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Abstract. A series of multiple meteorological extreme
events in close succession can lead to a substantial increase in
total losses compared to randomly distributed events. In this
study, different temporal clustering methods are applied to
insurance loss data from southwestern Germany from 1986
to 2023 for the following hazards: windstorms, convective
gusts, and hail, as well as pluvial, fluvial, and mixed flood
events. We assess the timing and significance of seasonal
clustering of single hazard types as well as their serial com-
bination by use of both a simple counting algorithm and the
clustering metric Ripley’s K . Results show that clustering is
significant only for certain hazard types compared to a ran-
dom time series. However, clustering is robust for a combi-
nation of multiple hazard types, namely hail, mixed or plu-
vial floods, and storms. This particular combination of haz-
ard types is also associated with higher losses compared to
their isolated occurrence. Clusters of damaging hazards oc-
cur mainly during May–August and depend on the method of
defining independent events (peaks-over-threshold method
with flexible lengths vs. hours clause method with fixed
lengths) and their resulting duration. This study demonstrates
the relevance of considering multiple hazard types when
evaluating clustering of meteorological hazards.

1 Introduction

Weather- and climate-related hazards frequently cause con-
siderable loss and damage in Germany, such as the extreme
flood caused by the low-pressure system Bernd in western
Germany and Belgium in July 2021 (Mohr et al., 2023)
or the storm series Dudley, Eunice, and Franklin in Febru-
ary 2022 (Mühr et al., 2022). These events can also lead
to fatalities and major societal impacts, such as damage to
critical infrastructure with potential long-term consequences
(Schäfer et al., 2021). In Central Europe, the most relevant
hazard types with regard to losses are hydro-meteorological
extremes (European Environment Agency, 2023), such as
floods, winter storms, hail, and convective gusts. Damage by
those hazards has increased globally (Banerjee et al., 2024)
and in Europe (Kron et al., 2019), which can partly be at-
tributed to climate change.

Between 1980 and 2023, total losses caused by natural
hazards are estimated at EUR 738 billion in the European
Union (European Environment Agency, 2023). Germany,
and the southwest in particular, has been a hotspot for dam-
aging meteorological hazards in recent decades, resulting in
high losses compared to other regions in Europe (Kron et al.,
2019). Between 2001 and 2021, extreme events amounted to
annual losses of about EUR 6.6 billion in Germany, includ-
ing indirect effects (Trenczek et al., 2022). Flood and storm
events are the major drivers of losses in Germany (Kreibich
et al., 2014). For example, the winter storm Lothar in 1999
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caused total economic losses of more than EUR 15 billion
(Swiss Re, 2019), the hail event Andreas in 2013 led to
an economic loss of more than EUR 1 billion (Kunz et al.,
2018), and most recently, in June 2024, southwestern Ger-
many was hit by flooding that led to an expected economic
loss of more than EUR 2 billion (GDV, 2024).

These extreme events often do not occur in isolation. In
southwestern Germany, for example, there was a sequence of
multiple events in 2013: an exceptional flood occurred dur-
ing the end of May and the beginning of June, which was fol-
lowed by extreme heat and a severe hailstorm in July, as well
as extreme heat at the beginning of August (Deutscher Wet-
terdienst, 2013). All of these events caused severe impacts,
with inundated towns and villages after the flooding, dam-
aged roofs and facades of buildings due to large hail (Kunz
et al., 2018), and blocked water routes due to drought hin-
dering the transportation of goods (Thieken et al., 2016). Im-
pacts of cascading events can lead to additional problems,
such as blocked traffic routes after a previous event (Mohr
et al., 2023), disturbed emergency responses (Raymond et al.,
2020), an increased recovery time (Ruiter et al., 2020), or ad-
ditional damage to buildings after a storm if damaged roofs
fail to stop rainwater from entering (Martius et al., 2016).
Other examples of cascading impacts are increased runoff in
the case of a heavy rain event after a heatwave or an increased
debris flow with damage potential in the case of flooding af-
ter a storm event (see, for example, Kreibich et al., 2014).
These cascading events can also lead to societal impacts; e.g.,
while recovery is still ongoing, authorities and technical or-
ganizations can become overburdened in a series of events
due to limited availabilities for repeated action, since many
of the organizations are based on volunteers. In longer peri-
ods of action, lack of food supply or lack of rest for rescuers
can harm recovery. Insurance companies and their regulators
can become overburdened by a succession of several events
as well. With major damaging hazards happening in close
succession, this can therefore lead to capacity problems for
civil protection, local authorities, insurance companies, and
NGOs.

When a combination of multiple drivers and/or hazards
contributes to societal or environmental risk, this is referred
to as compound weather or climate events (Zscheischler
et al., 2018). Similarly, the United Nations Office for Disas-
ter Risk Reduction (UNDRR) defines multi-hazards as “the
specific contexts where hazardous events may occur simul-
taneously, cascadingly or cumulatively over time, and tak-
ing into account the potential interrelated effects” (UNDRR,
2016, p. 19). It has recently been shown that these compound
or multi-hazard events are quite frequent: 19 % of events in
the global disaster database EM-DAT can be classified as
multi-hazard events, leading to an overproportionally high
share of 59 % of global economic losses, with the primary
meteorological hazard types being floods and storms (Lee
et al., 2024). Despite this large proportion, risk models such
as those used by the insurance industry generally consider

the different hazard types independently (Hillier et al., 2015;
Mitchell-Wallace et al., 2017; Priestley et al., 2018). Risk
analyses and risk management often lack this multi-hazard
perspective as well (Kreibich et al., 2014).

In the past years, many studies have investigated com-
pound events; however, most of them have focused on single
hazard types or multiple dry hazard types, such as heatwaves
and droughts (Ruiter and Loon, 2022). There is only little re-
search on the co-occurrence or compound occurrence of dif-
ferent hazard types, particularly in relation to their impact.
However, this perspective has gained increasing attention in
recent years. For example, Ruiter et al. (2020) evaluate con-
secutive disasters of different types, and recent work focuses
on the classification of multiple hazards including a range of
hazard types (Claassen et al., 2023). Specifically, the interre-
lationship between flood and wind occurrence has received
quite some attention (e.g., Hillier et al., 2015; Martius et al.,
2016; Bloomfield et al., 2023, 2024; Hillier et al., 2024).

The temporal dependence of multiple hazards can be quan-
tified using different clustering techniques. Temporal cluster-
ing, also referred to as serial clustering (Mailier et al., 2006),
has been widely investigated for single hazard types, mainly
for extratropical cyclones in Europe (e.g., Vitolo et al., 2009;
Mailier et al., 2006; Pinto et al., 2013, 2016; Karremann
et al., 2014; Dacre and Pinto, 2020) and heavy precipi-
tation at various spatial scales (Barton et al., 2016; Kopp
et al., 2021; Tuel and Martius, 2021b; Banfi and De Michele,
2024). There are also some studies on the serial clustering of
hail (Barras et al., 2021) as well as droughts (Brunner and
Stahl, 2023). The basic idea of serial clustering is to quan-
tify the deviation of a binary time series from a homogeneous
Poisson process, i.e., a Poisson process with a constant rate of
occurrence. This is typically done in two different ways. The
dispersion index can identify overdispersion, i.e., the over-
all tendency of a time series to cluster (e.g., Mailier et al.,
2006; Vitolo et al., 2009; Karremann et al., 2014). Another
common approach is to use Ripley’sK function (e.g., Barton
et al., 2016; Tuel and Martius, 2021a, b), which is a statistical
metric that quantifies the average number of events around a
random event in a time series.

To our knowledge, there has been no research on the iden-
tification and quantification of serial clustering considering
multiple (meteorological) hazard types. We want to close this
gap using insurance loss data from a building insurance com-
pany operating mainly in southwestern Germany. Although
loss data only cover insured objects and do not necessar-
ily represent societal damage, they are commonly used as a
proxy, which allows us to compare between different hazard
types (Hillier et al., 2015). We use a counting method to iden-
tify clustering periods and Ripley’s K to assess the degree
of clustering. Ripley’s K , primarily used in hydrologic data
analysis, is here being newly applied to impact data. Further-
more, we use two methods to identify extreme events: (1) a
flexible event definition with a varying event duration and
(2) a fixed definition and corresponding event duration. The
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flexible event definition is common in meteorological and hy-
drological research, whereas the fixed definition is common
for insurance applications. Both methods lead to a different
number of events. This is relevant, as the impact of a set of
loss events on an insurance is often dependent not only on the
overall loss, but also on the number of individual loss events.
Reasons for this are the Solvency II European Directive as
well as the structure of reinsurance contracts (Vitolo et al.,
2009), which take into account the frequency of losses and
therefore also the number of events.

