 hPa\ 350-500 hPa < 350 hPa

10°W 5°W 0° 5°E

10°E 15°E 20°E 25°E

Figure 4. Raw EUMETSAT RSAMYV observations depicted at different vertical levels from the 10.8 um infrared channel at 12:00 UTC on
7 November 2014 over the Mediterranean region. Wind information is only valid at the center of the wind vectors.

Assimilating observations inherently reduces analysis
variance in both variational and Kalman filter frameworks.
Small ensemble sizes tend to overly collapse the ensemble
spread (Anderson and Anderson, 1999). To mitigate this un-
der dispersion and maintain realistic ensemble variance, a
spatially varying adaptive inflation technique (Anderson and
Collins, 2007; Anderson et al., 2009) is applied to the prior
ensemble before assimilating the observations. This adaptive
inflation technique increases the spread of the ensemble with-
out changing the mean. The inflation value has a probability
density distribution described by a mean and a standard de-
viation. In this study, it was determined that initializing the
mean value of inflation at 1.0 and using a standard deviation
of 0.6 yield the best performance of the DA scheme.

4.2 Three-dimensional variational (3D-Var) data
assimilation

The 3D-Var technique, implemented in the Weather Re-
search and Forecasting data assimilation (WRFDA) system
(Barker et al., 2004), is adopted for the numerical simula-
tions. 3D-Var aims to seek the best estimate of initial condi-
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tions through the iterative minimization of a cost function:
J(x) =24 (x —xp) B~ (x —xp)
Y
+(yo— H®) R (y,— H(x)) }

where B and R are the background and observation error ma-
trices, respectively; x is the state vector; y, is the observa-
tion; xy is the first guess; and H is the forward (non-linear)
operator that converts data from model space to observation
space.

The solution of the above cost function J consists of find-
ing a state x, (analysis), which minimizes the distance be-
tween the observations and the background field. However,
in a model with 10° degrees of freedom, the direct solu-
tion is computationally expensive. To reduce the complex-
ity and calculate B~! more efficiently, a preconditioning
is applied by transforming the control variables — pseudo-
relative humidity, temperature, u, v, and surface pressure —
to x — xp = Uv, where v is the control variable and U the
transformation operator.
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The background error covariance matrix B plays a key role
in the assimilation process by weighing and smoothing the
information from observations and by ensuring a proper bal-
ance between the analysis fields. The National Meteorolog-
ical Center (NMC) method (Parrish and Derber, 1992) was
used to model the B matrix. This method evaluates the dif-
ferences between two short-term forecasts valid at the same
time but with different lead times, 12 and 24 h, respectively,
to generate the forecast error covariance matrix B. In this
study, we build the 3D-Var B matrix over a 2-week period,
in line with our operational experience running 3D-Var and
previous demonstrations of its benefits (Hung et al., 2023;
Fitzpatrick et al., 2007; Mazzarella et al., 2020, 2021). To
enhance B’s quality despite this relatively short sampling
window, we activate the CV7 option in WRFDA. This op-
tion uses empirical orthogonal functions (EOFs) to represent
vertical covariances instead of the traditional recursive fil-
ter, which has proven to be particularly beneficial for radar
reflectivity assimilation and subsequent precipitation fore-
cast improvements (Wang et al., 2013; Li et al., 2016; Shen
et al., 2022; Ferrer Herndndez et al., 2022). In our config-
uration, the CV7 control variables (i.e., u, v, temperature,
pseudo-relative humidity, and surface pressure) are defined
in EOF space, ensuring a compact yet accurate representation
of error structures. We use the CV7 option to generate the B
matrix for both case studies. In addition, the weak penalty
constraint (WPEC) option (Li et al., 2015) in WRFDA has
also been activated to further improve the balance between
the wind and thermodynamic state variables, enforcing the
quasi-gradient balance on the analysis field.

5 Model set-up

The mesoscale Advanced Research Weather Research and
Forecasting (WRF) model (Skamarock et al., 2008) version
3.7 is used in this study. WRF solves a fully compressible and
non-hydrostatic set of equations, using an 7 terrain-following
hydrostatic pressure vertical coordinate. The Arakawa C-grid
staggering scheme and a third-order Runge—Kutta time in-
tegration are used to improve the precision of the numer-
ical solutions. Because the IOP13 and Qendresa episodes
took place in different locations and with different condi-
tions, two different model configurations were used. For the
IOP13 episode, a one-way-nested model configuration with
the parent domain centered over the western Mediterranean
Sea, covering central Europe and northern Africa with a hor-
izontal grid resolution of 15km (168 x 247), and a nested
domain centered over the Gulf of Genoa with a horizontal
grid resolution of 3 km (250 x 250) were used (Fig. 5a). A
total of 51 vertical model levels from the surface to 50 hPa
were used, with a higher density of levels in the lower part
of the atmosphere than in the upper part for both domains.
For Qendresa, a one-way-nested model configuration is also
used, but now the parent domain is centered over the central
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Mediterranean Sea, covering most of the European region
and the northern part of Africa (Fig. 5b), using a horizon-
tal grid resolution of 15 km (245 x 245). The nested domain
is centered over Sicily (southern Italy) using a grid resolution
of 3km (253 x 253). Both numerical domains use 51 terrain-
following 7 levels up to 50 hPa, as in the IOP13 case.

