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Abstract. In the early 1990s, the insurance industry pio-
neered the use of risk models to extrapolate tropical cy-
clone (TC) occurrence and severity metrics beyond histori-
cal records. These probabilistic models rely on past data and
statistical modeling techniques to approximate landfall risk
distributions. By design, such models are best fit to portray
risk under conditions consistent with our historical experi-
ence. This poses a problem when trying to infer risk under a
rapidly changing climate or in regions where we do not have
a good record of historical experience. We here propose a so-
lution to these challenges by rethinking the way TC risk mod-
els are built, putting more emphasis on the role played by cli-
mate physics in conditioning the risk distributions. The Uni-
fied Tropical Cyclone (UTC) modeling framework explicitly
connects global climate data to TC activity and event behav-
iors, leveraging both planetary-scale signals and regional en-
vironment conditions to simulate synthetic TC events glob-
ally. In this study, we describe the UTC framework and high-
light the role played by climate drivers in conditioning TC
risk distributions. We then show that, when driven by climate
data representative of historical conditions, the UTC is able
to simulate a global view of risk consistent with historical ex-
perience. Additionally, the value of the UTC in quantifying
the role of climate variability in TC risk is illustrated using
the 1980–2022 period as a benchmark.

1 Introduction

Tropical cyclones (TCs) pose a threat to coastal communities
across the globe. Recent examples include a record-breaking
2022 season for Madagascar, where five storms made land-
fall, causing up to 365 fatalities across Madagascar, Mozam-

bique, and Malawi (Aon, 2022). Sadly, these regions were
impacted again in 2023 by category 5 TC Freddy, causing up
to 3 times more fatalities. From an economic stand point,
TCs caused USD 92 billion of global economic losses in
2021, with Hurricane Ida alone costing USD 75 billion (Aon,
2021), while in 2022, category 5 Hurricane Ian became the
third-costliest event on record, with over USD 100 billion of
economic losses (Smith, 2020). At the time of writing, hur-
ricanes Helene and Milton have just hit the west coast of
Florida, with combined expected economic losses in excess
of USD 50 billion (Morningstar, 2024).

A range of public and private organizations focus on miti-
gating this risk. To do so, they require tools that quantify the
occurrence and severity likelihood of events globally. Since
the early 1990s, the insurance industry has adopted the use
of large sets of synthetic TC events as a way to understand
and quantify TC risk beyond simple analysis of historical
records. These synthetic events all represent plausible TC
scenarios, typically generated from statistical extrapolation
of historical occurrences (Hall and Jewson, 2007; Rumpf et
al., 2007; Vickery et al., 2009; Bloemendaal et al., 2020;
Arthur, 2021). The climatology and statistics of such event
sets (often referred to as stochastic event sets in reference to
their generation process) are consistent with history but allow
extrapolation beyond what was observed. They help quantify
probabilistic measures of risk such as the 1-in-100-years re-
turn period hazard intensity (i.e., an intensity level with a 1 %
annual chance of occurrence).

While such methods have greatly helped the industry bet-
ter understand TC risk, they suffer from a fundamental limi-
tation: they are mostly driven by statistics of past data rather
than physics. At the core of the event generation process re-
sides a series of statistical relationships that are fit to his-
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torical data and therefore best represent TC risk under con-
ditions that are consistent with historical data points. This
presents two important challenges when assessing global risk
in a changing climate:

– A model anchored in past climate conditions is not able
to adapt and quantify shifts in risks associated with a
changing climate. For example, how do TCs react to
regional changes in patterns of dominant atmospheric
steering flow, ocean temperatures, or wind shear?

– A model fit to historical data will be best fit to those re-
gions where we have abundant historical records (e.g.,
the North Atlantic) but will generalize poorly to other
basins where data are scarce and TC behaviors may dif-
fer (e.g., the South Indian Ocean).

One solution to this problem is to build smarter event genera-
tion algorithms that do not simply memorize and extrapolate
history but also understand how climate physics influenced
the observed outcomes. Explicitly linking the event gener-
ation algorithms to key climate drivers allows the creation
of climate-connected event sets that can naturally quantify
risk (1) under changing climate conditions and (2) in regions
where historical data are scarce. Several climate-connected
TC event sets have recently been developed by the academic
community, with leading modeling groups developing TC
risk solutions that explicitly link some components of the
event generation process to climate model outputs (Lee et
al., 2018; Jing and Lin, 2020; Emanuel, 2021, and citations
within; Lin et al., 2023; Sparks and Toumi, 2024). We here
present a novel approach (the Unified Tropical Cyclone –
UTC) that, while following a similar philosophy, differs in
several key aspects:

– The UTC links the annual frequency of TC occurrence
in each active basin to large-scale environment signals
(e.g., El Niño–Southern Oscillation – ENSO) rather
than through the use of more localized genesis potential
indices (e.g., TCGI; see Wang and Murakami, 2020).

– The UTC directly simulates the impact of sea surface
temperatures, atmospheric steering flow, mean sea level
pressure, and vertical wind shear on the TC trajec-
tory and intensity hourly increment distributions thanks
to a machine learning (ML) algorithm called quantile
regression forest (Meinshausen, 2006; Loridan et al.,
2017; Lockwood et al., 2024; Bruneau et al., 2024). Us-
ing ML ensures that the impact of local environmental
factors can be inferred directly from data without the
need for any expert judgment in formulating or tuning
the relationship.

– The UTC is initialized with reanalysis data and model
simulations of the past (see the results of this study be-
low) but also with seasonal forecast data and future cli-
mate projections (this will be the focus of a follow-up

Figure 1. UTC modeled distributions of annual US major hurricane
landfalls, under a range of climate forcing assumptions. Vertical
dashed lines show observed levels of occurrence for each scenario.

study). Figure 1 provides an introductory illustration of
how the UTC risk distributions (here for annual ma-
jor hurricane US landfalls) shift according to different
climate forcing conditions. More details on this experi-
ment are provided in Sect. 3.

In this study, we describe how climate gridded data are
used to condition the UTC event generation algorithms,
namely, the TC occurrence frequencies by basin, genesis lo-
cation, date, track trajectory, and intensity modules. We then
show how such a climate-connected approach can reproduce
a risk climatology across the globe that is consistent with
history, with minimal need for local tuning, track filtering
or calibration. We then conclude by analyzing the impact of
climate variability on the UTC view of risk, considering al-
ternative climates of the 1980–20222 period as forcing when
deploying the model.

2 The Unified Tropical Cyclone (UTC) modeling
framework

The UTC framework consists of a series of algorithms that
allow generation of synthetic events from knowledge of
global climate conditions (Fig. 2). By generating a large
number (i.e., millions) of such climate-connected synthetic
events, we aim to capture a complete view of TC risk un-
der the climate conditions provided as input. An overview of
the event generation framework is first provided in Sect. 2.1.
Section 2.2 details how the event generation algorithms are
developed, combining reanalysis of past climate with histori-
cal TC event records. In Sect. 2.3, we come back to the event
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generation framework and formally list the sequence of algo-
rithmic steps that make up the UTC.

2.1 Event generation framework overview

The overarching objective when creating a climate-
connected TC event set is to sample two dimensions of risk
variability (see Fig. 1):

– A) the variability in TC risk under a given climate state
(the distribution in each row of Fig. 1).

– B) the variability in the climate state itself (different
rows in Fig. 1).

While most traditional TC event sets are designed to address
A (for a climate representative of a selected historical aver-
age state, e.g., first row of Fig. 1), they fail to acknowledge
the importance of B. To address B and drive the generation of
events covering a wide range of climate conditions, we con-
nect the UTC to global gridded climate inputs: ERA5 (Hers-
bach et al., 2020) is our preferred source to portray the cli-
mate experienced historically, and we also augment that view
with alternative simulated climates from the CESM LENS2
project (Rodgers et al., 2021). While ERA5 data are avail-
able at higher resolution, we choose to aggregate to a similar
1° spatial resolution as the CESM LENS2 data. This choice
is driven by a desire for consistency between model training
(with ERA5) and deployment (using a wider range of sources
not always available at the same resolution as ERA5, such as
the CESM LENS2). When representing the climate state at
1° spatial resolution, we focus on variability in global and re-
gional climate patterns rather than finer-scale weather. In this
framework, the sampling of risk due to finer-scale weather
variability is part of dimension A above. This large database
of monthly global gridded climate data is the starting point
for our model deployment (Fig. 2). We limit the range of cli-
mate inputs to state variables that are known to impact TC
dynamics:

– Sea surface temperature (SST)

– Mean sea level pressure (MSLP)

– Zonal component of the wind flow at 850 mbar (U850)
and 200 mbar (U200)

– Meridional component of the wind flow at 850 mbar
(V850) and 200 mb (V200)

– Vertical wind shear magnitude (SHR) – computed from
the wind field components above

– Steering flow – also computed from the wind field com-
ponents.