We furthermore aim to help close the gap between the
multi-hazard research domain and meteorological clustering
research using impact data on multiple hazard types (i.e.,
multivariate extreme events) combined with observation data
to categorize the events according to their meteorological
drivers: pluvial, mixed, and fluvial floods; hail; convective
gusts; and large-scale storms.

The objective of this study is to address the following re-
search questions:

1. When do clusters of individual damaging hazard types
as well as clusters of their serial combination occur in
southwestern Germany, and is this clustering significant
compared to a random process?

2. How do the degree and significance of clustering de-
pend on the chosen duration of the event?

3. Does clustering exacerbate the impact of hydro-
meteorological hazards, as measured by insured losses?

This article is structured as follows: Sect. 2 provides an
overview of the datasets used to identify distinct events and
their subdivision into meteorological categories, of the meth-
ods used to identify events, as well as of the methods used to
identify and quantitatively assess temporal clusters. Section 3
describes how we have refined the hazard types into meteo-
rological categories. In Sect. 4, we give an overview of the
resulting loss distribution and seasonality of the events de-
pending on their hazard type. In Sect. 5, we first explain how
we combined events of different hazard types, then show and
interpret the results of different metrics of clustering, (a) a
counting method and (b) Ripley’s K , before we discuss loss
patterns and trends regarding clusters. Section 7 elaborates
on the main conclusions.

2 Data and methods

This study is based on loss data (Sect. 2.1.1) from the SV
Sparkassenversicherung building insurance company operat-
ing mainly in southwestern Germany and covers the period
from 1986 to 2023. All data were adjusted for inflation and
the number of contracts (Sect. 2.1.3), which varied substan-
tially during the study period. Events lasting 1 or several days
are identified from the loss data using two different methods
(Sect. 2.2). Meteorological observations (Sect. 2.1.2) were

used to assign a meteorological category to the loss data
(Sect. 3).

2.1 Data

The region of Baden-Württemberg (BW) has a size of ap-
proximately 36 000 km 2 and is characterized by the broad
Rhine valley to the west and the Neckar valley in the center,
as well as the low mountain ranges of the Black Forest and
the Swabian Jura. It represents Germany’s major hail hotspot
(Puskeiler et al., 2016; Kunz et al., 2020). Heavy rain, which
is particularly orographically enhanced over the Black For-
est, often triggers flooding in small- to medium-sized catch-
ments (Kunz et al., 2023). Winter storms may also be im-
pactful but are less frequent than in northern Germany, since
BW is further away from storm tracks that usually originate
in the North Atlantic and propagate mainly towards north-
western Europe (Dacre and Pinto, 2020).

2.1.1 Loss data

Extreme events, i.e., hydro-meteorological events leading to
a major loss, are identified using data from the building in-
surance company SV Sparkassenversicherung.

The dataset includes residential building losses (with de-
ductibles subtracted) and the number of claims. The data
have a daily temporal resolution and were originally divided
into storm, hail, and flood hazard types. During the study pe-
riod, the portfolio expanded through mergers with direct in-
surance companies from other federal states. To determine
the overall loss for BW exclusively, we correct the dataset
considering only the fraction of contracts for BW. Although
this means that the dataset may also contain events that did
not affect BW only, this step is necessary to ensure com-
parability over the years. In addition, most of the contracts
(around 85 % on average during the period under study)
are from BW, so the resulting uncertainty is relatively low.
As there is no consistent finer-spatial-resolution information
(such as on the municipality level) available in our dataset,
we use the spatially aggregated losses per day for the whole
region. Due to the limited size of BW, we can assume that
there is only a single synoptic cause of major events at the
same time.

In Germany, about 95 % of all buildings are insured against
storm and hail damage (GDV, 2023). Other hazards, includ-
ing floods, can be insured with an additional insurance cover,
the so-called elementary insurance. The coverage of this ad-
ditional insurance is very heterogeneous in Germany, with a
mean coverage of 54 % and an increasing overall trend over
recent years, ranging from 31 % of insured buildings in Bre-
men to 94 % in BW (GDV, 2023). The particularly high in-
surance coverage in BW is mainly due to the fact that insur-
ance was compulsory until 1994. Currently, about 60 % of all
private buildings in BW are covered by the data-providing in-
surer. Given the high settlement density in BW (Rösch and
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Treffinger, 2019), we can assume that almost all events lead-
ing to significant damage are reflected in the data. We there-
fore did not further consider any exposure correction of the
data.

2.1.2 Meteorological data

The individual definitions of the three original hazard types
in the loss data (flood, storm, and hail) are not unambigu-
ous. For example, the storm category includes both winter
storms and convective gusts, which are more likely to oc-
cur in summer. Given the different environmental conditions
triggering these events, which also lead to different temporal
and spatial scales of the respective events, we further sepa-
rate the storm and flood categories according to their main
characteristics. For this subdivision (see Sect. 3), we use me-
teorological observations from the German Weather Service
(Deutscher Wetterdienst, DWD).

For the flood hazard types, the Hydrometeorologischer
Rasterdatensatz Niederschlag für Deutschland (HYRAS-
DE-PRE) dataset is used. It consists of station-based region-
alized daily precipitation totals for Germany interpolated to
the almost equidistant 1× 1 km2 grid of the Regionalisierung
der Niederschlagshöhen (REGNIE) product (Rauthe et al.,
2013; Deutscher Wetterdienst, 2024).

For the storm hazard types, the subdivision is performed
using hourly measurements of surface pressure reduced to
sea level (mean sea level pressure, MSLP) at selected sta-
tions from the Climate Data Center (CDC) of the Deutscher
Wetterdienst (2022). Data from six different weather stations
distributed across and around BW are used.

2.1.3 Data adjustment

The loss data are adjusted for both inflation and the num-
ber of contracts in the portfolio of the insurer, which varies
significantly from year to year. Inflation adjustment is per-
formed against the base year of 2022 with the so-called Glei-
tender Neuwertfaktor (glN), a factor commonly used in the
German insurance industry (Dietz et al., 2015). This factor
captures the development of construction prices as well as
standard wages and is made available to insurance compa-
nies annually by the German Insurance Association. This
factor reflects the actual reconstruction costs, since it cap-
tures the development of construction prices as well as stan-
dard wages, and is therefore a more accurate correction factor
than the inflation factor as a whole. The inflation correction
factor is defined as

corrinfl(yearx)=
glN2022

glNyearx

. (1)

Insured daily losses are then multiplied by this factor for
the respective year:

lossadj(dayy)= loss(dayy)× corrinfl(yearx). (2)

The portfolio variability is adjusted as follows: following
the abolition of the insurance obligation in 1994 in BW, the
portfolio has declined almost continuously. We therefore ad-
ditionally adjust the insured losses with a factor that captures
the number of contracts (NC) in the course of time, where
NCmean refers to the mean contract number over the entire
time period:

corrcontr(yearx)=
NCmean

NCyearx
. (3)

The number of claims are adjusted by the ratio

claimsadj(dayy)= claims(dayy)× corrcontr(yearx), (4)

as well as by the losses incurred,

lossadj(dayy)= loss(dayy)× corrcontr(yearx). (5)

These adjustments ensure comparability across the time se-
ries, so the loss data represent a solid basis for the assessment
of clustering. The regional variability is assumed to be uni-
form due to past analyses of these data in a higher spatial
resolution (not published).

