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Abstract. The defining of reliable tools for rainfall-induced
landslide hazard assessment is often limited by the lack of
long records of landslides and relevant hydrometeorological
variables. This is the case of the mountainous areas of the
Southern Apennines of Campania (Italy), diffusely covered
by loose pyroclastic deposits laying upon limestone bedrock
and frequently subjected to rainfall-triggered shallow land-
slides. To get around this issue, a 500-year-long synthetic
dataset of the response to precipitation of a typical slope of
the area has been generated, by means of a physically based
model previously validated through experimental data. The
obtained dataset, containing hourly values of soil moisture
and suction and of the water level in an ephemeral aquifer de-
veloping in the uppermost fractured bedrock, has been used
to assess slope stability through the calculation of the fac-
tor of safety. Based on the synthetic data, empirical thresh-
olds for the prediction of landslide occurrence have been de-
fined, either meteorological (i.e. based on rainfall intensity
and duration) or hydrometeorological (i.e. coupling rainfall
depth with antecedent root-zone soil moisture or aquifer wa-
ter level). The results show that, where meteorological forc-
ing and slope characteristics are known without uncertainty,
hydrometeorological thresholds outperform the meteorolog-
ical ones and that a 3D threshold based on root-zone soil
moisture, aquifer level and rainfall depth provides nearly
unerring landslide predictions. The use of two antecedent
hydrologic variables also allows identifying two different
landslide-triggering mechanisms, respectively typical of the
beginning and of the end of the rainy season.

To extend the application to large areas, the uncertain-
ties linked to the spatial variability of slope geomorpho-

logic characteristics and hydrometeorological variables were
considered as random errors. Hence, foreseeing the appli-
cation to the north-facing side of Partenio Massif (about
80 km2), the synthetic dataset has been perturbed, superim-
posing normal-distributed random fluctuations to the calcu-
lated values of the factor of safety and to the hydromete-
orological variables used as landslide predictors. Although
the uncertainty reduces the predictive skill of all the thresh-
olds, the hydrometeorological ones show more robustness,
with small numbers of both missed and false alarms. This
result is confirmed by the application of the obtained thresh-
olds to available data of landslides, rainfall and root-zone soil
moisture for the period 1999–2020 in the area. The proposed
methodology is an example of how to deal with uncertainty
in hydrometeorological information in landslide hazard as-
sessment. Provided that the major hydrological processes and
variables are identified, it is also suitable for application in
other contexts.

1 Introduction

Rainfall-induced landslides are a common natural hazard,
involving the displacement of land portions in sloping ar-
eas following heavy rain periods. The effects of landslides
are critical due to human casualties, significant damages to
man-made structures (e.g. roads and buildings) and substan-
tial economic losses (Froude and Petley, 2018), and they are
exacerbated by climate change and unplanned urban devel-
opment (e.g. Ozturk et al., 2022). Hence, predicting the oc-
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currence of such kind of phenomena is highly relevant and
needs to be deeply investigated.

Predicting rainfall-induced landslides often relies on defin-
ing empirical thresholds separating likely non-triggering
from likely triggering conditions. Empirical thresholds are
indeed key components of landslide early warning systems
(LEWSs). The most common threshold is the purely meteo-
rological relationship between rainfall intensity and duration
(Guzzetti et al., 2007, 2008; Segoni et al., 2018). However,
it lacks physical basis and overrates data correlations, giving
rise to important uncertainties and limiting the effectiveness
of predictions.

It is well recognized that many rainfall-induced landslides
are triggered on steep slopes covered with shallow granular
deposits, usually in unsaturated conditions, following an in-
crease in pore water pressure or a decrease in suction (Terza-
ghi, 1943), in turn linked to an increase in water stored in the
soil (Bogaard and Greco, 2016). In the case of shallow land-
slides, the attainment of instability not only depends on the
triggering rainfall event characteristics but is also favoured
by antecedent wet soil conditions (Mirus et al., 2018a; Wicki
et al., 2020). More generally, the accumulation of water in a
slope, up to the eventual triggering of a landslide, requires
that slope drainage mechanisms are not capable of effec-
tively draining out much of the infiltrating rainwater (Bo-
gaard and Greco, 2016; Greco et al., 2021; Marino et al.,
2021). Drainage processes are controlled by the hydraulic
behaviour of the boundaries of the slope, often not static, as
it may change in response to various large-scale processes
(in time and space) affecting the slopes as parts of larger hy-
drological systems. The whole processes controlling slope
infiltration and drainage represent the hydrologic predispos-
ing factors (causes), which should be considered, together
with rain event characteristics (trigger), in landslide predic-
tion (Bogaard and Greco, 2018).

In the last decade, new advancements have been made
in landslide hazard research. Novel hydrometeorological
thresholds that combine hydrologic predisposing factors with
rainfall events leading to slope failure have been devel-
oped for landslide forecasting. Specifically, adding hydro-
logic information physically linked to the predisposing pro-
cesses occurring in the slope (e.g. soil moisture content) has
been shown to improve landslide hazard assessment from lo-
cal/basin to regional scales (Abraham et al., 2021; Baum and
Godt, 2010; Marino et al., 2020b; Mirus et al., 2018b; Palaz-
zolo et al., 2023; Thomas et al., 2019). The acquisition of in-
formation about soil moisture is nowadays feasible, thanks to
remote sensing (Beck et al., 2021), meteorological reanalysis
products (Muñoz-Sabater et al., 2021) and conventional field
monitoring stations, at relatively low cost and in an up-to-
date manner (Marino et al., 2020a, 2023). However, depend-
ing on site-specific characteristics, other hydrological vari-
ables as well as soil moisture may add valuable information
to understand the seasonally changing slope response to pre-
cipitation (Illien et al., 2021; Roman Quintero et al., 2023).

Regardless of the chosen approach (i.e. purely meteo-
rological or hydrometeorological), a common issue in the
definition of statistically significant empirical thresholds is
the small number of unambiguously identified (in time and
space) landslide events in the historical records (Peres and
Cancelliere, 2021). This is especially true when the analysis
is restricted to small areas (e.g. Gonzalez et al., 2023), such
as single slopes or small catchments. Expanding the stud-
ied area (i.e. moving from local to regional landslide haz-
ard assessment) allows increasing the amount of valid land-
slide data, but it often implies encompassing quite different
geomorphological and meteorological contexts in the same
dataset, thus hampering the physical significance and relia-
bility of the defined thresholds (Gonzalez et al., 2023; Segoni
et al., 2018). One potential approach to address this issue is
defining landslide thresholds based only on non-triggering
conditions, much more numerous in any given dataset (Peres
and Cancelliere, 2021). The dataset available for the def-
inition of the threshold can also be enriched through the
stochastic generation of synthetic data, an established tech-
nique in hydrology (e.g. Hanson, 1982; De Michele et al.,
2005; Salas et al., 2006; Keskin et al., 2006) and recently
applied to landslide studies by coupling the stochastic gen-
eration of rainfall series with physically based infiltration
and slope stability models (e.g. Peres and Cancelliere, 2014;
Peres et al., 2018; Marino et al., 2021).

As an example of how a synthetic dataset can be exploited
for landslide hazard assessment, this study refers to the case
of a relatively large landslide-prone area on the north-facing
slopes of Partenio Massif (Campania, southern Italy). The
study area shares many major characteristics of landslide-
affected areas in Campania: from a humid Mediterranean cli-
mate with densely vegetated slopes to soil deposits consist-
ing of granular materials originating from the explosive erup-
tions of the Phlegraean Fields and the Somma-Vesuvius vol-
canoes (Rolandi et al., 1998). The shallow rainfall-induced
landslides in the area always involve a mantle of a few me-
tres of shallow air-fall pyroclastic deposits, mainly ashes
with layers of pumices, overlaying a fractured karstic lime-
stone bedrock, which, during the rainy season, hosts perched
aquifers in its uppermost weathered part (epikarst) (Greco et
al., 2018).

It is well-known that the triggering mechanism leading to
rainfall-induced landslides on these slopes is the reduction of
soil suction in the initially unsaturated deposits, and conse-
quently of their shear strength, caused by soil wetting dur-
ing rainwater infiltration (Damiano and Olivares, 2010; Oli-
vares and Picarelli, 2003; Pagano et al., 2010; Pirone et al.,
2015). Nevertheless, many features remain unknown in the
application of this knowledge to large areas, especially for
early warning purposes. As a matter of fact, heavy and persis-
tent rainfall events are sometimes followed by the triggering
of landslides, but not all slopes (apparently similar) in rel-
atively homogeneous geomorphological settings fail during
the same event (Greco et al., 2021). In fact, the actual trig-
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gering of landslides depends on local geomorphologic slope
features (Di Crescenzo and Santo, 2005; Crosta and Dal Ne-
gro, 2003), in some cases even affecting the mechanisms
leading to slope failure. In some cases, capillary barriers de-
velop at the ash–pumice interface and cause flow diversion
and local moisture accumulation (Mancarella et al., 2012). In
others, the role of the soil–bedrock interface has been high-
lighted (Reder et al., 2017), which may locally impede soil
drainage, favouring pore pressure buildup (Damiano et al.,
2012; Damiano and Olivares, 2010), or induce soil saturation
by local exfiltration from the bedrock (Cascini et al., 2008).

This paper aims at defining empirical thresholds account-
ing for the effects of hydrometeorological and geomechan-
ical spatial variability for operational use in a warning sys-
tem for landslide forecasting in a large area involving simi-
lar geomorphological settings. Two different approaches are
compared for threshold definitions: a purely meteorological
approach directly relating rainfall characteristics to landslide
triggering and a hydrometeorological approach based on a
cause–trigger relationship. Both antecedent root-zone soil
moisture and perched aquifer water level have been tested as
possible proxies of hydrologic predisposing conditions. To
obtain a dataset rich enough for statistical analyses, synthetic
data are generated by coupling a rainfall stochastic model
with a physically based model of unsaturated flow and slope
stability. Initially, the analysis is conducted for a simplified
reference slope with constant inclination, covered by a ho-
mogeneous soil layer with constant thickness.

The results show how, for the reference slope, perfectly
described by the physically based model used for the gen-
eration of the synthetic dataset, a 2D hydrometeorological
threshold, based on soil moisture and rainfall depth, ensures
very high predictive performance (i.e. no missed alarms and
about one false alarm every 5 years). The purely meteoro-
logical I–D threshold, instead, would lead to the unaccept-
able rate of one false alarm per year. Furthermore, a nearly
unerring 3D hydrometeorological threshold is defined, cou-
pling perched aquifer level and root-zone soil moisture, 1
hour prior to the onset of rainfall, with total event rainfall
depth. The three hydrometeorological variables also allow
identifying the antecedent conditions leading to two differ-
ent landslide-triggering mechanisms.

The scale of application of the thresholds is then enlarged
to the entire north-facing side of the Partenio Massif, in-
troducing the effects of the uncertainty related to the spa-
tial variability of hydrometeorological and geomorpholog-
ical variables as random fluctuations around the synthetic
data. The obtained results show the robustness of the hy-
drometeorological thresholds, compared to the purely meteo-
rological one. In fact, the reduction in predictive performance
due to uncertainty at large scale is small, making the hydrom-
eteorological thresholds still a reliable tool for landslide haz-
ard assessment in the area, as confirmed by the application to
available landslide data of the period 1999–2020.