For the EnKF DA experiments, initial and boundary con-
ditions used to perform the simulations associated with
IOP13 were obtained from the European Centre for Medium-
Range Weather Forecasts Global Ensemble Prediction Sys-
tem (EPS-ECMWEF), which stored meteorological fields us-
ing a horizontal and vertical spectral triangular truncation
of T639L62 (i.e., ~ 32 km grid resolution in the horizontal).
In particular, EPS-ECMWF provides 51 different initial and
boundary conditions from 50 perturbed ensemble members
and a control simulation. However, due to unfeasible com-
putational resources required to run our numerical simula-
tions at high resolution, here we use an ensemble consisting
of 36 members. This configuration is analogous to that used
at the internationally prestigious National Oceanic and At-
mospheric Administration National (NOAA) Severe Storms
Laboratory (NSSL) in Norman (Oklahoma, USA) to improve
predictability of tornadoes. To obtain the desired 36-member
ensemble, a principal component analysis and k-means clus-
tering technique were used together to select the 36 ensemble
members from EPS-ECMWF, showing more dispersion over
the entire numerical domain (see Garcies and Homar, 2009,
and Carri6 and Homar, 2016, for more details using these
techniques). To perform Qendresa DA simulations, the ini-
tial and boundary conditions are obtained following the same
methodology explained above for the IOP13 case, i.e., using
an ensemble of 36 members obtained from EPS-ECMWE.
On the other hand, the initial and boundary conditions for
3D-Var simulations are provided by the Integrated Forecast-
ing System (IFS) global model from ECMWF, with a spatial
resolution of 0.1° x 0.1° and updated every 3 h.

To estimate the uncertainties in WRF, which is neces-
sary information for EnKF, a multiphysics ensemble is built
for both the IOP13 and the Qendresa events (e.g., Sten-
srud et al., 2000; Wheatley et al., 2012), where each en-
semble member gets a different set of parameterizations
(see Table 2). In particular, the diversity in our ensemble
consists of (a) two short- and longwave radiation schemes
(Dudhia: Dudhia, 1989, and RRTMG: Iacono et al., 2008),
(b) three cumulus parameterization schemes (Kain—Fritsch,
KF: Kain and Fritsch, 1990; Kain, 2004; Tiedtke: Tiedtke,
1989; and Grell-Freitas, GF: Grell and Freitas, 2014), and
(c) three planetary boundary layer schemes (Yonsei Uni-
versity, YSU: Hong et al., 2006; Mellor—Yamada—Janjic,
MY]J: Janji¢, 1990; and Mellor—Yamada—Nakanishi—Niino
level 2.5, MYNN2: Nakanishi and Niino, 2006, 2009). Two
widely used physics parameterizations are adopted for the
microphysical processes and land surface interactions, the
New Thompson (Thompson et al., 2008) and Noah (Tewari
et al.,, 2004) schemes, respectively. Note that the above-
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Figure 5. Mesoscale and storm-scale numerical domains used in this study for the (a) IOP13 and (b) Qendresa episodes, respectively.
Publisher’s remark: please note that the above figure contains disputed territories.

mentioned physical parameterizations are used for both the
large-scale ensemble in the parent domain and the storm-
scale ensemble in the nested domain, except for the cumulus
parameterization, which is only applied in the parent domain
ensemble. On the other hand, for the WRF deterministic sim-
ulation using 3D-Var, the microphysical processes are pa-
rameterized by using the New Thompson scheme, while the
YSU scheme is adopted for PBL. Long- and shortwave radia-
tion is considered through the RRTMG and Dudhia schemes,
respectively, while the Kain—Fritsch scheme is used for con-
vection, except for the inner domain, where it is explicitly
resolved.

Nat. Hazards Earth Syst. Sci., 25, 2999-3026, 2025

6 Design of IOP13 and Qendresa experiments

To quantify the benefits of assimilating different observation
types with the 3D-Var and EnKF DA schemes, a suite of nu-
merical experiments is designed. First, a reference experi-
ment without any data assimilation (NODA), using the same
model configuration employed for the WRF experiments per-
formed using 3D-Var, is carried out at the regional scales
considered in this study. Building on this, several numerical
experiments, each differing only in the type of observations
assimilated to isolate and compare their impacts on forecast
skill, are performed. Only conventional in situ observations
are assimilated using 3D-Var and EnKF for the first set of
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Table 2. Multiphysics parameterizations used to generate the 36-member ensemble for the EnKF experiments in the IOP13 and Qendresa
episodes. PBL, SW, and LW stand for planetary boundary layer, shortwave, and longwave, respectively.

Multiphysics configuration

Ensemble MP CU PBL Land SW/LW | Ensemble MP CU PBL Land SW/LW
member surface  radiation | member surface  radiation
1 New Thompson KF YSU Noah Dudhia 19 New Thompson KF YSU Noah Dudhia
2 New Thompson KF YSU Noah RRTMG | 20 New Thompson KF YSU Noah RRTMG
3 New Thompson KF MYJ Noah Dudhia 21 New Thompson KF MYJ Noah Dudhia
4 New Thompson KF MYJ Noah RRTMG | 22 New Thompson KF MYJ Noah RRTMG
5 New Thompson KF MYNN2 Noah Dudhia 23 New Thompson KF MYNN2  Noah Dudhia
6 New Thompson  KF MYNN2  Noah RRTMG | 24 New Thompson KF MYNN2  Noah RRTMG
7 New Thompson GF YSU Noah Dudhia 25 New Thompson GF YSU Noah Dudhia
8 New Thompson  GF YSU Noah RRTMG | 26 New Thompson  GF YSU Noah RRTMG
9 New Thompson  GF MYJ Noah Dudhia 27 New Thompson  GF MYJ Noah Dudhia
10 New Thompson GF MY]J Noah RRTMG | 28 New Thompson GF MYIJ Noah RRTMG
11 New Thompson  GF MYNN2  Noah Dudhia 29 New Thompson  GF MYNN2  Noah Dudhia
12 New Thompson GF MYNN2  Noah RRTMG | 30 New Thompson GF MYNN2 Noah RRTMG
13 New Thompson Tiedke YSU Noah Dudhia 31 New Thompson Tiedke YSU Noah Dudhia
14 New Thompson Tiedke YSU Noah RRTMG | 32 New Thompson Tiedke YSU Noah RRTMG
15 New Thompson Tiedke MYJ Noah Dudhia 33 New Thompson Tiedke MYJ Noah Dudhia
16 New Thompson Tiedke MYJ Noah RRTMG | 34 New Thompson Tiedke MYJ Noah RRTMG
17 New Thompson Tiedke MYNN2 Noah Dudhia 35 New Thompson Tiedke MYNN2 Noah Dudhia
18 New Thompson Tiedke MYNN2 Noah RRTMG | 36 New Thompson Tiedke MYNN2 Noah RRTMG