The UTC then implements the following modeling sequence
(see Fig. 2):

1. A climate state is defined as a time series of monthly
gridded climate data fields. From knowledge of key cli-
mate patterns in a given climate state (see Sect. 2.2.1),
the UTC models one distribution per basin to define
event count likelihood during a TC season experiencing
that climate (Sect. 2.2.2). This process is repeated for a
large number of climate states to capture dimension B
described above.

2. Within each climate state, hundreds of different sam-
ple years (stochastic years) are computed to capture di-
mension A. These stochastic years account for variabil-
ity in finer-scale climate conditions (e.g., weather) not
captured by the coarse climate forcing, as well as other
stochastic TC behaviors occurring under a given climate
state. For each stochastic year, and from knowledge of
the distributions in 1, a number of events (nTC) per
basin is sampled to define TC activity for that year.

3. For each of the nTC events sampled in a stochastic year,
a likely genesis date and location are sampled from
knowledge of historical occurrence rates and local en-
vironment conditions (Sect. 2.2.3).

4. For each sampled event, the UTC simulates the trajec-
tory of the TC center at 1 h intervals, taking into account
track persistence and the effect of environmental condi-
tions such as the steering flow (Sect. 2.2.4).

5. Simultaneously, the evolution of the TC intensity (cen-
ter pressure) is also sampled along the track at 1 h in-
tervals, from knowledge of the track characteristics to
date and environmental conditions such as the vertical
wind shear and ocean temperatures (Sect. 2.2.5). An
estimate of maximum sustained winds at 10 m is also
computed from the modeled TC center pressure follow-
ing Bruneau et al. (2024).

By repeating the steps above for a large number of climate
states (i.e., many years of climate forcing in 1) and a large
number of stochastic samples (i.e., repeated sampling of 2),
the UTC generates a set of events characterizing risk vari-
ability across dimensions A and B.

With a complete record of the climate states used to gen-
erate any of the stochastic years, the UTC framework opens
up a whole new range of analysis around the impact of cli-
mate variability (e.g., Fig. 1). By grouping years according to
the phase of the El Niño–Southern Oscillation (ENSO), one
can, for instance, quantify the resulting shifts in likelihood
of TC landfalls across the world, along with potential corre-
lations between basins/regions. Similarly, questions around
the impact of already realized warming of the atmosphere
on TC activity can be addressed objectively by sub-sampling
the event set according to the warming levels of the forcing
climate states (e.g., first three rows of Fig. 1). From a risk
analysis point of view, the UTC also helps identify regions
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Figure 2. Overview of the UTC event generation framework. Global gridded climate data are used as input to a series of algorithms respon-
sible for the generation of synthetic TC events. The output is a set of millions of events, representative of TC activity under conditions set by
the input climate data. Details of the algorithms are provided in Sect. 2.2 and Appendix A1.

of the world that may have been lucky/unlucky in their his-
torical experience compared to what should be expected over
the period of records (see Sect. 3).

2.2 Event generation algorithms

When training the UTC event generation algorithms, we
combine two data sources that jointly capture historical TC
risk conditions over the 1980–2020 period (i.e., the model
training period):

– Monthly gridded data from the ERA5 reanalysis dataset
(Hersbach et al., 2020) provide a best estimate of the
climate experienced globally over the period.

– The International Best Track Archive for Climate Stew-
ardship (IBTrACS; Knapp et al., 2010) records the fre-
quency, trajectory, and intensity of TC events globally.

Most of the algorithms described below are based on ma-
chine learning (ML), i.e., they derive their form directly
from data rather than from a human-selected relationship.
Throughout this section, key concepts are illustrated using
case studies and simplified algorithms where the physics is
easily discussed. The complete algorithms, as implemented
in the UTC, are detailed in Appendix A1.

2.2.1 Extracting patterns of climate variability
impacting TC activity

The first step in the UTC framework is to reduce the di-
mension of the raw input of monthly gridded data into a
selection of patterns important to TC activity. This dimen-
sion reduction phase is done via principal component analy-
sis (PCA, see Appendix A1), performed on a range of stan-

dardized anomaly fields (FLD =SST, MSLP, U850, U200,
V850, V200, and SHR – see Sect. 2.1).

The end result for a given field is a series of spatial patterns
(PCFLD,i , see Fig. 3) allowing decomposition of any state of
the field using a series of coordinates (WFLD,i , see Eq. (A1)
in Appendix A1). While the PCA step provides important
insights into the leading modes of global climate variability
for each field (the PCFLD,i), these are not all equally rele-
vant to TC risk. To filter out the patterns most relevant to TC
activity across different basins, we rely on two criteria (Ap-
pendix A2):

– Only consider PCFLD,i modes whose weights (WFLD,i)
correlate with TC activity in at least one basin (candi-
date PCFLD,i , see Fig. 4).

– Ensure that the physical reasons for that correlation are
understood. This is done by screening the patterns in the
candidate PCFLD,i and explicitly linking them to condi-
tions known to be favorable/unfavorable to TC genesis.

An example of the above is given in Fig. 3 with PCSST,3 ob-
tained from the SST decomposition of Eq. (A1). The cor-
relation between the number of North Atlantic hurricanes
and the associated weights (WSST,3), averaged over the July–
November period, is shown in Fig. 4. The reasons for the
(negative) correlation between the magnitude of the weights
and North Atlantic hurricane activity can be understood from
an analysis of Fig. 3: large values of the WSST,3 weights are
associated with anomalously warm SSTs in the eastern and
central Pacific (typical of an El Niño event) and anomalously
cold SSTs in the tropical Atlantic. Both trends are signals of
a likely weak hurricane season, which is confirmed by Fig. 4.
Conversely, large negative values of the weight tend to be as-
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Figure 3. Principal component field representing one of the leading modes of global sea surface temperature variability (PCSST,3). See
Eq. (A1) for details.

Figure 4. Relationship between the weight associated with the
principal component from Fig. 3 (x axis) averaged over the July–
November period (i.e., CNA,1, Appendix A2) and the number of
North Atlantic tropical storms in that season (y axis). Colors indi-
cate the season of record. Common statistical evaluation metric for
this dataset: R=−0.66; R2

= 0.44; p-value: 1.11× 10−6.

sociated with La Niña type of Pacific SSTs and an anoma-
lously warm tropical Atlantic, i.e., conditions favorable to
hurricane activity.

Altogether a total of 13 patterns (PCFLD,i) are selected to
characterize climate states within the UTC framework (glob-
ally). As is the case in the example of Fig. 4, we maximize
the correlation from the raw time series of weights by aver-
aging over a time window that covers the peak TC activity
period in each basin. The result is a set of 13 scalars that
allow conditioning of TC activity in all active basins of the
world. In what follows, we refer to these scalars as climate
connectors, and the complete list of connectors is provided
in Appendix A2.

2.2.2 Conditional distribution of TC numbers given the
magnitude of climate patterns

By design, the connectors selected in Sect. 2.2.1 correlate
with TC activity in at least one basin. They therefore offer
a way to link the input climate state to trends in basin-wide
TC numbers. However, a large uncertainty exists around the
exact number of TCs to expect under a given climate state
(e.g., see vertical spread in Fig. 4 for a given CNA,1 value).

Our approach to this challenge is to adopt a hierarchical
Bayesian modeling framework, similar in concepts to that of
Elsner and Jagger (2004). We use the connectors listed in
Appendix A2 to condition the λ rate of a Poisson distribution
(see Appendix A3). Figure 5 illustrates the end result in a
simplified case where the distribution of North Atlantic hur-
ricanes is conditioned only on the value of the average July–
NovemberWSST,3 shown in Fig. 4 (i.e., connector CNA,1, see
Eq. A2).