2 Materials and methods

In this study, an area of about 80 km2, the Partenio Mas-
sif, will be referred to as “large”, although this term usu-
ally refers to much wider zones of regional landslide warning
tools. In fact, an area with this extension includes hundreds
of “small” slopes, and operational landslide forecasting re-
lies on hydrometeorological information, typically available
in few and sometimes sparse positions (i.e. the nodes of the
grid of modelling or remote sensing products, or the locations
of measurement instruments in the field). However, landslide
triggering on the slopes of the area is influenced by local
factors, (e.g. related to the spatial variability of soil prop-
erties, slope and bedrock morphology, soil cover thickness
and layering, vegetation, and precipitation). Additionally, in-
formation coming from monitoring or modelling nodes is af-
fected by the spatial variability of hydrometeorological vari-
ables (e.g. rainfall, soil moisture and aquifer level). Hence,
the resulting predictive uncertainty should be considered.

In this respect, the methodology described hereinafter first
analyses a single reference slope, with simplified geometry
and properties known with little uncertainty, defining empir-
ical landslide thresholds linking hydrometeorological predic-
tors to the factor of safety of the slope. Then, the results are
extended to the slopes of the large area, introducing the ef-
fects of uncertainty as random fluctuations of both the pre-
dictors and the factor of safety.

2.1 Case study

The study deals with the case of an area of the South-
ern Apennines in Campania, Italy. Specifically, the studied
slopes belong to the north-facing part of the Partenio Massif,
about 40 km northeast of the city of Naples, with a total ex-
tension of about 80 km2 (Fig. 1). The area is the northern part
of the Camp-3 warning zone defined by the Civil Protection
agency for the management of hydrometeorological risk in
Campania (Zhang et al., 2025). They are covered by thin de-
posits of loose coarse-grained pyroclastic soil, consisting of
alternating layers of ashes and pumices, lying upon a densely
fractured limestone bedrock. The thickness of the pyroclastic
deposit, typically related to slope steepness, ranges between
a few metres for gentle slopes to a couple of metres around an
inclination angle of 40°, and it tends to disappear for slopes
steeper than 50°, where the underlying bedrock emerges (De
Vita and Nappi, 2013).

During the night between 15 and 16 December 1999,
the slopes of Mt. Cornito (near the city of Cervinara) were
affected by a series of shallow landslides after a rainfall
event of about 320 mm in 48 h. One of the major land-
slides moved approximately 2 km from the source area and
reached the town of Cervinara (Fiorillo et al., 2001), with
about 30 000 m3 of mobilized material, causing casualties
and destroying buildings. More recently, in 2019, a debris
avalanche about 15 000 m3 in volume affected the commu-
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Figure 1. Study area of north-facing part of the Partenio Massif (blue-filled area), with indication of the rain gauges and the major landslides
reported in different landslide catalogues from 1999 to 2020 (sourced from Peruccacci et al., 2023; Calvello and Pecoraro, 2018).

nity of San Martino Valle Caudina (very close to Cervinara,
Fig. 1), showing that this local area of a few km2 belonging
to northeast-facing slopes of the Partenio Mountains is re-
currently subjected to such kind of phenomena (Greco et al.,
2021). The sliding surface of the previously described land-
slides, as well as in other similar geomorphological contexts
of the region, usually occurs within the layers of ashes, a co-
hesionless soil characterized by friction angle values ranging
between 37 and 39° (Olivares and Picarelli, 2003; Roman
Quintero et al., 2024).

The fractured limestone formations are often the host rock
for karstic aquifers. A distinction can be found between the
weathered uppermost part of the bedrock, known as epikarst
(Hartmann et al., 2014; Williams, 2008), which is more
porous and pervious, and the deepest part, characterized by
wider fracture systems, where the deep groundwater circu-
lation is hosted. The interaction between the epikarst and
the surface system was shown to be important for the hy-
drological behaviour of the unsaturated soil cover (Roman
Quintero et al., 2023). The water that leaks from the soil to
the epikarst forms ephemeral perched shallow aquifers that
favour the recharge of the deep aquifer and supply surface
water circulation through ephemeral springs.

2.2 Modelling the reference slope response to
precipitation

A 500-year synthetic dataset was produced to mimic the ma-
jor hydrological processes in the studied area. As is often the
case with landslide studies, statistical analysis relying solely
on historical observations is limited by data scarcity. Hence,
synthetic data generation is a suitable method to study slope
hydrologic processes over a timescale long enough to allow

for the occurrence of slope instability multiple times (e.g.
Peres and Cancelliere, 2014; Peres et al., 2018; Marino et al.,
2020b).

The first step in generating a synthetic dataset is defining a
reliable model of the major hydrological processes occurring
within a slope, which will be used to assess slope stability. In
this regard, a previously developed physically based model of
unsaturated flow in the soil covering a simplified slope with
known geometric, hydraulic and geotechnical characteristics
(referred to hereinafter as the reference slope model) was
adopted. This model should be regarded as representative of
the features of the typical slopes of the area. Although the
soil cover is layered, effective parameters of a homogeneous
soil layer resembling the mean hydraulic behaviour of the de-
posit have been assumed (Greco et al., 2013, 2018; Marino
et al., 2020b).

The model has been calibrated and validated according to
field monitoring data and laboratory analyses, proving to be
able to reliably reproduce field measurements (Comegna et
al., 2016; Greco et al., 2013, 2014, 2018). The thin soil de-
posit in comparison to the length of the slope allows the as-
sumption of 1D flow. The interaction with the atmosphere
considers rainfall infiltration and evapotranspiration, and the
underlying perched aquifer, modelled as a linear reservoir, is
connected to the overlying unsaturated soil through a cou-
pling hydraulic condition assumed at the soil–bedrock inter-
face (Fig. 2).

The water flow in the unsaturated soil deposit is modelled
assuming a homogeneous soil layer using the 1D Richards’
Eq. (1), whereψ is the soil matric potential, θ is the volumet-
ric water content, z is the vertical direction (see Fig. 2) and
k is the unsaturated hydraulic conductivity. The actual evap-
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Figure 2. Water flow scheme for the 1D coupled flow model con-
sidering (from top to bottom): rainwater infiltration from the soil
surface, unsaturated flow through the soil deposit accounting for the
effect of evapotranspiration, water leakage through the soil–bedrock
interface and saturated water flow in the epikarst joined to the soil–
bedrock interface affecting the water potential.

otranspiration is considered in the source term qr in Eq. (1),
representing root water uptake, estimated from the potential
evapotranspiration with the model of Feddes et al. (1976),
assuming a triangular root distribution penetrating the entire
cover thickness.

∂θ

∂t
=

dk
dθ
∂θ

∂z
+
∂

∂z

(
k

dψ
dθ
∂θ

∂z

)
− qr (1)

The hydraulic characteristic curves, θ (ψ) and k (ψ), are
modelled with the van Genuchten–Mualem model shown in
Eqs. (2) and (3), where θr and θs are the residual and saturated
volumetric water content, respectively; α, n andm= 1−1/n
are shape parameters; Se = (θ − θr)/(θs− θr) is the effective
degree of saturation; and Ks is the saturated hydraulic con-
ductivity (Mualem, 1976).

θ (ψ)=

{
θr+

θs−θr
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(2)
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{
KsS
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e

[
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e

)m]2
ifψ < 0

Ks ifψ ≥ 0
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The unsaturated flow model in the soil cover is coupled
with a linear reservoir model simulating the water accumu-
lation in the epikarst aquifer. The water balance equation of
the perched epikarst aquifer is as follows:

na
dh
dt
= ib−

h
Ka
. (4)

Table 1. Hydraulic parameters applied in the coupled model of 1D
water flow for the unsaturated soil cover and for the perched aquifer
hosted in the epikarst.

Soil cover θs (–) 0.70
θr (–) 0.01
α (m−1) 6
n (–) 1.3
Soil cover thickness (m) 2
Saturated hydraulic conductivity, 3× 10−5

Ks (m s−1)
Slope inclination angle, β (°) 40

Epikarst Epikarst thickness, He (m) 14
Effective porosity (–) 0.005
Time constant of linear reservoir (d) 871 d

In Eq. (4), na is the epikarst effective porosity, h is the wa-
ter table depth, ib is the water leakage from the soil cover to
the bedrock and Ka is the time constant of the linear reser-
voir. The aquifer water level is assumed to linearly affect the
suction (ψb) at the base of the soil deposit, ψb =He−h,
where He is the epikarst thickness. All model parameters are
summarized in Table 1.

The above-described model was run to simulate the wa-
ter flow with a 500-year synthetic hourly rainfall series, gen-
erated with the Neyman–Scott Rectangular Pulse (NSRP)
model (Rodriguez-Iturbe et al., 1987). NSRP is a stochastic
model that reproduces the rainfall process based on a ran-
dom selection of the beginning rainfall amount and duration
of single rainfall cells (rectangular pulses), which can over-
lap with each other. Specifically, every cell width and height
represent the duration and the intensity of each rainfall cell,
respectively. Hence, when many cells overlap, the total in-
tensity at any time is the result of the direct summation of
the intensities of the overlapping cells. The model has been
calibrated with the method of moments (Cowpertwait et al.,
1996; Peres and Cancelliere, 2014), based on a 17-year-long
rainfall dataset with a time resolution of 10 min, from the rain
gauge of Cervinara, managed by the Civil Protection agency
of Campania (Marino et al., 2020b; Roman Quintero et al.,
2023).

Equations (1) and (4) have been solved with the finite dif-
ferences technique in a 2 cm spacing grid with an hourly
time step, making it possible to obtain the 500-year synthetic
series of volumetric water content θ and water potential in
the soil profile and of the perched aquifer water level in the
epikarst (hereinafter indicated as the depth of the water table
below the soil–bedrock interface, ha =−ψb, as sketched in
Fig. 2).

Based on the results of the model simulations, slope stabil-
ity is assessed by evaluating the factor of safety (FS) at every
simulated time step. The assumed 1D geometry allows car-
rying out the slope stability analysis under the infinite slope
hypothesis, i.e. FS being the ratio between the resistive shear
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strength and the effective shear stress, derived from the equi-
librium analysis of a soil column element of height d resting
on a slope with inclination angle β:

FS=
c′+ γ dcos2β tanφ′− γwSeψ tanφ′

γ dsinβ cosβ
. (5)

In Eq. (5), c′ and φ′ are the effective soil cohesion and
friction angle, respectively; γw is the unit weight of water; γ
is the mean unit weight of the wet soil column; and χ is the
Bishop coefficient, a function of ψ and here assumed equal
to the effective degree of saturation (χ = Se) (Lu and Likos,
2006). As a layer of cohesive altered ashes is present near
the soil–bedrock interface, with a typical thickness of about
50 cm, the failure depth is assumed to be at the base of the
cohesionless soil profile, i.e. 1.5 m below the ground surface
(Marino et al., 2021). Landslide triggering is assumed to oc-
cur whenever FS< 1.0.

