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Abstract. Recent studies have reported more extreme, com-
pounding impacts from multi-hazards than from single haz-
ards owing to complex interrelationships of hazard, expo-
sure, and vulnerability. However, our current understanding
of multi-hazard impacts is primarily based on case studies
of individual events. To complement this, we examine dis-
aster records of the global emergency events database EM-
DAT for the period 2000-2018. We develop an algorithm to
identify multi-hazard events using information on associated
hazards as well as spatiotemporal relationships between dis-
aster records. We find that 35 % of events are multi-hazard
events and 61 % of hazards are associated with them, based
on a spatial overlap of at least 50 % and a time lag of at most
3 months. The hazards associated with multi-hazard events
account for 78 % of total damages, 83 % of total people af-
fected, and 69 % of total deaths. We also statistically com-
pare the impacts of hazard pairs, single hazards, and combi-
nations of two single hazards. The analysis suggests distinct
patterns of compounding impacts, which vary depending on
hazard and impact type. We conceptualise four archetypes
(“the whole is greater than the sum of its parts”, “the whole
equals the sum of its parts”, “one part determines the whole”,
and “the whole and the parts are limited by total impact”)
to describe these patterns and to guide the integration of
multi-hazard interrelationships into risk assessments. Across
all archetypes, hazard pairs have at least as much impact as
single hazards, but their impact can be higher than, compa-
rable to, or lower than the combined impact of two single
hazards. The uncertainties and limitations encountered in our
study highlight the need for future research to improve data
on multi-hazards and their impacts.

1 Introduction

In the past decade, multiple studies have reported dis-
proportionate impact amplifications during multi-hazard or
compound events (Gill and Malamud, 2016; de Ruiter et
al., 2020; Zscheischler et al., 2018). Such events are charac-
terised by hazardous conditions overlapping in space or time
or both. Examples are the 2018 Osaka earthquake followed
by flooding and landslides (de Ruiter et al., 2020); concur-
rent heatwaves in major breadbasket regions (Kornhuber et
al., 2020); and floods from spatially and temporally coincid-
ing pluvial, fluvial, and coastal drivers (Eilander et al., 2023).

Impact amplifications during multi-hazard events can arise
from several different elements of disaster risk that interrelate
with each other (De Angeli et al., 2022). These interrelation-
ships can be on the hazard, exposure, and vulnerability level
and include feedback and dynamic processes. Throughout
the article, we follow the United Nations Office for Disaster
Risk Reduction (UNDRR) (2017) definitions for risk, haz-
ard, exposure, and vulnerability. Moreover, we use the term
“multi-hazard impact” for impact generated from multiple
hazards and accounting for all interrelationships on any level
following Ward et al. (2022). Table 1 provides an overview
of the key definitions used in this article.

It is widely recognised that disregarding such interrela-
tionships can lead to an over- or underestimation of risk
(De Angeli et al., 2022; Hillier et al., 2020; Kappes et
al., 2012; Leonard et al., 2014; de Ruiter and van Loon, 2022;
Terzi et al., 2019; Ward et al., 2022; Zscheischler and Senevi-
ratne, 2017). It can also lead to ineffective or even harmful
risk reduction strategies as measures to decrease the risk of
one hazard may lead to an increase in risk of another hazard
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Table 1. Definitions of terms used in this article.

Term Definition Source

Risk a combination of hazard, exposure, and vulnerability as illustrated by UNDRR (2017)
the conceptual equation Hazard x Exposure x Vulnerability

Hazard a process, phenomenon or human activity that may cause loss of life, injury, or other health UNDRR (2017)
impacts, property damage, social and economic disruption, or environmental degradation

Exposure the situation of people, infrastructure, housing, production capacities, and UNDRR (2017)

other tangible human assets located in hazard-prone areas

Vulnerability

the conditions determined by physical, social, economic, and environmental factors

UNDRR (2017)

or processes which increase the susceptibility of an individual, a community, assets,

or systems to the impacts of hazards

Multi-hazard

the selection of multiple major hazards that the country faces and the specific contexts

UNDRR (2017)

where specific hazards may occur over time simultaneously, cascadingly, or
cumulatively over time, and taking into account interrelated effects

Multi-hazard
impact/risk

impact/risk generated from multiple hazards as well the interrelationships between
these hazards and on the vulnerability and exposure level

Ward et al. (2022)

(van den Hurk et al., 2023; de Ruiter et al., 2020; Ward et
al., 2022). This means that multi-hazard impact cannot sim-
ply be modelled by adding up the impacts from single hazard
models, which is known as the multilayer single-hazard ap-
proach (Zschau, 2017). Instead, interrelationships of the risk
elements should be considered in risk modelling, as high-
lighted in the UN’s Sendai Framework (UNDRR, 2017) and
reflected in the IPCC’s AR6 cycle (IPCC, 2023).

So far, most multi-hazard research has focused on hazard—
hazard interrelationships, and several classification systems
have been proposed (De Angeli et al., 2022; Gill and
Malamud, 2014; Liu et al., 2016; Tilloy et al., 2019; van
Westen and Greiving, 2017; Zscheischler et al., 2020).
Though the terms used in these classifications differ, they
describe similar and overlapping concepts including statis-
tical (in)dependence between hazards, spatiotemporal rela-
tionships, amplifications of magnitude, and triggering rela-
tionships. Methodological reviews and guidelines for quan-
tifying interrelationships have also been published (Bevac-
qua et al., 2021; Tilloy et al., 2019). Hazard—exposure and
hazard—vulnerability interrelationships have been researched
less extensively, but a number of types have already been
identified. For instance, changes in exposure can arise due
to migration and evacuation (Tierolf et al., 2023) or due to
losses and damages from a previous hazard that have not yet
been recovered from (De Angeli et al., 2022). Furthermore,
de Ruiter and van Loon (2022) identified and discuss key
types of dynamics of vulnerability, such as the effects of an
earlier hazard on the vulnerability at the time of a second
hazard. It has also been identified that a combined load from
multiple hazards can cause higher damages than the summed
damages of the separate hazards (Li et al., 2012; Zuccaro et
al., 2008).
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To our knowledge, few studies exist that consider the inter-
relationships on all levels together to investigate their overall
effect on impact. One example is the comprehensive mod-
elling framework developed by De Angeli et al. (2022),
which integrates interrelationships on all levels to assess
multi-hazard impact on the built environment and illustrates
this by a case study with a hypothetical combined seismic
and flood scenario. Another example is the multivariate lin-
ear regression analysis by Budimir et al. (2014), which shows
that past earthquake-and-landslide events were associated
with more fatalities than earthquakes alone when consider-
ing several independent covariates representing hazard, ex-
posure, and vulnerability elements. However, data limitations
prevented the authors from assessing whether the hazard pair
is associated with more fatalities than the sum of the con-
stituent hazards or, in other words, whether impact amplifi-
cations arise.