In years with large positive values of the connector (e.g.,
El Niño years – see Fig. 3) the modeled distribution of hur-
ricane numbers shifts to a less active state (light blue), while
for large negative connector values (e.g., La Niña years), the
shift is towards more frequent activity (red).

For each basin that is TC active (i.e., North Atlantic, East
Pacific, western North Pacific, North Indian, South Indian,
and South Pacific basins), we have developed a different hi-
erarchical Bayesian model using between two and three con-
nectors. These are listed in Appendix A3. The ability of this
approach to capture variability in TC basin frequency over
the 1980–2022 period is illustrated in Sect. 3.1 (see Fig. 10).

To help capture sub-basin spatial variability in TC genesis
likelihood, the steps above are repeated to distribute the total
number of basin-wide events across a set of sub-regions.

At the scale of each basin:

– A set of sub-regions is defined (see Fig. A1 in Ap-
pendix A2), and for each historical season in the 1980–
2020 training set, we record the ratio (0–1) of the total
basin-wide activity that occurs in the sub-regions.
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Figure 5. Modeled distribution of hurricane activity conditioned on
the value of the average July–NovemberWSST,3 weight from Fig. 4
for 2009 (blue) and 2011 (red) climates. The vertical lines show
observed activity levels in 2009 (El Niño year) and 2011 (La Niña
year).

– The atmospheric fields described in Sect. 2.1 are re-
stricted to each basin domain, before PCA reduction.
Resulting PCA fields and weights are recorded for all
years in the training set. This allows extraction of pat-
terns of climate variability within each basin.

– The correlation from PCA weights is assessed with re-
gards to each sub-region activity ratio, rather than the
absolute TC number. As an example, we find that the
third PCA for the stacked SHR+SST+MSLP fields in
the North Atlantic is a good predictor of the ratio of total
basin activity to expect in the main development region
(MDR) sub-region (see Fig. A2 in Appendix A2), with
a higher percentage of cyclones occurring in the MDR
when the PCA exhibits lower surface pressure over the
Atlantic, warmer SST in tropical regions, and weaker
wind shear in the West MDR.

Hierarchical Bayesian models are developed for each sub-
region to simulate the distributions of that region activity ra-
tio to the basin total.

2.2.3 Genesis date and location within a basin

Once the level of activity in each basin has been established,
the next step is to leverage patterns in both historical event
occurrence and local environment conditions to determine
the distributions of likely genesis location and date for all
stochastic events. For these two components of the UTC, we
have so far relied on simple parameterizations rather than
machine learning methods. Upgrading this component of the
system is a priority in future UTC development (e.g., fol-
lowing a Bayesian modeling approach as in Sect. 2.2.2). In

the interim, we have implemented the parameterizations de-
scribed below.

In a static TC risk model, the likely genesis location of
a stochastic event is typically sampled from a probability
density map representing a generalized version of historical
records. An example of such a map is provided in Fig. 6a for
the North Atlantic basin, where a spatial smoothing was ap-
plied to all 1980–2020 genesis coordinates (i.e., 2D convolu-
tion using a 5× 3 spatial kernel). While this allows sampling
from a climatology consistent with history, the approach does
not account for season-to-season variability in climate con-
ditions known to impact TC genesis likelihood. To condition
the UTC genesis likelihood maps, we here adjust the static
probabilities using a simple dimensionless scaling factor that
is based on the ratio of SST and SHR anomalies for each grid
cell k.

scaling(k)=
1+SSTanomaly (k)/ |SST|
1+SHRanomaly (k)/ |SHR|

(1)

Physically, this adjustment ensures that the probability of
genesis increases as the SST moves up from its climatolog-
ical average and/or the vertical wind shear is reduced com-
pared to its climatological state.

Figure 6 provides an example of the adjusted genesis prob-
ability maps for two contrasting seasons: 2015 (Fig. 6b) and
1999 (Fig. 6c). In 2015, climate conditions show anoma-
lously cold SSTs and strong wind shear conditions in the
Caribbean Sea (Fig. 7a, c), while SSTs are anomalously
warm in most of the mid-latitudes of the basin. This setup
translates into an increased likelihood of genesis along the
US East Coast and a reduction in the Caribbean Sea (Fig. 6b)
when compared to the static historical baseline (Fig. 6a).
Conversely, year 1999 is characterized by anomalously cold
SSTs east of Florida and in the northwest Gulf of Mexico
(Fig. 7b), with very favorable shear conditions across the
Caribbean and southern Gulf of Mexico (Fig. 7d). The im-
pact on the modeled genesis likelihood map is towards an
increased probability in the Caribbean Sea/Gulf of Mexico
and a reduction east of Florida. In both years, the patterns of
actual observed event genesis (white circles, Fig. 6) are con-
sistent with these regional trends in favorable environmental
conditions.

As a way to quantify the added value of the dynamic scal-
ing, we have also conducted the following evaluation exer-
cise: for all 1980–2020 observed genesis occurrences, we
compute the genesis probability under both the static model
(Pstatic, Fig. 6a) and with the dynamic scaling of Eq. (1)
(Pdyn). Over the full dataset of all 1980–2020 historical oc-
currences, the average climate-conditioned genesis probabil-
ity Pdyn is increased by up to 14.8 % compared to the static
version (Pstatic), i.e., from additional knowledge about the
environmental setup, the dynamical model is statistically in-
creasing genesis likelihood in regions where genesis has oc-
curred. When we limit the evaluation to the North Atlantic
data only, the increase in average genesis probability esti-
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Figure 6. Spatial genesis density maps at 1° resolution; panel (a) shows smoothed-out static version of historical occurrences, while panels (b)
and (c) illustrate the dynamic spatial probability of genesis accounting for SST and wind shear anomalies. The white dots show the historical
cyclone genesis occurrence for the 2 years considered (2015 and 1999, see Fig. 7).

Figure 7. (a, b) SST and (c, d) SHR anomalies with regards to the 1980–2020 mean for July–October in (a, c) 2015 and (b, d) 1999.
Historical TC genesis locations are shown in white.

mates is 28 %, likely thanks to better quality data records in
the region. This simple analysis shows that the added cli-
mate information helps improve genesis likelihood estimates
while also ensuring that the model reacts to physical changes
that are known to influence TC formation.

Once the starting position of an event is known, a similar
approach is used to allocate a starting date. The likelihood of
genesis for a given month is computed as the average of two
components:

– a probability density function fit to observed historical
records (Phist), and

– a probability density function derived from monthly
gridded SST, SHR, and MSLP variables (Pclim).

Using historical genesis locations and associated climate
conditions, three probability density functions (PSST, PSHR,
PMSLP) are first independently derived to link the likelihood
of genesis in a month to different levels of monthly SST,
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SHR, and MSLP. These are then combined into Pclim as fol-
lows:

Pclim = PSST ·P
2
SHR ·PMSLP. (2)

Pclim allows conversion of the gridded climate fields into a
monthly time series of probability maps. From knowledge
of the sampled genesis location (see above), a time series of
monthly probability is extracted and averaged with the cli-
matological probability (Phist). After linear interpolation of
the monthly probabilities to daily resolution, a genesis day is
sampled. Finally, the hour of genesis is uniformly sampled
within the chosen day, and the date gets incrementally up-
dated with the storm hourly displacements.

2.2.4 Track trajectory

As is common for most TC risk modeling systems (Hall and
Jewson, 2007; Bloemendaal et al., 2020; Arthur, 2021), our
approach to modeling individual event trajectories is to simu-
late incremental changes in latitude (dlat in ° h−1) and longi-
tude (dlon in ° h−1) at fixed time intervals (1 h in this study).
Under that framework, a track trajectory is simulated by it-
eratively sampling the next displacement from distributions
conditioned on parameters at current and past locations (i.e.,
a Markov chain Monte Carlo (MCMC) approach).

