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Abstract. Flood disasters in specific regions not only cause
physical damage but also disrupt the production and opera-
tions of enterprises, making economic systems more vulner-
able. Assessing the production capacity loss rate (PCLR) of
enterprises is crucial for quickly evaluating disaster losses.
However, PCLR of enterprises is difficult to measure through
physical damage. On-site investigations offer a compromise
method, but inconsistencies between respondents and inves-
tigators in understanding production capacity may result in
response bias. Therefore, this study employed the vulner-
ability curve method for categorizing damage states to di-
vide PCLR into different damage states and constructed ex-
ceedance probability curves to mitigate response bias. Then,
this study utilized distribution function fitting to calculate the
expectation-of-loss rate for each damage state and finally in-
tegrated the probabilistic information with the expectation
for each state to estimate PCLR. The proposed methodology
is realized by the questionnaire data from the “7.20” extreme
flooding event in Zhengzhou, Henan. We found that when
the inundation depth is less than 80 cm, the wholesale and re-
tail trade sector suffers the highest loss rate; however, when
the inundation depth exceeds 80 cm, we should pay more at-
tention to the manufacturing sector. Monte Carlo simulation
(MCS) established the prediction intervals of PCLR, offering
an alternative for PCLR. This study effectively accounts for
response bias, providing input conditions for assessing ripple
losses.

1 Introduction

The impact of natural disasters has become a significant
global concern. In 2023, the Emergency Event Database
(EM-DAT) reported 399 natural disasters worldwide. These
disasters affected 93.1 million people and resulted in ap-
proximately USD 202.7 billion of economic losses. Of these
events, floods accounted for 41.10 % of the total incidents
(EMDAT, 2024), significantly affecting economic growth
(IPCC, 2023). Consequently, an amount of literature has
emerged that employs numerous model-based and empirical
methods to explore the macro- and micro-economic impacts
of natural disasters (Hallegatte et al., 2013; Koks et al., 2016;
Tatano and Kajitani, 2022a). At the macro-economic level,
researchers commonly use several models to quantify the
economic effects of natural disasters. These include input—
output (I-O) models (Okuyama and Santos, 2014; Lenzen et
al., 2019) and computable general equilibrium (CGE) models
(Kajitani and Tatano, 2018; Gertz et al., 2019). These meth-
ods allow a comprehensive analysis of the overall impact
on national and regional economies. At the micro-economic
level, methods for assessing business resilience have been de-
veloped, primarily focusing on resistance and recovery (Liu
et al., 2024). However, due to the different focuses of the two
types of models and the difficulties in obtaining business loss
data caused by confidentiality concerns, micro-level assess-
ment methods for individual enterprises are often difficult to
integrate with macro-level economic assessment methods for
estimating overall regional industry losses.
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Estimating regional industry losses is crucial for under-
standing the vulnerability of local industries and facilitat-
ing post-disaster recovery. As previously mentioned, macro-
economic models such as I-O and CGE are designed to cap-
ture complex and higher-order impacts (Tatano and Kaji-
tani, 2022b). However, these models require specific inputs
to function effectively. Industry losses are commonly consid-
ered a fundamental input for macroeconomic models when
modeling supply shocks. Recently, the production capacity
loss rate (PCLR) has been proposed as a competing input for
these models. It is based on estimated outputs derived from
vulnerability curves (Kajitani and Tatano, 2014; Jiang et al.,
2015). These curves can be rapidly estimated if accurate loss
data are available, especially in the engineering field. How-
ever, such estimation still faces challenges due to response
bias, particularly during extreme flooding events.

Response bias refers to the tendency of survey partici-
pants to provide inaccurate responses or to answer in a biased
manner, resulting in skewed or misleading data (Gove and
Geerken, 1977; Furnham, 1986; Michalos, 2014). This stems
from multiple factors, including personal perception biases
(Liu et al., 2022), memory inaccuracies (Tan et al., 2023),
and emotional influences (Cai and Wei, 2020). Empirical evi-
dence, as advocated for at the 2015 Sendai Conference, high-
lights the importance of collecting data directly from disas-
ter sites (UNDRR, 2015). Borga et al. (2019) stressed that
post-flood surveys should begin immediately after the event
to prevent potential erasure of site evidence, which is a crit-
ical reference for government recovery efforts. According to
Cabrera et al. (2024), the empirical approach is most effec-
tive for deriving realistic fragility curves as it relies on actual
damage data. However, the success of these actions relies on
accurate data estimations. Unlike the objectivity of physical
indicators such as ground deformation (Choi et al., 2004),
relative displacement between the crown of arch and the in-
verted arch (Andreotti and Lai, 2019), volumetric water con-
tent (Vergeynst et al., 2015), and accident events (Yang et al.,
2020), estimating PCLR relies on the subjective judgment
of enterprise managers, resulting in significant uncertainty.
Moreover, PCLR data collected are often discrete rather than
continuous, making them unsuitable for simple regression
analysis (Zentner et al., 2017). This simplification may lead
to overestimation or underestimation of actual loss, which
can amplify or attenuate perceived risk. This highlights an
urgent need for more reliable methods and data in PCLR es-
timation, including categorizing damage states, which is es-
sential for understanding loss characteristics across different
damage states.