experiments (SYN). All available observations (i.e., conven-
tional, radar-based, and satellite-derived data) are assimilated
using both 3D-Var and EnKF for the second type of exper-
iments (CNTRL). The comparison between these numerical
experiments will provide information on which DA scheme
and observation perform better for these weather events. The
DA experiments mainly consist of two phases: the first one
is related to the data assimilation procedure, where differ-
ent types of observations are assimilated by the 3D-Var and
EnKF DA schemes, and the second phase is associated with
the free model run initialized using the initial conditions ob-
tained during the first phase. The total forecast time is 24
and 36 h for IOP13 and Qendresa, respectively. For IOP13,
a further simulation lasting 6 h from 18:00 UTC on 13 Octo-
ber to 00:00 UTC on 14 October 2012 (Carri6 et al., 2019) is
performed (Fig. 6) to reduce spin-up problems related to the
direct downscaling from the global ECMWF analysis (32 km
grid resolution) to the WRF parent domain used in our simu-
lations (16 km grid resolution). This procedure improved the
DA for IOP13, but it had a small impact for Qendresa.

Therefore, the following model simulations were per-
formed:

— no data assimilation (NODA)

— only conventional in situ observations using 3D-Var and
EnKF (SYN)

— all available observations (i.e., conventional, radar-
based, and satellite-derived data) using both 3D-Var and
EnKF (CNTRL).

The comparison between the DA experiments and NODA
allows us to assess the impact of the DA procedure. On the
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other hand, the comparison between SYN and CNTRL al-
lows for the role of radar and/or satellite data to be assessed,
especially for the events that originated in the area where ob-
servations are not available. Moreover, the assimilation of the
radar and/or satellite produces important information on the
triggering phase of both events developing over the sea.

6.1 CNTRL experiments

For IOP13, the CNTRL experiment is designed to assimilate
both in situ conventional and reflectivity observations from
the Aleria and Nimes Doppler weather radars. The assimi-
lation of the reflectivity is expected to improve the forecast
of this event by significantly improving the initial conditions
over the sea, where convective activity initiated and evolved
into deep convection, affecting the populated coastal areas of
Italy. As briefly described in the previous section, this exper-
iment consists of three stages: (1) the spin-up of the storm-
scale domain is accounted for by running the WRF model
during 6 h from 18:00 UTC on 13 October to 00:00 UTC on
14 October 2012 (note that for the 3D-Var experiment, the
spin-up is accounted for by just initializing WRF with the
deterministic analysis from the IFS ECMWF; however, for
the EnKF counterpart, the spin-up is accounted for by initial-
izing the 36-member ensemble at 18:00 UTC on 13 October);
(2) in situ conventional observations were assimilated hourly
during 24 h from 00:00 UTC on 14 October to 00:00 UTC on
15 October, while reflectivity observations were assimilated
using a rapid-update assimilation cycle every 15 min during
a period of 6 h, from 18:00 UTC on 14 October to 00:00 UTC
on 15 October (Fig. 6); and (3) a 24 h ensemble (determin-
istic) forecast until 00:00 UTC on 16 October, using the re-
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Figure 6. Schematic representation of the main numerical experiments performed in this study for the (a) IOP13 and (b) Qendresa episodes.
SYN, CNTRL, and NODA experiments are illustrated for each case, highlighting their respective configurations and assimilation strategies.

cently obtained initial conditions, was performed by EnKF
(3D-Var).

For the Qendresa episode, the CNTRL experiment is de-
signed to assimilate both in situ conventional and RSAMV
observations. The assimilation of RSAMV observations is
expected to improve the representation of the atmospheric
circulation at upper levels, whereas the assimilation of sur-
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face conventional observations is expected to enhance the
representation at low levels. The Qendresa CNTRL experi-
ment consists of two main phases: (1) in situ conventional
and satellite-derived RSAMYV observations are assimilated
hourly and at 20 min intervals, respectively, during a 12h
period from 12:00 UTC on 6 November to 00:00 UTC on
7 November 2014 to end up with the last analysis at the end
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of the assimilation window (i.e., 00:00 UTC on 7 November),
and (2) a free 36 h ensemble (deterministic) forecast is per-
formed by EnKF (3D-Var) from 00:00 UTC on 7 November
to 12:00 UTC on 8 November 2014 (Fig. 6e).

6.2 SYN experiments

For IOP13, the SYN experiment assesses the impact of in situ
conventional observations, which are crucial for character-
izing mesoscale atmospheric circulation. Analogous to the
CNTRL, SYN follows the same three phases, but in the sec-
ond phase only the hourly in situ conventional observations
from 00:00 UTC on 14 October to 00:00 UTC on 15 October
2012 are assimilated. The analysis obtained from the assim-
ilation stage is used as initial conditions for running the free
forecast for 24 h in the third phase (Fig. 6).

Similarly, for Qendresa, only in situ conventional observa-
tions are assimilated hourly in the SYN experiment for 12 h,
from 12:00 UTC on 6 November to 00:00 UTC on 7 Novem-
ber 2014 (Fig. 6).

6.3 NODA experiments

For IOP13, the NODA experiment is a direct downscaling
from EPS-ECMWF boundary and initial conditions valid at
18:00 UTC on 13 October to 00:00 UTC on 16 October 2012
(Fig. 6). The comparison between NODA, CNTRL, and SYN
provides us with valuable information on the impact of as-
similating different sources of observations.

For Qendresa, the NODA experiment is simply a direct
downscaling of 36h from EPS-ECMWF at 00:00 UTC on
7 November to 12:00 UTC on 8 November 2014 (Fig. 6).
Here again, it is important to note that the choice of start-
ing NODA at 00:00 UTC on 7 November instead of start-
ing at 12:00 UTC on 6 November was made intentionally to
extract general conclusions possibly applicable to an opera-
tional framework.