In general, the way in which impact data are currently col-
lected and stored makes it difficult to study and understand
compounding impacts in a multi-hazard or compound event
context. Issues range from missing data and biases, which
affect the reliability of the data (e.g. Gall et al., 2009), to
the single-hazard focus and limited spatiotemporal informa-
tion of many well-known impact databases, such as HANZE
for floods (Paprotny et al., 2018); the NOAA natural haz-
ards data for tsunamis, earthquakes, and volcanic eruptions
(NOAA, 2025); and DesInventar (DesInventar, 2025) for var-
ious types of hazards. The single-hazard focus necessitates
the investigation and linkage of possible multi-hazard con-
ditions, but this is hindered by limited spatiotemporal infor-
mation. Finally, impacts are being observed and stored on an
event level and additional (statistical) methods are needed to
attribute them to individual hazard components (Budimir et
al., 2014).
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Recently, Lee et al. (2024) have shown that the informa-
tion on main and associated disasters in the emergency events
database EM-DAT (Delforge et al., 2023) can be used to
classify the disaster records into different types of multi-
hazard events. However, hazards occurring simultaneously
or in close succession at the same location have been re-
ported in separate disaster records in multiple instances. The
Guatemala 2010 volcanic eruption and tropical cyclone (Gill
and Malamud, 2014) and the tropical cyclones Idai and Ken-
neth hitting Mozambique in 2019 (de Ruiter and van Loon,
2022) are two examples of hazards that are recognised as
multi-hazard events in the scientific literature but reported
as separate records in EM-DAT.

New possibilities for leveraging EM-DAT for multi-hazard
analyses arise from the recently developed GDIS dataset of
geocoded disaster locations (Rosvold and Buhaug, 2021) and
MYRIAD-HESA, an algorithm for identifying multi-hazard
events on the basis of spatiotemporal overlaps (Claassen et
al., 2023). In this article, we make use of these possibilities in
order to re-examine the disaster records in EM-DAT. Our aim
is to gain a better understanding of compounding impacts of
multi-hazards for different types of hazards and impacts.

We identify multi-hazard events following the approach by
Lee et al. (2024) in combination with the GDIS dataset and
a MYRIAD-HESA-inspired algorithm to account for spa-
tiotemporal overlaps of disaster records. We focus on events
with a (partial) spatial overlap and their immediate impacts
rather than so-called systemic or complex impacts which
can also arise from spatially distinct but temporally coin-
ciding events due to global and sectoral interconnectedness
(Hochrainer-Stigler et al., 2020; Simpson et al., 2021). We
extract and derive impacts of hazard pairs and impacts of
single hazards for different hazard types and perform a sta-
tistical analysis to compare impacts of hazard pairs, single
hazards, and combinations of two single hazards. Based on
the identified differences and similarities, we distinguish four
“archetypes” of compounding impacts, which can guide the
integration of multi-hazard interrelationships into risk assess-
ments.

2 Data

This study uses the international disaster database EM-DAT
(Delforge et al., 2023), which contains information on natu-
ral hazards and their impacts, together with the global dataset
of geocoded disaster locations GDIS (Rosvold and Buhaug,
2021), which contains geospatial footprints of the impact ar-
eas.

2.1 EM-DAT
EM-DAT is, to our knowledge, the only publicly available

data source with global coverage of disaster events that in-
cludes multiple hazard types and quantitative information on
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socio-economic impacts. The database records events with
substantial impact that are related to natural and technolog-
ical hazards from 1900-present. Substantial impact is de-
fined as an event that resulted in at least one of the fol-
lowing: at least 10 deaths, at least 100 people affected, a
call for international assistance, or an emergency declaration.
Each entry corresponds to a disaster event at country level.
Events that span multiple countries are reported separately
for each country, as opposed to being recorded as a single
physical disaster event. For example, the 2004 Indian Ocean
earthquake and tsunami is reported in 12 individual disas-
ter records, including records in several Asian and African
countries.

Each disaster record in EM-DAT contains mandatory and
optional fields. The mandatory fields relevant to this study
are the unique event identifier, the country, the continent, the
start year, and the disaster type. We also use the optional
fields, although data are frequently missing. Relevant op-
tional fields are the disaster subtype; a first and second asso-
ciated disaster, which represent subsequent or co-occurring
hazards that may have contributed to the disaster impact; the
start date and end date; and several human and economic im-
pact variables.

In terms of impact, we consider the number of people af-
fected, number of deaths, and damages. Throughout the fol-
lowing sections we will use the term “impact” to refer to
these three quantities. Their definitions are as follows.

— Number of people affected: number injured, number af-
fected, and number homeless, where number affected
are the people needing immediate assistance due to
the disaster. If only the number of families affected or
houses damaged are reported, the figure is multiplied by
the average family size for the affected area.

— Number of deaths: confirmed fatalities directly imputed
to the disaster plus missing people whose whereabouts
since the disaster have been unknown and so they are
presumed dead based on official figures.

— Damages: total economic damages in US dollars ad-
justed for inflation.

While EM-DAT is widely used in disaster risk science (Jones
et al., 2022), it has well-known issues related to reporting
biases (Gall et al., 2009) and regarding the general reliabil-
ity and accuracy of the impact data (Guha-Sapir and Below,
2002; Moriyama et al., 2018; Panwar and Sen, 2020). The
biases are due to having entire records missing rather than
fields missing within records (Gall et al., 2009). These in-
clude time bias, hazard-related bias, threshold bias, account-
ing bias, geographic bias, and systemic bias. We exclude
data from before the year 2000 to minimise time bias as
recommended by the maintainers of EM-DAT (Delforge et
al., 2023). However, the other bias types remain, posing a
limitation to this study. For example, heatwaves are known
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to be underreported in EM-DAT (Brimicombe et al., 2021;
Harrington and Otto, 2020).

Guidelines for handling biases and missingness are still
lacking in disaster risk science. Approaches for missingness
differ across studies. Deletion, augmentation, and imputa-
tion, or a combination of these, are most common for studies
using EM-DAT as a primary or secondary data source (Jones
et al., 2023). Deletion is simpler but deemed inferior to aug-
mentation and imputation because it poses a higher risk of
introducing bias especially when data are missing not at ran-
dom! (Nakagawa and Freckleton, 2008). However, bias can
be introduced by augmentation and imputation as well if the
dataset used to develop those methods is already biased due
to the missing cases.

We use two approaches for dealing with missing data.
First, we use a deletion approach for distributions or statistics
of hazard impacts. The approach, called “available case anal-
ysis”, utilises only the observed data points for each variable.
Because variables with few observations are less likely to be
representative of the various possible underlying conditions
in terms of hazard intensity, vulnerability, and exposure than
variables with many observations, we only conduct in-depth
analyses for variables with at least 50 observations. Second,
we use an imputation approach for total aggregate results
that involve sums. Here, we assume missing values to be ze-
ros. This is currently the standard approach in the literature
though it inevitably leads to an underestimation of total im-
pacts (Jones et al., 2023; Lee et al., 2024). After preprocess-
ing to handle biases and missingness, we obtained a data sub-
set containing 5868 disaster records of which 74 % have one
hazard, 22 % have two hazards, and 4 % have three hazards.
This corresponds to a total of 7605 hazards (5868 x 74 % x 1
+ 5868 x 22 % x 2 4 5868 x 4 % x 3 =7605).