Categorizing damage states based on loss rate data is a
desirable approach in the existing literature on earthquakes
and engineering (Baker, 2015; Nguyen et al., 2024). Prasad
and Banerjee (2013) classified bridge damage into four states
and established probability curves for bridge failure at spe-
cific seismic intensities using these classifications. Andreotti
and Lai (2019) pointed out that the loss mechanisms vary
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for different damage states, and the damage index of tunnel
structures after an earthquake shows high variability except
in the no-damage state. The economic impact of floods is
more complex, and it is worth noting that there are signif-
icant differences in loss mechanisms across different dam-
age states. Therefore, classifying damage states is essential
for better understanding loss characteristics in different situ-
ations.

Motivated by the gaps mentioned above, we propose a
response-bias-tolerant framework that accounts for response
bias to estimate PCLR. Framework refers to a methodologi-
cal approach designed to mitigate uncertainties arising from
subjective judgments in data collection, particularly when
enterprise managers provide potentially biased estimates of
PCLR during post-disaster surveys. First, we conduct a ques-
tionnaire survey and classify damage states. Then, we use the
exceedance probability curve model to develop correspond-
ing curves. This approach helps us to handle data affected
by response bias and to determine the likelihood of differ-
ent damage states at different inundation depths. Second,
we fit PCLR to a probability distribution within each dam-
age state, from which we derive the expectation-of-loss rate
for further analysis. Finally, we integrate the expectation-of-
loss rate with the associated probabilities for each damage
state. This integration allows a more adaptable assessment
of the mean PCLR for businesses after a disaster. Further-
more, based on Yang et al. (2016), we extend our analysis of
PCLR by employing Monte Carlo simulation (MCS) to gen-
erate prediction intervals and by analyzing the rate of change
in PCLR.

The remainder of this study is organized as follows. Sec-
tion 2 illustrates the overall framework for estimating the
mean PCLR. Section 3 presents a case study of the 2021
Zhengzhou flood. Section 4 offers the results and a discus-
sion on the implementation and improvement of the pro-
posed method, along with policy recommendations. Finally,
the conclusions are summarized in Sect. 5.

2 Methodology

A methodological framework was proposed to estimate
PCLR. Firstly, we categorize damage states based on the raw
data, and then we construct exceedance probability curves.
These curves form the foundation for further probability
curve extrapolation. Secondly, distribution functions are in-
troduced to fit PCLR for different damage states, facilitating
the calculation of the expectation-of-loss rate for each dam-
age state. Finally, PCLR is estimated by integrating proba-
bility with the expectation-of-loss rate for each damage state.
These methodological steps provide insights that can be used
when prioritizing sectors based on their risk, as shown in the
framework presented in Fig. 1.
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Figure 1. An overview of the framework for estimating PCLR.

2.1 Exceedance probability curve model

The exceedance probability curve model is widely applied
in civil and structural engineering for assessing structural re-
liability and seismic response (Burton et al., 2016; Hariri-
Ardebili and Saouma, 2016). It simulates random processes
to generate probability curves that gauge the likelihood of
extreme structural reactions for risk assessment (Shinozuka
et al., 2000; Torbol and Shinozuka, 2012). This method, tra-
ditionally used in engineering, has recently been applied to
the study of functional damage, like reductions in production
capacity (Nakano et al., 2013).

In this study, we assume that the probability of exceeding a
damage state is a function of inundation depth % represented
as a two-parameter lognormal distribution function, given in
Eq. (1):

ey

Inh—pu
Fo (B [, 0) =®(T“’>.

F, (h; ny, o) represents the probability of exceeding a cer-
tain damage state; ®(-) is the cumulative distribution func-
tion (CDF) of the standard normal distribution; and u,, and
o are the mean and standard deviation of the lognormal dis-
tribution, corresponding to “exceeding minor damage”, “ex-
ceeding moderate damage”, and “exceeding major damage”,
differentiated by w.

Utilizing three damage curves, we can determine four dis-
tinct damage states d;j, namely minor damage (dp), moder-
ate damage (d;), major damage (d>), and complete damage
(d3). Pj(h) denotes the probability of being in damage state
d; when the inundation depth is h. Subsequently, the prob-
abilities for these four damage states, conditional upon the
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inundation depth %, are expressed in Eq. (2):
Po(h) =1—Fy(h;pu1,0),
Pi(h) = Fi(h; p1,0) — Fa (h; ua, o),
Py(h) = F>(h; pa,0) — F3(h; u3, o),
P3(h) = F3(h; u3,0).