However, instead of relying purely on the track history to
date and its location to predict the next dlat and dlon incre-
ment distributions, the UTC algorithms are also trained to ac-
count for local environmental conditions capturing the dom-
inant steering flow. To do so, we have overlaid the ERA5
reanalysis dataset on top of all historical TC events as re-
ported in IBTrACS and have trained a quantile regression
forest algorithm (see Appendix A4) to approximate the dlat
and dlon distributions, conditional on regional steering pat-
terns. At any time step along the track, the algorithm takes
the following quantities as input to condition the distribu-
tions: storm translational speed, track heading angle, incre-
mental changes in latitude and longitude since the previous
time step, meridional and zonal components of the steering
flow, spatial gradients of wind shear, mean sea level pressure,
and sea surface temperature. To ensure the algorithms gen-
eralize information globally rather than memorize local his-
torical behaviors, no direct location information (lat and lon
coordinates) is provided. Conditional on this information, a
distribution of dlat and dlon is modeled at every time step,
allowing sampling of the next hourly track displacement (see
Sect. 2.3).

Figure 8a illustrates the role played by environmental con-
ditions in simulating event trajectories in the UTC. Using a
20 000-year subset from the event set of Sect. 3.1, we extract
the sampled dlon values of all events that pass through a se-
lected region of the North Atlantic mid-latitudes (see map
in Fig. 8a). Sampled dlon values that correspond to time
steps when monthly steering winds are predominantly blow-
ing east are shown as a red distribution, while the blue dis-

tribution represents time steps with steering winds blowing
west. The ability of the UTC to react to dominant steering
patterns is clear from the shift between both dlon distribu-
tions, with simulated tracks encountering easterlies (wester-
lies) more likely to move westward (eastward). Under that
setup, strong anomalies in steering flow patterns are natu-
rally reflected in the modeled event trajectories and there-
fore in the resulting statistics of landfall risk. It is this type
of model behavior that allows translation of regional climate
anomalies into shifts in TC landfall risk.

2.2.5 Event intensity

To simulate the intensity evolution over the lifetime of
events, two separate algorithms are built. They target:

– the event intensity at the genesis point (center pressure,
Cpt=0, in mbar), and

– the increment change in intensity from one step to the
next (dCp in mbar h−1).

Both algorithms are trained in a similar fashion to the dlat
and dlon models. By overlaying ERA5 data onto historical
events as reported by IBTrACS, we can train quantile re-
gression forest algorithms to approximate conditional distri-
butions (see Appendix A4). In both cases, to condition the
distribution, we use known storm parameters (Cp, previous
pressure changes, and distance to land) and climate informa-
tion (wind shear, mean sea level pressure, and sea surface
temperatures, as well as their temporal gradients).

Figure 8b presents a similar exercise to Fig. 8a, where
UTC modeled values of dCp for all events passing through
the same domain. The distributions are split into cases with
monthly SSTs above 28 °C (red) and below 26 °C (blue). The
SST conditioning drives a clear shift towards a more likely
intensification rate when ocean temperatures reach 28 °C. As
a result, any important anomalies in SSTs are naturally re-
flected in the modeled UTC event intensities and allow inten-
sification (resp. weakening) to occur over patches of anoma-
lously warm (cold) water. By being closely connected to lo-
cal environment conditions, the UTC intensity model is able
to better capture the evolution of event severity as climate
conditions evolve (e.g., see Sect. 3.2).

From a physical point of view, center pressure is the fun-
damental measure of storm intensity and is the logical start-
ing point when modeling event intensification and weakening
patterns. In terms of risk measurement, however, maximum
winds offer a more relevant metric. It is the metric most of-
ten reported by media and used to categorize storms in the
Saffir Simpson scale; it is also the basis for the estimation of
TC-related damage. As a final step to the intensity module,
we therefore translate our Cp estimates into maximum wind
speeds (1 min sustained winds over water at 10 m, Vmax).
This is done following the methods published in Bruneau et
al. (2024), where Vmax is derived from the center pressure
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Figure 8. (a) Distributions of hourly change in longitude (dlon) simulated by the UTC for all events passing through the circle in the subpanel
(for reference, IBTrACS data are displayed in green). Values of dlon corresponding to time steps with easterly (westerly) steering flow are
shown by the blue (red) distribution. (b) Distributions of hourly change in center pressure (dCp) simulated by the UTC for the same region.
Values of dCp corresponding to time steps with SSTs above 28 °C are shown in red, and those below 26 °C, in blue.

deficit via a coefficient α and α is modeled via a quantile
regression forest model. The features consist of the center
pressure at t and t − 1, mean sea level pressure, and wind
shear, as well as a water/land flag.

2.2.6 Lysis

Sections 2.2.4 and 2.2.5 describe iterative processes that ter-
minate only when a lysis flag is triggered, typically corre-
sponding to an important weakening of the system. Model-
ing the cyclone lysis is a difficult exercise due to the small
amount of data available for training (a single lysis per his-
torical cyclone, most often occurring over ocean). To con-
struct a set of lysis likelihood targets that goes beyond the bi-
nary outcome of historical lysis occurrences, we first assign a
probability of lysis to each time step of historical events (see
Appendix A4). A random forest is then trained to predict this
probability of lysis from knowledge of event properties, cli-
mate conditions, the time spent over land, and the topography
setup. When generating events, the random forest algorithm
is deployed to predict this probability at each time step. The
probability is then used in a binomial draw to sample the sur-
vival/lysis outcome.

2.3 Model deployment steps

Having described how each of the UTC algorithms is devel-
oped, we now provide the detailed sequence of steps leading
to the generation of UTC event sets:

1. Take monthly gridded data fields for climate state X
(e.g., from a historical year of ERA5 reanalysis or al-
ternative gridded climate dataset).

2. Extract WFLD,i weight values for selected PCFLD,i
modes of climate state X. Compute associated climate
connector values.

3. Model distributions of annual TC numbers by basin
conditioned on these connector values for climate state
X.

4. Initiate sampling of stochastic years under climate state
X.

For stochastic year 1 to N :

a. Using the modeled distribution from Sect. 2.2, sam-
ple a number of TC events to simulate for each
basin that year.

b. In each basin, initiate a loop over all events.
For event 1 to nTC:

i. Sample the genesis point from knowledge of the
environment conditions in the basin (sea surface
temperature and wind shear).

ii. Sample the genesis date based on the genesis
location and environment conditions.

iii. Given the genesis location, date, and local envi-
ronmental conditions, simulate the distribution
of likely starting intensity (Cp in mbar). Sample
the intensity value.

iv. From knowledge of the above and regional
steering conditions, model the distribution of
likely latitude and longitude displacements over
the following hour. Sample the displacement
values, and move the storm.
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v. From knowledge of the above and regional cli-
mate conditions, model a distribution for the in-
crement in intensity to expect. Sample the in-
crement values, and update the storm intensity.

vi. Model a probability of lysis, and sample lysis
occurrence with a binomial draw. If lysis oc-
curs, stop and move to the next event; other-
wise, repeat steps iv, v, and vi until lysis occurs.

vii. Model 1 min sustained winds over water (Vmax)
from Cp following Bruneau et al. (2024).

3 A probabilistic view of global tropical cyclone risk

In this section, we analyze global tropical cyclone risk, as
modeled by the UTC under climates of the 1980–2023 period
(i.e., the deployment period). The objective is 2-fold:

– UTC evaluation and risk analysis – Ensure that our his-
torical experience over the 1980–2023 period is consis-
tent with the probabilistic view simulated by the UTC
(Sect. 3.1). For that purpose, the UTC is forced with
ERA5 reanalysis data for 1980–2023. This dataset pro-
vides a view of the climate we have experienced over
the post-satellite era period, where global TC observa-
tions are most reliable.

– Counter-factual analysis – Quantify the additional risk
variability attributable to uncertainty in the climate ex-
perienced over the period (Sect. 3.2). Here, 1980–2023
climate simulations from the NCAR CESM large en-
semble product (LENS2 – Rodgers et al., 2021) are used
to force the UTC. We have selected the 50 smoothed
biomass burning (SBMB) ensemble members to allow
sampling of other climate states that could have likely
occurred over the 1980–2023 period (i.e., dimension B
in Sect. 2.1).