2.2 Identification of major loss events

Since our intention is to analyze the temporal variability and
clustering of major loss events only, we retain data above the
90th percentile (p90) based on the daily loss data. The per-
centile filter is applied to both the damage claims and the
insured losses of the entire time series; values of zero, which
relate to a loss lower than the deductible, are excluded be-
fore filtering. By using p90, we ensure that we only capture
relevant meteorological hazards. Note that this percentile fil-
tering scheme leads to a different number of events for each
hazard type. Although all hazards follow strong seasonal pat-
terns (see Sect. 4.2), percentiles are computed on an annual
basis. This is because events and clusters can go beyond the
limits of seasons and because, with an annual definition, the
seasonal pattern within the loss data is kept.

Furthermore, as a prerequisite for applying extreme value
statistics, the events are required to be independent. Towards
this end and to avoid clustering on the timescale of synop-
tic systems (around 5 d), clustering on the timescale of a few
days needs to be removed (Wilks, 2006). This is called (runs)
declustering (Coles, 2001) and means, in our case, that the
daily data are aggregated to events with a length of either 1
or several days. Thereby, we avoid events from the same syn-
optic cause appearing as distinct events, which would lead to
artificial clustering.

Two different methods are used to define events: (a) the
peaks-over-threshold (POT) method, a standard method of
extreme value theory (Sect. 2.2.1), and (b) the hours clause
(HC) method (Sect. 2.2.2), a method commonly used in the
insurance industry (Mitchell-Wallace et al., 2017). We are
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not aware of any other study using the HC method or a com-
parison between POT and HC methods for insurance loss
data.

2.2.1 The peaks-over-threshold (POT) method

The POT method is widely used in hydrological and mete-
orological research (e.g., Barton et al., 2016; Tuel and Mar-
tius, 2021a) to model extreme events. We apply it as follows:
first, we filter the loss data to retain only the most damaging
events above a threshold u, which in our case corresponds to
p90 (see Fig. 1a). We then apply runs declustering and ag-
gregating events above u separated by less than r days (or,
more generally, time steps), i.e., count them as a single event
(see Fig. 1b). A value of r = 2 is common for Central Eu-
rope regarding precipitation (Tuel and Martius, 2021a; Bar-
ton et al., 2016) and wind (Brabson and Palutikof, 2000) and
therefore is used here as well. We tested a threshold of r = 3
and detected few changes (in some cases a slight reduction
in the degree of clustering). For more details on the method,
we refer to Barton et al. (2016). Resulting extreme events are
mapped to a binary variable (i.e., we discard their actual as-
sociated losses; see Fig. 1), with a varying start and end date
for each event, which can then be used as an input for the
clustering analyses.

2.2.2 The hours clause (HC) method

The HC method is a commonly used method in the
(re)insurance industry to identify individual loss events. It
relies on a predetermined fixed event duration to obtain in-
dependent events. This event duration depends on the in-
surer as well as on the hazard type (Mitchell-Wallace et al.,
2017). The maximum number of hours we are aware of is
504 h (= 21 d). Here we use an event duration of 72 h (= 3 d)
for storm and hail events and 168 h (= 7 d) for flood events.
These values are also used by the building insurance com-
pany providing the data. We therefore calculate running sums
of losses and claims over 3 and 7 d, respectively, depending
on the hazard type, and aggregate over these non-filtered time
series. For periods with loss records lasting longer than the
predefined number of days, the day with the maximum loss is
determined as the center of an event (day 2 for storm and hail
and day 4 for flood events). Additional potential data points
become further events assigned around this event (ending at
its first day minus 1 d or starting at its last day plus 1 d).
Then, the predefined events based on moving sums are fil-
tered using p90. From this method, we obtain a sample of
major damaging events for each type with a fixed duration.

The HC and POT methods in some cases identify a dif-
ferent number of events. This can be seen, for example, for
the severe winter storms Vivian and Wiebke in 1990, which
are combined into a single event with the POT method but
identified as two separate events with the HC method (see

Fig. 1b). In Sect. 5, the degree of clustering in the data is
evaluated and compared for both methods.

2.3 Clustering methods

We combine two methods to assess serial clustering of the
events, namely a counting method (Sect. 2.3.1) and the met-
ric Ripley’s K (Sect. 2.3.2). The former is used to identify
time periods with an accumulation of extremes of single and
multiple hazard types, while the latter is used to assess the
degree of clustering by quantifying the deviation from a ho-
mogeneous Poisson process. Since the spatial extent of the
study area is rather small, we exclusively investigate cluster-
ing in the temporal dimension.

2.3.1 Counting method

To count and thereby identify clusters, we adapt a method
developed by Kopp et al. (2021). We first compute the num-
ber of (filtered) events nw(t) for each hazard type and their
respective combinations as well as their corresponding ac-
cumulated insured losses ilw(t) within forward-looking win-
dows of a fixed length w for each day t of the time series Yt
(t = 1, . . .,N ).

Building on this, we apply an algorithm that identifies
cluster periods as follows. First, all counted time periods
across the dataset with nw(t0)=max

t∈Yt
nw(t) are identified.

Within that subset, the counted time period with maximum
ilw is identified, which is the first cluster period. For that clus-
ter period, the cluster start (t0) represents the day on which
the first event within the cluster starts. The end of the cluster
period is defined by t0+w, independently of how many fur-
ther events occur during this interval. Finally, to avoid over-
lapping clusters, all potential further events within t0+w and
t0−w are removed. If there are further periods for which
nw(t0)=max

t∈Yt
nw(t), the second cluster is identified with the

second highest ilw, and so forth. If no clusters of max
t∈Yt

nw(t)

remain, the subsequent cluster is identified at max
t∈Yt

nw(t)−1.

This procedure is continued until no further clusters can be
identified, i.e., max

t∈Yt
nw(t) < 2.

2.3.2 Ripley’s K

To quantify the degree of clustering, we employ the statisti-
cal tool Ripley’s K (Ripley, 1981), which is a function orig-
inally applied to quantify the clustering of point patterns at
varying spatial scales. Ripley’s K has also been applied to
one-dimensional time series of meteorological or hydrolog-
ical extremes (e.g., Barton et al., 2016; Tuel and Martius,
2021a, b; Brunner and Stahl, 2023). For a time series and
clustering window w, Ripley’s K is defined as the average
number of events E(w) within a time window w (here in
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Figure 1. (a) Example time series demonstrating the peaks-over-threshold (POT) method, where only events above the 90th percentile are
selected, and (b) visualization of the two aggregation methods (POT; hours clause, HC): event days and non-event days are aggregated to
multi-day events; a winter storm example is consequently defined as one (POT) or two (HC) events.

days) around any event in the time series,

K(w)= E(w), (6)

and can be estimated, for example, by

K̂(w)=

[
1
N

N∑
n=1

w∑
k=−w

Yt+k|Yt = 1

]
− 1, (7)

as in, for example, Barton et al. (2016), where Yt relates to
the binary time series. Ripley’sK therefore quantifies the av-
erage number of events (major loss events in our case) within
±w days of an event. We let the time window w range from
the timescale of a few days (note that due to the identification
of independent events, K = 0 for the first few days) to the
seasonal level (w= 45 or w= 60, depending on the length of
the season). Clustering on the seasonal timescale in our case
compares the occurrence of events between different years
(i.e., seasons).

As in Barton et al. (2016) and Tuel and Martius (2021a),
the statistical significance of the clustering is tested by a com-
parison with a random homogeneous Poisson process, which
consists of independent events and is therefore characterized
by temporal randomness. It is simulated here by 1000 Monte
Carlo runs with the same probability of occurrence (or aver-
age density of events) as the observed extremes. These sim-
ulations are also declustered, using POT for both methods
of event identification. Due to the strong seasonality present
in the data (see Sect. 4.2), each month is simulated sepa-
rately. For each w where the observed K(w) exceeds the
95th percentile of the simulated K(w), the data are signif-
icantly clustered. Conversely, where the observed K(w) is
lower than the 5th percentile of the simulatedK(w), the data
are significantly regularly spaced (Barton et al., 2016). Oth-
erwise, the series cannot be statistically distinguished from
a homogeneous Poisson process. For a detailed explanation
of the significance analysis and p values, see Tuel and Mar-
tius (2021a). Note that this significance analysis actually de-
termines the degree of clustering – due to seasonal patterns

(see Sect. 4.2), events are likely to be surrounded by other
events. The significance analysis serves the purpose of quan-
tifying the deviation from the expected number of surround-
ing events and thereby provides an assessment of clustering.