The parameters (u,,0) are estimated by maximizing a
likelihood function, expressed in Eq. (3):

2

N 3
L(ui.pa.m3.0) = [ [[T[2i @)™, (3)
i=1j=0
where §;; =1 if damage states d; occur for the enterprise i
subject to h = h;; otherwise §;; =0. The estimation of pa-
rameters [, and o using the maximum likelihood method
can be achieved by solving the following equation:

dInL (m1, 2, pu3,0) _ InL (i1, 2, 43,0)
0 e do
—0 (@=1,2,3). 4)

Furthermore, to evaluate the assumption that the inunda-
tion depth can serve as a variable of the decline in production
capacity immediately following a catastrophe, the likelihood
ratio test is utilized to check the alternative hypothesis. The
null hypothesis is that the probabilities of occurrence of dam-
age states occur equally in this case study.

2.2 Distribution function fitting for PCLR of each
damage state

In this study, we employ distribution function fitting to model
PCLR of different damage states, aiming to estimate the
expectation-of-loss rate. This method involves selecting a
probability distribution function that best describes the ob-
served data (Heo et al., 2022). Common distributions include

Nat. Hazards Earth Syst. Sci., 25, 2717-2730, 2025



2720 L. Yang et al.: Modeling regional production capacity loss rates considering response bias

Weibull, lognormal, gamma, and logistic (Lima et al., 2021;
Zhang et al., 2021). To evaluate how well the model fits the
data, we use goodness-of-fit tests such as the Akaike infor-
mation criterion (AIC) and Bayesian information criterion
(BIC). The distribution that fits the data best will be selected
for further analysis and predictions.

The Weibull distribution with shape parameter £ > 0 and
scale parameter A > 0 has density given by

Jwp(x) = kakxk=1 exp (—A_kxk) (®)]
for x > 0, and the expectation-of-loss rate is

1
Ewp = AT (l+%>, 6)
where the gamma function is I'(z) = f0+°°uz_1 exp(—u)du

with z > 0.
The lognormal distribution has density given by
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where p and o are the mean and standard deviation of the
logarithm. The expectation-of-loss rate is

o2
Eln = exp (u + 7) ) (®

The gamma distribution with shape parameter « and scale
parameter 8 has density given by

xo ! X
= -=. 9
Tem) = gt @) eXp( ﬂ) )
The expectation-of-loss rate is
Egm = O{ﬂ. (10)

The logistic distribution with location parameter v and
scale parameter t has density given by

exp ((x —v)/7)

(x) = . 1D
Ty

The expectation-of-loss rate is

Eis=v. 12)

2.3 Sector-specific estimation of PCLR

After estimating probability and the expectation-of-loss rate
for each damage state, we can estimate the mean PCLR for
each sector. The estimation of the enterprise’s mean PCLR
can be expressed as

3
Lr(h):ijPj(h), (13)
j=0
where Lr(h) represents the mean PCLR estimates of the en-
terprise. m ; is chosen as the expectation of the optimal dis-
tribution of loss rate for damage state d; (one of Eyp, Elpn,
Egm, or Ei); Pj(h) is the probability for each damage state.
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2.4 Prediction intervals of PCLR using MCS

Monte Carlo simulation (MCS) can be used to address prob-
lems involving uncertainties. It has been widely applied
across many fields (Christensen et al., 2024; Asche et al.,
2021). By creating multiple simulated scenarios, it approx-
imates the distribution of a specific outcome (Sun et al.,
2022). The model produces iterative estimates that form a
dataset of possible outcomes. When these outcomes are ag-
gregated, they define the true outcome’s range with a given
probability. In this study, we employ MCS to generate predic-
tion intervals of PCLR across different sectors. Specifically,
we draw random numbers from the best-fit distribution se-
lected in Sect. 2.2. For minor damage, random numbers are
drawn from the range (0, 1/3); for moderate damage, they
are drawn from [1/3,2/3); and for major damage, they are
drawn from [2/3, 1). Then, these random numbers, combined
with the probabilities of the damage states occurring, gener-
ate several datasets. This process is repeated 1000 times, sta-
bilizing prediction intervals that define the upper and lower
bounds of PCLR. These intervals quantify the uncertainty in
the outcome in PCLR estimation and support the flexible al-
location of government post-disaster recovery funds.

3 Case study: the “7.20” flooding event in Zhengzhou
3.1 Overview of the 7.20” Zhengzhou flooding event

The city of Zhengzhou, located in central China (Fig. 2), is
the provincial capital of Henan Province and a major hub
for commerce and industry. The city hosts numerous local
businesses that significantly contribute to its economic de-
velopment. By the end of 2023, Zhengzhou had a permanent
urban population of approximately 13 million and a substan-
tial gross domestic product. In July 2021, Henan was struck
by heavy rainfall that drew the attention of many scholars
(Dong et al., 2022; Peng and Zhang, 2022). Zhengzhou’s
losses were CNY 40.9 billion, accounting for 34.1 % of the
total loss for the province. This catastrophic flooding caused
widespread disruptions including production stoppages, sup-
ply chain breakdowns, infrastructure damage, and financial
losses for local enterprises, severely affecting their opera-
tions.