Once the landslide triggering has been identified, an as-
sociation between the rain events and the occurrence or
non-occurrence of landslides is needed. To this aim, rainfall
events have been separated within the 500-year hourly rain-
fall series, assuming that rainfall can be regarded as a new
event only when the effects of the previous one have disap-
peared from the topsoil, the moisture of which controls rain-
water infiltration during the new event. To this aim, a separa-
tion interval of 24 h with rain depth smaller than the mean
daily evapotranspiration, estimated as 2 mm d−1, has been
assumed, as after this time the topsoil moisture returned to
the field capacity for all the simulated rainfall events (Roman
Quintero et al., 2023). Under this assumption, 26 363 rain
events were identified, with durations between 1 and 427 h
and total rainfall depth between 2 and 645 mm.

The way the rain events have been associated with the oc-
currence or non-occurrence of landslides is shown in Fig. 3.

Within the time series, the landslide occurrence condition
(i.e. FS< 1.0) might be related to the triggering rain event
in two different ways, as depicted in Fig. 3a and b, which
show three rainfall events: E1, E2 and E3. In the first case
(Fig. 3a), FS< 1.0 is attained during a dry interval, owing to
the delay in rainwater infiltration; thus the triggering of the
landslide is associated with the previous rainfall event (E2).
In the second case (Fig. 3b), the critical condition is attained
during the rainfall eventE3, and so the landslide is associated
with the ongoing event. To avoid misinterpretation of the ac-
tual triggering event, whenever the rainfall event associated
with a landslide was smaller than 20 mm, it was merged with
the immediately previous one.

2.3 Empirical landslide threshold definition

Empirical thresholds are a useful tool for separating rainfall
events with landslides from those without. They consist of a
line, or a surface, plotted in a suitable 2D or 3D space, often
adopted in landslide early warning systems. The definition of
empirical thresholds can be made with different functional

formats, according to the shape of the data cloud in the cho-
sen space (Mirus et al., 2025).

The hydrologic analysis of the synthetic dataset carried
out by Roman Quintero et al. (2023) has shown that, in the
studied geomorphological context, the fraction of water re-
maining stored in the soil cover at the end of a rainfall event
(1S/H ) is strongly related to the mean volumetric water
content of the uppermost 100 cm of the soil profile (θ ) and
the antecedent perched aquifer water level (ha), both evalu-
ated 1 hour before the initiation of the event. This suggests
that these two variables may be used for the definition of hy-
drometeorological landslide thresholds. Hence, different em-
pirical thresholds have been tested here, aiming at comparing
their landslide-forecasting performances, ranging from the
traditional meteorological rainfall intensity-duration thresh-
old (D,I ) to the hydrometeorological one (θ,H ), in which
the hydrological information θ has been considered as repre-
sentative of conditions that predispose the slopes to failure, to
novel functional format for the hydrometeorological thresh-
old defined in 3D space (θ,ha,H ).

The parameters of all the tested functional formats for the
empirical thresholds have been identified by maximizing the
true skill statistic (TSS) (Peirce, 1884), which gives a mea-
sure of the predictive performance of the threshold:

TSS= 1−
M

P
−
F

N
. (6)

In Eq. (6), M is the number of missed alarms (i.e. events
not exceeding the threshold but followed by a landslide), P
is the total number of landslides (true positives), F is the
number of false positives (i.e. rainfall events exceeding the
threshold, without any landslide occurrence) and N is the to-
tal number of rainfall events not followed by any landslide
(true negatives). A perfectly working threshold curve gives
TSS= 1, while TSS=−1 indicates an always failing thresh-
old. The objective Function (6) is optimized by using a ge-
netic algorithm (GA) (Goldberg and Holland, 1988).

Basically, it is worth noting that whenever N � P (i.e.
landslide triggering is a rare phenomenon), TSS is thus more
sensitive to the missed alarms M rather than to the false
alarms F . Nevertheless, this bias can be useful for landslide
prediction purposes because a missed alarm error could have
catastrophic consequences, while false alarms may cause in-
convenience only to the involved inhabitants and may af-
fect their responsiveness and trust in an early warning sys-
tem in the long run, owing to the well-known cry-wolf effect
(Breznitz, 1984).

2.4 Real slope response to precipitation

Compared to the reference slope, the real slopes of the study
area present variable characteristics, in terms of geomorphol-
ogy as well as hydraulic and mechanical properties of the
soil. Spatial variability of slope characteristics, as well as of
rainfall input, affects both the assessment of slope stability
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Figure 3. Schematic representation of the occurrence of landslides associated with rainfall events in two different cases: (a) associated with
the previous event if FS < 1.0 after the end of the rainfall and (b) associated with the actual ongoing event if FS < 1.0 within the rainfall
event.

and the representativeness of the values of the variables used
for the definition of the empirical threshold.

In this respect, to mimic the operational use of the empir-
ical thresholds at large scale (i.e. referred to the north-facing
part of the Partenio Massif, about 80 km2), the effects of the
uncertainty affecting all the variables should be considered.

Specifically, normal-distributed fluctuations are superim-
posed on the synthetic meteorological and hydrological vari-
ables used for the definition of the local thresholds.

2.4.1 Uncertainty in the hydrometeorological variables
for the threshold definition for a large area

In the reference slope, both the meteorological (i.e. rain event
duration, depth and mean intensity) and hydrological (i.e.
root-zone soil moisture and perched aquifer water level) vari-
ables, which can be used for defining the empirical thresh-
olds, are perfectly representative of the actual meteorological
forcing and hydrologic antecedent conditions of the slope.
Instead, in real operational applications to a wide area, the
same variables would be the result of sparse measurements or
of model simulations with limited spatial resolution. Hence,
the characteristics of the considered rainfall events are not
those affecting all the slopes of the area. Similarly, the val-
ues of antecedent hydrological variables would not remain
unchanged if measured (or simulated) at different points of
the study area. Therefore, uncertainty affects the hydrome-
teorological variables to be used for threshold application to
a large area. The greatness of uncertainty is related to the
extension of the area to which the threshold is applied, com-
pared to the spatial density of the input data.

To gain insight into rainfall uncertainty in the study area,
the spatial variability of the rainfall amount of events, sep-
arated as described in Sect. 2.2, has been analysed. Rainfall
recorded in the period 2001–2021 by three rain gauges man-
aged by the Civil Protection agency in Cervinara, Rotondi

and San Martino Valle Caudina (S.M.V.C.) has been used
(Fig. 1). The distance between the rain gauges ranges from
4.8 (between Rotondi and Cervinara) to 10.0 km (between
Rotondi and S.M.V.C.), with the rain gauge of S.M.V.C. in-
stalled at a significantly higher altitude compared to the other
two (Table 2). The rain events observed at different rain
gauges that overlapped for at least 1 hour in the time se-
ries were considered contemporary. When the different in-
termittency of the rain observed at two gauges gave rise to
the correspondence of a single event at the first gauge with
multiple shorter events at the second, the short events were
merged into a single event to obtain comparable total rain-
fall depths (i.e. in these cases, the separation criterion of 24 h
with less than 2 mm was disapplied). Table 2 reports some
statistical indices of the difference in rainfall observed at the
three gauges, including the total number of events at each
gauge and the number of events overlapping with any of the
others.

As an example, for two couplings of rain gauges, i.e. Cerv-
inara with Rotondi and Cervinara with San Martino Valle
Caudina, the scatterplots of the differences, 1H =H1−H2,
vs. the mean values, Hmed = (H1+H2)/2, of event depths
recorded at the two gauges are reported in Fig. 4. The cou-
pling between Rotondi and San Martino Valle Caudina has
not been represented, as it was very similar to that of Cerv-
inara with San Martino Valle Caudina.

The black dashed line in each graph represents the linear
fitting of the dependence of the fluctuation 1H on Hmed,
i.e. 1H = αHmed. The red solid and dashed lines, symmet-
ric around the black dotted line, represent equations of the
format1H = αHmed±A×H

B
med, with the power-law terms

characterized by the same exponent B and different values of
the coefficient A. The exponent B and the coefficients A of
the solid and dashed curves, reported in Table 3, have been
obtained by searching the curves delimiting the zones con-
taining 68.3 % and 86.6 % of the dots, respectively, and leav-

https://doi.org/10.5194/nhess-25-2679-2025 Nat. Hazards Earth Syst. Sci., 25, 2679–2698, 2025



2686 D. C. Roman Quintero et al.: Large-scale assessment of rainfall-induced landslide hazard

Table 2. Characteristics and degree of overlapping of rainfall events recorded at the three rain gauges of the study area.

Rain Elevation Mean Minimum Minimum Total Number of Number of Number of
gauge (m a.s.l.) yearly and and number of events events events

rainfall maximum maximum events overlapping overlapping overlapping
event event with with with
depth duration Cervinara Rotondi S.M.V.C.
(mm) (h)

Cervinara 349 1600 [2, 266.6] [1, 219] 1010 1010 845 831
Rotondi 483 1500 [2, 260.6] [1, 218] 1010 845 1010 840
S.M.V.C. 850 2000 [2, 403] [1, 290] 1052 831 840 1052

Figure 4. Scatterplots of the differences 1H vs. the mean values Hmed of rainfall depths of events recorded at the rain gauges of (a) Cerv-
inara and Rotondi and (b) Cervinara and San Martino Valle Caudina. The black dashed line represents the linear fitting of the 1H (Hmed)
relationship. The red solid and dashed lines include 68.3 % and 86.6 % of the dots, respectively. The blue bell-shaped curves represent the
identified normal distributions.

ing outside the same number of dots above and below them.
If the ratio of the coefficients A obtained for the dashed and
solid lines is close to 1.5, this indicates that the dot clouds
are arranged in such a way to allow assuming the fluctuations
of the rain depth difference to be normal-distributed around
their mean, with mean and standard deviations depending on
the mean total event depth according to the abovementioned
linear and power-law relationships, respectively.

The analysis of rain events for the three considered sta-
tions shows that both the distance and the difference in al-
titude affect the spatial variability of rainfall depth. Specifi-
cally, the rain event depths recorded at the stations of Rotondi
and Cervinara, located at the foot of the north-facing slopes
at close altitude, share the same mean value, and the spread-
ing of the depth difference around the mean looks similar. For
the rain gauge of San Martino Valle Caudina, which is at a
significantly higher altitude, a dependence of mean event rain
depth on the altitude clearly arises, and the spreading of the
rain depth difference looks slightly larger, as if the difference
of elevation also affects event depth fluctuations and not only
their mean value. However, the analysis of how topographic
factors affect the spatial variability of rainfall depth in the

Partenio Massif cannot be based on the analysis of only three
gauges, but it should be more deeply investigated based on
rain data from all the rain gauges operating in the study area.