7 Verification methods

To quantitatively evaluate the performance of EnKF and 3D-
Var and their impact on the short-term forecast of these two
extreme weather events, various verification scores are used.
Given the different natures of the weather phenomena as-
sociated with these episodes, the selection of verification
scores is tailored specifically to each event. For the IOP13
heavy-precipitation event (Fig. 7a), model verification was
performed using the observed accumulated precipitation field
over different time windows (e.g., 3, 6, and 9 h). More specif-
ically, the accumulated precipitation was computed using ob-
servations from the Italian Department of Civil Protection.
However, the spatial distribution of rain gauges is not ho-
mogenous, and there are regions where a lack of rain gauges
is present. To address these issues, three sub-regions are cho-
sen where the heavy-precipitation event was recorded well
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by the weather stations (see R1, R2, and R3 in Fig. 7b).
Conversely, for the Qendresa tropical-like cyclone, a limited
number of in situ observations were present since it initiated
and moved over the sea during its life cycle, and radar data
were not available. Consequently, IR satellite imagery was
the primary source of data to approximately estimate Qen-
dresa’s trajectory (Fig. 7c). Regarding the intensity of Qen-
dresa, since the cyclone’s center passed over Malta, reaching
its minimum mean sea level pressure (MSLP) of 985 hPa,
METAR data from Malta’s airport were also used to verify
the cyclone’s intensity (Fig. 7d).

To quantitatively assess the short-term (i.e., first 6-9 h)
precipitation forecast for IOP13 initialized using the anal-
ysis from the 3D-Var and EnKF DA techniques, a filter-
ing method, relative operating characteristics (ROCs; Mason,
1982; Stanski et al., 1989; Swets, 1973), and Taylor diagrams
(Taylor, 2001) were used. We avoid using the conventional
point-by-point approach, which has been shown to have seri-
ous limitations in the evaluation of high-grid-resolution spa-
tial and temporal precipitation fields (Roberts, 2003). More
specifically, we use the fraction skill score (FSS; Roberts and
Lean, 2008) as a filtering method, which is commonly used
to quantitatively assess precipitation. A preliminary interpo-
lation of the forecast and the observations onto a common
regular mesh of 3 km is performed to compute the FSS. The
comparison is then carried out within a region of 3 x 3 grid
cells around each grid cell. The FSS can be used to deter-
mine the scale over which a forecast system has sufficient
skill (Mittermaier and Roberts, 2010). The FSS ranges from
0 to 1, with 1 being a perfect match between the model and
the observations. In addition to the receiver operating charac-
teristic (ROC) curves, the area under the ROC curve (AUC;
Stanski et al., 1989; Schwartz et al., 2010), which is also
widely used to quantitatively assess the quality of weather
forecasts, is also used in this study. For a perfect forecast,
AUC is equal to 1.

For Qendresa, whisker diagrams (Tukey, 1977) and
the probability distribution of cyclone center occurrence
(PCCO), which is based on kernel density estimation (KDE;
Bowman and Azzalini, 1997; Scott, 2015; Silverman, 2018),
were used to validate the simulations. More specifically, the
KDE is used to compute the probability of having the center
of the cyclone over the entire numerical domain. The main
idea behind KDE is to place a “kernel” (i.e., a probability dis-
tribution function) at each data point and then sum up the ker-
nels to estimate the overall probability density function. The
kernel is typically chosen to be a smooth function, such as a
Gaussian function, which decays to zero as the distance from
the data point increases. The width of the kernel is controlled
by a parameter called the bandwidth, which, as it turns out, is
one of the limitations of the KDE technique. In this case, we
found that the optimal bandwidth is 20 km, which is within
the meso-g scale, i.e., a typical length scale for convective
cells. Here, a 2D KDE is applied over each cyclone center
(lat-long coordinates) identified for the different simulations
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Figure 7. (a) Example of the 12 h accumulated precipitation estimated values and their spatial distribution from the Italian Department of
Civil Protection rain gauges. (b) Linear interpolation of 12 h accumulated precipitation values into the three target areas where verification has
been performed. (¢) Observed track of Medicane Qendresa viewed from infrared satellite imagery. (d) Surface pressure (hPa) data obtained

from the METAR station at Malta’s airport.

(i.e., EnKF vs. 3D-Var). In this way, we infer the most prob-
able track of Qendresa for the different simulations, thereby
identifying which is the best DA technique and the one that
provides better estimations of Medicane Qendresa’s track.

8 Results

As discussed in the previous section, the above-mentioned
verification techniques were applied to the two extreme
events. The results are described in the following subsec-
tions.

8.1 Statistical analysis: IOP13 episode

Because IOP13 was a heavy-rainfall episode, the accumu-
lated precipitation field is used to quantitatively assess the
impact of assimilating both in situ conventional and reflectiv-
ity observations from Doppler weather radars on short-range
forecasts, using the 3D-Var and EnKF DA algorithms.
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8.1.1 Filtering method

The FSS associated with the 3h accumulated precipitation
field is computed independently for the three sub-regions,
R1, R2, and R3, which are highlighted in Fig. 7b. These re-
gions were chosen due to their higher observation density, al-
lowing for a more reliable evaluation. The analysis is carried
out using two precipitation thresholds: Smmh~! (moderate
rainfall) and 10mmh~! (heavy rainfall). In general, except
for R3, the comparison in terms of the FSS (Fig. 8a—f) shows
that at the initial forecast time and during the first 6 h, DA
simulations (EnKF and 3D-Var) outperform the NODA sim-
ulation (without assimilation). Among the DA simulations,
EnKF generally outperforms 3D-Var in R1 and R2, espe-
cially for the higher-precipitation threshold (10 mmh~'). As
expected, CNTRL experiments for both 3D-Var and EnKF
provide higher FSS values compared to SYN experiments,
where reflectivity observations were not considered.