3.2 Data collection

To estimate PCLR of enterprises affected by the flood, we
conducted questionnaire surveys and in-depth interviews
from 19 April to 4 May 2023. We focused on disaster-
stricken enterprises in Zhengzhou and collected data on
PCLR, local inundation depths, the duration of flood impacts,
and so on. A total of 424 valid samples were gathered. These
samples were primarily distributed within the administrative
districts of the city of Zhengzhou. Based on these data, this
study categorized and summarized the samples, of which 148
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Figure 2. Study area and spatial distribution of enterprise samples.

belonged to the manufacturing sector, 68 to the accommoda-
tion and catering sector, 137 to the wholesale and retail trade
sector, and 71 to other sectors.

3.3 Measurement of loss: PCLR of different sectors

PCLR refers to the direct impact on enterprises following a
flood due to multiple factors, resulting in a rapid decrease
in or loss of their original production capacity (Kajitani and
Tatano, 2014). On one hand, there are direct losses caused
by the destruction of tangible assets such as factory equip-
ment, warehouses, and inventories of raw materials; on the
other hand, there are indirect losses resulting from damage
to essential infrastructure like power supply, water supply,
and transportation networks; injuries to employees who are
unable to work or are evacuated; and significant market de-
mand shifts.

As demonstrated by the framework for estimating PCLR
in Sect. 2, the collected PCLR is often inaccurate due to re-
sponse bias. For instance, victims may provide only a range
for PCLR or a brief description of the damage. Therefore,
further data processing is required. In this paper, PCLR is
categorized by different damage states. These states are mi-
nor, moderate, major, and complete damage, as illustrated
in Table 1. Our classification of damage states aligns with
the standardized classification system used in the engineer-
ing field to ensure interdisciplinary compatibility. Addition-
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Inundation depth (m) Elevation (m)

O 0.00-025 — High : 1484
0.26 - 0.60
0.61 - 1.00
1.01-2.00
2.01-3.00
River

- TLow: 70

Municipal district

. 8 8 0

Table 1. Categories of damage states.

Damage state PCLR
Minor damage 0,1/3)
Moderate damage [1/3,2/3)
Major damage [2/3,1)
Complete damage 1

ally, we have tested different classification thresholds and
found that our approach is relatively robust. However, dif-
ferent classification methods are not the focus of this study,
and we will not discuss them here.

4 Results

The exceedance probability curve model is utilized to esti-
mate exceedance probability of each damage state at a given
inundation depth h. These estimates are first visualized as
exceedance probability curves, which are then transformed
into probability curves. This section presents the estimated
probability conditional on the different PCLRs across sec-
tors following the “7.20” Zhengzhou flooding event. Next, by
selecting appropriate distribution functions, the expectation-
of-loss rate for each damage state is calculated. Subse-
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quently, PCLR is estimated by integrating probability with
the expectation-of-loss rate. Finally, the prediction intervals
of PCLR and the rate of change for PCLR are estimated.

4.1 Estimated probability across sectors
4.1.1 Estimated exceedance probability across sectors

By employing the exceedance probability curve model, we
constructed exceedance probability curves for four distinct
sectors. This study presents the fitting parameters for the
model, as shown in Table 2. Additionally, the table presents
values ( Xz) of likelihood ratio tests. The critical value at a
significance level of p =0.005 with 4 degrees of freedom is
14.860. The smallest estimated value among the four sectors
is 15.393. Thus, it can be inferred that the alternative hypoth-
esis (that inundation depth can be used to estimate the decline
in production capacity) is supported for all sectors at a sig-
nificance level of 0.5 %. Figure 3 illustrates the exceedance
probability for each sector. Varying shades of blue depict the
exceedance probability for different damage states. The dark-
est shade represents the probability of exceeding major dam-
age, the lightest shade represents the probability of exceeding
minor damage, and the medium shade represents the proba-
bility of exceeding moderate damage. The bar charts show
the sample distribution in each damage state under different
inundation depth conditions.

Analysis of Table 2 and Fig. 3 reveals differences in the
exceedance probabilities of damage states across sectors.
Specifically, the exceedance probabilities of major damage
(complete damage) are significantly higher in the deep water
for the manufacturing and the accommodation and catering
sectors, as shown in Fig. 3. In addition, the probabilities of
exceeding minor damage are higher in the shallow water for
the manufacturing sector. From the perspective of individ-
ual industries, the wholesale and retail sector as well as other
sectors exhibits a relatively even distribution of the four dam-
age states across most inundation depth ranges, as shown in
Fig. 3d and e. This suggests that the loss patterns in these sec-
tors are fairly dispersed and do not show significant concen-
tration under varying flood depths. Such a distribution may
reflect the diversity in their business nature and asset struc-
ture. As a result, these sectors may possess a certain level of
resilience and risk-bearing capacity in relation to flood haz-
ards.