Since Ripley’sK function can only take one event date per
event as input, we use the start of each event (identified with
POT or HC) as an input time series to Ripley’s K . We take
only hazard types with> 20 events throughout the time series
into consideration. To avoid artificial clustering caused by the
recurring seasonal patterns (see Sect. 4.2), we analyze the
data for specific seasons separately: May to August (MJJA)
and December to February (DJF).

3 Categorization into meteorological hazard types

Before clustering, we further subdivide the storm and flood
loss events in our loss dataset. In fact, both types of
events can be attributed to different underlying mechanisms.
Convection-driven events usually extend over a few kilome-
ters to a few dozen kilometers only and last less than 1 h. By
contrast, events that are triggered and maintained by large-
scale lifting processes in the mid-troposphere usually extend
across several hundreds to thousands of kilometers and may
persist for several hours to several days. These two types of
events will therefore affect substantially different areas, a fact
which must be considered in the event definition and for the
cluster analysis.

3.1 Flood damage events

A predominantly stratiform precipitation event is character-
ized by low to moderate rainfall intensities, a duration of
several hours to days, and a large affected area, sometimes
extending over several hundred kilometers (Houze, 1993). It
can result in fluvial floods, i.e., rivers breaking their banks.
By contrast, a convection-dominated precipitation event is
characterized by high rainfall intensities combined with a
short duration of a few minutes to a few hours and has a
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small spatial footprint. It can result in pluvial floods. How-
ever, a clear separation between these two hazard types is
not always possible, in particular for mesoscale convective
systems (MCSs), in which convective activity is embedded
within a stratiform precipitation field (Cannon et al., 2012);
for clustered convective events with a mixture of stratiform
and convective precipitation primarily towards the end of
the life cycle (Houze, 1993); or for orographic precipita-
tion. The latter can attain very high precipitation totals, par-
ticularly over the low mountain ranges of the Black Forest
(Kunz, 2011). Therefore, we define three categories of pre-
dominantly stratiform, predominantly convective, and mixed
precipitation, typically leading to fluvial, pluvial, and mixed
floods, respectively.

The most straightforward method to distinguish between
these precipitation types would rely on radar data (e.g., Wang
et al., 2021). However, radar data are not available for the
entire period of our study. Therefore, we use gridded daily
precipitation totals from HYRAS-DE-PRE during identified
insurance loss events. Two metrics are considered for the sep-
aration between the precipitation types: the 99th percentile
and the coefficient of variation (CV) of daily gridded precip-
itation totals (calculated in space). The CV, also called nor-
malized standard deviation, is defined as the ratio between
standard deviation σ and mean µ (Abdi, 2010):

CV(t)=
σ

µ
. (8)

For CV(t), only grid points with precipitation (i.e., > 0 mm)
are considered.

In order for a day t to be classified as convection-
dominated (associated with pluvial flooding), the following
conditions must be met: (i) the spatial 99th percentile of daily
precipitation totals exceeds 40 mm for any day from t − 2 to
t , (ii) CV(t) is larger than or equal to 0.55 mm, and (iii) t is
between 1 April and 30 September (since convective activ-
ity primarily occurs during the summer months in Germany;
Kunz, 2007; Mohr et al., 2017). We go back up to t − 2 be-
cause of a potential time lag between the precipitation and
the flood damage, particularly in the case of a stratiform-
dominated event or for heavy rain around midnight. Remain-
ing days are categorized as mixed floods if CV(t)> 0.45 mm,
and otherwise they are categorized as stratiform-dominated
(fluvial flood) events if the mean precipitation between all
grid points is larger than 2 mm for that day. These thresholds
were selected and extensively tested by comparison to radar
images from DWD (available after 2005).

Of course, the above-described criteria do not separate all
events clearly. Therefore, uncategorizable events – mainly
those around the two defined thresholds – were visually
checked and reassigned with expert knowledge partly in
combination with the existing literature (e.g., Kunz, 2003) as
well as by taking into account the terrain height (e.g., Brom-
mundt and Bárdossy, 2007). In cases of multi-day events, the
hazard type of the day with the largest precipitation totals in

the (spatial) 99th percentile was assigned to the entire multi-
day event. Hereinafter, we refer to the stratiform-dominated
flood hazard as fluvial flood, to the mixed flood hazard as
mixed flood, and to the convection-dominated flood hazard
as pluvial flood.

3.2 Storm damage events

Damaging hazard types related to the storm category are typ-
ically either so-called windstorms/extratropical cyclones that
extend on a synoptic scale (around 1000 km) or (severe) con-
vective gusts that have much smaller spatial scales (tens of
km) (Markowski and Richardson, 2011). As with precipita-
tion, insured losses categorized as storm damage can also re-
sult from the interaction of local- and large-scale processes.
During the passage of cold fronts of winter storms, for exam-
ple, convection can strengthen surface winds by convection-
driven downbursts (Markowski and Richardson, 2011; Mohr
et al., 2017). In the case of convective gusts, the vertical
transport of horizontal momentum increases convective gusts
at the surface. However, all these processes occur on a local
scale and cannot be simply estimated from available obser-
vation data. In addition, our main purpose here is to separate
between damage created by the different triggering mecha-
nisms, which presumably feature different clustering char-
acteristics. For these two reasons, we only distinguish be-
tween synoptic- and convection-driven storms and do not
consider a mixed class for storm events as we do for the flood
hazard.

To differentiate between these two main storm hazard
types, we use the method of Mohr et al. (2017) using the
MSLP gradient between selected weather stations. We con-
sider hourly MSLP observations from six DWD weather
stations available from the CDC for the entire investiga-
tion period. For three axes across BW, station pairs were
created: northwest–northeast (stations Karlsruhe/Rheinstet-
ten and Weißenburg-Emetzheim), southwest–southeast (sta-
tions Freiburg and Lechfeld), and north–south (stations
Michelstadt-Vielbrunn and Konstanz). For each of these
pairs, we compute the MSLP gradient as the ratio of the
difference in MSLP to the distance between the stations. If,
between any station pair at any time on a specific day, this
MSLP gradient exceeds a threshold of 3 Pa km−1, the day is
defined as a synoptic-storm day. Otherwise, it is classified
as a convective-gust day. The threshold was slightly reduced
compared to that of Mohr et al. (2017) after testing with se-
vere winter storms in recent years. For multi-day events, if
any day is classified as synoptic, we classify the entire multi-
day event as synoptic. If this condition does not hold true,
the event is defined as convective. In the following, we refer
to storms with a synoptic trigger as large-scale storms and to
convection-driven storms as convective gusts.

https://doi.org/10.5194/nhess-25-2885-2025 Nat. Hazards Earth Syst. Sci., 25, 2885–2907, 2025



2892 K. Küpfer et al.: Impact-based temporal clustering of multiple hazards in (southwestern) Germany

4 Loss distribution analysis

Before presenting the results of the clustering methods, this
section gives an overview of the loss dataset we use, in par-
ticular the distribution of losses and their seasonality. If not
stated otherwise, events are identified using the POT method
for these analyses.

4.1 General loss distribution

Regarding cumulative insured losses and damage claims, two
large-scale storms and two hail events (Fig. 2a) were respon-
sible for 30 % of the total cumulative insured losses in the en-
tire period (18 % of all claims). More generally, only 3 % of
events are responsible for 86 % of the insured losses through-
out the time series. Similarly skewed distributions are found
for Europe between 1980–2022, where 1 % of all climate-
related events account for 28 % of insured losses (European
Environment Agency, 2023).

When removing major events (Fig. 2b), we find that the
amount of insured losses is strongly related to the number
of damage claims per hazard type. Indeed, insured losses
show a high correlation with the number of claims, especially
for large-scale storms (Pearson’s r = 0.95), hail and mixed
floods (r = 0.94), and fluvial floods (r = 0.93), and their re-
lationship can be described by a linear function for each haz-
ard type. This has important implications for insurance loss
modeling, notably to set risk premiums.