In R3, the results show unexpected behavior when using
the moderate threshold (5mmh~1) (Fig. 8c), where NODA
outperforms DA simulations during the first few hours. This
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Figure 8. (a—f) Evolution of the FSS during the first 24 h of free forecasts for 3h accumulated precipitation in the Italian sub-regions:
R1 (a, g,d), R2 (b, e, h), and R3 (¢, f, i). Two thresholds are used: > 5 mm h~! (first row) and > 10 mm h~! (second row). (g—i) Evolution of
the RMSE associated with each experiment during the first 24 h of free forecasts in the different sub-regions. Simulations assimilating both
conventional and radar observations (CNTRL) and simulations assimilating only conventional observations (SYN) associated with 3D-Var
and EnKF are shown here. As a reference, NODA results are also included.

anomaly could be attributed to three factors: (1) the use of a
moderate-precipitation threshold, which may not capture sig-
nificant precipitation differences; (2) minimal precipitation
in R3 during the initial forecast hours, since the deep con-
vection system had not yet reached this region; and (3) the
location of R3 near the domain edges, where it relies solely
on in situ observations for assimilation corrections, as it falls
outside the radar coverage area. This interpretation is re-
inforced when examining the higher-precipitation threshold
(10 mm h’l) (Fig. 8f), where all methods exhibit similarly
poor skill in the early forecast hours, indicating that precipi-
tation is still too weak to be meaningfully assessed. However,
after 6-9 h, as expected, DA simulations outperform NODA
in all sub-regions.

It should be noted that the CNTRL simulations do not con-
sistently show better FSSs than SYN simulations during the
first hours for R1. This could be due to the short-lived im-
pact of radar reflectivity assimilation, which in past studies
has been shown to last no longer than 2—4 h for 3D-Var and
EnKF. These findings align with those of previous studies,
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which reported similar behavior regarding the transient im-
pact of reflectivity DA (Carri6 and Homar, 2016; Carri6 et
al., 2019).

Finally, we also computed the root mean squared error
(RMSE) for the precipitation field over the first 24 h of the
free forecast for both DA and NODA experiments (Fig. 8g—
1). For 3D-Var and NODA, RMSE is calculated from the de-
terministic forecast, while for EnKF, it is computed from the
ensemble mean precipitation field. Overall, DA experiments
exhibit lower (better) RMSE scores compared to NODA,
confirming the positive impact of data assimilation on fore-
cast accuracy. Among the DA experiments, EnKF consis-
tently outperforms 3D-Var in all regions, suggesting a better
representation of precipitation variability and improved ini-
tial conditions.

8.1.2 ROC and AUC

To strengthen the skill of the different simulations performed
by 3D-Var and EnKF, the receiver operating characteris-
tic (ROC) curve is used. The probability of exceeding a
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given threshold is computed and verified against dichoto-
mous observations. The ROC curve is computed as follows:
the model variable is interpolated to the observation loca-
tions, and if the model variable exceeds a given threshold,
that model grid point is assigned a value of 1. In contrast, if
the model value does not exceed that threshold, the assigned
value is 0. The same method is applied to the observations.
Then, using these dichotomous values, the hit rate and false
alarm scores are computed. This process is repeated, varying
the threshold value. Gathering the hit rate and false alarm
scores for the different thresholds, we obtain the ROC curve.
For 3D-Var, we obtain the hit rate and false alarm scores by
simply interpolating the model values to the observation lo-
cations and apply the threshold criteria explained above. In
the case of EnKF, the ensemble mean is used as the field to be
interpolated to the observation locations. The area under the
ROC curve (AUC), which measures the ability of the system
to discriminate between the occurrence or nonoccurrence of
the event, is also computed.

For the sake of brevity and because the results from the
three sub-regions are similar, the ROC curve and AUC are
computed, accounting for all the observations within the in-
ner domain. Specifically, to compute the ROC curves, we use
the 3 h (from 00:00-03:00 UTC on 15 October) and 6 h (from
00:00-06:00 UTC on 15 October) accumulated precipitation
fields from the model simulation and the observed values reg-
istered by the rain gauges, using 1 and 10 mm as thresholds
(Fig. 9).

Overall, DA experiments outperform the NODA runs for
both the 3 h and the 6 h accumulated precipitations, as shown
by higher ROC curves and larger AUC values. Among
the DA approaches, EnKF consistently outperforms 3D-
Var, with greater benefits observed at the 10 mm threshold
(i.e., bottom row of Fig. 9). This improvement highlights
the advantages of radar reflectivity assimilation within an
ensemble-based framework, especially for more intense pre-
cipitation events. To better understand this result, we closely
analyzed the 1 and 6 h accumulated precipitation fields ob-
tained from EnKF (CNTRL) and 3D-Var (CNTRL), compar-
ing them against corresponding observations (see Figs. Al
and A2 in Appendix A). The 1h accumulated precipita-
tion (Fig. A1) shows that EnKF localizes the regions where
the most intense precipitation was observed with high ac-
curacy, that is, near Tuscany and northern Italy. Moreover,
3D-Var correctly reproduces rainfall in the regions affected
by observed precipitation, although the maximum amounts
are centered over Liguria instead of near Tuscany. In addi-
tion, 3D-Var also shows a tongue area of weak precipitation
from Liguria to northern Italy, which does not fit with the
observations. Consequently, while small differences exist be-
tween 3D-Var and EnKF in the 1 h accumulated precipitation
field, the low magnitude of accumulated precipitation val-
ues leads to no substantial differences in ROC verification
scores. However, in the case of the 6 h accumulated precipi-
tation (Fig. A2), 3D-Var overestimates accumulated precipi-
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tation near Liguria, Tuscany, and northern Italy compared to
the observations. Moreover, 3D-Var also misplaces the loca-
tions of the precipitation for some places. In contrast, EnKF
locates the regions where the accumulated precipitation was
actually observed with enough accuracy and properly esti-
mates the observed intensity. Consequently, the ROC curve
for the 6h accumulated precipitation obtained from EnKF
produced a much better score than 3D-Var. We hypothesize
that this difference could be associated with the static/clima-
tological background error covariance matrix used by 3D-
Var. Because of the fast changes in the flow associated with
the IOP13 case, using a climatological background error co-
variance would not be as good as using a flow-dependent
background error covariance matrix, which is used in EnKF.