2.2 GDIS

GDIS is an open-source extension to EM-DAT and provides
geographical approximations for main geophysical, meteoro-
logical, hydrological, and climatological disaster types from
1960-2018 (Rosvold and Buhaug, 2021). It includes spatial
geometries for floods, storms, earthquakes, volcanic activity,
extreme temperatures, landslides, and droughts, but not for
wildfires. Overall, GDIS provides impact zones for almost
90 % of these types of records.

The spatial geometries in GDIS correspond to administra-
tive areas, as contained in the Global Administrative Areas
database (GADM). The geometries are derived from EM-
DAT’s country field or optional “Location” field, which lists
the name(s) of the affected administrative area(s), or “Lati-
tude” and “Longitude” fields, which provide coordinates for
the location. Most locations can be described on the spatial

1“Missing not at random” is a statistical term referring to the
likelihood of data being missing being dependent on characteristics
of the disaster event (Rubin, 1976), for example, geographic loca-
tion or disaster type.
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resolution of administrative level 1 (typical state/province/re-
gion). The highest resolution corresponds to level 3 (distric-
t/commune/village) and the lowest resolution corresponds to
level O (country). However, as hazards are unlikely to affect
the precise area of an administrative region, the spatial ge-
ometries have to be regarded as crude approximates of the
impact zones.

3 Method

Our method has two main parts and is outlined in Fig. 1. In
the first part we re-classify the disaster records into single-
hazard and multi-hazard events. In the second part we anal-
yse the impacts. The corresponding python code can be
found on GitHub.

The first part involves three steps. First, we preprocess
the EM-DAT disaster records by geo-referencing them us-
ing GDIS (Sect. 3.1.1). Second, we identify spatiotemporally
overlapping disaster record pairs (Sect. 3.1.2). Third, we de-
rive the single-hazard and multi-hazard events (Sect. 3.1.3).

The second part also involves three steps. First, we as-
sess the share of multi-hazards and their impacts in global
disasters (Sect. 3.2.1). Second, we identify and statistically
compare impacts of hazard pairs, single hazards, and com-
binations of two single hazards (Sect. 3.2.2). Third, we iden-
tify and conceptualise patterns of compounding impacts from
multi-hazards in four distinct archetypes (Sect. 3.2.3).

3.1 Re-classifying disaster records into single-hazard
and multi-hazard events

In this section, we describe the three steps to identify single-
hazard and multi-hazard events based on the EM-DAT disas-
ter records and their GDIS locations.

3.1.1 Preprocessing and georeferencing disaster
records

We preprocess and geo-reference disaster records using EM-
DAT and GDIS data. Given the properties of, and guidelines
for, the datasets, we only include disaster records that fall
within the period 2000-2018 and belong to one of the seven
disaster types listed in the second column of Table 2.

EM-DAT uses a hierarchical classification system with
types and subtypes for the main disasters. The associated dis-
asters do not follow the main classification system of EM-
DAT but appear to correspond to either the disaster type or
the disaster subtype. For consistency we map them to a disas-
ter type. If the associated disasters cannot be mapped to one
of the seven disaster types, we exclude the record from the
analysis.

In the remainder of the paper we use the term hazard types
instead of disaster type to be in line with terminology of the
disaster risk field (Murray et al., 2021). We use nine different
hazard types that capture different combinations of disaster
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Figure 1. The two main parts and sub-steps of the methodology.

type and subtype, as well as the associated disasters. EM-
DAT records that contain other hazard types are excluded for
this analysis. We use the same terms for the hazard types as
Claassen et al. (2023); they are given in the first column of
Table 2.

Finally, we link the GDIS geometries to the EM-DAT
dataset via the unique disaster event identifier that is present
in both datasets.

3.1.2 Identifying spatiotemporally overlapping disaster
record pairs

We identify spatiotemporal overlaps between pairs of disas-
ter records using their spatial geometries and dates. We ex-
plain the algorithm with the illustration in Fig. 2. This ex-
ample has five disaster records A-E. Figure 2a shows the
relevant information for the algorithm as obtained from EM-
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DAT. Each disaster record has a start date and a main haz-
ard type, as well as optionally one or two associated hazard
types. End dates are often missing. The algorithm works as
follows.

1. We create a list of all possible pairwise combinations of
disaster records per country. We focus on pairs within a
single country because this is how disasters are recorded
in EM-DAT. Alternatively, we could have merged the
records of different countries when they correspond to
the same physical disaster event. This would give a bet-
ter estimation of the number of events from a phys-
ical perspective. However, our main goal is to assess
and compare differences in impact from single-hazards
and multi-hazards, focussing on spatiotemporal over-
laps. We reason that considering the records of different
countries individually enables us to better separate areas
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Table 2. Hazard types used in this article versus terms used in EM-DAT.

Terms used in this article Terms used in EM-DAT
Hazard types Disaster type Disaster subtype Associated disaster
Earthquake (eq) carthquake ground movement earthquake
Tsunami (ts) tsunami tsunami/tidal wave,
Volcanic eruption (vo) volcanic activity ashfall, lahar, pyroclastic flow, lava flow  volcanic activity
. . landslide, rockfall, mudslide, avalanche  slide (land, mud, snow, rock),
Landslide (1s) landslide (snow, debris, mudflow, rock) avalanche (snow, debris)
Cold wave (cw) cold wave cold wave
extreme temperature
Heatwave (hw) heatwave heatwave
Extreme wind (ew) storm convectlve': storm, tropical cyclone, storm
extra-tropical storm
Flood (fl) flood coastal flood, riverine flood, flash flood flood
Drought (dr) drought all (drought) drought

that are affected by multiple hazards from areas that are
affected by a single hazard. Supposing disaster records
A-E are in one country, then all possible pairs would be
“A,B”, “A,C”,“A, D7, “A,E”, “B, C”, “B, D”, “B, E”,
and “D, E”.

2. We assess the spatial overlap for each of the pairs from
step (1). We calculate the intersecting area between the
records as well as the fractions of the intersecting areas
compared to the areas of the individual events. We refer
to the higher value of the two fractions as the intersec-
tion percentage and use a minimum value as criterion to
define spatially overlapping disaster records. We reason
that the greater the intersecting area of two footprints,
the more likely it is that the actual disaster impact zones
overlap. We use a threshold of 50 % and perform a sen-
sitivity analysis (0 %, 25 %, 50 %, 75 %, 100 %)2 on this
choice. Given the spatial geometries in Fig. 2b, the spa-
tially overlapping pairs would be “A, B”, “A, C”, and
“B, D”.