These relationships imply that the mean loss per claim for
each hazard type does not vary significantly with the extent
of an event, even in the case of events that affect a large area
(i.e., a high number of claims). This implies that the number
of damage claims could be used as a proxy to estimate total
damage in the absence of loss data. Second, mean loss pat-
terns, i.e., loss per damage claim, differ substantially depend-
ing on the hazard type. Fluvial floods cause the highest mean
losses of all hazard types, while large-scale storms cause the
lowest mean losses (without major events).

An explanation for the differences in mean losses could be
the nature of the damaging hazard type: large-scale storms,
by definition, affect a large area, much of it only suffering
from low damage, e.g., some removed roof tiles. By contrast,
hail events occur locally and have higher damage potential,
since more parts of a building become susceptible (Stucki
and Egli, 2007). The highest mean loss for flood events might
be due to a flood event being more likely, compared to hail
or storm events, to affect not only the exterior, but also the
interior of a house. Entire floors can get flooded once the wa-
ter has entered (Merz et al., 2010), and reconstruction is a
tedious and expensive undertaking (e.g., Mohr et al., 2023).
This is especially relevant considering that there is no manda-
tory insurance against floods for residential buildings (GDV,
2023).

When investigating annual insured losses (not shown), it
is evident that, in addition to the hail hazard, a relatively

small number of major large-scale flood and storm events can
cause extreme damage in Germany. The convective hazards,
namely pluvial floods and convective gusts, are of secondary
importance in our dataset in terms of the damage they cause.

4.2 Seasonality

All major damaging hazard types show a strong seasonal-
ity, with most events occurring in summer (MJJA) for most
hazard types (Fig. 3). Hail damage in the winter half year
is marginal compared to the summer months. Therefore, hail
damage occurring between October and April was reassigned
to the storm loss category prior to event identification with
POT or HC.

All convection-driven hazard types, i.e., hail, convective
gusts, and pluvial floods, show similar seasonality: the num-
ber of events peaks in June or July, with significantly fewer
events in August and even fewer in May, when the convective
season starts (Taszarek et al., 2020). In August and Septem-
ber, convective storms occur more frequently compared to
hail, which is robust with regard to the event loss threshold
(p95) but with a weaker pattern (not shown). This might indi-
cate that the damage-related convective gusts are less likely
to be accompanied by (damaging) hail in BW in late sum-
mer. Mixed floods are the most common flood hazard caus-
ing extreme damage from April to September. In contrast to
the solely convection-driven events, there is a similar num-
ber of mixed flood events throughout MJJA without a strong
fluctuation.

Both large-scale storms and fluvial floods occur mainly
during the winter months. Damaging windstorms show a
peak in DJF, which follows the general seasonal distribu-
tion of extreme wind speed (Gliksman et al., 2023). Most
fluvial floods occur between January and March. Thus, we
see a strong seasonal pattern of the occurrence of all haz-
ard types, with a smaller number of large-scale events being
dominant in the winter months and a higher number of local
extremes being more relevant in summer.

5 Clustering

When analyzing temporal clustering on the timescale of cal-
endar years with POT (Fig. 4), we find that the number of
damaging events varies substantially over time. There is a
pronounced peak in the early 2000s for both storm hazards, a
peak between 2017 and 2019 for hail events, a smaller num-
ber of storm and hail events before 1998, and an especially
high inter-annual variability in the flood hazard types. The
HC event definition generally identifies a smaller number of
events than POT, although the general distribution of events
throughout the years is similar. For both definitions, we see a
kind of wave pattern throughout the years, with some years
showing an exceptionally small number of events. This wave
pattern could be related to decadal variability, which has been
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Figure 2. (a) Total insured losses versus number of claims for building insurance for hail damage; damage by convective gusts and large-scale
storms; and pluvial, fluvial, and mixed flood damage, in BW from 1986 to 2023, with events defined and aggregated using p90 and POT.
Four of the most damaging events in terms of losses and/or claims are indicated. (b) As in panel (a) but without major damaging events,
including the linear fit and Pearson correlation coefficient for the respective hazard type.

Figure 3. Distribution of events identified with POT in p90 over aggregated months of (a) storm damage triggered by large-scale storms and
convective gusts; (b) hail damage; and (c) flood damage triggered by pluvial, fluvial, and mixed floods in BW from 1986 to 2023.

discussed with regard to hail in Europe by, e.g., Mohr et al.
(2015).

5.1 Combination of hazard types

Before analyzing clustering of single hazard types and their
combinations, we here explain how the different hazard types
are combined. Single hazard types include pluvial flood (PF),
mixed flood (MF), fluvial flood (FF), large-scale storm (LS),
convective gust (CG), and hail (H). We refer to the combi-
nations between events of different hazard types by abbrevi-
ations that combine those of the single hazard types. There-
fore, a combination of pluvial floods, convective gusts, and
hail, for example, is referred to as PF-CG-H. All combina-
tions between the three flood hazards and the two storm haz-
ards as well as hail are performed. Within the storm and flood
hazard types, no combinations are analyzed, since the goal is
to investigate the combination of different hazard types.

When events of different hazard types are combined, they
again need to be declustered to avoid artificial clustering of
events from the same meteorological driver (see Sect. 2.2 for
declustering of single hazard types). We perform the follow-
ing procedure: first, overlaps of events are identified, where

only the event with the highest losses is kept. Of the deleted
events, however, the type, insured losses, and number of
claims are added to the maximum loss event. Keeping all
hazard types is important since, thereby, both hazard types
can potentially lead to the clustering of multiple hazard types
(e.g., if a hail event and convective gust event occur on the
same day and another convective gust event occurs within
the clustering window, this is defined as a combined cluster
of hail and convective gusts only because both types are re-
tained).

5.2 Cluster identification: counting

Figure 5 shows the resulting cluster periods for (a) single
and (b) combined extremes for clustering window w = 21
and events identified with POT. Clustering is analyzed on the
timescale of 21 d since this is a common window for cluster-
ing analyses in the field of hydrology and includes hydrolog-
ically relevant durations. It furthermore is the longest time
period of event identification with HC that we are aware of
(see Sect. 2.2.2). It is evident that most clusters occur during
MJJA, consistent with the seasonal distribution of the events
(see also Fig. 3). These are mainly clusters of multiple hazard
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Figure 4. Number of events per hazard type and year with the (a) event definition with POT and (b) event definition with HC, for events
defined by the 90th percentile (see Sect. 2.2).

types, with the most damaging combination being PF-CG-H,
followed by PF-H. This means that the most damaging clus-
ters consist of three hazard types which are registered sepa-
rately by the insurance company. In winter (DJF), we see a
much lower number of clustered events. Predominant in this
season are clusters of large-scale storms and FF-LS, which
also aligns with the seasonal cycle of these hazard types.

Throughout the years, we see a peak of clusters during
May–August of the early 2000s, which resembles the gen-
eral pattern of event occurrence. Interestingly, this is not the
case for clusters in the winter months. Winter clusters were
most frequent, and also most damaging, in the 1990s as well
as from 2017 on. Between 2005 and 2018, there were very
few clusters of different hazard types in winter, which does
not relate to a generally lower event number (cf. Fig. 4).
The number of clusters in summer was also quite low in
some of those years, e.g., in 2014 and 2015. Seasonal pat-
terns are visible even more clearly with clusters of different
hazard types (Fig. 4b) than with single-hazard-type clusters
(Fig. 4a). There are almost no clusters between mid-February
and mid-April, and similarly very few clusters between the
end of September and the end of November. Note, however,
that this refers to the cluster start date (e.g., clusters starting
in February might contain events in March). Furthermore, it
can be seen that many of the single-hazard-type clusters also
occur in multi-hazard clusters, particularly the most damag-
ing ones. This shows that many clusters consist of multiple
hazard types but also include multiple occurrences of a single
hazard type. Note that the number of events is much higher
when assessing clustering with multiple hazard types; i.e.,
naturally, a higher number of clusters can be found.

When events are identified using the HC method, the num-
ber of clusters is reduced (not shown), since the number of
events is also lower. However, this mainly relates to the least
damaging clusters; the most severe clusters are similar to
those detected with the POT method. Using the HC method,
some additional clusters are detected, such as a mixed flood
cluster in 2021 and several multi-hazard clusters in 2001.
Hail clusters as well as those clusters leading to the high-

est cumulative losses when events are identified with HC are
most frequent.