Regarding the variability of rain event depth moving away
from the gauge position, the analyses for the three considered
rain gauges indicate that the standard deviation of rain event
depth at about 5 km from the measurement point can be ap-
proximated as σ (H)∼= 1.5×H 0.5. However, the density of
the rain gauges managed by the Civil Protection agency in
the study area (Fig. 1) is such that each rain gauge covers an
area of about 10 km2; thus, the maximum distance of a slope
from the closest rain gauge can be considered smaller than
2 km. Hence, to introduce the uncertainty deriving from the
spatial variability of rain, the following relationship has been
assumed for the standard deviation of rain event depth:

σ (H)= 0.75×H 0.5. (7)

Moreover, the uncertainty regarding the hydrological vari-
ables θ and ha was introduced by considering a normal-
distributed random absolute error (AE) with zero mean and
known standard deviation. Firstly, in the case of θ , the stan-
dard deviation of the AE distribution was assumed to be
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Table 3. Dependence of mean and standard deviation of rain event total depth fluctuations on mean total depth for coupled rain gauge stations
on the north side of the Partenio mountains.

First rain gauge (H1) Second rain gauge (H2) α A (68.3 %) A (86.6 %) B

Cervinara Rotondi −0.020 1.30 2.15 0.53
Cervinara San Martino Valle Caudina −0.276 1.38 2.21 0.59

equal to 0.02. Brocca et al. (2012) showed that in areas
smaller than 100 km2 monitored through conventional sta-
tions, an AE of ± 0.04 on the readings of θ can be addressed
with a 95 % confidence with a relatively low sampling den-
sity. Figure 5a shows the distribution of the AE on θ , where
95 % of the data fall between approximately ± 0.04. Simi-
larly, Dari et al. (2019) estimated that an AE in an area of
about 500 km2 instrumented with 12 stations should be ca-
pable of giving readings with an error around 0.03, some-
how confirming this picture even for larger areas. However,
measurements obtained through remote sensing techniques,
such as ERA-5 land products, often display a typical er-
ror around 0.02 in the studied area (Hersbach et al., 2020;
Muñoz-Sabater et al., 2021). Thus, the selected standard de-
viation of 0.02 encompasses the expected variability in volu-
metric water content measurements across different method-
ologies and environmental conditions.

Likewise, the standard deviation of the distribution of AE
accounting for the uncertainty in the groundwater monitoring
was assumed here to be equal to 1 m. Figure 5b presents the
assumed distribution of AE on ha, ranging around±2 m with
a 95 % confidence level. With this assumption, the perturbed
water levels will be very unlikely to approach the ground
surface, consistent with the gushing out of water in natural
springs at ground, observed rarely in the area and only down-
hill, near the main streams Cornito and Castello (Marino et
al., 2020b; Roman Quintero et al., 2023). The aim of intro-
ducing ha is to assess the potential use of ephemeral aquifer
formation in slope areas as an indicator of the conditions af-
fecting water accumulation in the soil cover, including active
and impeded drainage mechanisms (Roman Quintero et al.,
2023). Indeed, some studies indicate that ephemeral aquifer
systems can emerge in highlands and that their water levels,
related to wet and dry seasons, are spatially stable in wide ar-
eas (e.g. Bennett et al., 2022). In this respect, some data pro-
vided by 1-year observations from wells placed downhill in
the study area show that the groundwater table depth differ-
ence at the wells seems to agree with the assumed maximum
AE, ranging around ±2 m (Autorità di Bacino, 2013).

2.4.2 Uncertainty in the assessment of slope stability

In the FS Eq. (5), the uncertainty of the failure surface depth,
d , and the slope inclination, β, depend on the variability of
the slope morphology; the uncertainty of the soil strength
parameters, c′ and φ′, is linked to the variability of the soil
properties; and the uncertainty of the soil column mean unit

weight, γ , and of the value of ψ at the considered depth may
depend on the variability of both the slope morphology and
soil properties, as well as on the spatial variability of the me-
teorological forcing (mainly rainfall), vegetation and bound-
ary conditions. Hence, the uncertainty affecting the calcu-
lated values of FS has been assessed as the combined ef-
fects of all these uncertain factors, characterized as normal-
distributed. The standard deviations assumed for each param-
eter, given in Table 4, are such to encompass the variability of
the properties of the soils of the area reported in experimen-
tal studies (e.g. Roman Quintero et al., 2024, and references
therein).

The values of the standard deviations reported in Table 4
for the large scale can be considered representative of the
spatial variability of the characteristics of the slopes affected
by shallow landslides in the north-facing side of the Partenio
Mountains (Fig. 1). In fact, the pyroclastic soil deposits, orig-
inating from the same eruptions, share similar stratigraphy
and physical properties (e.g. Roman Quintero et al., 2024),
thus explaining the small uncertainty affecting φ′ and c′ (the
latter has been considered constantly equal to zero, as this
is a conservative assumption for slope stability assessment).
The factors related to slope morphology also present limited
variability in the study area, as big landslides usually occur
in a relatively narrow range of inclination angles. In fact,
slopes above a 45° inclination typically present a very thin
soil coverage (Del Soldato et al., 2018; De Vita and Nappi,
2013), while those with inclinations smaller than 35°, due to
the high effective friction angle, would fail only if pore wa-
ter pressure became positive. However, soil saturation is very
unlikely in the considered slopes, thanks to the high poros-
ity and hydraulic conductivity of the soil, as well as to the
perviousness of the underlying fractured bedrock. Thus, the
standard deviation of the fluctuation of FS around the values
calculated for the simplified slope model is 0.10 (Table 4).

3 Results

3.1 Reference slope

The reference slope stability analysis applied to the synthetic
dataset leads to 20 triggering events in 500 years. In Fig. 6,
the scatterplots of triggering (red points) and non-triggering
(grey points) rainfall events are shown in the plane of rain-
fall duration and intensity (D,I ), as well as in the plane of
mean volumetric water content of the uppermost 100 cm and
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Figure 5. Frequency distributions of the absolute error associated with (a) the volumetric water content, 1θ , and (b) the groundwater level,
1ha, assumed to randomly perturb the original dataset.

Table 4. Mean values and standard deviations of the factors affecting the uncertainty of the values of the factor of safety calculated for the
simplified slope model.

Variable Mean value (reference slope) Standard deviation (large scale)

d (m) 1.5 0.1
β (°) 40.0 2.0
c′ (N m−2) 0.0 0.0 (cohesionless soil is always assumed)
φ′ (°) 38.0 0.5
γ (N m−3) Variable for every event, depending on the calculated soil moisture profile 10 % of the mean
ψ (N m−2) Variable for every event, depending on the calculated FS value 1000.0
FS (–) Variable for every time 0.1

the height of rainfall events (θ,H ). In the two planes, meteo-
rological (Fig. 6a) and hydrometeorological (Fig. 6b) thresh-
olds have been defined with power-law

(
I = aDb

)
and linear

(H = aθ + b) functional formats, respectively, which share
the same number of parameters. Table 5 summarizes the ob-
tained parameters and the performance metrics for the tested
thresholds.

Both thresholds show good predictive performance, as in-
dicated by the high values of TSS and the absence of missed
alarms. However, the proposed hydrometeorological linear
threshold performs better in terms of the frequency of false
alarms, which decreases from about once a year to once ev-
ery 5 years.

Moreover, the addition of a second hydrological variable
(ha) allows considering the influence of the conditions at the
lowermost boundary of the soil deposit, as shown in Fig. 7.
Specifically, a novel 3D threshold format, consisting of two
planes (θ,H ) parallel to the axis ha and separated by a limit
value of the perched aquifer water level (hx), is proposed. In
particular, the bi-plane format has five parameters: slope and
intercept of the two traces of planes in the coordinate plane
(θ,H ) and the limit value of the antecedent aquifer level hx
(i.e.H = a1θ+b1 with ha ≥ hx andH = a2θ+b2 with ha <

hx , respectively, Fig. 7b and c). The parameter values and

the performance metrics obtained by maximization of TSS
are reported in Table 6.

It is worth noting from Table 6 that the performance of
this threshold is further improved compared to those obtained
with 2D analysis (Table 5), leading to the lowest total number
of false alarms, i.e. only 18 in 500 years. The obtained value
hx (about 12.4 m below the ground surface) separates the low
perched aquifer water level (i.e. ha ≥ hx), a condition typical
of late autumn, from the high water level (ha < hx), observed
after persistent rainy seasons.

3.2 Large scale

As described in Sect. 2, aiming at introducing the effects of
uncertainty on the assessment of slope stability, the series of
FS has been perturbed with normal-distributed random fluc-
tuations, with a standard deviation of 0.10.

Similarly, the spatial variability of the hydrometeorologi-
cal variables (θ , ha, H ), used to define the threshold for the
reference slope (Sect. 3.1) and assumed to be measured at
a single place for the considered area, has been introduced.
Specifically, 100 different perturbed series (hereinafter, “sce-
narios”) have been generated by embedding both the hydro-
logical (θ and ha) and meteorological (H ) information as
probabilistic variables with normal-distributed random fluc-
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Figure 6. Power-law meteorological threshold (a); linear hydrometeorological threshold (b). In the 500-year-long synthetic dataset, the red
dots represent the rainfall events followed by the triggering of a landslide, and the grey ones are rainfall events after which no landslide
occurs.

Table 5. Parameters and metrics of the tested functional formats for the meteorological and hydrometeorological thresholds plotted in Fig. 6.

Functional formats A b TSS Missed alarms False alarms Total events

Meteorological power-law (Fig. 6a) 39.22 −0.69 0.983 0 452
26 363

Hydrometeorological linear (Fig. 6b) −3097.86 1502.76 0.996 0 96

tuations with zero mean and the standard deviation values re-
ported in Sect. 2.4.1. For the sake of simplicity, the duration
and mean intensity of rainfall events have been assumed to
give the same contribution to the fluctuations of H . Hence,
the perturbations of duration and mean intensity have been
obtained from the generated perturbations of H by assuming
1+1I/I = 1+1D/D = (1+1H/H)1/2.

For all the scenarios, Fig. 8 shows the scatterplots of the
perturbed variables in the planes (D, I) and (θ,H). The red
dots represent the conditions followed by landslide occur-
rence, while the grey dots, those without landslides. It looks
clear from the dot arrangement that, even considering the
randomness due to the spatial variability of all the considered
variables, the hydrometeorological variables θ and H sep-
arate landslides from non-landslides much more effectively
than the meteorological variables I and D.

The suitability of threshold lines has been investigated by
defining an optimal threshold for each scenario (i.e. maxi-
mizing TSS) for all the functional formats tested for the ref-
erence slope. Figure 9 shows the scatterplot of the perturbed
variables, with the dashed thresholds obtained by calculat-
ing the mean value of threshold line parameters obtained for
all scenarios: in the (D,I) plane with the power-law equa-
tion (Fig. 9a), in the (θ,H) plane with the linear equation
(Fig. 9b) and in the 3D space (θ,ha,H) with the bi-plane
format (Fig. 9c and d). In the latter case, the events with
landslides have been split into red and blue dots, according
to the low and high water levels, respectively. Moreover, the
shaded areas in the plots of Fig. 9 represent the spanning of
the 100 thresholds obtained for all the scenarios.