4.1.2 Estimated probability across different sectors

For further analysis, the exceedance probabilities were trans-
formed into probabilities for different damage states, corre-
sponding to the areas enclosed by the various exceedance
probability curves depicted in Fig. 4. The yellow, green, blue,
and red lines represent the probabilities of minor, moderate,
major, and complete damage, respectively. Within the inun-
dation depth range of 1 to 200 cm, the probability of the
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manufacturing sector experiencing a moderate damage state
is roughly equivalent to that of it experiencing a complete
damage state. In other sectors, the likelihood of experiencing
a minor damage state is generally comparable to that of ex-
periencing a moderate damage state, while the accommoda-
tion and catering sector, as well as wholesale and retail trade
sector, is more prone to both minor and complete damage.
Due to the limited samples of major damage, the probabil-
ity of a major damage state occurring under any inundation
depth remains relatively low, never dominating the spectrum
of damage states.

4.2 Expectation-of-loss rate for each damage state
4.2.1 Distribution function fitting of PCLR

According to AIC and BIC, different functions — Weibull,
lognormal, gamma, and logistic — are selected as the best
fit for different damage states across sectors. These statis-
tical criteria are utilized to evaluate the suitability and per-
formance of each distribution function in representing the
observed data. By analyzing AIC and BIC, we can iden-
tify which distribution function minimized information loss
while balancing model complexity and fit. The goodness-of-
fit values can be found in Table 3.

4.2.2 Estimation of the expectation-of-loss rate for
different damage states

In Sect. 4.2.1, we describe how the optimal distribution func-
tions for PCLR for various damage states are selected. Sub-
sequently, the expectation-of-loss rate for each damage state
can be obtained. It is calculated using Egs. (6), (8), (10),
or (12) and is presented in Table 4.

4.3 Analysis of estimated PCLR across sectors
4.3.1 Prediction intervals of PCLR using MCS

Utilizing estimated probability from Sect. 4.1.2 and the
expectation-of-loss rates estimated for each sector for differ-
ent damage states in Sect. 4.2.2, PCLR is estimated using
Eq. (13) and illustrated as solid lines in Fig. 5. Generally,
PCLR values for each sector demonstrate a logarithmic in-
crease with inundation depth. At lower inundation depths,
the loss rate increases more rapidly; however, as inundation
depth rises, the loss rate tends to stabilize. This highlights the
nonlinear characteristics of loss rate growth across sectors at
varying inundation depths.

Additionally, the model indicates that losses can oc-
cur even without any inundation. PCLR can reach up to
20 % without direct floodwater damage. This primarily re-
sults from indirect factors that disrupt business operations:
(1) supply chain disruption — flooding can block transporta-
tion routes (Yin et al., 2016), delaying the delivery of raw ma-
terials and finished goods; (2) workforce availability — dam-

https://doi.org/10.5194/nhess-25-2717-2025
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Table 2. Fitting parameters of exceedance probability curves.

Parameter ~ All sectors Manufacturing ~ Accommodation ~ Wholesale and Other
N =424 N =148 and catering retail trade sectors
N =68 N =137 N=T71
ni 3.425 3.328 4.050 3.256 3.722
[0.107] [0.153] [0.173] [0.232] [0.322]
7% 4.862 4.804 4.792 4.666 5.305
[0.140] [0.178] [0.242] [0.268]  [0.523]
"3 5.467 5.154 5.090 5.585 6.348
[0.185] [0.210] [0.299] [0.403] [0.738]
o 1.555 1.177 1.072 1.870 1.946
[0.161] [0.169] [0.287] [0.389] [0.488]
log Ly —476.127 —153.740 —73.719 —166.395 —68.546
log Lo —532.644 —182.289 —81.416 —179.249  —78.790
X 2 113.034 57.100 15.393 25.708 20.487
Note that numbers in square brackets are standard deviations of the estimated parameter values.
1.0 1.0 30
(a) F 60 (b)
£ 08+ . £081 &
E £ E L20
S 0.6 1 40 2 "2 0.6 2
S_ Iy % 2
E 0.4 ; % 0.4 é
3 08 8 10§
& 024 =02 =
0.0 '!“l' , H 0 0.0 4 ; . H o
0 50 100 150 200 0 50 100 150 200
Inundation (cm) Inundation (cm)
1.0 15 1.0 30
© ()
£ 08+ . £081 -
= 0t 3 20 2
€ 0.6 S 2064 E
5 5 9 5
S 041 5 £ 041 5
3 58 3 10 g
2024 = Z 021 =
004 .”l", I Lo 0041 . , | Ao
0 50 100 150 200 0 50 100 150 200
Inundation (cm) Inundation (cm)
1.0 15
@
g 0.8 1 5 N Complete damage
E 10 & Major damage
g 061 2 Moderate damage
8 g Minor damage
g 044 < 3
3 2 E —— > Major damage
5 0.2+ == > Moderate damage
| I | > Minor damage
0.0 T T T 0
0 50 100 150 200