3. We assess the temporal overlap for each of the pairs
from step (1). We calculate the time difference between
the start dates of the pair. We use a maximum time lag
as a criterion to define temporally overlapping disas-
ter records. We use a time lag of 3 months and per-
form a sensitivity analysis on this choice (0, 1, 3, 6, and
12 months).? Figure 2c depicts the time lags. Supposing
all the times between disasters (Afy;, At3p, Aty3, and
Atsq) are 1 month, the temporally overlapping pairs us-

2The criterion is “=" for all spatial overlap values, except for

W@

the 0 % value. In this case the criterion is “>"".

3The criterion is “=" for all time lag values.
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ing a 3-month time lag would be “A, B”, “A, C”, “A, D”,
“B, C”, “B, D”, “B, E”, and “D, E”.

4. We identify all spatiotemporally overlapping disaster
record pairs based on the previous assessments of spa-
tial and temporal overlap. In the example, these are “A,
B”, “A, C”, and “B, D”.

3.1.3 Deriving events

We derive single-hazard events and multi-hazard events by
identifying all disaster records that have potentially con-
tributed to the reported impact through direct or indirect spa-
tiotemporal overlaps. We use an iterative algorithm on the
previously identified overlapping disaster record pairs. We
explain the algorithm expanding upon the previous example
in Fig. 2d.

— For each disaster record, we find all pairs of spatiotem-
porally overlapping disaster records that include this
disaster record. The other record in the pair is consid-
ered to be a contributing disaster record if it precedes
this record in time. For example, if D is the disas-
ter record of interest, then B is a contributing disaster
record.

— If the contributing disaster record has in turn another
contributing disaster record, we add that one as well,
thus considering indirect contributions. Here, A is con-
tributing disaster record to B. Hence, we add A as con-
tributing disaster record to D as well. Adding indirectly
contributing disaster records is a recursive process. For
the example the recursive process stops here, because A
has no further contributing disaster records.

https://doi.org/10.5194/nhess-25-2751-2025
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(d)

Figure 2. Example with the five disaster records A, B, C, D, and E. (a) Relevant fields obtained from EM-DAT. (b) Spatial geometries
of disaster records. (c) Start dates of disaster records. (d) Disaster records, their contributing disaster records, and corresponding events.
Parentheses indicate events which are fully included in another event. (e) Illustration of how the terms hazard, disaster record, and event

relate to each other.

— An event consists of the disaster record of interest and
all contributing disaster records ordered in time (A, B,
D) as well as the hazards included in those disaster
records (Al, B1, D1, D2). Events which are fully in-
cluded in another event are marked as duplicates and not
used in part of the analysis. They have been events at the
time their impact was recorded but evolved to include
additional hazards later on. For example, “Al, B1” is
fully included in “Al, B1, D1, D2”, which is marked by
parentheses in Fig. 2d. Note that the same hazard can
be part of multiple events. For example, hazard “A1” is
part of event “Al, C1, C2, C3” as well as “Al, B1, DI,
D2~

Figure 2e illustrates how the terms hazard, disaster record,
and event relate to each other.

3.2 Analysing impacts

In this section, we describe the three steps for analysing and
comparing impacts of single-hazards and impacts of multi-
hazards.

3.2.1 Assessing the share of multi-hazards and their
impacts

We follow a number of steps to assess the share of multi-
hazards and their impacts in global disasters, as illustrated
by the flowchart in the box of step 3.2.1 in Fig. 1. The start-
ing point is the derived single- and multi-hazards events with
duplicates removed. First, we determine the total number of
events. The ones that contain one hazard are single-hazard
events. The ones that contain more than one hazard are multi-
hazard events. Then, we determine the share of multi-hazard
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events in the total number of events. We also determine the
share of hazards that occur in multi-hazard events. We de-
termine this by subtracting the share of single-hazards from
100 % to avoid double counting due to hazards being part of
more than one multi-hazard event. The share of single haz-
ards is given by the number of single-hazard events divided
by the total number of hazards in the disaster records and
converted to a percentage. Similarly, we determine the share
of impacts caused by multi-hazards: we subtract the share
of impacts caused by single hazards from 100 %, where the
share of impacts caused by single hazards is the sum of im-
pacts caused by single hazards divided by the total impacts
of all disaster records and converted to a percentage.

3.2.2 Identifying and comparing impacts of hazard
pairs, single hazards, and combinations of two
single hazards

We create a dataset of the human and socioeconomic impacts
of single hazards and of hazard pairs. We focus on damages,
number of people affected, and number of deaths. We create
the dataset by selecting all events (including the duplicates)
consisting of one or two hazards. These would be “A1”, “Al,
B1” and “El, E2” in the example of Fig. 2d. If the event
consists of one hazard, we record a single hazard impact. If
an event consists of two hazards, we record a hazard pair
impact. Note that the hazards of a hazard pair can belong to
one disaster record or two disaster records. If they belong to
two disaster records, we sum their impacts to obtain the total
of both hazards.

If an event consists of more than two hazards, we exclude
it from this part of the analysis. Such events are either partial
duplicates — where the first one or two hazards are already
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represented by another event — or they correspond to a dis-
aster record with three hazards. For example, we exclude the
event “Al, C1, C2, C3”. While “A1” is included as single
hazard, we cannot include “A1, C1” as a hazard pair because
EM-DAT only reports the joint impact of “C1, C2, C3” rather
than the individual impacts of “C1”, “C2” and “C3” sepa-
rately. As a result, the disaster record “C1, C2, C3” is not
included in the analysis. In total, we had to exclude 1079
(18 %) of the EM-DAT disaster records from this part of the
analysis due to the aggregated reporting of impacts for all
hazards within a record.

We examine distributions and compare means to analyse
impacts of hazard pairs, single hazards, and combinations
of two single hazards for different hazard and impact types.
We have the distribution of impacts for hazard pairs and for
single hazards from the previous step but not for the com-
binations of two single hazards. For the latter, we can only
derive the mean by summing the mean impacts of the un-
derlying single hazards. To compare the means, we con-
struct confidence intervals (CIs) with a percentile bootstrap
(N =10000). If the CIs do not overlap, we conclude that the
difference in impacts is statistically significant. Otherwise,
we conclude that the difference is statistically not significant.

3.2.3 Identifying and conceptualising patterns of
compounding impacts

We identify different patterns of compounding impacts based
on the detected differences and similarities in impacts of
hazard pairs, single hazards, and combinations of two sin-
gle hazards. We conceptualise these patterns and call them
archetypes, inspired by the field of system dynamics, which
uses the term to describe common dynamics that recur in
many different settings (Senge, 1990).

4 Results

We first show the share of events that are multi-hazard events
and their impacts (step 3.2.1). Then, we show the results of
the statistical comparison of impacts of hazard pairs, single
hazards, and combinations of two single hazards (step 3.2.2).
Finally, we describe distinct patterns of compounding im-
pacts (step 3.2.3). Additional results on intermediate outputs
of steps 3.1.1 and 3.1.2 can be found in Appendix A and B.