3.1 Analysis of global risk patterns and comparison to
historical experience

For every year in the 1980–2023 ERA5 reanalysis dataset,
we run 2500 samples (i.e.,N = 2500 – see step 4 in Sect. 2.3)
to generate 110 000 years of stochastic TC activity globally
(44 climates with 2500 realizations of each). Historical ob-
servations over the 1980–2023 period are compared to the
UTC probabilistic view of basin-wide activity (Sect. 3.1.1),
spatial severity distribution (Sect. 3.1.2), and landfall return
period risk (Sect. 3.1.3). It is important to note that historical
records should only be seen as one sample from the distribu-
tion of potential risk over the period. The UTC, on the other
hand, is designed to approximate the full distribution from
which the records were sampled. The most important aspect
of this evaluation exercise is therefore to show that the ob-
served sample (i.e., our historical experience) falls within the
UTC modeled distribution, with occurrence statistics that are

consistent with the modeled view. There is, however, no ex-
pectation that the observed sample should fall at the center
of the distribution for all aspects under evaluation.

We choose to analyze and evaluate the modeled 1 min
sustained winds (Vmax), as they represent a natural mea-
sure of TC impact. All IBTrACS results are shown using
the “USA_WIND” data field from the HURDAT database
(Landsea and Franklin, 2013) and the US Navy Joint Ty-
phoon Warning Center (JTWC), as it is based on a globally
consistent and well-documented methodology (Knapp and
Kruk, 2010).

3.1.1 Global TC activity

Figure 9 shows the density distribution of annual named
storm numbers in the 110 000-year stochastic event set for
each of the active basins and for each TC season of ERA5
forcing (1980–2023). They represent the likelihood of out-
comes under each of the historical annual climate states (1st–
99th percentile intervals are displayed in Fig. 9). Observed
records are overlaid on all the distributions as white circles.
They represent the one outcome that occurred under that ob-
served climate state. As such, we should not expect to see
the white circles at the center of the UTC distributions for
all individual years; however, it is important that the circles
do fall within the modeled distributions and that the overall
statistics are in line with the UTC data. Over the full Fig. 9
dataset, observed occurrence levels are within the UTC 50th
confidence interval in 64 % of cases, while 94 % fall within
the 90 % confidence interval. Additional evaluation metrics
are provided in Table 1.

In all basins, the season-to-season variability in the mod-
eled UTC distributions is consistent with variability in the
observed TC numbers. This ability to capture season-to-
season variability is only possible thanks to the climate-
connected nature of the model. Without climate conditioning,
every year would be assigned the same (static) activity dis-
tribution by basin (the average distribution over the period;
see right panels in Fig. 9). This has important consequences
when trying to assess short-term risk variability (e.g., the sea-
sonal trends) as well as global connections in TC activity. For
instance, by grouping the data from Fig. 9 in terms of climate
regimes known to impact TC activity, we can quantify the
shifts in basin-wide TC activity attributable to physical cy-
cles such as ENSO and assess how activity levels in different
basins are connected (e.g., anticorrelation between North At-
lantic and East Pacific; Steptoe et al., 2017). Both of these as-
pects will be explored in separate studies where we illustrate
the value of the UTC as a tool for seasonal risk forecasting,
as well as for the quantification of global risk correlations.

3.1.2 TC spatial risk distribution across the globe

Beyond basin-wide activity numbers, one of the main goals
of a TC stochastic event set is to capture spatial variabil-
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Figure 9. Distributions of named storm numbers from a 110 000-year UTC dataset forced by ERA5 reanalysis data of the 1980–2023 period
for the (a) North Atlantic, (b) East Pacific, (c) western North Pacific, (d) North Indian, (e) South Pacific, and (f) South Indian basins.
Historical occurrences from the Colorado State University database are shown as white dots, and UTC distributions averaged over the whole
period (climatology) are shown in the right panels. The simulated 1st–99th, 10th–90th, 20th–80th, 30th–70th, and 40th–60th intervals are
displayed.

Table 1. Statistical evaluation metrics for all six basins in the dataset from Fig. 9.

NA WP EP NI SI SP

Mean: observed (modeled) 13.5 (13.5) 25.3 (25.5) 17.3 (17.5) 5.07 (4.95) 15.65 (15) 9.4 (10.3)
RMSE (#) 3.17 4.30 3.78 1.48 2.55 2.86
BIAS (#) 0.01 0.19 0.19 −0.12 −0.65 0.9
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Figure 10. 2.5° resolution map of (a) peak 1 min sustained winds recorded in IBTrACS over the 1980–2023 period and (b) expected 44-year
peak sustained winds from the ERA5-driven UTC stochastic set (110 000 years of activity). The white contours represent the 70 m s−1 wind
level (Cat5 threshold).

ity in risk severity within each basin. Observation records
over the 44-year period of the post-satellite era are too scarce
to provide a complete view of risk, but they do highlight
regions where TC risk is concentrated. Analysis of maxi-
mum sustained TC winds globally over the 1980–2023 pe-
riod (Fig. 10a) shows the eastern Philippines as the riskiest
region on earth, followed by the western Caribbean. A closer
look at the Gulf of Mexico or Florida regions reveals discon-
tinuous patterns where important historical events are clearly
identifiable among lower-risk neighboring levels. Such dis-
continuities in risk mapping are due to an insufficient number
of seasons in the historical records to fully capture the spa-
tial risk distribution of extreme events (the risk distribution
is undersampled).

Using 110 000 years of simulations from the UTC, we
can assemble a more consistent view of risk (Fig. 10b). The
110 000-year UTC event set is here split into 2500 groups of
44 years (i.e., 2500 iterations of the 1980–2023 period), al-
lowing computation of 2500 equivalent versions of Fig. 10a.
Figure 10b represents the grid cell average (2.5° resolu-
tion) of these 2500 versions and captures the expected peak
winds over the 1980–2023 period for each grid cell. In other
words, given what the UTC has learned from global historical
records and the role played by climate physics in driving TC
risk, peak winds of the magnitude reported in Fig. 10b should
be expected when experiencing the climate of the 1980–2023
period. To gain some insight into the main drivers influenc-
ing the UTC view of risk, we also provide maps of peak sea-
son climatology (i.e., August–October in the Northern Hemi-
sphere and December–February in the Southern Hemisphere)
for the SST, SHR, U850, and V850 fields (Fig. 11).

For the North Atlantic (NA) basin, the regions of peak risk
are very consistent with historical records. This is an impor-
tant result, as the NA is the region of the world where we
have access to the best quality of observation records over the
1980–2023 period. Category-5-level winds (i.e., 1 min sus-
tained winds of 70 m s−1 – the white contours in Fig. 10)
are expected to occur during the period for regions along
the Caribbean islands, Gulf of Mexico, and southern Florida
(Fig. 10b). This is in line with historical records (Fig. 10a)
and directly relatable to favorable peak season climatologi-
cal conditions with warm SSTs (above 28 °C, Fig. 11a) and
weak vertical wind shear (below 10 m s−1, Fig. 11b). Pat-
terns of cooling SSTs, higher vertical wind shear, and a
strong westerly component of the steering flow (Fig. 11c)
also clearly help in understanding the reduction in risk north
of the Florida coast.

For the East Pacific (EP) basin, the regions of Category-
5-level expected winds are again well aligned with historical
evidence (Fig. 10) and coincide with favorable environmental
conditions (Fig. 11) on the eastern side of the basin. Further
west, a notable patch of large vertical wind shear is present
over the Hawaiian Islands (Fig. 11b), along with a northerly
component to the steering flow (Fig. 11c) that tends to pro-
tect the islands and translate into reduced risk levels both in
terms of UTC expectations (Fig. 10b) and historical experi-
ence (Fig. 10a). More favorable conditions to the south of the
islands allow for increased risk levels.

The western North Pacific (WNP) basin shows a good
level of agreement between historical experience and UTC
expectations. Environmental conditions in the basin are
mostly favorable up to the Japanese coast, with very warm
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Figure 11. Peak season climatology (August–October in the Northern Hemisphere and December–February in the Southern Hemisphere for
1980–2023) for ocean surface temperatures (a), vertical wind shear (b), and meridional (c) and zonal (d) components of the 850 hPa winds.
Contour lines correspond to 28 °C ocean temperatures (a), 10 m s−1 wind shear (b), and the 0 m s−1 steering (c, d).