Inundation (cm)

2723

Figure 3. Exceedance probability curves of different sectors for (a) all sectors, (b) manufacturing, (¢) accommodation and catering,
(d) wholesale and retail trade, and (e) other sectors.
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Manufacturing
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retail trade

Other sectors

Weibull
Lognormal
Gamma
Logistic

Minor

—339.228; —332.809*
—236.769; —230.350
—299.498; —293.079
—338.316; —331.897

—109.019; —105.116*
—86.679; —82.777
—96.286; —92.384
—105.043; —101.141

—67.335; —64.283*
—62.847; —59.795
—65.583; —62.530
—61.344; —58.291

—83.235; —79.184
—51.021; —46.970
—74.196; —70.145
—86.573; —82.522*

—88.516; —85.089*
—74.065; —70.638
—80.255; —76.828
—84.316; —80.889

Weibull
Lognormal
Gamma
Logistic

Moderate

—262.665; —257.024
—270.557; —264.916*
—270.348; —264.707
—257.536; —251.895

—112.840; —108.719
—121.501; —117.381*
—120.292; —116.171
—112.003; —107.882

—28.398; —26.982
—28.820; —27.404
—28.913; —27.497*
—27.666; —26.250

—80.027; —76.916*
—79.133; =76.022
—79.749; —76.639
—78.936; —75.825

—33.016; —31.471
—33.555; —=32.010
—33.661; —32.116*
—32.641; —31.096

Weibull
Lognormal
Gamma
Logistic

Major

—104.976; —101.549
—106.267; —102.840
—106.500; —103.073*
—105.634; —102.207

—27.851; —27.246
—29.663; —29.057
—29.715; =29.110
—32.008; —31.403*

—5.982; —6.763*
—5.959; —6.740
—5.965; —6.746
—5.286; —6.068

—48.521; —46.632
—50.741; —48.852
—50.774; —48.886
—51.201; —49.313*

—21.228; —21.336*
—19.645; —19.753
—19.717; —19.825
—19.138; —19.246

Note that the values separated by semicolons are the AIC and BIC values, respectively; the asterisk indicates the best fit.
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Table 4. Expectation-of-loss rate for various damage states.

2725

State Sector
All Manufacturing  Accommodation ~ Wholesale and ~ Other
sectors and catering retail trade sectors
Minor damage 21.001 23.014 18.582 21.033 22.448
Moderate damage  47.449 46.281 47.558 48.973 48.124
Major damage 80.975 80.000 80.106 79.693 86.634
Note that the values are percentages.
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Figure 5. PCLR curves of different sectors for (a) all sectors, (b) manufacturing, (¢) accommodation and catering, (d) wholesale and retail

trade, and (e) other sectors.

aged roads and public transit systems can stop employees
from commuting, affecting workforce presence; (3) precau-
tionary shutdowns — businesses may temporarily close to re-
duce risks, which impacts production capacity despite being
short-term; (4) infrastructure interruptions — temporary dis-
ruptions of essential services, such as electricity and water
(Kayaga et al., 2021), cause operational delays; and (5) cus-
tomer demand — during a disaster, demand drops as people
prioritize safety and essential needs, which reduces sales and
affecting production.

https://doi.org/10.5194/nhess-25-2717-2025

To obtain the prediction intervals of PCLR across sectors,
MCS is employed. These intervals are shown in dashed lines
in Fig. 5. As inundation depth increases, these lines become
tighter, indicating less variability in the PCLR estimates.
This trend is crucial as it provides more reliable estimates at
higher inundation depths. Narrower intervals assist decision-
makers in making quicker and more informed decisions since
potential losses are more predictable. Improved predictabil-
ity aids in efficient resource allocation, emergency response
planning, and risk mitigation. By understanding these inter-
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vals, stakeholders can prepare for different flood scenarios
and implement strategies to minimize impacts on production.

4.3.2 Rate of change for PCLR across sectors

PCLR curves for each sector are presented on a single graph,
illustrating loss rates under different inundation depths, as
shown in Fig. 6a. Initially, the loss rate in the manufacturing
sector is higher than in the wholesale and retail trade sector,
but it is negligible. For inundation depths below 80 cm, the
wholesale and retail trade sector incurs the highest loss rate,
followed by the manufacturing sector, and the accommoda-
tion and catering sector experiences the lowest loss rate. Be-
tween 80 and 130 cm, the manufacturing sector suffers the
highest loss rate, followed by the wholesale and retail trade
sector, with the accommodation and catering sector still ex-
periencing the lowest. For depths over 130 cm, the manufac-
turing sector continues to incur the highest loss rate, but the
accommodation and catering sector surpasses the wholesale
and retail trade sector. These findings show that sector vul-
nerability varies with flood conditions, highlighting the need
for tailored flood risk management strategies.