The predictive performances displayed by the investigated
thresholds for the large area (80 km2) are consistent with
those obtained for the reference slope. In fact, the perfor-
mance increases, moving from pure meteorological, to hy-
drometeorological 2D, and to hydrometeorological 3D, as
sketched in Fig. 10, in which the distributions of the obtained
TSS values for all 100 scenarios are shown through box and
whiskers plots.

As depicted in the box plots, the hydrometeorological ap-
proach leads to TSS values ranging between 0.72 and 0.80
(2D threshold) and between 0.77 and 0.85 (3D threshold).
By contrast, the meteorological approach shows TSS values
between 0.57 and 0.64. For each functional format, the red
lines inside the box represent the median value, overlapping
with the average of TSS (red dots in the middle of the boxes).
For the three tested formats, Table 7 summarizes the param-
eters and the performance indicators of the median TSS, as
well as the overall TSS range (1TSS).

It is worth noting that the median linear hydrometeorolog-
ical threshold allows obtaining a total number of false alarms
in the whole area equal to 3962 in 500 years (on average,
eight per year), with missed alarms once every 31 years.

Moreover, the bi-plane 3D threshold further improves the
predictions, leading to the lowest total number of missed
alarms, i.e. only 11 in 500 years (on average, once every
45 years), as well as the lowest number of false alarms, as
reported in Table 7.

The perturbed data clouds allow the estimation of the land-
slide probability distributions, reported in Fig. 11a and b in
the meteorological and hydrometeorological planes, respec-
tively. To draw the graphs, a rectangular grid with variable
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Figure 7. Optimal hydrometeorological threshold in the space (θ,ha,H ): (a) scatterplot of data in the 3D space; (b) ha ≥ 12.4 m (low perched
aquifer water level) and (c) ha < 12.4 m (high perched aquifer water level). The grey dots indicate conditions not leading to landslides.
Landslide events have been split into red and blue dots, corresponding to different antecedent aquifer levels; (d) comparison of the obtained
thresholds for low and high aquifer levels.

Table 6. Parameters of the tested functional format for the 3D hydrometeorological threshold defined in Fig. 7.

Functional format Antecedent conditions a b hx TSS Missed alarms False alarms Total events

Bi-plane
ha ≥ hx −3134.03 1578.39

12.39 0.999 0 18 26363
ha < hx −1916.91 1000.42

spacing has been defined in order to have at least 20 dots
falling within each rectangle. The landslide probability has
been estimated in each rectangle as the ratio between the
number of landslides to the total number of dots. The shape
of the isolines of probability in the transition zone from small
to high values in the two planes also confirms that the power-
law equation (a straight line in a log-log plane) and the linear
equation, respectively sketched in the two plots, are suitable
functional formats for the threshold lines in the (D,I) and
(θ,H) planes. More specifically, the transition from small
to high probability of landslide looks sharper in the (θ,H)
plane than in the (D,I) plane (notice that this latter graph is
plotted in logarithmic scales). This confirms that a threshold
line separating landslides from non-landslides can ensure a
higher performance in the (θ,H) plane, simultaneously lim-
iting both missed and false alarms.

4 Discussion

The synthetic dataset reliably reproduces the response of the
reference slope to precipitation. In fact, the obtained fre-
quency of landslides (i.e. about one every 20 years) well
agrees with the recurrence interval of landslides triggered on
very nearby slopes (e.g. Greco et al., 2021). In this respect,
the introduction of uncertainty also leads to reasonable re-

sults, with landslides occurring in the entire study area once
every 2 to 3 years, in agreement with the 10 landslides re-
ported in the entire study area in the period 1999–2020 ac-
cording to existing landslide catalogs (Trigila et al., 2010;
Calvello and Pecoraro, 2018; Peruccacci et al., 2023).

The richness of the dataset allows a sound evaluation of
the performance of empirical landslide thresholds, compar-
ing different choices of predictors and functional formats.
The results indicate that the predictive performance of the
hydrometeorological threshold using root-zone soil moisture
and rainfall depth as predictors, strongly tied to the physics
behind landslide-triggering mechanisms, is less affected by
uncertainty than the widely used meteorological threshold
based on precipitation intensity and duration. Both thresh-
olds ensure very good performance for the reference slope,
with TSS close to 1. When uncertainty is introduced, the pre-
dictive performance decreases in both cases. However, the re-
duction in TSS is 24.1 % for the hydrometeorological thresh-
old, while it is 37.5 % for the meteorological one.

Furthermore, the inclusion of the aquifer water level as a
second hydrological predictor, thus proposing a 3D thresh-
old, not only improves the predictive performance but also
sheds light on two possible landslide-triggering mechanisms
described in the study area. In fact, some authors suggested
that slope failure can be ascribed to the wetting of the up-
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Figure 8. Scatterplot of perturbed meteorological and hydrometeorological variables of 100 scenarios: (a) in the meteorological plane (D,I )
with logarithmic axes; (b) in the hydrometeorological plane (θ,H ).

Figure 9. Scatterplot of perturbed meteorological and hydrometeorological variables with the thresholds obtained by the optimization of
100 scenarios using different functional formats: (a) power-law meteorological thresholds in the meteorological plane (I,D) with logarith-
mic axes; (b) linear hydrometeorological thresholds in the plane (θ,H ); and bi-plane hydrometeorological thresholds in the plane (θ,H )
according to different antecedent aquifer levels ha: (c) low perched aquifer water level (ha ≥ hx ; red dots) and (d) high perched aquifer water
level (ha < hx ; blue dots).

permost part of the soil due to intense rainwater infiltration
(saturation from the top), favoured by the presence of dry
coarse layers within the soil profile (e.g. Mancarella et al.,
2012). Other authors, instead, linked slope failure to the fill-
ing of the underlying fractured bedrock after prolonged peri-
ods of rain. This condition hampers water leakage from the
soil deposit and sometimes even induces exfiltration from
the bedrock into the soil deposit (saturation from the bot-
tom) (e.g. Cascini et al., 2008). The proposed 3D threshold
clearly highlights the different predisposing and triggering
conditions of each of the two possible mechanisms.

Another significant result made possible by the generation
of a large synthetic dataset is the probabilistic assessment

of the conditions leading to landslide occurrence. Figure 11
shows that the empirical thresholds defined by maximizing
the TSS are quite conservative, as they correspond to low
landslide probability values. This is due to the rareness of
landslides, compared to the total number of rainfall events. In
the meteorological plane, where rainfall intensity and dura-
tion cannot clearly separate landslides from non-landslides,
the threshold line lies in a zone where landslide probabil-
ity is only around 0.03, thus implying many false alarms.
The hydrometeorological predictors, instead, better describe
the extreme nature of the conditions leading to landslides,
with a clearer separation of the conditions that lead to land-
slides from those that do not. This allows drawing the opti-
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Table 7. Summary of performance indicators obtained by maximizing the TSS values of the landslide thresholds applied to the different
scenarios.

Functional formats a B hx TSS median Missed False Total 1TSS
alarms alarms events

Meteorological Power-law 38.63 −0.98 – 0.601 34 5362

26 363

0.07

Hydrometeorological
Linear −3467.71 1502.54 – 0.757 16 3962 0.08

Bi-plane
−2896.64 1308.85

11.03 0.804 11 3406 0.08
−3559.64 1478.81

Figure 10. Performance comparison of the tested functional formats
for all scenarios with respect to meteorological and hydrometeoro-
logical thresholds.

mal threshold line simultaneously limiting missed and false
alarms, as confirmed by its position in the probability plane
(Fig. 11b), where it lies close to the isolines of probability
around 0.15.

This result highlights the importance of the process-based
identification of the predictor variables, achieved thanks to
the physically based modelling approach adopted. In fact,
the definition of an empirical threshold for landslide initia-
tion requires a strong simplification of the reality and may
lead to good predictive performance only if the major pro-
cesses controlling the response of the slope to precipitation
are correctly identified (Roman Quintero et al., 2023). For the
highly conductive and loose coarse-grained pyroclastic de-
posits of the study area, the infiltration capacity is so high that
runoff rarely occurs, even during heavy rainstorms (Marino
et al., 2020a). Consequently, parameters affecting runoff gen-
eration, such as rainfall intensity or topsoil moisture, are
unimportant. The exponent obtained for the optimal I–D
threshold, close to −1 (i.e. the threshold line corresponds
to a nearly constant value of H ), also confirms that the in-
tensity of rain events plays a minor role. Rainfall depth and
antecedent root-zone soil moisture, instead, ensure reliable
predictions, as they are directly related to the accumulation
of water in the soil, required for slope failure. The inclusion
of the aquifer water level as a second hydrological predictor,

accounting for the effectiveness of drainage through the soil–
bedrock interface, provides a slight further improvement. It
is worth noting that in a different geomorphological context,
where the hydrological processes affecting slope response to
precipitation might be different, the most informative hydro-
logical predictors would be different as well, and their choice
should be guided by case-specific hydrological modelling.

However, the simplicity of thresholds as tools for landslide
hazard assessment inevitably leads to errors, which can be
limited, but not eliminated, using suitable hydrologic predic-
tors. The larger the considered area is, likely including slopes
with variable characteristics, the larger the expected predic-
tion errors. Therefore, defining the zones where a single land-
slide threshold is applied, as well as the design of monitoring
networks supplying the required information, should rely on
hydrological modelling.

4.1 Application to real landslide dataset

A practical application to a real dataset has been carried out
for the period from 1999 to 2020, during which 10 landslide
events were registered in the study area (Trigila et al., 2010;
Calvello and Pecoraro, 2018; Peruccacci et al., 2023). Table 8
summarizes the major features of the reported landslides.

The rain events and the corresponding predictor variables
(i.e. H , D and I ) have been extracted from the time series
of rainfall recorded by the Cervinara rain gauge, except for
the landslide that occurred in 1999, when it had not yet been
installed. In total, the rainfall series contains 862 rain events.

For the root-zone volumetric water content, θ , the ERA5-
Land reanalysis data were compared to field measurements
in the pyroclastic deposit available in Cervinara (Marino et
al., 2020a). The remotely sensed data reliably reproduce the
trends of soil moisture measured in the field but underesti-
mate the range of variability, owing to the extremely high
porosity of the pyroclastic soil of the area. Therefore, ERA5-
Land root-zone soil moisture was linearly rescaled to cover
similar intervals as the field-measured data. The values ob-
tained are in good agreement with the modelled ones, and
they allow mimicking the operational use of the thresholds
without the support of any model.

The median 2D meteorological and hydrometeorological
thresholds (Table 7) have been tested to assess their perfor-
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Figure 11. Conditional landslide probability distributions: (a) in the meteorological plane (D, I ) with logarithmic axes; (b) in the hydrome-
teorological plane (θ , H ). The dashed lines represent the thresholds corresponding to the median TSS among all the perturbed scenarios.

Table 8. Main features of landslides reported in northern Partenio Massif between 1999 and 2020.