4.1 Share of multi-hazards events and their impacts

The datasets of identified single-hazard and multi-hazard
events for different criteria can be found on Zenodo. We find
that a higher share of events and higher share of hazards are
multi-hazard than Lee et al. (2024). According to their ap-
proach, there are 5868 events of which 26 % are multi-hazard
events and include 43 % of the hazards. The multi-hazard
events caused 57 % of the total damages, 40 % of the total
people affected, and 49 % of the total deaths globally.
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The higher shares that we find are due to spatiotempo-
ral overlaps of the disaster records in EM-DAT. Figure 3a—
f show the results for different assumptions of spatiotem-
poral overlap. Figure 3a shows the total number of identi-
fied events, Fig. 3b shows the share of events that are multi-
hazard events, Fig. 3c shows the share of hazards that are
associated with multi-hazard events, and Fig. 3d—f show the
shares of total damages, number of people affected, and num-
ber of deaths caused by the share of hazards associated with
multi-hazard events.

The lower the criterion for minimum spatial overlap and
the higher the criterion for maximum time lag, the lower
the number of events and the higher the share of multi-
hazards and their impacts. For example, compared to Lee et
al. (2024), the number of events decreases to 4636 and the
share of multi-hazard events increases to 35 % when assum-
ing a spatial overlap of at least 50 % and a time lag of at
most 3 months. The identified multi-hazard events include
218 different hazard combinations and consist of up to 32
individual hazards from 5 different hazard types rather than
at most 3 different hazards and hazard types in the disaster
records. Furthermore, the share of hazards associated with
multi-hazard events increases by almost 50 % to 61 %. To-
gether these hazards caused 78 % of the total damages, 83 %
of the total people affected, and 69 % of the total deaths glob-
ally.

4.2 Comparison of impacts of hazard pairs, single
hazards, and combinations of two single hazards

We present the results for a spatial overlap of at least 50 %
and a time lag of at most 90 d. Figure 4 shows the boxplots
of the distributions of impacts of hazard pairs and single haz-
ards as well as the mean values with 95 % confidence inter-
val (CI) for hazard pairs, single hazards, and combinations
of two single hazards. We only show impact types and haz-
ard types with sample sizes N > 50 in an attempt to capture
the broad range of underlying hazard intensity, exposure, and
vulnerability conditions from which the impacts arise. There
are eight cases in terms of combination of impact and hazard
types that fulfil this criterion. For extreme winds and floods,
sufficient data are available for damages, number of deaths,
and number of people affected (first column of Fig. 4). For
consecutive floods, as well as floods and landslides, sufficient
data are available for number of deaths and number of peo-
ple affected (second and third column of Fig. 4). For earth-
quake and landslides, sufficient data are available for people
affected (fourth column of Fig. 4). Sample sizes are reported
in Tables C1 and C2 in the Appendix.

For all variables (impacts of single hazards and of hazard
pairs), the mean value is higher than the 75th percentile; for 9
of the 16 variables the mean value is higher than the 95th per-
centile. Thus, the majority of impacts are clustered towards
the lower end of the impact range while a few very high data
points pull the mean upwards. Consequently, the uncertain-
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Figure 3. (a) Number of events, (b) share of multi-hazard events, and (c¢) share of hazards associated with multi-hazard events, as well
as their share in (d) total damages, (e) total people affected, and (f) total deaths when accounting for spatiotemporal overlaps between the

disaster records in EM-DAT.

ties about the mean are large compared to the spread of the
distributions: for 10 of the 16 variables, the uncertainty about
the mean is larger than the 75 % interpercentile range.

The first four columns of the matrix in Table 3 list the re-
sults of the comparison of the mean impacts of hazard pairs
and single hazards. In three cases, the impacts of the hazard
pair are significantly higher than those of both single hazards
(damages for extreme winds and floods, number of deaths for
consecutive floods, and number of people affected for con-
secutive floods). Also, in three cases, the impacts of the haz-
ard pair are significantly higher than those of one but not the
other of the single hazards (number of deaths for floods and
landslides, number of people affected for floods and land-
slides, and number of people affected for earthquakes and
landslides). Finally, in two cases, the average impacts of the
hazard pair are not significantly different than those of either
of the single hazards (number of deaths for extreme winds
and floods and number of people affected for extreme winds
and floods). In no case is the average impact of a hazard pair
significantly lower than those of either or both single hazards.

The last four columns of the matrix in Table 3 list the re-
sults of the comparison of mean impacts of hazard pairs and
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combinations of two single hazards. In two cases, the impacts
of the hazard pair are significantly higher than the combined
impacts of two single hazards (number of deaths of consec-
utive floods and number of people affected of consecutive
floods). Also, in two cases, the average impact of a hazard
pair is significantly lower than those of the combined im-
pacts of the two single hazards (number of deaths for floods
and landslides and number of people affected for extreme
winds and floods). In all other cases, no statistical difference
is detected.

4.3 Archetypes of compounding impacts

We identify four distinct patterns of compounding impacts
based on the differences and similarities in mean impacts of
hazard pairs, single hazards, and combinations of two sin-
gle hazards (Table 4). In the first archetype, the impact of
a hazard pair is higher than the impacts of both underlying
single hazards and their combined impact. We see this pat-
tern in number of deaths and number of people affected of
flood—flood pairs. In the second archetype, the impact of a
hazard pair is higher than the impacts of both underlying sin-
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Figure 4. Boxplots of impact data for single hazards and hazard pairs (,) for different impact types and hazard types as well as mean values
and their bootstrap 95 % CI for single hazards, hazard pairs (,), and the combined impact of two single hazards (+). The rows show different
impact metrics. The columns show different hazard types (ew — extreme wind, fl — flood, Is — landslide, eq — earthquake). Only combinations
of impact and hazard type with N > 50 are shown. Note that the number of deaths for extreme winds and floods (second row, first column)

is shown on a logarithmic scale.

gle hazards but not different from their combined impact. We
see this pattern in damages of extreme wind—flood pairs. In
the third archetype, the impact of a hazard pair is higher than
that of one underlying hazard but comparable to that of the
other and is either lower than or similar to their combined
impact. We see this pattern in the number of deaths and the
number of people affected of flood—landslide pairs as well as
the number of people affected in earthquake—landslide pairs.
In the fourth archetype, the impact of a hazard pair is similar
to that of each underlying hazard and is either comparable to
or lower than their combined impact. We see this pattern for
number of deaths and number of people affected for extreme
wind—flood pairs.
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5 Discussion

The aim of this study was to gain an understanding of multi-
hazards and their compounding impacts by analysing the
emergency events database EM-DAT.

We found that the number of events and number of haz-
ards that are considered multi-hazard are likely higher than
recorded in EM-DAT and identified by Lee et al. (2024).
This is due to spatiotemporal overlaps between the disaster
records as multi-hazard events may involve multiple disas-
ter records. However, there remains substantial uncertainty
in the identification of multi-hazard events in EM-DAT.