SSTs (Fig. 11a) and weak vertical shear (Fig. 11b). This
translates into a wide region of peak risk to the east and north
of the Philippines. As is the case on the eastern coast of the
US, there is an important decrease in risk when moving north
towards central Japan, with a sharp SST gradient, strong ver-
tical wind shear, and dominant westerly steering flow.

TC activity patterns in the North Indian basin are consis-
tent between model expectations and historical experience
(Fig. 10), with higher risk localized in the northern part of
the Bay of Bengal. The presence of high vertical wind shear
to the south acts to dampen activity; however, we note that
peak activity in the basin does not occur during the August–
October period displayed in Fig. 11 and, as a result, mod-
eled patterns are not further analyzed from a physical point
of view.

The largest discrepancies between UTC expectations and
observation records occur in the Southern Hemisphere (SH).

In particular, the UTC has wider expectations of peak winds
for the northeast (east of Townsville) and northwest of Aus-
tralia (north of Port Hedland), as well as for most of the
northern part of the South Indian (SI) ocean (Fig. 10b). Envi-
ronmental conditions during peak SH season are mostly fa-
vorable in these three regions (Fig. 11), which helps explain
why the UTC expected levels are high. With SSTs around the
28 °C level and wind shear conditions below the 10 m s−1

threshold, these areas are comparable to the Caribbean and
southern Gulf of Mexico regions. Consequently, UTC expec-
tations in terms of peak winds are of similar magnitudes (i.e.,
at the category 5 level). While it is possible that the discrep-
ancies could be attributable to a model bias (e.g., missing
some local physics) or overgeneralization, it is also likely that
events in these regions are underreported in IBTrACS. Cov-
erage of TC events in the South Indian ocean, in particular, is
likely not as thorough as in other basins. In the northeast and

https://doi.org/10.5194/nhess-25-2863-2025 Nat. Hazards Earth Syst. Sci., 25, 2863–2884, 2025



2876 T. Loridan and N. Bruneau: Reask UTC

northwest regions of Australia, historical records are in line
with the UTC expectations at the coast (see also Fig. 13) but
differ further out at sea. Here again, it is possible that events
have been underreported away from their direct landfall im-
pacts (no immediate risk to the population). The alternative
would be that events tend to reach their peaks only at the
coast, and the physical reason for such behavior is missed
by our modeling approach/resolution. Steering flow patterns
(Fig. 11c, d) around Port Hedland are worth noting, as they
help explain the concentration of risk observed historically
over that section of the coast (see Fig. 13r). A corridor of
strong northerly steering above warm SSTs and a weak shear
environment lead to increased risk expectations.

The analysis of Figs. 10 and 11 shows that the UTC, driven
by physical patterns known to be important to TC risk, is able
to reproduce a global TC risk severity distribution that is con-
sistent with historical records. As such, it provides a reliable
tool to assess the impact of climate phases linked to shifts in
patterns of ocean temperatures, vertical wind shear, or steer-
ing currents. As an example, we here briefly discuss the in-
fluence of the ENSO cycle. La Niña events are characterized
by a western shift in warm ocean temperatures in the Pacific,
with a resulting change in atmospheric circulation leading to
reduced (increased) vertical wind shear in the Gulf of Mexico
and Caribbean Sea regions (in the eastern Pacific). With these
shifts in climate patterns directly conditioning the UTC event
generation algorithms, the framework can be used to quan-
tify the impact of the cycle on global TC risk. Here, we show
the annual occurrence of category 3 events across the globe
as modeled by the UTC for El Niño (Fig. 12a) and La Niña
(Fig. 12b) conditions. The differences between both states is
also shown in Fig. 12c. Consistent with the shifts in climate
conditions described above, the risk of major hurricane oc-
currence in the Gulf of Mexico and Caribbean Sea under La
Niña conditions is over 50 % higher than during El Niño con-
ditions, with the opposite happening along the western Mex-
ican coast. In the western Pacific, during El Niño conditions,
the occurrence risk for category 3 events and above increases
by up to 50 % on the eastern side of the basin, while the risk
around the Philippines and the Chinese coast decreases. In
the Southern Hemisphere, during La Niña conditions, cate-
gory 3 occurrence risk increases around the Australian coast
and decreases for the Pacific Islands.

3.1.3 TC landfall risk statistics

From the perspective of risk to society, the most relevant as-
pect to analyze is the severity distribution at landfall. We here
focus on major metropolitan coastal regions across the globe
and use the 110 000 years of UTC activity to assess return
period wind speed levels at landfall (Fig. 13). For each re-
gion, the intensity of events is recorded for both the histor-
ical dataset and the UTC stochastic set. By ranking events
in terms of their peak intensity in a 100 km circle centered

on a given city (y axis, Fig. 13), we can then compute the
associated return periods (x axis, Fig. 13).

For all panels, the 44 years of observations are reported
as black dots, with the most intense events for each region
located at the 44-year return period level. While graphically,
this suggests a 44-year return period for these events, it is
important to acknowledge how unreliable that estimate is.
Quantifying the severity of rare extreme events from such
a short record of observation years is an obvious issue,
and here again the UTC offers an alternative by providing
110 000 years of activity. Return period intensity levels from
the UTC are presented as solid-colored lines up to return pe-
riods of 1 in 300 years (i.e., beyond any available reliable
historical records). Uncertainty bands are also reported by
overlaying the regions covered by UTC subsets of 44 years
(shaded areas). The darker shaded region captures the spread
between the 5th and 95th percentiles from all 44-year sub-
sets. The lighter shaded region extends to the entire dataset,
showing the spread between the two most extreme 44-year
subsets available in the 110 000-year simulation.

In all cases, the historical records fall within the range
covered by the lighter shaded area, showing that our histor-
ical experience is contained within the distribution modeled
by the UTC. The majority of data points are also contained
in the range covered by the 5th to 95th quantiles, with the
relative positions of the modeled averaged view (solid line)
and historical records (dark line with dots) varying from one
city to another. The modeled view sometimes suggests higher
(e.g., Hong Kong SAR – Fig. 13o) or lower (e.g., New York
– Fig. 13d) expected risk than experienced. As was the case
for the discussion of Fig. 11, these discrepancies are mostly
attributable to the limited length of historical records (un-
dersampling of the risk) but could also be the result of local
physical patterns being missed by the UTC modeling frame-
work. The spatial resolution of the forcing climate data can,
for instance, be too coarse to capture local steering shifts or
sharp SST gradients in some regions (for example, around
the Gulf Stream).

3.2 Impact of climate variability

The exercise presented in Sect. 3.1 focused on analyzing TC
risk under the climate conditions observed between 1980 and
2023. Here, we expand the analysis to consider other climate
conditions that could have occurred over the period (i.e., di-
mension B in Sect. 2.1). For this purpose, we ran an addi-
tional 550 000 years of stochastic TC activity based on the 50
smoothed biomass burning members of the CESM LENS2
(Rodgers et al., 2021) climate outputs for 1980–2023 (i.e.,
N = 250 samples, for 50 members, each covering the 44-year
period). This allows reproduction of the analysis in Fig. 13,
accounting for variability in the climate of the 1980–2023
period.

Unlike the ERA5 dataset, CESM LENS2 is not a reanal-
ysis product. The data used in this study come from cli-
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Figure 12. Annual occurrence rates of category 3 tropical cyclones for two subsets of the 110 000-year UTC event set, characterizing the 10
strongest El Niño (a) and La Niña (b) seasons in the period 1980–2023; each hemisphere uses the ENSO conditions of the in-season months
(ASO for the Northern Hemisphere and DJF for the Southern Hemisphere). The absolute differences between El Niño and La Niña rates of
Cat3+ are shown in the last panel (c).

mate model runs without extensive assimilation of histori-
cal observations. While this is important to allow sampling
of climate variability over the period, it also provides well-
documented challenges in terms of model biases (Simpson et
al., 2020; Lee et al., 2021).