Nr. Source Date Spatial Temporal β6 H 7 D7 I7 Antecedent soil moisture

accuracy4 accuracy5 (°) (mm) (h) (mm h−1) Modelled8 ERA59

(km2) (d)

1 IFFI3 19/12/1999 Exact < 1 40 356.410 6810 5.2410 0.47 NA
2 ITALICA1 25/01/2003 1 1 37 170.4 106 1.61 0.42 0.42
3 ITALICA1 19/01/2006 100 1 48 28.8 33 0.87 0.40 0.37
4 ITALICA1 03/01/2009 1 < 1 36 203.6 65 3.13 0.41 0.41
5 ITALICA1 10/01/2009 1 < 1 41 45.0 42 1.07 0.46 0.46
6 ITALICA1 25/11/2010 1 1 44 179.2 111 1.61 0.44 0.46
7 ITALICA1 18/06/2014 1 > 1 34 146.4 27 5.42 0.36 0.30
8 FraneItalia2 08/02/2019 NA NA 42 16.0 8 2.00 0.46 0.48
9 IFFI3 22/12/2019 Exact < 1 42 127.2 54 2.36 0.45 0.45
10 FraneItalia2 15/02/2020 NA NA 39 14.8 7 2.11 0.36 0.32

1 ITALICA landslide catalogue (Peruccacci et al., 2023). 2 FraneItalia landslide catalogue (Calvello and Pecoraro, 2018). 3 Italian Landslide Inventory (Trigila et al.,
2010). 4 Spatial accuracy represents the area of a circle around the reported coordinates where the landslide might have occurred. 5 Temporal accuracy represents the
time interval around the reported date when the landslide might have occurred. 6 The slope inclination angle refers to the reported coordinates, regardless of the
reported spatial accuracy. 7 Rainfall data from the rain gauge of Cervinara. 8 Root-zone soil moisture modelled for the reference slope with the precipitation input of
the Cervinara rain gauge. 9 Root-zone soil moisture at the reported coordinates interpolated on the ERA5-Land grid. 10 Rainfall data from the rain gauge of S. Martino
Valle Caudina of the Italian Hydrographic Service, dismissed in 2000. NA: not available

mances with respect to the real landslide dataset (Fig. 12).
The graphs of Fig. 12a and b compare, respectively, the me-
teorological (D,I) and hydrometeorological (θ,H) thresh-
olds with the scatterplot of recorded rain events and land-
slides. The hydrometeorological threshold also performs bet-
ter in the prediction of real landslide occurrences. Indeed, it
reaches a TSS value of 0.53, whereas for the purely meteo-
rological threshold, it is 0.42. The number of false alarms is
consistent with the results obtained with the synthetic dataset
(i.e. 143 and 235 in 19 years for the hydrometeorological

and meteorological thresholds, respectively), but the missed
alarms, three for both the thresholds, are significantly more
than expected.

However, this result can be ascribed to intrinsic uncertain-
ties affecting the landslide inventories, where indeed some
of the reported landslides have been classified as having very
limited geographic (i.e. landside nr. 3) or temporal (i.e. land-
side nr. 7) accuracy. Furthermore, the rain data from the
gauge of Cervinara may not be suitable for some of the far-
thest landslides (e.g. the reported locations of landslides nr.
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Figure 12. Application to real landslides, from 1999 to 2020, of the power-law meteorological (a) and the linear hydrometeorological
(b) thresholds defined in Sect. 3.2. In both planes, the scattered dots represent rainfall events not followed by any landslide (grey dots) and
rainfall events after which landslides were registered (red dots).

2, 6 and 10, represented in Fig. 1, are more than 10 km away
from the rain gauge). The correction of just some of the three
missed landslides would bring the predictive performance of
the thresholds back to a level similar to that for the synthetic
dataset.

5 Conclusions

The paper investigates the potential advancements that may
be achieved by including one or more hydrological vari-
ables in the definition of empirical thresholds for rainfall-
induced landslide forecasting. To this aim, a novel method-
ology based on physically based modelling is proposed. It
allows identifying the major hydrological processes control-
ling landslide occurrence and dealing with the uncertainty
introduced by the spatial variability of hydrometeorological
variables. As landslide inventories usually provide limited
amounts of data suitable for statistical analyses, a 500-year-
long synthetic dataset is generated by means of the physically
based model.

The proposed methodology is applied to the Partenio Mas-
sif, an example of the wide areas of Campania (Italy), char-
acterized by carbonate massifs covered with a thin layer of
pyroclastic deposits, frequently affected by rainfall-induced
shallow landslides. The model used for the generation of the
synthetic dataset had been previously calibrated and vali-
dated thanks to detailed laboratory and field experiments. It
reproduces the response to meteorological forcing of a refer-
ence slope with known geomorphologic and physical prop-
erties.

The analysis of the synthetic dataset of the reference slope,
including soil moisture and suction distributions in the soil
deposit, as well as the perched aquifer water level, allowed
the assessment of slope stability at hourly resolution. The re-
sults show that a hydrometeorological threshold, based on
root-zone soil moisture and rainfall depth, outperforms the
usually adopted purely meteorological threshold, based on
rainfall intensity and duration. Furthermore, a novel hydrom-

eteorological threshold, defined in the 3D space of root-
zone soil moisture and aquifer water level (as indicators
of antecedent slope conditions) as well as rainfall depth,
provides nearly unerring predictions of landslide triggering.
The proposed 3D threshold also allows identifying the an-
tecedent conditions leading to the activation of two differ-
ent landslide-triggering mechanisms, related to the beginning
and the end of the rainy season.

To extend the analysis to a large area, the effects of the
spatial variability of slope characteristics and rainfall have
been introduced as normal-distributed random perturbations
of the reference slope variables. In fact, uncertainty affects
the assessment of slope stability, as well as the represen-
tativeness for a large area of hydrometeorological variables
measured or modelled at few locations. The distributions of
landslide probability, conditional to meteorological (i.e. rain
intensity and duration) and hydrometeorological (i.e. root-
zone soil moisture and rain depth) variables, clearly indicate
that these latter are more robust with respect to uncertainty,
as the transition from small to high landslide probability is
sharper in the hydrometeorological plane. This result is con-
firmed by the smaller reduction of the predictive performance
of the hydrometeorological threshold applied at large scale,
compared to the meteorological one.

The proposed approach, although based on synthetic data,
looks promising for operational early warning application,
as shown by the comparison with real landslide data for the
north-facing side of Partenio Massif, with an extension of
about 80 km2. Specifically, rainfall data from a rain gauge of
the area and root-zone soil moisture data from ERA5 me-
teorological reanalysis have been used to assess the perfor-
mance of the obtained meteorological and hydrometeorolog-
ical thresholds for the prediction of the landslides of the pe-
riod 1999–2020 reported in available inventories. The small
numbers of missed and false alarms indicate that the hydrom-
eteorological threshold obtained with the synthetic data can
be used as an effective tool for landslide early warning in the
study area. To this aim, the possibility of getting informa-
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tion about the perched aquifer level (e.g. linking it to mea-
surements of water level in streams supplied by ephemeral
springs) should be investigated, as it would likely further im-
prove the reliability of the predictions.

The obtained results point out the importance of supple-
menting meteorological networks with hydrological moni-
toring and modelling for landslide hazard assessment. In fact,
it sheds light on the major hydrological processes occurring
in the slopes and allows identifying suitable hydrometeo-
rological predictors of landslide occurrence. The proposed
methodology, here applied to the case of pyroclastic slopes
of Campania, can be replicated in other geomorphological
contexts, provided that a reliable case-specific hydrological
model is used.

Data availability. All raw data can be provided by the correspond-
ing author upon request.

Author contributions. All the authors designed the research; PM
and GFS developed the model code and performed the simulations;
AA, DCRQ and PM analysed the data and plotted the graphs; RG
supervised the study; PM and DCRQ wrote the paper draft; and RG
reviewed and edited the paper.

Competing interests. At least one of the (co-)authors is a member
of the editorial board of Natural Hazards and Earth System Sci-
ences. The peer-review process was guided by an independent ed-
itor, and the authors also have no other competing interests to de-
clare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This research is part of the PhD project enti-
tled “Hydrological controls and geotechnical features affecting the
triggering of shallow landslides in pyroclastic soil deposits” within
the Doctoral Course “A.D.I.” of Università degli Studi della Cam-
pania “L. Vanvitelli”.

Financial support. This study was carried out within the RETURN
Extended Partnership and received funding from the European
Union Next-GenerationEU (National Recovery and Resilience Plan
– NRRP, Mission 4, Component 2, Investment 1.3 – D.D. 1243
2/8/2022, PE0000005).

Review statement. This paper was edited by Olivier Dewitte and
reviewed by two anonymous referees.

References

Abraham, M. T., Satyam, N., Rosi, A., Pradhan, B., and Segoni, S.:
Usage of antecedent soil moisture for improving the performance
of rainfall thresholds for landslide early warning, Catena, 200,
105147, https://doi.org/10.1016/j.catena.2021.105147, 2021.

Autorità di Bacino: Mitigazione del rischio idrogeologico final-
izzato al governo del territorio, Cervinara, Open File Rep.,
1–82, https://www.distrettoappenninomeridionale.it/novita/
progetto-cervinara/ (last access: 3 May 2024), 2013.

Baum, R. L. and Godt, J. W.: Early warning of rainfall-induced shal-
low landslides and debris flows in the USA, Landslides, 7, 259–
272, https://doi.org/10.1007/s10346-009-0177-0, 2010.

Beck, H. E., Pan, M., Miralles, D. G., Reichle, R. H., Dorigo, W. A.,
Hahn, S., Sheffield, J., Karthikeyan, L., Balsamo, G., Parinussa,
R. M., van Dijk, A. I. J. M., Du, J., Kimball, J. S., Vergopolan, N.,
and Wood, E. F.: Evaluation of 18 satellite- and model-based soil
moisture products using in situ measurements from 826 sensors,
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-
25-17-2021, 2021.

Bennett, G., Van Camp, M., Shemsanga, C., Kervyn, M., and Wal-
raevens, K.: Assessment of spatial and temporal variability of
groundwater level in the aquifer system on the flanks of Mount
Meru, Northern Tanzania, J. Hydrol. Reg. Stud., 44, 101212,
https://doi.org/10.1016/J.EJRH.2022.101212, 2022.

Bogaard, T. and Greco, R.: Invited perspectives: Hydrological
perspectives on precipitation intensity-duration thresholds
for landslide initiation: proposing hydro-meteorological
thresholds, Nat. Hazards Earth Syst. Sci., 18, 31–39,
https://doi.org/10.5194/nhess-18-31-2018, 2018.

Bogaard, T. A. and Greco, R.: Landslide hydrology: from
hydrology to pore pressure, WIREs Water, 3, 439–459,
https://doi.org/10.1002/wat2.1126, 2016.

Breznitz, S.: Cry Wolf: The Psychology of False Alarms,
Lawrence Erlbaum Associates, Hillsdale, New Jersey London,
https://doi.org/10.4324/9780203781203, 1984.

Brocca, L., Tullo, T., Melone, F., Moramarco, T.,
and Morbidelli, R.: Catchment scale soil moisture
spatial–temporal variability, J. Hydrol., 422, 63–75,
https://doi.org/10.1016/j.jhydrol.2011.12.039, 2012.