8.1.3 Taylor diagrams

To strengthen the comparison of the DA schemes, a Taylor
diagram is used. This tool provides us with additional infor-
mation about the skill of each ensemble member in EnKF.
Here, we compute the Taylor diagram for the 6 and 24 h ac-
cumulated precipitation fields, which represent the forecast
ranges where the assimilated observations have more im-
pact. Overall, results show that the NODA experiment gener-
ally exhibits the lowest correlation and largest discrepancy in
standard deviation relative to observations, emphasizing that
DA significantly improves the representation of precipitation
fields, especially for high-impact weather events. Among the
different DA approaches, the 3D-Var and the EnKF ensem-
ble mean provide comparable results, with correlations rang-
ing from approximately 0.50 to 0.61, and a similar RMSE
and standard deviation that are symmetrically distributed
around the observed reference. Notably, 3D-Var tends to
overestimate the standard deviation, while the EnKF ensem-
ble mean tends to underestimate it (Fig. 10). A key advan-
tage of EnKF lies in its individual ensemble members, some
of which exhibit better performance than the 3D-Var run.
Although the mean difference between EnKF and 3D-Var
is small, the ensemble-based approach provides additional
insight through its member-by-member variability. Specif-
ically, ensemble members using the Grell-Freitas cumulus
parameterization coupled with the Yonsei University plan-
etary boundary layer scheme exhibit higher correlations and
standard deviations that are similar to the observations in this
study. Conversely, ensemble members associated with lower
scores are those using the Kain—Fritsch scheme for the cumu-
lus parameterization and the Mellor—Yamada—Janji¢ scheme
for the planetary boundary layer scheme. These findings
underscore the potential of multiphysics ensembles to cap-
ture diverse physical representations of convective processes,
thereby enhancing forecast accuracy.
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Figure 9. ROC curves and AUC associated with 3D-Var (red and pink colors), EnKF (blue and cyan colors), and NODA (green color) for
the 3 h accumulated precipitation using (a) 1 mm and (b) 10 mm thresholds and 6 h accumulated precipitation using (¢) 1 mm and (d) 10 mm
thresholds, computed over the entire inner domain. Note: all experiments employ the same set of probability thresholds; any apparent
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8.2 Statistical analysis: Qendresa event

In tropical cyclone forecasting, two key factors are typically
evaluated: (a) the intensity and (b) the trajectory followed by
the cyclone. Therefore, to assess the impact of assimilating
both in situ conventional and remote RSAMYV observations
using 3D-Var and EnKF, we focus on these two factors for
the Qendresa event.

8.2.1 Whisker diagrams

For this event, the lack of in situ observations over maritime
regions poses the main challenge to properly verifying the
triggering and intensification of cyclones. Fortunately, Med-
icane Qendresa crossed just over Malta, where a pressure
drop greater than 20 hPa in 6 h was registered by METAR
at Malta’s airport, reaching a minimum surface pressure of
985hPa. Therefore, METAR is used to quantitatively as-
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sess the skill of the NODA simulation and the various DA
approaches. To compare the surface pressure registered in
Malta with the different simulations, the full cyclone tra-
jectory is used, and the grid point closest to Malta’s air-
port is selected. Specifically, the surface pressure time se-
ries measured by METAR is compared with the NODA run
and the different DA simulations from 3D-Var and EnKEF,
such as 3D-Var_SYN, 3D-Var_ CNTRL, EnKF_SYN, and
EnKF_CNTRL (Fig. 11).

Overall, results indicate that the NODA simulation cap-
tures the timing of the observed pressure drop more accu-
rately than the DA runs, suggesting that the large-scale dy-
namics are adequately represented even without data assim-
ilation (Fig. 11). However, NODA underestimates the inten-
sity of the medicane’s central pressure.

Among the DA simulations, assimilating in situ conven-
tional observations enables some EnKF ensemble members

Nat. Hazards Earth Syst. Sci., 25, 2999-3026, 2025
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to outperform NODA in both timing and intensity, whereas
3D-Var shows limitations in capturing the event timing and
central pressure depth (Fig. 11a). Additionally, the ensem-
ble mean of EnKF_SYN accurately fits the observations dur-
ing the first hours of the forecast, from 00:00 to 13:00 UTC
on 7 November (Fig. 11a), performing slightly better than
3D-Var_SYN. However, during the intensification phase, the
ensemble mean of EnKF_SYN barely shows the intensi-
fication of Qendresa, reaching minimum MSLP values of
1002 hPa. In contrast, the 3D-Var_SYN simulation depicts
the intensification of the medicane by deepening the MSLP
and reaching values of 992 hPa, although a time shift of 3h
is found (i.e., 15:00 UTC on 7 November) (Fig. 11a). Fi-
nally, during the dissipation phase of Qendresa, the ensem-
ble mean of EnKF_SYN performs slightly better than that
of 3D-Var_SYN (Fig. 11a). These results highlight a no-
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table limitation of EnKF when applied to low-predictability
weather events, such as Qendresa. The low predictability
of Qendresa and the high sensitivity to physical parameter-
izations produce substantial spread in ensemble behavior:
some members capture the cyclone’s closed circulation and
track reasonably well, while others fail to develop a coherent
low-pressure core, instead producing only disorganized or
weak convective cells. Consequently, these poorly perform-
ing members may entirely miss the medicane’s formation or
misplace its center, leading to large errors in both track and
intensity forecasts. In this situation, our small to moderate
ensemble size exacerbates sampling error, yielding spurious
background error covariances that degrade analysis accuracy
in EnKF. These errors become particularly problematic when
the numerical model mispredicts the event, since the ensem-
ble members no longer provide a reliable representation of
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flow-dependent uncertainty. On the other hand, a climatolog-
ical/static background error covariance matrix, like the one
used in 3D-Var, could produce better results than ensemble
members, as we see in Fig. 11a, where we compare 3D-Var
(red line) with the EnKF ensemble mean analysis (blue line).
Moreover, it is important to note that although the ensemble
mean of EnKF_SYN does not correctly reproduce the inten-
sification of Qendresa, some of the ensemble members repro-
duce the observed MSLP very well, in both deepening and
timing. This suggests that using an ensemble system, even
when having the above-mentioned problems, is still more
useful than using only a fully deterministic system such as
3D-Var, which cannot provide information about the uncer-
tainties of the system. Therefore, we can speculate that for
extreme weather events with low numerical predictability,
a better approach could be using a hybrid error covariance
model, where the forecast error covariance matrix is obtained
linearly by combining ensemble-based covariance with static
climatological error covariances (Hamill and Snyder, 2000;
Lorenc, 2003; Clayton et al., 2013; Carri6 et al., 2021). The
impact of using hybrid DA to improve these kinds of small-
scale extreme weather events could be of great interest in the
weather forecast community, although it is beyond the scope
of this study. For this reason, the authors leave the benefits
of using hybrid error covariance models to improve the fore-
cast of extreme weather events in the Mediterranean Basin
for future work.