To address this issue, we first compute a pixel-by-pixel
and per-month climatology across all the members for each
CESM climate variable from Sect. 2.1. We also compute and
store a bias correction that aligns the data to the 1980–2020
ERA5 dataset. This bias correction is then applied to each
member separately, ensuring that:

– on average, all the members are unbiased to ERA5 over
the period 1980–2020, and

– the relative variability of each member is maintained af-
ter the correction is applied.

The stochastic event set used in this section is generated on
this bias-corrected version of CESM LENS2, providing al-
ternative climate TC risk consistent with what has been ob-
served (ERA5) but through different paths.

Figure 14 below shows 60 curves capturing the return
period risk for events crossing segments of the coast in

Louisiana (Fig. 14a) and the Carolinas (Fig. 14b). The 50
blue lines correspond to the 50 CESM LENS2 members and
are each built from 11 000 years of stochastic activity; they
represent 50 different views of the climate over the 1980–
2023 period. The 10 red lines are subsets of the ERA5 forced
stochastic set (i.e., the one analyzed in Sect. 3a). They are
also built from 11 000 years of activity but are all representa-
tive of the exact same climate over the 1980–2023 period (the
one we experienced). By including additional climate condi-
tions, the CESM-driven curves (blue) cover a wider spread
than when only the ERA5 climate is considered (red curves).

This missing variability is important: while the narrow
spread of the red curves provides the impression that the
modeled view of risk has converged, it is important to ac-
knowledge that it is only sampling dimension A. Therefore,
it has converged under the assumption that the only climate
we could have observed over the 1980–2023 period is the
one portrayed by ERA5. When considering the alternative
climates from CESM, the spread widens (blue curves). The
UTC is now sampling a more complete risk distribution.

At the category 5 wind speed threshold of 70 m s−1 for in-
stance, the red curves all assign a return period between 40
and 45 years in Louisiana (Fig. 14a). The range covered by
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Figure 13. Return period of maximum 1 min sustained wind levels (m s−1) in a 100 km circle centered on major coastal cities across the
six active TC basins of the world. The thick, dark dotted line provides historical information for the period 1980–2023. The lighter shaded
regions show the whole range simulated by the model considering 2500 samples of 44 years, while the darker shaded regions show the
5th–95th interval. Finally, the colored line illustrates the converged view, aggregating the 110 000 years of stochastic simulations.

the blue curves, on the other hand, goes from 40 to 80 years,
suggesting that the return period for Cat5 winds along that
section of the coast could be much lower and that the cli-
mate experienced along the Louisiana coast may have been
on the unlucky side with regards to its influence on hurri-
cane risk. At the same threshold of 70 m s−1 along the Car-
olina coast, the ERA5-driven view of risk is once again con-
verged towards an estimate of 160–180 years. However, once

we allow sampling from the wider range of climates covered
by the CESM simulations, the estimates range from 100 to
300 years. Note that similar patterns can be observed at other
intensity thresholds, with the width of the CESM spread nar-
rowing for lower winds.

The ability to sample dimension B comes with a heavy
computing cost (5x dimension A in the example above). Yet,
the analysis of Fig. 14 shows that it has an important impact
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Figure 14. Return period of maximum 1 min sustained wind levels (m s−1) along two segments of the US coast (inset) for 10 sets of an
11 000-year event set driven by ERA5 1980–2023 climate (red curves) and 50 sets of 11 000 years driven by the CESM LENS2 over the
same period (blue curves).

on our estimates of landfall risk distributions. The inclusion
of that extra layer of risk variability is even more important
when considering risk under future climate conditions, given
the larger associated uncertainty. The use of the UTC to de-
rive a forward-looking TC event set will be presented in a
follow-up study, with two key use cases:

1. Deploy the UTC with seasonal climate projections (e.g.,
51 members from the ECMWF monthly seasonal fore-
cast). This allows generation of a seasonally condi-
tioned TC stochastic event set, translating projected
anomalies in SST, wind steering, and vertical wind
shear patterns into regional shifts in TC risk for the sea-
son ahead.

2. Deploy the UTC with future climate projections (e.g.,
CESM members for the 2025–2100 period). This allows
analysis of projected shifts in regional TC risk over the
coming decades, under varying levels of global warm-
ing.

In both use cases above, the inclusion of dimension B is crit-
ical. Focusing on only one climate path vastly undersamples
the full risk distribution, with important implications in terms
of risk management and mitigation.

4 Conclusion

Stochastic event sets have made it possible to understand and
manage tropical cyclone (TC) risk for over 3 decades. They
are particularly useful in quantifying tail risk far beyond his-
torical experience. However, to date, they have mostly been
built from statistical relationships fit to historical records,
without accounting for variability in the state of the climate.
We here present an alternative approach (Unified Tropical

Cyclone – UTC), where we explicitly connect the event gen-
eration algorithms to an input climate state. After an ini-
tial description of all algorithms involved in the climate-
connected event generation process, we show results from
two stochastic event sets representative of the 1980–2023 cli-
mate.

First, we force the UTC with reanalysis data over the pe-
riod and compare the resulting view of risk to historical
records. This analysis shows that the UTC modeled view
is consistent with our historical experience over the past 44
years. It also highlights known limitations when it comes to
assessing risk levels from historical records only: the period
of reliable global records is too small, and, as a result, (i) it
undersamples the spatial distribution of risk (Fig. 10) and
(ii) misrepresents the likelihood of rare extreme events (i.e.,
tail risk, Fig. 12). Using 110 000 years of stochastic activity
from the UTC helps in analyzing global TC risk beyond these
limitations.

We then extend the analysis using additional forcing from
a global climate model (CESM LENS2) over the same pe-
riod to quantify the impact of climate variability. Accounting
for this additional dimension of risk variability increases the
sampling space (Fig. 14) and allows analysis of physically
realistic scenarios that fall outside of the scope covered by
traditional TC risk assessment frameworks. While we take
measures to correct for model biases, a limitation of the cur-
rent analysis is the use of a single model source (CESM).
Future work will aim to include alternative model sources to
expand the range of climate forcing considered.

The natural next step is to deploy the UTC under forward-
looking climate scenarios, allowing risk assessment in the
context of the season ahead or mitigation and planning strate-
gies for the decades ahead. For such applications, the need to
include sampling of climate variability (dimension B) is even
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more important, given the additional uncertainty associated
with future climate projections and pathways.

Appendix A: Technical description of event generation
algorithms

A1 Principal component analysis of gridded climate
data

In machine learning terminology, principal component anal-
ysis (PCA) falls into the category of unsupervised learning
algorithms. These are methods designed to identify patterns
in large datasets without being told what to look for (the
learning step does not involve any explicit target). Thanks
to PCA, gridded fields can be decomposed into a series of
patterns ranked in terms of how much data variability they
explain. A typical use of PCA is then to select only a subset
of all patterns (those that explain most of the variability) to
reduce the dimension of the original dataset. The approach
applied here differs slightly in that the subset of patterns is
selected based on how those patterns correlate to TC activity
in various basins of the world (e.g., see Fig. 4).

Prior to PCA, the raw gridded fields are standardized via
a centering/scaling step, where the time average of each cell
is removed (centering) before normalization by the cell stan-
dard deviation over the time dimension (scaling). For each
climate field (i.e., FLD=SST, MSLP, U850, U250, V850,
V250, or SHR – see Sect. 2.2), a PCA is then performed on
the standardized array. This results in the projection of the
gridded fields into a set of orthogonal vectors (principal com-
ponents – PCFLD,i – see Fig. 3) with associated coordinates,
or weights (WFLD,i).

For a given field (e.g., FLD=SST), the full decomposition
of the raw monthly arrays can be formulated as follows:

FLD(t)=MUFLD+SDFLD×

Npc∑
i=1

WFLD,i(t)PCFLD,i, (A1)

where MUFLD is the time-averaged field array, SDFLD is the
standard deviation array, Npc is the total number of princi-
pal components, and t is the time variable (monthly resolu-
tion). Note that the decomposition above can also be applied
to stacked combinations of fields, where several arrays are
layered. These will be referred to with a “+” sign in the fol-
lowing (e.g., FLD=SST+SHR+MSLP; see connector 3
in Appendix A2).