Calvello, M. and Pecoraro, G.: FraneItalia: a catalog of re-
cent Italian landslides, Geoenvironmental Disasters, 5, 1–16,
https://doi.org/10.1186/S40677-018-0105-5, 2018.

Cascini, L., Cuomo, S., and Guida, D.: Typical source ar-
eas of May 1998 flow-like mass movements in the Cam-
pania region, Southern Italy, Eng. Geol., 96, 107–125,
https://doi.org/10.1016/j.enggeo.2007.10.003, 2008.

Comegna, L., Damiano, E., Greco, R., Guida, A., Olivares, L.,
and Picarelli, L.: Field hydrological monitoring of a sloping
shallow pyroclastic deposit, Can. Geotech. J., 53, 1125–1137,
https://doi.org/10.1139/cgj-2015-0344, 2016.

Cowpertwait, P. S. P., O’Connell, P. E., Metcalfe, A. V., and
Mawdsley, J. A.: Stochastic point process modelling of rain-
fall. I. Single-site fitting and validation, J. Hydrol., 175, 17–46,
https://doi.org/10.1016/S0022-1694(96)80004-7, 1996.

https://doi.org/10.5194/nhess-25-2679-2025 Nat. Hazards Earth Syst. Sci., 25, 2679–2698, 2025

https://doi.org/10.1016/j.catena.2021.105147
https://www.distrettoappenninomeridionale.it/novita/progetto-cervinara/
https://www.distrettoappenninomeridionale.it/novita/progetto-cervinara/
https://doi.org/10.1007/s10346-009-0177-0
https://doi.org/10.5194/hess-25-17-2021
https://doi.org/10.5194/hess-25-17-2021
https://doi.org/10.1016/J.EJRH.2022.101212
https://doi.org/10.5194/nhess-18-31-2018
https://doi.org/10.1002/wat2.1126
https://doi.org/10.4324/9780203781203
https://doi.org/10.1016/j.jhydrol.2011.12.039
https://doi.org/10.1186/S40677-018-0105-5
https://doi.org/10.1016/j.enggeo.2007.10.003
https://doi.org/10.1139/cgj-2015-0344
https://doi.org/10.1016/S0022-1694(96)80004-7


2696 D. C. Roman Quintero et al.: Large-scale assessment of rainfall-induced landslide hazard

Crosta, G. B. and Dal Negro, P.: Observations and modelling of
soil slip-debris flow initiation processes in pyroclastic deposits:
the Sarno 1998 event, Nat. Hazards Earth Syst. Sci., 3, 53–69,
https://doi.org/10.5194/nhess-3-53-2003, 2003.

Damiano, E. and Olivares, L.: The role of infiltration processes
in steep slope stability of pyroclastic granular soils: labora-
tory and numerical investigation, Nat. Hazards, 52, 329–350,
https://doi.org/10.1007/s11069-009-9374-3, 2010.

Damiano, E., Olivares, L., and Picarelli, L.: Steep-slope monitor-
ing in unsaturated pyroclastic soils, Eng. Geol., 137–138, 1–12,
https://doi.org/10.1016/j.enggeo.2012.03.002, 2012.

Dari, J., Morbidelli, R., Saltalippi, C., Massari, C., and Brocca,
L.: Spatial-temporal variability of soil moisture: Addressing the
monitoring at the catchment scale, J. Hydrol., 570, 436–444,
https://doi.org/10.1016/J.JHYDROL.2019.01.014, 2019.

Del Soldato, M., Pazzi, V., Segoni, S., De Vita, P., Tofani, V.,
and Moretti, S.: Spatial modeling of pyroclastic cover deposit
thickness (depth to bedrock) in peri-volcanic areas of Campa-
nia (southern Italy), Earth Surf. Proc. Land., 43, 1757–1767,
https://doi.org/10.1002/ESP.4350, 2018.

De Michele, C., Salvadori, G., Canossi, M., Petaccia, A.,
and Rosso, R.: Bivariate Statistical Approach to Check
Adequacy of Dam Spillway, J. Hydrol. Eng., 10, 50–57,
https://doi.org/10.1061/(ASCE)1084-0699(2005)10:1(50),
2005.

De Vita, P. and Nappi, M.: Regional distribution of ash-fall pyro-
clastic soils for landslide susceptibility assessment, Landslide
Science and Practice: Spatial Analysis and Modelling, 3, 103–
109, https://doi.org/10.1007/978-3-642-31310-3_15, 2013.

Di Crescenzo, G. and Santo, A.: Debris slides-rapid earth flows
in the carbonate massifs of the Campania region (South-
ern Italy): Morphological and morphometric data for evalu-
ating triggering susceptibility, Geomorphology, 66, 255–276,
https://doi.org/10.1016/j.geomorph.2004.09.015, 2005.

Feddes, R. A., Kowalik, P., Kolinska-Malinka, K., and Zaradny,
H.: Simulation of field water uptake by plants using a soil wa-
ter dependent root extraction function, J. Hydrol., 31, 13–26,
https://doi.org/10.1016/0022-1694(76)90017-2, 1976.

Fiorillo, F., Guadagno, F., Aquino, S., and De Blasio, A.: The De-
cember 1999 Cervinara landslides: Further debris flows in the
pyroclastic deposits of Campania (Southern Italy), B. Eng. Geol.
Environ., 60, 171–184, https://doi.org/10.1007/s100640000093,
2001.

Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence
from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181,
https://doi.org/10.5194/nhess-18-2161-2018, 2018.

Goldberg, D. E. and Holland, J. H.: Genetic Algo-
rithms and Machine Learning, Mach. Learn., 3, 95–99,
https://doi.org/10.1023/A:1022602019183, 1988.

Gonzalez, R. J., Giraldo, E. A., Aristizábal, E. G., and Marin, R. J.:
Physically-based Model applied to Rainfall Thresholds for Shal-
low Landslides: Literature review, Revista de la Asociación Ge-
ológica Argentina, 80, 164–178, 2023.

Greco, R., Comegna, L., Damiano, E., Guida, A., Olivares, L., and
Picarelli, L.: Hydrological modelling of a slope covered with
shallow pyroclastic deposits from field monitoring data, Hydrol.
Earth Syst. Sci., 17, 4001–4013, https://doi.org/10.5194/hess-17-
4001-2013, 2013.

Greco, R., Comegna, L., Damiano, E., Guida, A., Olivares, L.,
and Picarelli, L.: Conceptual Hydrological Modeling of the
Soil-bedrock Interface at the Bottom of the Pyroclastic Cover
of Cervinara (Italy), Proced. Earth Plan. Sc., 9, 122–131,
https://doi.org/10.1016/j.proeps.2014.06.007, 2014.

Greco, R., Marino, P., Santonastaso, G. F., and Damiano, E.: Inter-
action between Perched Epikarst Aquifer and Unsaturated Soil
Cover in the Initiation of Shallow Landslides in Pyroclastic Soils,
Water, 10, 948, https://doi.org/10.3390/w10070948, 2018.

Greco, R., Comegna, L., Damiano, E., Marino, P., Olivares, L., and
Santonastaso, G. F.: Recurrent rainfall-induced landslides on the
slopes with pyroclastic cover of Partenio Mountains (Campania,
Italy): Comparison of 1999 and 2019 events, Eng. Geol., 288,
106160, https://doi.org/10.1016/j.enggeo.2021.106160, 2021.

Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rain-
fall thresholds for the initiation of landslides in central
and southern Europe, Meteorol. Atmos. Phys., 98, 239–267,
https://doi.org/10.1007/s00703-007-0262-7, 2007.

Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall
intensity–duration control of shallow landslides and debris flows:
an update, Landslides, 5, 3–17, https://doi.org/10.1007/s10346-
007-0112-1, 2008.

Hanson, C. L.: Distribution and stochastic generation of an-
nual and monthly precipitation on a mountainous watershed
in southwest Idaho, J. Am. Water Resour. As., 18, 875–883,
https://doi.org/10.1111/J.1752-1688.1982.TB00085.X, 1982.

Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler,
M.: Karst water resources in a changing world: Review of hy-
drological modeling approaches, Rev. Geophys., 52, 218–242,
https://doi.org/10.1002/2013RG000443, 2014.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara,
G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flem-
ming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/QJ.3803, 2020.

Illien, L., Andermann, C., Sens-Schönfelder, C., Cook, K.
L., Baidya, K. P., Adhikari, L. B., and Hovius, N.: Sub-
surface Moisture Regulates Himalayan Groundwater Stor-
age and Discharge, AGU Advances, 2, e2021AV000398,
https://doi.org/10.1029/2021AV000398, 2021.

Keskin, M. E., Taylan, D., and Terzi, Ö.: Adaptive neural-
based fuzzy inference system (ANFIS) approach for mod-
elling hydrological time series, Hydrolog. Sci. J., 51, 588–598,
https://doi.org/10.1623/HYSJ.51.4.588, 2006.

Lu, N. and Likos, W. J.: Suction stress characteristic curve for
unsaturated soil, J. Geotech. Geoenviron., 132, 131–142,
https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131),
2006.

Mancarella, D., Doglioni, A., and Simeone, V.: On capil-
lary barrier effects and debris slide triggering in un-
saturated layered covers, Eng. Geol., 147–148, 14–27,
https://doi.org/10.1016/j.enggeo.2012.07.003, 2012.

Nat. Hazards Earth Syst. Sci., 25, 2679–2698, 2025 https://doi.org/10.5194/nhess-25-2679-2025

https://doi.org/10.5194/nhess-3-53-2003
https://doi.org/10.1007/s11069-009-9374-3
https://doi.org/10.1016/j.enggeo.2012.03.002
https://doi.org/10.1016/J.JHYDROL.2019.01.014
https://doi.org/10.1002/ESP.4350
https://doi.org/10.1061/(ASCE)1084-0699(2005)10:1(50)
https://doi.org/10.1007/978-3-642-31310-3_15
https://doi.org/10.1016/j.geomorph.2004.09.015
https://doi.org/10.1016/0022-1694(76)90017-2
https://doi.org/10.1007/s100640000093
https://doi.org/10.5194/nhess-18-2161-2018
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.5194/hess-17-4001-2013
https://doi.org/10.5194/hess-17-4001-2013
https://doi.org/10.1016/j.proeps.2014.06.007
https://doi.org/10.3390/w10070948
https://doi.org/10.1016/j.enggeo.2021.106160
https://doi.org/10.1007/s00703-007-0262-7
https://doi.org/10.1007/s10346-007-0112-1
https://doi.org/10.1007/s10346-007-0112-1
https://doi.org/10.1111/J.1752-1688.1982.TB00085.X
https://doi.org/10.1002/2013RG000443
https://doi.org/10.1002/QJ.3803
https://doi.org/10.1029/2021AV000398
https://doi.org/10.1623/HYSJ.51.4.588
https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
https://doi.org/10.1016/j.enggeo.2012.07.003


D. C. Roman Quintero et al.: Large-scale assessment of rainfall-induced landslide hazard 2697

Marino, P., Comegna, L., Damiano, E., Olivares, L., and Greco,
R.: Monitoring the Hydrological Balance of a Landslide-Prone
Slope Covered by Pyroclastic Deposits over Limestone Fractured
Bedrock, Water, 12, 3309, https://doi.org/10.3390/w12123309,
2020a.