We then evaluated the impact of assimilating both in situ
conventional and RSAMYV observations on the accuracy of
the Qendresa intensity forecast (Fig. 11b). In this case,
the results of the two experiments show large similarities
(Fig. 11a, b). In terms of 3D-Var, the MSLP signature is
basically the same, without showing a clear signal of im-
provement or diminishing, suggesting that the assimilation of
RSAMVs is not enough to significantly improve the relevant
low-level dynamical structures associated with the genesis
and intensification of Qendresa. However, in terms of EnKF,
a clear improvement is found for a few members, even if it
does not affect the mean value. Indeed, some of the ensemble
members that depicted an intense cyclone far from the time
when it was observed (at approx. 18:00 UTC on 7 Novem-
ber) were corrected, reducing spurious cyclones and bringing
at least one ensemble member closer to the observed value
(Fig. 11b). It can be observed that in EnKF_CNTRL, there
are more ensemble members depicting a deep cyclone at the
observed time than in the case of EnKF_SYN, showing the
benefits of assimilating RSAMVs to improve the intensifica-
tion estimation of Qendresa.

To quantitatively assess the performance of NODA and
the different DA experiments, we use the lagged-correlation
technique computed between the model MSLP signatures
and the observations. This technique allows us to measure
how the shape of the surface pressure evolution obtained
from the different simulations fits the shape of the observed
MSLP, also taking temporal shifting into account. The cor-
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relation is computed for NODA, 3D-Var, and each ensemble
member from EnKF. These results are shown using whisker
plots (Fig. 12), where a correlation of 1 indicates that the
specific model field has the same “V” pressure shape evo-
lution as the observation and that the minimum for both is
found at the same time. The results show that the NODA
simulation exhibits the highest correlation values among all
the simulations, reaching its maximum correlation when no
time shifting is applied. For 3D-Var_SYN, the correlation
is at its maximum and approximately equal to 1 when a
1 h delay is produced by the forecasts (Fig. 12a). Whiskers
from EnKF_SYN show that none of the ensemble mem-
bers overcomes the maximum correlation value found in 3D-
Var_SYN. However, when the assimilation of RSAMVs is
added to the in situ conventional observations, it is found
that the maximum correlation value associated with 3D-
Var_CNTRL using 2 h of delay applied to the forecasts is sur-
passed by some of the ensemble members of EnKF_CNTRL,
when a 3 or 4 h delay is applied (Fig. 12b).

8.2.2 Probability distribution of cyclone center
occurrence

Due to the difficulty of accurately predicting the observed
trajectory of Qendresa (Pytharoulis, 2018), the impact of as-
similating different kinds of observations on the trajectory of
the medicane is investigated.

Results indicate that the NODA simulation fails to accu-
rately capture the track of Qendresa, especially its recurva-
ture towards Sicily after leaving Malta, as evidenced by satel-
lite imagery. In contrast, 3D-Var_SYN accurately captures
the track of Qendresa during the first hours (Fig. 13b). How-
ever, after Qendresa leaves Malta, the trajectory simulated
by 3D-Var_SYN diverges from the observed track, shifting
northeastwards and failing to capture the track loop observed
in satellite imagery. To quantify the benefits of assimilating
in situ conventional observations using 3D-Var or EnKF, the
probability of occurrence of a cyclone following the track ob-
served via satellite imagery is computed. For instance, 3D-
Var_SYN underestimates the probability of cyclone occur-
rence east of Sicily, where Qendresa made landfall while
looping (Fig. 13b). On the other hand, some EnKF_SYN en-
semble members show a cyclone trajectory shifted signifi-
cantly southward, while others reproduce the loop trajectory
missed by the NODA forecast (Fig. 13a). In addition, the
probability of Qendresa occurring eastwards of Sicily is in
this case larger than that of 3D-Var_SYN, showing the ben-
efits of using EnKF against 3D-Var (Fig. 13a). Moreover,
the EnKF_SYN ensemble trajectories generally follow a V
shape (i.e., first moving towards the southeast, then moving
to the east, and finally moving towards the northeast), simi-
lar to the trajectory observed via satellite imagery. Although
the shapes of most of the EnKF_SYN trajectories agree with
the observations, a consistent southeastward displacement is
evident in their location.
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trajectory observed via satellite imagery is depicted in black.

If both in situ conventional and RSAMV observations of the 3D-Var_CNTRL trajectory by increasing the proba-

are assimilated, some of the ensemble members from bility of cyclone occurrence following the observed track is
EnKF_CNTRL show more accurate trajectories in compar- observed, especially in eastern Sicily. However, 3D-Var ex-
ison with EnKF_SYN: the loop trajectory is closer to the ob- periments are not able to reproduce the looping trajectory ob-

served region of eastern Sicily (Fig. 13c). An improvement served via satellite imagery (Fig. 13b—d). Hence, EnKF out-
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performs 3D-Var, with some ensemble members depicting a
loop trajectory, although shifted southwards, and producing
a probability of cyclone occurrence lower than 3D-Var.

Both EnKF and 3D-Var still have difficulties in accurately
depicting the track observed by Qendresa, even after the as-
similation of in situ conventional and RSAMYV observations.
Because RSAMVs are useful for describing dynamical fea-
tures in the upper levels of the atmosphere, we hypothesize
that incorporating them via DA may not be sufficient to cor-
rect key low-level dynamical features. In this case, the as-
similation of surface wind observations may even help to im-
prove these results. However, this is beyond the scope of this
study, and the authors leave this question for future work,
where other sources of information from satellites will be as-
similated to improve the low-level thermodynamic aspects of
extreme weather events, such as medicanes.