While PCLR shows the post-disaster loss rate for each sec-
tor, it is limited by its one-dimensional analysis. To improve
disaster prevention strategies, this study also estimates the
rate of change for PCLR across sectors. This rate reflects how
quickly the loss rate changes with inundation depth under
specific conditions. Understanding this rate provides deeper
insight into sector-specific vulnerabilities. Figure 6b presents
the rate of change in losses across sectors under varying in-
undation depths. We find that at depths of less than 17 cm, the
wholesale and retail trade sector has a higher rate of change
than the manufacturing sector and accommodation and cater-
ing sector. However, as depth increases, the dynamics shift.
Between 17 and 27 cm, the manufacturing sector shows the
highest rate of change, surpassing both the wholesale and re-
tail trade sector and the accommodation and catering sector.
Beyond 27 cm, the accommodation and catering sector has
the highest rate of loss change, exceeding the manufacturing
sector.

At shallow inundation depths, PCLR of the wholesale and
retail trade sector exhibits the steepest slope. This steepness
can be attributed to the sector’s high reliance on physical lo-
cation and customer footfall. Even minor flooding can dis-
rupt transportation, affecting customer access and quickly
reducing sales. Additionally, inventory losses can also rise
rapidly, particularly for water-sensitive goods. As inunda-
tion depth increases, the manufacturing sector’s vulnerability
curve becomes steeper than that of the wholesale and retail
trade sector. This change is related to the sector’s reliance on
infrastructure and production lines. Greater depths increase
damage to production and storage facilities and cause inter-
ruptions to electricity and logistics, resulting in faster losses.
At even higher depths, the accommodation and catering sec-
tor’s vulnerability curve becomes the steepest. This sector

Nat. Hazards Earth Syst. Sci., 25, 2717-2730, 2025

relies heavily on immediate service and the customer experi-
ence. Flood damage to facilities, hygiene problems, and ser-
vice interruptions impact operations. Furthermore, worsen-
ing floods can increase evacuations from affected areas, de-
creasing demand for accommodation and catering services.

4.3.3 Comparison results between estimated values and
observed values

We conduct a comparative analysis using the model-
predicted estimated data and the survey data, as shown in
Fig. 7. We found that the model overestimated the loss rate
at low water depths and underestimated the loss rate at high
water depths. The model explains the observed values bet-
ter at lower inundation levels, with the prediction intervals
effectively encompassing the observations. Prediction inter-
vals are ranges calculated based on the model’s uncertainty;
when observed values fall within these intervals, it indicates
that the model’s estimation of uncertainty is reasonable and
the prediction results are reliable. However, for locations
with deep inundation, due to fewer sample points, the model
shows some bias and tends to underestimate the observed
values. Nevertheless, the upper bounds of the prediction in-
tervals are still close to the actual observations, indicating
that the model can still partially capture the conditions in
deeply inundated areas.

4.4 Discussion
4.4.1 Advantages and limitations

A methodological framework was proposed to address re-
sponse bias in assessing PCLR of enterprises caused by flood
disasters, and it was applied to the city of Zhengzhou as a
case study. The methodology has the following advantages:
(1) it addresses response bias in extreme flood scenarios and
considers the distribution characteristics of PCLR for differ-
ent damage states, allowing for more accurate assessment of
direct economic losses amidst the complexity of real-world
data. (2) It calculates the prediction intervals for PCLR using
MCS, providing a basis for decision-makers to allocate funds
based on their financial situations. (3) It calculates the rate of
change in PCLR with increasing inundation depth, helping
emergency managers and businesses understand PCLR sen-
sitivity to rising inundation depth.

The core value of this study lies in the potential applica-
tion of the estimated PCLR values in economic modeling.
For example, based on the PCLR estimated in this study, we
can determine the production capacity economic loss rates
of various industrial sectors in Zhengzhou under the scenario
of extremely large-scale flood disasters with a 1 m moder-
ate flooding level. On this basis, in combination with the
sectoral gross output data from Zhengzhou’s multi-regional
input—output (MRIO) table, we can estimate the production
capacity losses of each industrial sector in this scenario. Sub-
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Figure 7. Comparison results between estimated values and ob-
served values.

sequently, by inputting the obtained production capacity loss
data into the mixed-MRIO model, we can estimate the ripple
losses outside the disaster area caused by inter-regional in-
dustrial linkages. PCLR values provide precise supply-side
inputs for I-O and CGE models. This enhances the accuracy
of assessing the ripple effects of production disruptions on
the economy and aids governments in formulating effective
response strategies.

However, the proposed approach has some limitations. Al-
though we try to improve model adaptability, the model’s
generalization ability still requires further validation. Since
disasters are unique and unpredictable events, addressing
their impacts necessitates specific considerations in model-
ing.
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4.4.2 Future work

Based on this study, future research should focus on several
key points.