These results are tested for robustness by increasing the
clustering windoww. Forw = 28 d, for example, the number
of clusters is higher in summer and slightly shifted to earlier
start dates in winter.

5.3 Clustering assessment: Ripley’s K

The number of events influences the degree of clustering in a
time series (recall the differences in event numbers between
POT and HC; see Fig. 4). Therefore, when applying Ripley’s
K , the number of events identified by POT for each hazard
type is reduced, using a ranking of insured losses, until the
number of events identified with HC for that hazard type is
reached.

5.3.1 Clustering of single hazard types

Due to the seasonality of the events (see Sect. 4.2), we inves-
tigate large-scale storms and fluvial floods in winter (DJF)
and convective gusts, pluvial and mixed floods, and hail in
summer (MJJA). Generally, Ripley’s K for events identified
with the HC method (KHC) is significant across a broad range
of timescales compared to a random series. It is also higher
than Ripley’s K for events identified by the POT method
(KPOT; Fig. 6).

Overall, the strongest clustering, which is significant com-
pared to the 95 % confidence interval of a Monte Carlo sam-
ple (hereinafter, significant), is found for convective gusts
during MJJA with KHC: at a seasonal timescale, around five
additional convective gust events can be expected around a
random convective gust event. However, for KPOT, i.e., a
flexible event definition, the time series of convective gusts is
within the 95 % confidence interval on almost all timescales
and only slightly exceeds it around the seasonal scale. We
see a similar pattern for mixed floods during MJJA: KHC is
significant on all timescales, whereasKPOT is not significant.
Pluvial floods do not cluster significantly during MJJA with
both methods of event identification. Hail clusters are signif-
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Figure 5. Cluster start by the day of the year (x axis) plotted against the corresponding years (y axis), identified by the counting method with
a clustering window w of 21 d for (a) single and (b) combined hazard types (p90, POT method). The size of the circles relates to the loss
corresponding to each cluster (normalized).

Figure 6. Clustering results using Ripley’s K for single hazard types: large-scale storms, pluvial floods, convective gusts, fluvial floods,
mixed floods, and hail damage, depending on the season (columns) and method of event identification (rows).
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icant on all timescales with KHC but only from the timescale
of 30 d to the seasonal level for KPOT. During DJF, fluvial
floods cluster significantly on the timescale from 20 d to the
seasonal level with KPOT but with low values of K , i.e., a
low number of surrounding events (due to a generally low
number of events). This cannot be compared toKHC because
of a very small sample size (15 events). Large-scale storms
during DJF cluster significantly on all timescales with KHC,
and they are significant with KPOT starting from about 20 d
but with a low difference from the 95 % confidence interval.

To assess the robustness of the results, we systematically
changed various variables. Changing the seasonal focus from
MJJA to only JJA, KPOT is not significant for convective
gusts and hail. This implies that the occurrence in JJA fol-
lows a homogeneous Poisson process but clusters in those
months if May is added. Interestingly, when events are iden-
tified using p95 instead of p90, we see an increased degree of
significant clustering for hail and convective gusts withKPOT
but a decreased degree of clustering for KHC. For the flood
hazards, there is only little change. If no declustering is ap-
plied, events do cluster significantly in both seasons and for
all original hazard types as defined by the insurance company
(storm, hail, and flood). This shows that clustering occurs at
short timescales, which is why declustering is needed. The
results do not change when increasing the number of simula-
tions for the significance test.

One reason for the increased number of significant results
concerning clustering of events defined with the HC method
is the duration of events. Due to the definition of HC, the du-
ration of any event cannot be lower than 3 d (or 7 d for flood
events). However, the average duration for events identified
with the POT method is 1.92 d. This on average much shorter
duration of events identified by POT compared to those iden-
tified by HC influences the degree of clustering. Although
both methods can only approximately reproduce the actual
duration of events, because of the only daily temporal resolu-
tion of the underlying loss data, it should be noted that POT
is clearly more accurate because of its flexible nature. We
therefore argue that by using HC, the degree of clustering is
often overestimated. This furthermore proves that the (multi-
day) events identified are not derived from the same weather
systems, since the degree of clustering is higher with longer
durations (HC method) than with short ones (POT).

In their global analysis of precipitation extremes, Tuel and
Martius (2021a) find low values of Ripley’s K for European
regions and detect significant clustering over Europe only for
a few grid cells for both DJF and JJA. For heavy precipita-
tion events in Switzerland, defined using POT from gridded
daily precipitation data, Barton et al. (2016) show similar re-
sults. For DJF and JJA, they find no significant clustering on
the seasonal timescale for p95 when declustering is applied.
Tuel and Martius (2021b) similarly detect low values of Rip-
ley’s K and no significant clustering of heavy precipitation
for most Swiss regions during DJF and JJA. This is in line
with our results for southwestern Germany, since we detect

low or not significant values of Ripley’s K for all three flood
hazards in both DJF and MJJA.

To our knowledge, clustering of extratropical cyclones has
not yet been assessed with Ripley’s K but has mainly been
investigated using the dispersion statistic. A statistically sig-
nificant overdispersion, indicating clustering, is identified
specifically in northwestern Europe, over the exit region of
the North Atlantic storm track (e.g., Mailier et al., 2006; Vi-
tolo et al., 2009), summarized in Dacre and Pinto (2020).
This region however does not clearly extend to Germany.
Dacre and Pinto (2020) also highlight that in Europe, more
intense extratropical cyclones tend to cluster more frequently
than larger samples of cyclones, including also less intense
ones in Europe, as shown across multiple studies. We find
contrasting results: when we decrease our sample size to-
wards more extreme large-scale storms, we find a decreased
degree of clustering.

For hail events, to our knowledge, there is no systematic
assessment of temporal clustering on the seasonal scale.

5.3.2 Clustering of two hazard types

When we apply Ripley’s K to a combination of two haz-
ard types, no combination may consist of more than 80 %
of a single hazard type throughout the (seasonally filtered)
time series. This prevents a particular type of hazard from
dominating the cluster. With this condition, the combinations
of pluvial floods–convective gusts (PF-CG), mixed floods–
convective gusts (MF-CG), convective gusts–hail (CG-H),
mixed floods–hail (MF-H), pluvial floods–hail (PF-H), and
pluvial floods–large-scale storms (PF-LS) are feasible for
MJJA. For DJF, the combinations of large-scale storms–
mixed floods (LS-MF) and large-scale storms–pluvial floods
(LS-PF) are feasible.

Ripley’s K results (Figs. 7 and 8) show that KHC is sig-
nificant for all feasible event combinations during MJJA for
all timescales from a few days to a season, with the excep-
tion of PF-LS. The degree of clustering is highest for CG-H.
On average, eight events are found around a random event in
the time series at the seasonal scale, which significantly devi-
ates from a homogeneous Poisson process. This is probably
not only due to the strong degree of clustering of convective
gusts (see Fig. 6), but also due to the strong clustering of hail.
Convective gusts and hail often occur in close succession if
an unstable air mass prevails for several days. The signifi-
cance of KPOT is more pronounced when two hazard types
are combined compared to the single hazard types. KPOT is
significant for PF-H and CG-H from the timescale of about
20 d but not for PF-CG (see Fig. 7). KPOT for MF-CG and
PF-LS, respectively, does not significantly differ from a ho-
mogeneous process. For the combination of MF-H and MF-
LS (see Fig. 8), KPOT is significant from about 30 d.

In summary, we see significant clustering for combinations
of two hazards in MJJA for KHC. Concerning KPOT, the re-
sults suggest that combinations of two hazard types involving
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Figure 7. Clustering results using Ripley’s K depending on the method of event identification (rows) and during MJJA for the combination
of two hazard types (part 1; see also Fig. 8) including pluvial flood (PF), hail (H), and/or convective gust (CG) events.

hail lead to clustering. The combinations cannot be quantita-
tively evaluated for DJF due to the low sample size. When
decreasing the number of events up to the 95th percentile,
the degree of clustering decreases, as with the single hazard
types.