On one hand, the uncertainty is due to the limited spa-
tiotemporal information in the data. The resolution of spatial
footprints in GDIS varies from local administrative units to
country level and varies in size, introducing uncertainty re-
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Table 3. Statistically significant differences in mean impacts of hazard pairs, single hazards, and two single hazard combined (ew — extreme

wind, fl — flood, Is — landslide, eq — earthquake). Pairs are denoted by a

T3}

;> and combinations of two single hazards are denoted by a “+”. A

“>" indicates that the impact of the variable in the row is higher than that of the variable in the column and a “=" denotes no difference.
ew fl eq Is ew+fl fi+fl fl+ls eq+ls
Damages > > =
Number of deaths ew,l = = =
Number of people affected = = <
Damages
Number of deaths fl, f > >
Number of people affected > >
Damages
Number of deaths fl, Is > = <
Number of people affected = > =
Damages
Number of deaths eq, Is
Number of people affected = > =

Table 4. Four archetypes describing distinct patterns of compounding impacts of hazard pairs. “hazl,haz2” denotes a hazard pair; “haz1”
and “haz2” denote the underlying single hazards; and “haz1+haz2” denotes the underlying single hazards combined. A “>" indicates that

the impact of the variable in the row is higher than of the variable in the column and a

“__

denotes no difference.

hazl haz2 hazl4haz2
Archetype 1 “The whole is greater than the sum of its parts” > > >
Archetype 2 “The whole equals the sum of its parts” haz1,haz2 > > =
Archetype 3 “One part determines the whole” > = =/<
Archetype 4 “The whole and the parts are limited by total impact” = = =/<

garding the actual overlap of hazard-exposed areas (see Ap-
pendix B for examples and a discussion). In addition, the in-
dividual hazards within a disaster record are associated with
the same footprint, even though their footprints may have
very different extents. Similarly, the temporal information in
EM-DAT is crude. As end dates are partially missing, we
used start dates and a time lag, which is a crude approxi-
mation of the actual time between hazards. The temporal in-
formation used here is also provided on the disaster record
level but not on the level of individual hazards. Finally, we
still lack understanding on how much time lag and over-
lap should be considered, although some suggestions and
sensitivity analysis are provided by Claassen et al. (2023).
De Ruiter et al. (2020) suggest that hazards should be anal-
ysed together if direct impacts of a subsequent hazard spa-
tially overlap before recovery from a previous hazard is con-
sidered to be completed, but information on recovery dura-
tion is limited.
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On the other hand, the increasing trend in the reporting of
associated disasters in EM-DAT (Lee et al., 2024) suggest
that impacts may have been, and still are being, assigned to a
single main hazard even though additional hazards have oc-
curred, leading to an underestimation of multi-hazards. We
also encountered several similar cases during our analysis.
An example is tropical cyclone Grace, which followed the
7.2-magnitude earthquake in Haiti in August 2021 (Daniels,
2021) but is not reported in EM-DAT. Despite these uncer-
tainties in the data and method, multi-hazards are likely un-
derreported in EM-DAT.

We also found that the reported multi-hazards contribute
to a disproportionately high share of total impacts globally
compared to single hazards, which is in agreement with the
results of Lee et al. (2024). When statistically comparing im-
pacts of hazard pairs, single hazards, and combinations of
two single hazards, the results differed per impact and haz-
ard type, suggesting that there are different patterns of com-
pounding impacts. In all cases, the average impact of a haz-
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ard pair was comparable to or higher than the average impact
of a single hazard. This suggests that multi-hazard interac-
tions leading to increased impact tend to outweigh multi-
hazard interactions leading to decreased impact. However,
the average impact of a hazard pair could be higher than,
comparable to, or lower than the combined average impact of
two single hazards. Again, the results need to be treated with
care because of large uncertainties in the impact data but also
because of known biases and limitations of EM-DAT.

In cases where there is a significant difference, this could
indeed point to an actual difference in impacts. However,
it may also be caused by biases such as systematic double
counting of impacts of consecutive disasters or geographical
biases. For example, two consecutive earthquakes in Iceland
have the exact same reported total damages (reported under
disaster nos. 00-0076-ISL and 2000-0335-ISL), suggesting
potential double counting when adding them up. The fact that
we came across these inconsistencies by chance suggests that
there are many more.

In cases where there is no significant difference found be-
tween two impact variables, this could either mean that there
is indeed no difference between those variables or that there
is a difference but not sufficient evidence in the dataset to de-
tect it. Several factors contribute to the uncertainties. Firstly,
a handful of extremely high data points are pulling the mean
impact value up from the bulk of data points clustered at the
lower end of the distribution. In addition, the sample sizes
of impact data are small per hazard pair type, which is due
to the many different event types as well as missing impact
data in EM-DAT. While we considered nine hazard types,
we could only analyse impacts for four hazard types and
four hazard pair types when requiring a sample size of at
least N = 50. In particular, impacts for extreme temperatures
and droughts are missing. For these types, the complexity
and difficulty of assessing impacts is well known (Wilhite et
al., 2007). Lastly, the hazards occurred under diverse condi-
tions in terms of hazard intensity, exposure, and vulnerabil-
ity, which can cause a wide range of impacts. Ideally, these
factors would be controlled for in the analysis, as done for
example by Budimir et al. (2014). However, EM-DAT does
not contain sufficient information to do so.

Finally, we could identify and conceptualise four distinct
patterns of compounding impacts. While we acknowledge
the substantial uncertainty in associating each case to a par-
ticular archetype in our results, there are possible explana-
tions and real world cases that support the existence of such
patterns in general:

1. Archetype 1 (“The whole is greater than the sum of its
parts”): a pattern where the impact of a hazard pair is
significantly higher than the impact of two hazards com-
bined would arise when both hazards in the pair exac-
erbate each other’s impacts if they co-occur simultane-
ously or consecutively. Real world examples of such a
pattern are a previous flood that increases vulnerability
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leading to more impacts from a second flood (de Ruiter
et al., 2020), a previous flood that intensifies a second
flood due to already saturated soils and thus leading to
higher impacts (Berghuijs et al., 2019), and a progres-
sive increase in a building’s physical vulnerability due
to multiple loads (Zuccaro et al., 2008).

2. Archetype 2 (“The whole equals the sum of its parts”):
a pattern where the impact of a hazard pair is com-
parable to the combined impact of two single hazards
would emerge when the hazards do not significantly af-
fect each other’s impact. This could, for example, be
the case for damage to the built environment caused by
extreme wind and a flood, because they have different
damage-causing mechanisms. Floods tend to affect the
interior of buildings and the lower floors, whereas ex-
treme winds tend to damage the exterior of buildings
and, in particular, the roof (Amini and Memari, 2020).