Firstly, increasing the sample size through on-site investi-
gations should be taken into account when modeling. A mul-
tiple dataset can provide a more comprehensive representa-
tion of the variability and uncertainty inherent in real-world
scenarios (Shooraki et al., 2024). This helps ensure that the
model performs consistently well with new and unseen data.

Secondly, incorporating data from diverse regions and sec-
tors is important for enhancing the model’s universality. Our
framework offers a foundational paradigm for cross-sector
risk assessment but requires flexible adaptation for differ-
ent sectors. For instance, the agricultural sector, significantly
influenced by flood inundation depth, crop growth cycles,
and soil moisture, needs to integrate agricultural monitoring
data to refine damage state classification (Yang et al., 2023;
Zhong et al., 2018); the public service sector’s productivity
loss assessment should consider factors such as service net-
work connectivity and backup facility configurations (Li and
Yan, 2024), achievable by expanding survey dimensions and
infrastructure vulnerability curves. Geographic extensions
must account for regional climate characteristics (e.g., differ-
ences in flood patterns between monsoon and arid zones) and
economic structural variations, with multi-regional data used
to calibrate model parameters and enhance generalizability.

Finally, establishing a disaster emergency data collection
template to build a standardized indicator system and de-
sign trigger-based questions is necessary. Through the gov-
ernment affairs system of emergency management depart-
ments, questionnaire templates can be pushed to high-risk
enterprises, with automatic pre-filling of business registra-
tion information (such as industry type and number of em-
ployees). Additionally, a lightweight app could be developed
to support voice input (e.g., equipment submerged for 8 h)
and on-site photo recognition (using optical character recog-
nition (OCR) to extract equipment numbers and damage lev-
els).

Nat. Hazards Earth Syst. Sci., 25, 2717-2730, 2025



2728

4.4.3 Flood prevention and mitigation strategies

This study indicates differences in the severity and rate of
change for PCLR across sectors due to floods. Therefore, it
is crucial to adopt targeted flood risk management strategies
to enhance disaster resilience within each sector.

Firstly, governments should focus on strengthening infras-
tructure, particularly in regions with a manufacturing sec-
tor and wholesale and retail trade sector. Since these sectors
highly depend on infrastructure, investments should aim to
improve and reinforce roads, power supplies, and logistics
networks to mitigate the indirect impacts of flooding. Sec-
ondly, for the accommodation and catering sector, detailed
emergency response plans and recovery strategies need to be
developed. As this sector experiences the greatest variability
in PCLR during severe flooding, policymakers should pro-
mote the establishment of a sector-specific emergency fund.
This fund would provide financial support and short-term
loans to assist businesses in recovering quickly after a disas-
ter. Lastly, it is recommended that the government establish
a multi-sector collaboration mechanism to ensure rapid re-
sponses and coordinated action among relevant departments
when disasters occur. By creating an information-sharing
platform, businesses and government agencies across sectors
can access up-to-date flood information promptly, allowing
for more informed decision-making in response efforts.

5 Conclusions

This study tackles the significant challenge of estimating
mean PCLR following extreme disaster events, a crucial
topic in disaster research. Our methodological approach
demonstrates three principal advantages: first, we develop
a method to estimate mean PCLR while accounting for re-
sponse bias. This method involves constructing exceedance
probability curves and using distribution function fitting.
Second, the integration of MCS enhances the reliability of
these estimates by generating prediction intervals, which are
vital for informing government decisions on post-disaster re-
source allocation. Third, we quantify the rate of change in
PCLR to assess the sensitivity of sector-specific PCLR with
respect to varying inundation depths. Subsequently, we apply
the proposed method to 424 data samples collected after the
Zhengzhou rainstorm event in July 2021. Ultimately, the es-
timated PCLR values serve as critical input in I-O and CGE
models, thereby enabling a more precise assessment of the
ripple effects caused by flood losses.

This study identifies key patterns in sectoral loss rates in
relation to inundation depths. The loss rate is the highest in
the wholesale and retail trade sector at shallower depths. At
moderate and greater depths, manufacturing experiences the
highest loss rate. The rate of change for PCLR differs sig-
nificantly between sectors. The wholesale and retail trade
sector is most sensitive at minimal depths. Manufacturing is
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most sensitive at moderate depths, while the accommodation
and catering sector shows the greatest sensitivity at greater
depths. These findings highlight the importance of direct-
ing support to the most affected sectors, especially manu-
facturing and wholesale and retail trade, to reduce economic
disruption. The varying sensitivity of sectors to inundation
should guide policymaking due to its impact on economic
and social resilience.

As climate changes, the frequency and severity of natural
disasters such as floods, hurricanes, and rising sea levels are
expected to increase. This research offers an insight for poli-
cymakers in disaster management, allowing for the strategic
allocation of limited resources and accurate ripple effect es-
timation. Given access to primary data on hazard intensity
and PCLR, the analytical model in this study can be adapted
to the characteristics of different regions and sectors. It is
applicable in various disaster scenarios, providing a tool for
managing future economic challenges.
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