5.3.3 Clustering of three hazard types

For combinations of three hazard types, we introduce an ad-
ditional condition: each hazard type must account for at least
10 % of the total event count (per season) of all three haz-
ard types. Without this requirement, the combination could
include a very small number of events from one hazard
type, leading to clustering results that effectively reflect only
events from the other two hazard types.

The combinations MF-CG-H, MF-LS-H, PF-CG-H, and
PF-LS-H fulfill this condition within MJJA. As with the com-
bination of two events,KHC is higher and more often signifi-
cant compared to KPOT in almost all cases, especially where
CG and H are involved (Fig. 9). For the POT method, we
also find significant clustering for all combinations of three

hazard types, at least at the seasonal scale and starting from
10–30 d. The occurrence of combinations of three damaging
hazard types during MJJA therefore differs significantly from
a homogeneous Poisson process at timescales of 30 d up to
a season, regardless of the definition of events. When reduc-
ing the number of extremes to p95, the degree of clustering
remains similar.

Overall, for events identified by POT, the clustering of the
combination of several hazard types often starts from the
timescale of about 2 to 3 weeks. For Germany, Bloomfield
et al. (2023) show that correlations between winter storm
and flood events are highest at a monthly scale (impacted
by storm clustering). Therefore, with a counting window of
21 d (see Sect. 5.2), we should be able to detect most of the
clusters. It can also be seen that for KPOT, where large-scale
storms, convective gusts, pluvial floods, and mixed floods
do not cluster on most timescales during MJJA (Fig. 6), the
combination with other hazard types increases their degree of
clustering. This means that the approach of analyzing single
hazard types only could overlook a cluster due to the occur-
rence of other hazard types.
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Figure 8. Clustering results using Ripley’sK depending on the method of event identification (rows) and during MJJA for the combination of
two hazard types (part 2; see also Fig. 7) including pluvial flood (PF), mixed flood (MF), large-scale storm (LS), hail (H), and/or convective
gust (CG) events.

To our knowledge, there are no other studies quantifying
the degree of temporal clustering with respect to different
types of (meteorological) hazards. We therefore contribute
to the literature by considering a variety of meteorological
hazard types related to impact data and finding that they do
cluster when combined, irrespective of the event definition.
We expect that these results are robust with regard to the
choice of input data for this region, since we can assume that
a large part of all major natural hazards are included in our
impact datasets for the following reasons: firstly, population
density is generally high in Germany and exceeded 100 in-
habitants km−2 for all districts in Baden-Württemberg as of
2022 (Statistisches Landesamt Baden-Württemberg, 2022).
Secondly, insurance coverage against all hazards included in
this analysis is very high across BW, and SV Sparkassenver-
sicherung has a high market share (see Sect. 2.1.1). Finally,
by using the 90th percentile across all years, we include a
large number of events (see, e.g., Fig. 4). Thereby, a major
part of meteorological hazards, also in less densely popu-
lated regions with lower insured losses, should be included
as well.

5.4 Loss patterns and clustering

For large-scale storms and fluvial floods during DJF, the me-
dian loss of clusters within 21 d windows (n= 37) exceeds
the median loss of isolated events (n= 91) by a factor of 4
(not shown). This pattern also holds for clustering windows
of 14 or 28 d, highlighting that multi-hazard clusters lead to
higher losses during DJF compared to isolated hazards. A
similar result is found for Germany overall by Xoplaki et al.
(2025), who show a much higher loss ratio for residential
buildings regarding co-occurring wind and precipitation ex-
tremes in winter compared to their isolated occurrence. For
the UK, Hillier et al. (2015) show, based on rail data, that
interactions between floods, winter storms, and shrink–swell
subsidence events increase insured losses by up to 26 % yr−1.

Figure 10 shows that this phenomenon is also present for
convective clusters during MJJA: clusters of PF-CG-H lead
to higher losses (median loss increased by a factor of 1)
compared to the isolated occurrence of any of these hazard
types. Note that this specific hazard combination also leads
to the highest degree of clustering. The most damaging clus-
tered events include, for example, the hail event Andreas on
28 July 2013 (see Fig. 2), which was accompanied by pluvial
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Figure 9. Clustering results using Ripley’s K depending on the method of event identification (rows) and during MJJA for the combination
of three hazard types including pluvial flood (PF), mixed flood (MF), hail (H), large-scale storm (LS), and/or convective gust (CG).

Figure 10. Insured losses (logarithmic) of clustered vs. isolated extremes within a clustering window of 21 d, here related to the combination
of pluvial floods, convective gusts, and hail. Loss amounts are not shown due to their confidentiality.

flood damage and preceded by another pluvial flood as well
as convective gusts on 23 July 2013. Another cluster with
high losses includes the hail event Queenie on 28 June 2006,
which was accompanied by a pluvial flood and preceded by
convective gusts and hail on 25 June.

The substantial amplification of losses by clusters of dam-
aging events from different hazard types highlights the im-
portance of considering this effect in applications such as risk

modeling. This is even more important, as damaging hazards
of different types frequently occur in close succession dur-
ing persistent synoptic settings or weather patterns, such as
blocking or an extended Atlantic trough (Grams et al., 2017),
which can trigger individual extremes.

Another common practice with insurance loss data is to as-
sess loss clustering by comparing the losses of the most dam-
aging event to the total losses of all events during that time
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Figure 11. Clustering measure of the main event contribution vs. overall losses: occurrence exceedance probability, relating to the maximum
loss event in a season, vs. the aggregate exceedance probability, i.e., the (a) total annual losses or (b, c) total seasonal losses, during (b) May–
August and (c) December–February.

period (Dacre and Pinto, 2020). Therefore, Fig. 11 shows the
ratio of occurrence exceedance probability (OEP), i.e., the
loss of the main event in a year, versus the annual exceedance
probability (AEP), corresponding to the total losses in a year.
In contrast to other studies, OEP and AEP are applied to ag-
gregate losses across hazards. It can be seen that in certain
years with major events (e.g., 1999, 2013; see also Fig. 2), the
ratio of OEP /AEP is about 0.8, indicating a large contribu-
tion of a single event and thus a low degree of clustering. The
mean ratio of yearly OEP /AEP across 1986–2023, however,
equals 0.39, which means that on average, the contribution
of several events is relevant to annual losses. It is also visible
that the degree of clustering as measured by OEP /AEP is
much higher during DJF than during MJJA. When evaluated
against the return period, medium loss years never exceed an
OEP /AEP ratio of 0.5 (not shown).

6 Trends

From 1986 to 2023, the number of damaging extremes in
BW increased significantly, and the same can be said for
clusters of damaging extremes (see Fig. 12). Note that al-
though the linear regression only explains a limited part of
the variance due to the strong annual variability, the upward
trend is clearly significant (p value< 0.0001 for all events;
p value= 0.0001 for clustered events). This upward trend
is also significant with events that occur in clusters of 14 d.
When investigating all multi-hazard clusters separately, there
is a significant increase in clusters consisting of MF, CG,
MF-CG, MF-H, and MF-CG-H. The number of clustered
events of other hazard types or combinations does not in-
crease significantly throughout the time frame. Note however
that these upward trends are also governed by increasing val-
ues of the objects and vulnerable extensions, such as conser-
vatories or solar panels. Additionally, throughout the entire
period, both the reporting and the regulation of claims have
undergone substantial changes.

Since all of the natural hazards under consideration occur
seasonally, the share of events within clusters compared to

all events within a year is quite high (65 % with a clustering
window of 14 d, 83 % with a window of 21 d, and 86 % with a
window of 28 d). However, certain years stand out: in 1996,
1997, and 2016 only half or fewer than half of the events
occurred within clusters of 21 d. This share of clustered ex-
tremes compared to all extremes increased throughout 1986–
2023 by about 8 %, even though this increase is statistically
not significant.

The overall annual losses have also increased throughout
the past years by about EUR 1.5 million per year (adjusted
for inflation, not significant either). This increasing trend
is also influenced by non-meteorological factors, which are
partly accounted for as described in Sect. 2.1.3 and could
partly not be factored in, such as changed behavior of cit-
izens, fluctuation in insurance regulation, and a change in
building vulnerability due to changing building materials. In
the literature, for Germany overall, an increasing trend re-
garding storm and hail damage is found (GDV, 2023). Glob-
ally, there is an increasing trend of inflation-adjusted insured
losses by about 6 % yr−1 (Banerjee et al., 2024).