A2 List of climate connectors selected to condition TC
activity

By computing the correlation between TC activity in each of
the world’s active basins and the WFLD,i averaged over sev-
eral months covering peak season activity, we can identify
PCFLD,i fields that are good candidates to connect climate
state and TC occurrence (see Fig. 4). After screening these

candidates to ensure that the physical reasons for the corre-
lation are understood (see example in Sect. 2.2.1), we end up
with a selection of 13 PCFLD,i physical patterns to character-
ize a global climate state. The scalar values in Table A1 are
referred to as climate connectors and are used to condition
TC activity globally.

To capture a realistic distribution of activity within the
basins, we define broad sub-regions (Fig. A1). After initial
sampling of the basin-wide activity, a series of hierarchical
Bayesian models are used to approximate the contribution
of each sub-region to the total activity number (i.e., ratio of
total activity). To incorporate regional climate patterns of in-
fluence, several additional climate connectors are involved
in the conditioning of the sub-region models (see example
Fig. A2); these are listed in Table A2. The sampling chain of
the hierarchical Bayesian model is also provided in Fig. A1.

A3 Bayesian generalized linear model for TC annual
frequency

Bayesian generalized linear models (GLMs) are commonly
used to model conditional distributions when the training
data are scarce (Elsner and Jagger, 2004). In this study, we
use a Poisson GLM to model the conditional distribution of
annual tropical cyclones in each basin. The λ rate from the
Poisson distribution is conditioned on selected climate con-
nectors (see Sect. A2). We use TC storm count data by season
for the 1980–2020 period to train the relationship between λ
and the climate state as described by the selected connector
values.

As an example, the simplified model of Fig. 5 is presented
below:

nTCk ∼ Poisson(λk)

log(λk)= β0+β1CNA,1(k), (A2)

where k is an index for the season of interest and nTCk repre-
sents the number of storms occurring in that year (season). A
Poisson process is assumed, with λk referring to the rate for
season k, and the logarithm of λk is modeled as a function
of the July–November average WSST,3 (i.e., connector 1 in
Sect. A2 and the relationship shown in Fig. 4). The parame-
ter vector β = (β0,β1) is specified by a multivariate normal
distribution, as discussed in Elsner and Jagger (2004).

The complete model, as implemented in the UTC, involves
three connectors for the North Atlantic basin:

log(λk)=β0+β1CNA,1(k)+β2CNA,2(k)

+β3CNA,3(k). (A3)

Genesis models for all other active basins follow a similar
structure, with the description of connectors involved in each
model detailed in Table A1.
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Table A1. List of connectors selected to condition the UTC model.

Basin Region Variable PCA Period Formulation

Northern Hemisphere
(NA, WP & EP)

Global SST PCA 3 July–
November

CNA,1(k)=
1
5

t=November(k)∑
t=July(k)

WSST,3(t),

where k is an index for the year.

North Atlantic (NA) NA only MSLP PCA 3 July–
September

CNA,2(k)=
1
3

t=October(k)∑
t=August(k)

WMSLP,3(t)

North Atlantic NA only SST, SHR,
MSLP

PCA 1 July–
November

CNA,3(k)=
1
3

t=September(k)∑
t=July(k)

WSST+SHR+MSLP,1(t)

Western North Pacific
(WP)

WP only Usteering,
SHR

PCA 6 April–August idem

Eastern North Pacific
(EP)

EP only SST, SHR,
MSLP

PCA 3 September–
November

. . .

North Indian (NI) NI only SHR PCA 9 April–August . . .

North Indian (NI) NI only Usteering,
SST

PCA 6 March–
September

. . .

Southern Hemisphere Global SST PCA 3 January–March . . .

Southwestern Indian Global SHR PCA 8 February–April . . .

Australia Global Usteering,
SST, MSLP

PCA 5 December–
February

. . .

Australia Australia SHR, MSLP PCA 9 August–
September

. . .

Southern Pacific Pacific Usteering,
SHR, MSLP

PCA 4 February–April . . .

Southern Pacific Pacific Usteering,
SHR, MSLP

PCA 8 January–March . . .

Figure A1. Sub-regions for tropical cyclone genesis, and chain of hierarchical Bayesian models.
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Table A2. List of connectors selected to condition the UTC model for sub-region activity.

Basin Region Variable PCA Period Sub-region

North Atlantic (NA) NA only SST, SHR, MSLP PCA 3 July–November Main development region (MDR)
North Atlantic (NA) NA only MSLP PCA 9 June–October Gulf of Mexico and Caribbean Sea
Eastern North Pacific (EP) Global MSLP PCA 3 July–September Eastern part of EP

Figure A2. Example of climate connector used to condition the ratio of North Atlantic storms seeded in the MDR region. (a) Relationship
between the climate connector chosen (see Table A2 – first row) and the rate in MDR. Panels (b), (c) and (d) show the mode of variability
associated with this climate connector.

A4 Random forests and quantile regression forest
algorithms

Supervised learning refers to the sub-group of ML algorithms
that require an explicit target during the training phase. When
trained with a large volume of data and carefully set up to
avoid overfitting issues, these algorithms offer a very power-
ful tool to extract relationships without the need for a human
to parameterize and tune their form. In this study, we rely
mainly on a family of such algorithms called random forests
because of their flexibility and robustness with regard to the
overfitting issue.

The building block at the core of the random forest algo-
rithm is the decision tree. Decision trees are essentially a se-
ries of nested if–then statements designed to recursively par-
tition the training data into smaller groups that are more ho-
mogeneous with regards to the target. They are very popular
due to their transparency and ease of interpretation. However,

they are also known to lack stability, and small perturbations
in the data can lead to very different tree architectures.

The random forest algorithm (Breiman, 2001) was devel-
oped to overcome these limitations by grouping together a
large number of decision trees trained under slightly differ-
ent conditions (random subsets of the input data and features
at each tree node). The resulting ensemble of trees is then
used as a cohort, and the prediction from the forest is ob-
tained by averaging each tree’s vote. This greatly reduces the
challenges of overfitting and leads to a much more stable al-
gorithm.

When used on new data to make a prediction, a random
forest estimates the mean from the outcome distribution. In
some cases, such as the example of Sect. 2.2.6, this is suf-
ficient information. However, in other cases, it is desirable
to retain information about the entire outcome distribution
rather than simply focus on the mean prediction.

For such cases, we leverage an algorithm called quantile
regression forest (Meinshausen, 2006), designed to keep the
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value of all observations in the terminal leaves to allow as-
sessment of the full conditional distribution when making a
prediction on new data. This contrasts with the standard ran-
dom forest, where only the mean of observations in the leaves
is kept (see Loridan et al., 2017, for more details).

In Sect. 2.2.6, we use a random forest algorithm to model
lysis probability. To train the algorithm, we first assign a tar-
get lysis probability value to all historical TC track points in
the IBTrACS database. Note that the target probabilities are
capped at 0.5, acknowledging that some ambiguity can exist
around the decision to stop reporting an event (i.e., the last
point is not an exact representation of the time of lysis):

– Points for which a lysis occurred (last point recorded for
a given event) are assigned a value of 0.5.

– Points within 24 h of lysis are assigned a value be-
tween 0 and 0.5 to reflect the belief that lysis was a
likely possibility, following a simple linear law, i.e.,
Plysis(tlysis− t)=

1
2t .

– All others points are assigned a value of 0.

We then train a random forest to predict this scalar value.
Pressure field and pressure change to the previous time step,
climate conditions (MSLP, SST, SHR, and their spatial gradi-
ent at the storm location), topography, time spent over land,
and distance traveled over land are provided to the random
forest algorithm to predict the probability of lysis.

Quantile regression forest (QRF) algorithms are the build-
ing block of our Markov chain Monte Carlo (MCMC) mod-
eling of event trajectories and intensity evolution. We train
the various QRFs involved to predict distributions of the
hourly changes in latitude, longitude, and center pressure
from knowledge of the event parameters at the current and
previous step as well as the local environment (SST, vertical
wind shear, and steering flow). The end result is a collection
of QRF algorithms able to efficiently generate conditional
distributions on the fly at every event time step knowing the
state of the climate, therefore allowing sampling of all pa-
rameters needed to update the track to its next state (i.e., next
center position and intensity).
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