9 Summary and conclusions

This study provides a quantitative assessment of the impact
of two widely used DA techniques — 3D-Var and EnKF —
on the predictability of maritime extreme weather events.
The focus is on evaluating their potential to improve forecast
lead time by assimilating observations during the developing
stage, as opposed to the mature stage, which affords limited
time for preparedness and response. To evaluate the perfor-
mance of 3D-Var and EnKF, we analyze two high-impact
weather events that were triggered over the sea and later
affected densely populated coastal regions. These two ex-
treme weather events are known as (a) the high-precipitation
event registered during the 13th intensive observation period
(IOP13) affecting the western, northern, and central parts of
Italy, and (b) the intense tropical-like Mediterranean cyclone
(medicane) known as Qendresa, which affected the islands
of Pantelleria, Lampedusa, Malta, and Sicily. These weather
events pose a serious challenge for the numerical weather
prediction community due to their low predictability, result-
ing from their initialization over the sea, where in situ obser-
vations are sparse and initial conditions are poorly estimated.
Furthermore, their evolution over complex-terrain regions in-
troduces additional forecasting challenges.

For these two extreme weather events, both 3D-Var and
EnKF DA methods were applied, with the type and num-
ber of assimilated observations varying based on the data
availability. For Qendresa, we assimilated (a) hourly in situ
conventional observations and (b) wind speed and wind di-
rection profiles of the entire atmosphere (RSAMVs) derived
from geostationary satellites every 20 min, providing high-
spatial- and high-temporal-resolution observations covering
the central Mediterranean Sea, where Qendresa was initi-
ated and evolved. On the other hand, for the IOP13, we as-
similated (a) hourly in situ conventional observations and
(b) 15min 3D reflectivity observations from two type-C
Doppler weather radars.
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Because of the different thermodynamic characteristics as-
sociated with Qendresa and IOP13, a set of different verifi-
cation metrics was used for each of these extreme weather
events. A filtering method (FSS and RMSE), ROC/AUC, and
Taylor diagram were used to verify the numerical simula-
tions from 3D-Var and EnKF associated with IOP13. In the
case of Qendresa, we used whisker diagrams and the prob-
ability distribution of cyclone center occurrence verification
scores. For the IOP13, both the filtering method and the Tay-
lor diagram verification show that EnKF slightly outperforms
3D-Var, although the differences are not significant. In addi-
tion, it was observed that the assimilation of spatial and tem-
poral high-resolution reflectivity observations significantly
improved the forecast for both 3D-Var and EnKF, showing
the key role of this type of observation. On the other hand,
the ROC and AUC scores clearly show that EnKF outper-
forms 3D-Var. For the Qendresa event, while the ensemble
mean of EnKF underestimates the intensity of the medicane
compared to 3D-Var, some individual EnKF ensemble mem-
bers produce more accurate results than 3D-Var. This behav-
ior suggests how important it is to use an ensemble fore-
cast system to predict extreme weather events at high spatial
and temporal resolutions. Regarding the cyclone’s trajectory,
EnKF provides a more realistic representation of Qendresa’s
observed path.

Although the EnKF technique has generally shown bet-
ter performance against 3D-Var for the two extreme weather
events analyzed in this study, it is also important to account
for the computational resources required by each method.
EnKEF requires approximately 36 times more model integra-
tions per cycle than 3D-Var’s single forecast, in addition to
the overhead of computing ensemble updates. This makes
3D-Var appealing because it is much faster and cheaper than
EnKF, and it makes this technique particularly suitable for
operational purposes at small weather forecast centers.

An interesting result of this study is that, for highly non-
Gaussian extreme events, the deterministic 3D-Var forecast
can occasionally outperform the EnKF ensemble mean in
terms of point forecasts (e.g., minimum central pressure) be-
cause averaging across ensemble members tends to smooth
out the tails of a skewed probability distribution. In con-
trast, probabilistic metrics like ROC/AUC consistently fa-
vor EnKF, reflecting its superior ability to capture forecast
uncertainty. We attribute these contrasting behaviors to the
different approaches to background error covariances: 3D-
Var employs a static covariance, while EnKF uses a flow-
dependent covariance estimated from a finite ensemble. To
combine the strengths of both methods, a hybrid error covari-
ance approach — where the forecast error covariance matrix
is formed by linearly blending the EnKF’s ensemble-derived
covariances with the 3D-Var’s static climatological covari-
ances — may offer improved forecast skill for convective-
scale extreme events.

Further work will investigate the impact of using hybrid
DA schemes in comparison to standard 3D-Var or EnKF.
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In this scenario, it is expected that the hybrid error co-
variance matrix will be more precise than the one derived
from the ensemble members or from climatology, which on
their own are not able to reproduce key aspects of challeng-
ing extreme weather events. High temporal and spatial ob-
servations from Doppler weather radars, such as reflectiv-
ity and radial wind velocities, will be assimilated for this
case to obtain accurate analysis and, thus, improve the short-
range forecast of this catastrophic flash flood event. In ad-
dition, it is important to highlight that satellite-based data
assimilation provides a significant opportunity for enhanc-
ing convective-scale forecasting, particularly in data-sparse
maritime regions such as the Mediterranean, where the for-
mation of extreme weather events like tropical-like cyclones
increasingly impacts densely populated areas. Future stud-
ies integrating high-resolution satellite observations, such as
cloud top heights, thermodynamic profiles, or cloud proper-
ties, could further enhance the accuracy of convective-scale
predictions, improving early warning capabilities and disas-
ter preparedness.

Appendix A

D. S. Carrié et al.: A comparison between 3D-Var and EnKF
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Figure Al. The 1h accumulated precipitation computed from 00:00-06:00 UTC on 15 October 2012 associated with observations (first
column), NODA (second column), EnKF (CNTRL) (third column), and 3D-Var (CNTRL) (fourth column).
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Figure A2. The 6h accumulated precipitation computed from 00:00-06:00 UTC on 15 October 2012 associated with (a) observations,
(b) NODA, (¢) EnKF (CNTRL), and (d) 3D-Var (CNTRL).
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