The large-scale atmospheric circulation may play an im-
portant role in the formation and occurrence of such clustered
extreme events. A teleconnection pattern describing differ-
ences in atmospheric pressure over large distances in Cen-
tral Europe is the North Atlantic Oscillation (NAO). In our
data, events from all hazard types in MJJA occurred mainly
during a negative NAO from 1986–2023 (see Fig. A1a). Par-
ticularly in recent years, the NAO has been mainly negative
during MJJA (Fig. A1b). For events during DJF, the opposite
is the case (Fig. A2). Synoptic storm events, which are most
frequent during DJF, occur predominantly within a positive
NAO, which has become more frequent in recent years.

7 Conclusions

In this study, we have assessed the occurrence and degree of
clustering of multiple meteorological hazard types (hail; plu-
vial, fluvial, and mixed floods; convective gusts; and wind-
storms) in southwestern Germany based on building insur-
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Figure 12. Time series of the percentage of meteorological hazards in clusters (clustering window= 21 d) as well as the number of all events
and clustered events during 1986–2023, including trend lines and significance.

ance loss data. We have shown that random clustering of
damaging meteorological hazard types and their combina-
tions exists. Clustering mainly occurs during May–August
for pluvial floods, convective gusts, and hail and during
December–February for large-scale storms as well as for flu-
vial floods. When events are defined using the 90th percentile
of insured loss and claims and using the peaks-over-threshold
method, clustering is significant for hail as well as for con-
vective gust events from about 30 d during May–August (but
not for pluvial or mixed floods). Clustering is also signifi-
cant for large-scale storms and fluvial floods in winter com-
pared to a random sample. This aligns with the existing liter-
ature regarding the detection of clustering among extratropi-
cal cyclones (e.g., Dacre and Pinto, 2020) and the detection
of no significant clustering regarding precipitation (e.g., Tuel
and Martius, 2021a) in Europe. When two hazard types are
combined, the degree of clustering is increased. Clustering
is generally robust for the combination of three hazard types
using a flexible event definition. This shows that clustering
of multiple hazard types is a relevant phenomenon and there-
fore needs more consideration, since a cluster of extremes
can lead to cascading impacts. These impacts, e.g., capacity
problems, can also affect the insurance sector.

We have furthermore compared and evaluated different
methods of declustering (event definition) using a data-
driven (peaks-over-threshold) vs. a predetermined (hours
clause) method. We find that when using a fixed event defi-
nition, a significant deviation from a homogeneous Poisson
process is detected in almost all cases. It should however be
noted that events have varying characteristics and resulting

durations; the hours clause method does therefore not reflect
their true occurrence. Applications in the insurance sector
however often use the hours clause method to define events.
From the differing clustering results with varying durations,
we can see that it is important to accurately assess the actual
duration of extreme events.

We find a skewed distribution of losses, where a low num-
ber of events creates a large share of the overall losses.
Nonetheless, clusters of convective and large-scale hazard
types in summer and winter, respectively, result in higher
losses compared to their isolated occurrence. These clus-
tered extremes have increased significantly throughout the
past 38 years.

This study is unique regarding the use of impact data to
assess clustering with methods that have so far been primar-
ily used in hydrological research and regarding the use of a
long time period, from 1986–2023. However, some limita-
tions need to be taken into account: insurance data are gen-
erally dependent on how claims are regulated. Although the
losses are adjusted for inflation and the number of contracts,
we cannot account for changes such as policy adjustments or
changes in exposed assets (e.g., solar panels on roofs), gen-
eral wealth, and the susceptibility to meteorological hazards
(Kron et al., 2019). However, since the loss data do not show
a significant increasing trend in annual losses, these factors
might be less relevant in this case. Furthermore, the dam-
age regulation is biased towards the first day of the month,
probably because of simplicity for damage regulators; this
however is within the scope of the usual fluctuation for the
most extreme events. A bias of insurance loss data to being
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fraudulent is also possible; it is however assumed to be less
relevant since we only evaluate major loss events.

The study is based on comprehensive data but focuses on
a limited geographic area. We therefore suggest extending
the spatial scope in future studies. Furthermore, the impact
we refer to is purely insurance-related and therefore mon-
etary. Damage to critical infrastructures or municipality as-
sets is not captured by the data. Due to a lack of compara-
ble data, no societal impacts such as fatalities are included
to measure impact. In addition, other hazard types such as
cold spells, droughts, or heatwaves, which do not lead to high
direct monetary (insured) damages attributed to the event,
were not included. These events also usually occur on dif-
ferent timescales: impact-relevant durations of those hazards
range from about 2 weeks to 2 months (Polt et al., 2023) and
hydrological droughts cluster most strongly on the annual
timescale and generally from seasonal to 3-year timescales
(Brunner and Stahl, 2023). Therefore, a comparison with the
present hazard types with a mean duration of less than 2 d
is not sensible. It should furthermore not be neglected that
there is a stochastic element within impact data, which may
lead to the effect that a meteorologically relevant event at the
local scale is not captured due to low population density and
therefore low losses. We argue that these events are less rel-
evant to the public, since they do not create major damage.
Nevertheless, future research could be directed at analyzing
these clustering patterns with larger datasets and including
larger geographic scopes.

Compound hazards are often observed related to specific
atmospheric patterns such as atmospheric blocking (e.g.,
Kautz et al., 2022). Future research could therefore be di-
rected towards investigating the drivers of multivariate haz-
ards, which, e.g., Bloomfield et al. (2024) did for Great
Britain, where they connected daily flood–wind extremes to
synoptic conditions. When atmospheric patterns related to
clusters of multivariate extremes are identified, future pre-
dictions of those hazards and their joint occurrence could be
enhanced. Clustering and atmospheric patterns have already
been investigated regarding single hazard types by Tuel and
Martius (2022a, b), Yang and Villarini (2019), and Villar-
ini et al. (2011) for precipitation and by, e.g., Vitolo et al.
(2009) for extratropical cyclones. Another interesting topic
for further research would be to investigate how the cluster-
ing of different types of meteorological hazards changes due
to climate change. This has been investigated for windstorms,
where Karwat et al. (2024) have shown that extratropical cy-
clone clustering is expected to increase significantly by 25 %
in Europe during 2060 to 2100. Another interesting aspect
from an impact-based view would be the extension towards
non-meteorological hazards and impacts, e.g., capacities of
authorities and relief organizations.

We generally argue towards a holistic view of hazards,
since a lot of research and its application, e.g., in insurance
modeling, follow a single-hazard-type approach. Risk can
only be assessed accurately if we incorporate a multi-hazard
view including all relevant types of hazards, interactions, and
consequences.

Nat. Hazards Earth Syst. Sci., 25, 2885–2907, 2025 https://doi.org/10.5194/nhess-25-2885-2025



K. Küpfer et al.: Impact-based temporal clustering of multiple hazards in (southwestern) Germany 2903

Appendix A: Different hazard types and their
combination in relation to the North Atlantic Oscillation
(NAO)

Figure A1. May–August: (a) distribution of monthly NAO values during 1986–2023, depending on the event type (colors) and isolated
occurrence or occurrence in clusters (hatched), and (b) monthly mean NAO values from 1986–2023. Positive NAO values are detected when
mean values> 0.5 and max values> 0.75. Negative values relate to mean values<−0.5 and max values<−0.75. Neutral years are all years
classified neither as positive nor as negative. Data: NOAA, available from https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.
shtml (last access: 5 February 2025).

Figure A2. December–February: (a) distribution of monthly NAO values during 1986–2023, depending on the event type (colors) and
isolated occurrence or occurrence in clusters (hatched), and (b) monthly mean NAO values from 1986–2023. Positive NAO values are
detected when mean values > 0.5 and max values > 0.75. Negative values relate to mean values <−0.5 and max values <−0.75. Neutral
years are all years classified neither as positive nor as negative. Data: NOAA, available from https://www.cpc.ncep.noaa.gov/products/precip/
CWlink/pna/nao.shtml.
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