3. Archetype 3 (“One part determines the whole”): a
third pattern would emerge when one hazard is so im-
pactful that, in comparison, the contribution of other
hazards is negligible, possibly combined with a “the
whole and the parts are limited by total impact” effect
(Archetype 4). This could, for example, be the case for
the number of people affected by flood—landslide pairs
and earthquake—landslide pairs. Floods and earthquakes
usually occur on larger spatial scales than landslides and
trigger landslides within the already affected area so that
the landslide will not add to the number of affected peo-
ple, even though it may add to the severity in which they
are affected.

4. Archetype 4 (“The whole and the parts are limited by
total impact”): another pattern could emerge when one
hazard causes an ultimate impact to an exposed ele-
ment, such as total loss of a building or death of a per-
son, or when the impact metric only reports that an el-
ement has been affected but not to what degree. In both
cases, a second hazard acting on the same elements can
no longer increase the value of the impact metric. This
could potentially be the case for the number of people
affected by extreme wind and flood pairs when the same
area is hit by both hazards.

6 Recommendations

We propose the further investigation and development of
archetypes to capture different patterns. Such archetypes
could help determine the level of complexity to take into ac-
count in risk assessments and risk management for a region
of interest if relevant hazard types and impact metrics are
known. For some types of hazard and impact, modelling the
impact of a dominant hazard may yield a reasonable approxi-
mation of the total multi-hazard impact. In other cases, mod-
elling single-hazard impacts separately and summing them
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may be sufficient. However, in other situations, considering
interaction effects is crucial, as they can either increase or
decrease the total impact compared to a simple sum of in-
dividual impacts. However, further research using more re-
liable data sources is needed to confirm these archetypes, to
validate them for use in forward-looking risk assessments,
to explore potentially additional forms of compounding im-
pacts, and to expand them for additional hazard types and
impact metrics.

Future research should also be directed at improving the
reporting of multi-hazards and their impacts. In the long run,
standardised reporting procedures should be established and
implemented to ensure that multi-hazards and their impacts
are documented sufficiently and consistently. This is essen-
tial for aligning research efforts and advancing the disaster
risk field, as well as for translating findings into effective pol-
icy recommendations for risk assessment and reduction.

In the short term, we recommend improving and support-
ing the existing information in EM-DAT. To start with, a
quality control of the impact data that solely focuses on the
most disastrous records could already improve overall reli-
ability because these records dominate any statistical data
analysis that is based on mean values or total values. Data
science techniques could be explored to automate the iden-
tification of errors and inconsistencies. Another key area to
improve the usability of EM-DAT would be to develop high-
resolution datasets of (multi-)hazard intensities, exposure,
and vulnerability that can readily be linked to the disaster
records. This would enable a deeper analysis of multi-hazard
occurrence and impacts because factors determining the con-
text in which the hazards occurred can be controlled for.
Additionally, this could help identify as yet unrecorded im-
pactful events and reduce reporting bias. Finally, consistent
and standardised methods to estimate impacts are needed to
better enable comparison across countries and even events.
Quality of impact data could also be improved by leveraging
new impact datasets that are becoming available with novel
methods. These datasets should also be made linkable to
EM-DAT to enable cross-validation and increase the sample
size, which in turn could enable an analysis of (multi-)hazard
types that had to be excluded from the statistical analysis in
this study.

7 Conclusion

By accounting for spatiotemporal overlaps between disaster
records in EM-DAT, we found that almost 50 % more hazards
occurred in a multi-hazard context than previously reported,
although substantial uncertainty remains in the identification
of multi-hazard events. Despite the uncertainty, the identified
multi-hazard events provide promising case studies for in-
vestigating impact-relevant spatiotemporal relations between
hazards and their role in compounding impacts. Overall,
multi-hazards have caused disproportionately high impacts
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in global disasters, but it appears that there are different pat-
terns of compounding impacts which depend on the impact
and hazard type. We conceptualised four distinct archetypes
to capture the encountered patterns. In all archetypes, hazard
pairs tend to have at least as much impact as single hazards
but never less. This suggests that multi-hazard interactions
that increase impact tend to outweigh those that decrease it.
Nonetheless, we found hazard pairs whose impacts can be
higher than, comparable to, or lower than the combined im-
pact of two individual hazards.

Appendix A: An exploratory data analysis of the joint
EM-DAT and GDIS dataset

This section is related to method step 3.1.1. The dataset of
geo-referenced disaster records covers the period 2000-2018
and the nine hazard types listed in Table 2. It contains 5868
disaster records. Table Al shows the availability of data in
the optional fields in these records. In the case of associated
disasters, we assume that empty fields mean that no other
hazards have taken place. In all other cases, we assume that
data are missing. The temporal information is mostly com-
plete. All disaster records have a start year, start month, and
end year. All hazards other than droughts also have an end
month. The exact day is missing more frequently.

The availability of impact data depends on the hazard type
as well as impact type and ranges from 4 % for number of
deaths due to droughts to 100 % for number of deaths due
to tsunamis. Human impact is available more than total dam-
ages. Availability also fluctuates across the years and conti-
nents. For total deaths it ranges from 64 % in 2004 to 78 % in
2007 and from 40 % in Oceania to 79 % in Asia. For total af-
fected it ranges from 73 % in 2010 and 2018 to 87 % in 2017
and from 55 % in Europe to 90 % in Africa. For damages it
ranges from 22 % in 2006 to 48 % in 2013 and from 14 % in
Africa to 44 % in Oceania.

The availability of spatial footprints also differs per hazard
type, year, and continent but less so than the impact variables.
It ranges from 77 % for extreme wind to 96 % of earthquakes,
from 71 % in 2018 to 93 % in 2006, and from 77 % in Europe
to 89 % in the Americas. Overall, we could associate 87 %
(5090/5668) of all disaster records with a spatial footprint,
which is in line with the 89 % reported by the developers of
GDIS (Rosvold and Buhaug, 2021).

These results suggests that data for impact and geospatial
footprint are missing not at random in our extracted dataset,
which poses a risk of bias in the subsequent analysis. This is
in line with the findings of Jones et al. (2022), who identified
the year the disaster occurred, income classification of the
affected country, and hazard types as significant predictors
of missingness for human and economic impact variables in
a formal statistical analysis of the entire EM-DAT dataset.
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Table A1. Count of events and the data availability of key variables in the geo-referenced dataset.

Disaster ~ Start End Damages Number of Number of Geospatial
record date date deaths people footprint
count affected
fl 2782 100% 92% 30 % 72 % 88 % 91 %
ew 1629 100% 97% 52 % 74 % 73 % 77 %
cwW 198 100% 47 % 8 % 83 % 29 % 85 %
dr 188 96 % 4% 40 % 4% 60 % 80 %
hw 118 100% 48 % 13 % 84 % 31 % 79 %
Is 353 100% 98 % 12% 96 % 64 % 91 %
eq 480 100% 100% 42 % 64 % 97 % 96 %
Vo 93 100% 90% 15 % 13 % 89 % 82 %
ts 27 100% 100% 70 % 100 % 85 % 93 %

Appendix B: Pairs of spatiotemporally overlapping
disaster records

This section is related to method step 3.1.2. Out of the 5868
disaster records, 5090 have spatial footprints. These can be
grouped into 12 951 505 unique combinations of two disaster
records. There are 107 406 pairs with spatial overlap.

Figure B1 shows a histogram of the intersection percent-
age. Notable is the high number of disaster record pairs with
0 % overlap and with 100 % when rounded to two decimals.
The high number of disaster records with 0 % overlap is
likely caused by rounding errors for disaster records that
impacted adjacent administrative areas, and these disaster
record pairs are considered to not be overlapping. Figure B2a
shows an example. The high number of disaster records with
100 % overlap is also likely due to the fact that the resolu-
tion is on administrative boundary level: as soon as disaster
records are within the same administrative district they fully
overlap, whereas only large-scale impact disaster records that
affected multiple administrative districts can partially over-
lap. Figure B2b—c show examples with different overlap per-
centages.

Number of event pairs

0 20 40 60 80 100
Intersection %

Figure B1. Histogram of the intersection percentage of the 107406
EM-DAT disaster records with spatial overlap.
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Table B1. Number of pairs of overlapping events using different
spatial and temporal overlap criteria.

Time lag Intersection

>0% >50% >100%
0d 31 21 17
1 month 1339 758 480
3 months 3575 1917 1164
6 months 5865 3023 1798
12 months 11630 6059 3631
Any 107406 54712 33245

There is uncertainty as to whether or not the actual impact
zones overlap for all pairs of intersecting disaster records be-
cause the spatial footprints are an approximation on the level
of administrative regions and the disasters are unlikely to
have affected the entire region (Rosvold and Buhaug, 2021).
This uncertainty could potentially be reduced by consider-
ing the combination of the scale of the natural hazards (e.g.
landslides are local phenomena, while heatwaves and cold
waves are regional or national phenomena), the extent of the
damage (e.g. higher damages and fatalities are likely to stem
from larger impact zones), and the administrative level of the
footprint (e.g. a footprint consisting of multiple district-level
polygons which have been joint to a greater area is more
likely to represent the actual impact area than a footprint con-
sisting of a single country-level polygon).

For example, in Fig. B2b, disaster record 2014-0009-USA
is a cold wave and disaster record 2014-0317-USA is a con-
vective storm associated with a cold wave. As these are
larger-scale weather phenomena, the overlapping adminis-
trative zone is likely to reflect the actual overlapping impact
zone. However, in Fig. B2c, disaster record 2006-0128-USA
is a storm associated with a flood and disaster record 2008-
0173-USA is a riverine flood; in Fig. B2d, disaster record
2006-0598-USA is a riverine flood associated with heavy
rain and disaster record 2006-0744-USA is a storm. In these
two cases, additional data on impact extent, or by proxy haz-
ard extent, would be required to confirm actual overlap.
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(a) 0% mutual overlap between
2000-0021-USA and 2000-0232-USA
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(b) 40% of 2014-0009-USA and
40% of 2014-0317-USA overlap

0] 2000-0021-USA | 70 2014-0009-USA
2000-0232-USA 2014-0317-USA
391
60
38
37 A 501
36 1
15| 40
344
30
33 1, g . g . . r . : : . , .
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(c) 7% of 2006-0128-USA and (d) 100% mutual overlap between
100% of 2007-0173-USA overlap 2006-0598-USA and 2006-0744-USA
42.51 2006-0128-USA | 491 2006-0598-USA
2007-0173-USA 2006-0744-USA
40.01 481
37.51 471
35.0 461
32.51 437
30.0 441
43
27.51
42

-105 -100 -95 -90 -85

—126 -124 -122 -120 -118 -116

Figure B2. Example disaster record pairs with spatial overlap. Individual impact zones are plotted in blue and yellow. The overlapping

impact zone is plotted in green.

Table B1 shows the number of pairs of overlapping dis-
aster records for different spatial and temporal criteria. As
expected, the number of pairs of overlapping disaster records
is lowest when requiring a high intersection percentage and
a low time lag as overlap criteria.

Appendix C: Sample size of impact data for single
hazards and hazard pairs

This section presents sample size for the data used in
Sect. 4.2. Table C1 shows the sample sizes for single haz-
ards for a spatial overlap of at least 50 % and a maximum
time lag of 91 d. Table C2 shows the sample sizes for hazard
pairs for a spatial overlap of at least 50 % and a maximum
time lag of 91 d.

https://doi.org/10.5194/nhess-25-2751-2025

Table C1. Sample sizes of impact data for single hazards for a min-
imum spatial overlap of 50 % and a maximum time lag 91d (ew
— extreme wind, fl — flood, Is — landslide, eq — earthquake, dr —
drought, cw — cold wave, hw — heatwave, vo — volcanic activity, ts
— tsunami).

Hazard Damages Number of deaths Number of people

affected
fl 428 1102 1479
ew 354 527 524
eq 109 171 281
dr 52 4 91
Is 21 230 147
cw 12 146 50
VO 10 6 65
ts 5 6 4
hw 3 64 23
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Table C2. Sample size of impact data for hazard pairs for a mini-
mum spatial overlap of 50 % and a maximum time lag of 91d (ew
— extreme wind, fl — flood, Is — landslide, eq — earthquake, dr —
drought, cw — cold wave, hw — heatwave, vo — volcanic activity, ts
— tsunami).

Hazard 1 Hazard2 Damages Number of Number of
deaths people
affected
fl Is 178 417 439
ew fl 133 205 220
eq Is 28 44 56
ew ew 16 26 23
fl fl 15 67 87
ew Is 15 28 31
fl ew 12 23 24
ew 9% 11 22 11
ts ts 10 15 13
hw dr 7 9 2
Is fl 6 23 22
eq eq 5 8 15
dr hw 5 3
eq ts 4 9 11
Is Is 3 12 9
eq fl 3 5 5
fl dr 2 1 5
fl cwW 2 5 4
dr fl 1 1 6
fl eq 1 4 5
Vo eq 1 4
fl ts 1 2 3
eq ew 1 2 2
eq dr 1 2
Is eq 1 1 1
dr 9% 1 1 1
VO ts 1 1 1
dr eq 1 1
ew dr 1 1
VO Is 1 3
hw ew 5 2
fl hw 3 2
eq hw 1 2
hw fl 4 1
cwW (9% 3 1
ew hw 3 1
VO fl 1 1
hw Is 1 1
Is dr 1
cw eq 1
eq cw 1
dr ew 1
VO VO 1
cwW fl 1
cw hw 1
Is ts 1
cwW Is 1 87
Is cwW 1 31
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Code availability. The code used to develop the datasets
and to perform the analysis of impacts has been pub-
licly released on GitHub at https://github.com/wiebkejager/
emdat-multi-hazards-and-impacts (last access: 5 August 2025) and
can also be accessed via https://doi.org/10.5281/zenodo.16748179
(Jager, 2025). This repository also includes all (intermediate)
datasets.
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