Marino, P., Peres, D. J., Cancelliere, A., Greco, R., and Bogaard,
T.: Soil moisture information can improve shallow landslide
forecasting using the hydrometeorological threshold approach,
Landslides, 17, 2041–2054, https://doi.org/10.1007/s10346-020-
01420-8, 2020b.

Marino, P., Santonastaso, G. F., Fan, X., and Greco, R.: Prediction
of shallow landslides in pyroclastic-covered slopes by coupled
modeling of unsaturated and saturated groundwater flow, Land-
slides, 18, 31–41, https://doi.org/10.1007/s10346-020-01484-6,
2021.

Marino, P., Roman Quintero, D. C., Santonastaso, G. F., and Greco,
R.: Prototype of an IoT-Based Low-Cost Sensor Network for the
Hydrological Monitoring of Landslide-Prone Areas, Sensors, 23,
2299, https://doi.org/10.3390/s23042299, 2023.

Mirus, B. B., Morphew, M. D., and Smith, J. B.: De-
veloping hydro-meteorological thresholds for shallow
landslide initiation and early warning, Water, 10, 1274,
https://doi.org/10.3390/W10091274, 2018a.

Mirus, B. B., Becker, R. E., Baum, R. L., and Smith, J. B.: In-
tegrating real-time subsurface hydrologic monitoring with em-
pirical rainfall thresholds to improve landslide early warning,
Landslides, 15, 1909–1919, https://doi.org/10.1007/s10346-018-
0995-z, 2018b.

Mirus, B. B., Bogaard, T., Greco, R., and Stähli, M.: Invited per-
spectives: Integrating hydrologic information into the next gen-
eration of landslide early warning systems, Nat. Hazards Earth
Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-
2025, 2025.

Mualem, Y.: Hysteretical models for prediction of the hydraulic
conductivity of unsaturated porous media, Water Resour. Res.,
12, 1248–1254, https://doi.org/10.1029/WR012i006p01248,
1976.

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C.,
Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harri-
gan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M.,
Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and
Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis
dataset for land applications, Earth Syst. Sci. Data, 13, 4349–
4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.

Olivares, L. and Picarelli, L.: Shallow flowslides triggered
by intense rainfalls on natural slopes covered by loose
unsaturated pyroclastic soils, Geotechnique, 53, 283–287,
https://doi.org/10.1680/geot.2003.53.2.283, 2003.

Ozturk, U., Bozzolan, E., Holcombe, E. A., Shukla, R., Pi-
anosi, F., and Wagener, T.: How climate change and unplanned
urban sprawl bring more landslides, Nature, 608, 262–265,
https://doi.org/10.1038/d41586-022-02141-9, 2022.

Pagano, L., Picarelli, L., Rianna, G., and Urciuoli, G.: A simple nu-
merical procedure for timely prediction of precipitation-induced
landslides in unsaturated pyroclastic soils, Landslides, 7, 273–
289, https://doi.org/10.1007/s10346-010-0216-x, 2010.

Palazzolo, N., Peres, D. J., Creaco, E., and Cancelliere, A.: Us-
ing principal component analysis to incorporate multi-layer
soil moisture information in hydrometeorological thresholds

for landslide prediction: an investigation based on ERA5-Land
reanalysis data, Nat. Hazards Earth Syst. Sci., 23, 279–291,
https://doi.org/10.5194/nhess-23-279-2023, 2023.

Peirce, C. S.: The numerical measure of the success of predictions,
Science, 4, 453–454, https://doi.org/10.1126/SCIENCE.NS-
4.93.453-A, 1884.

Peres, D. J. and Cancelliere, A.: Derivation and evalua-
tion of landslide-triggering thresholds by a Monte Carlo
approach, Hydrol. Earth Syst. Sci., 18, 4913–4931,
https://doi.org/10.5194/hess-18-4913-2014, 2014.

Peres, D. J. and Cancelliere, A.: Comparing methods for de-
termining landslide early warning thresholds: potential
use of non-triggering rainfall for locations with scarce
landslide data availability, Landslides, 18, 3135–3147,
https://doi.org/10.1007/S10346-021-01704-7, 2021.

Peres, D. J., Cancelliere, A., Greco, R., and Bogaard, T. A.: In-
fluence of uncertain identification of triggering rainfall on the
assessment of landslide early warning thresholds, Nat. Hazards
Earth Syst. Sci., 18, 633–646, https://doi.org/10.5194/nhess-18-
633-2018, 2018.

Peruccacci, S., Gariano, S. L., Melillo, M., Solimano, M., Guzzetti,
F., and Brunetti, M. T.: The ITAlian rainfall-induced LandslIdes
CAtalogue, an extensive and accurate spatio-temporal catalogue
of rainfall-induced landslides in Italy, Earth Syst. Sci. Data, 15,
2863–2877, https://doi.org/10.5194/essd-15-2863-2023, 2023.

Pirone, M., Papa, R., Nicotera, M. V., and Urciuoli, G.: Soil water
balance in an unsaturated pyroclastic slope for evaluation of soil
hydraulic behaviour and boundary conditions, J. Hydrol., 528,
63–83, https://doi.org/10.1016/j.jhydrol.2015.06.005, 2015.

Reder, A., Pagano, L., Picarelli, L., and Rianna, G.: The role
of the lowermost boundary conditions in the hydrological re-
sponse of shallow sloping covers, Landslides, 14, 861–873,
https://doi.org/10.1007/s10346-016-0753-z, 2017.

Rodriguez-Iturbe, I., Febres De Power, B., and Valdes, J. B.:
Rectangular pulses point process models for rainfall: anal-
ysis of empirical data, J. Geophys. Res., 92, 9645–9656,
https://doi.org/10.1029/JD092iD08p09645, 1987.

Rolandi, G., Petrosino, P., and McGeehin, J.: The interplinian activ-
ity at Somma-Vesuvius in the last 3500 years, J. Volcanol. Geoth.
Res., 82, 19–52, https://doi.org/10.1016/S0377-0273(97)00056-
5, 1998.

Roman Quintero, D. C., Marino, P., Santonastaso, G. F., and
Greco, R.: Understanding hydrologic controls of sloping soil re-
sponse to precipitation through machine learning analysis ap-
plied to synthetic data, Hydrol. Earth Syst. Sci., 27, 4151–4172,
https://doi.org/10.5194/hess-27-4151-2023, 2023.

Roman Quintero, D. C., Damiano, E., Olivares, L., and Greco, R.:
Mechanical and hydraulic properties of unsaturated layered py-
roclastic ashes in landslide-prone areas of Campania (Italy), B.
Eng. Geol. Environ., 1, 1–16, https://doi.org/10.1007/S10064-
024-03783-X, 2024.

Salas, J. D., Sveinsson, O. G., Lane, W. L., and Fre-
vert, D. K.: Stochastic Streamflow Simulation Us-
ing SAMS-2003, J. Irrig. Drain. Eng., 132, 112–122,
https://doi.org/10.1061/(ASCE)0733-9437(2006)132:2(112),
2006.

Segoni, S., Piciullo, L., and Gariano, S. L.: A review of the re-
cent literature on rainfall thresholds for landslide occurrence,

https://doi.org/10.5194/nhess-25-2679-2025 Nat. Hazards Earth Syst. Sci., 25, 2679–2698, 2025

https://doi.org/10.3390/w12123309
https://doi.org/10.1007/s10346-020-01420-8
https://doi.org/10.1007/s10346-020-01420-8
https://doi.org/10.1007/s10346-020-01484-6
https://doi.org/10.3390/s23042299
https://doi.org/10.3390/W10091274
https://doi.org/10.1007/s10346-018-0995-z
https://doi.org/10.1007/s10346-018-0995-z
https://doi.org/10.5194/nhess-25-169-2025
https://doi.org/10.5194/nhess-25-169-2025
https://doi.org/10.1029/WR012i006p01248
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.1680/geot.2003.53.2.283
https://doi.org/10.1038/d41586-022-02141-9
https://doi.org/10.1007/s10346-010-0216-x
https://doi.org/10.5194/nhess-23-279-2023
https://doi.org/10.1126/SCIENCE.NS-4.93.453-A
https://doi.org/10.1126/SCIENCE.NS-4.93.453-A
https://doi.org/10.5194/hess-18-4913-2014
https://doi.org/10.1007/S10346-021-01704-7
https://doi.org/10.5194/nhess-18-633-2018
https://doi.org/10.5194/nhess-18-633-2018
https://doi.org/10.5194/essd-15-2863-2023
https://doi.org/10.1016/j.jhydrol.2015.06.005
https://doi.org/10.1007/s10346-016-0753-z
https://doi.org/10.1029/JD092iD08p09645
https://doi.org/10.1016/S0377-0273(97)00056-5
https://doi.org/10.1016/S0377-0273(97)00056-5
https://doi.org/10.5194/hess-27-4151-2023
https://doi.org/10.1007/S10064-024-03783-X
https://doi.org/10.1007/S10064-024-03783-X
https://doi.org/10.1061/(ASCE)0733-9437(2006)132:2(112)


2698 D. C. Roman Quintero et al.: Large-scale assessment of rainfall-induced landslide hazard

Landslides, 15, 1483–1501, https://doi.org/10.1007/s10346-018-
0966-4, 2018.

Terzaghi, K.: Theoretical Soil Mechanics, John Wiley & Sons, Inc.,
Hoboken, NJ, USA, https://doi.org/10.1002/9780470172766,
1943.

Thomas, M. A., Collins, B. D., and Mirus, B. B.: Assessing
the Feasibility of Satellite-Based Thresholds for Hydrologi-
cally Driven Landsliding, Water Resour. Res., 55, 9006–9023,
https://doi.org/10.1029/2019WR025577, 2019.

Trigila, A., Iadanza, C., and Spizzichino D.: Quality assessment
of the Italian Landslide Inventory using GIS processing, Land-
slides, 7, 455–470, https://doi.org/10.1007/s10346-010-0213-0,
2010.

Wicki, A., Lehmann, P., Hauck, C., Seneviratne, S. I., Waldner, P.,
and Stähli, M.: Assessing the potential of soil moisture mea-
surements for regional landslide early warning, Landslides, 17,
1881–1896, https://doi.org/10.1007/s10346-020-01400-y, 2020.

Williams, P. W.: The role of the epikarst in karst and
cave hydrogeology: A review, Int. J. Speleol., 37, 1–10,
https://doi.org/10.5038/1827-806X.37.1.1, 2008.

Zhang, S., Pecoraro, G., Jiang, Q., and Calvello, M.: A proba-
bilistic procedure to define multidimensional rainfall thresholds
for territorial landslide warning models, Landslides, online first,
Landslides, 22, 1773–1787, https://doi.org/10.1007/s10346-025-
02461-7, 2025.

Nat. Hazards Earth Syst. Sci., 25, 2679–2698, 2025 https://doi.org/10.5194/nhess-25-2679-2025

https://doi.org/10.1007/s10346-018-0966-4
https://doi.org/10.1007/s10346-018-0966-4
https://doi.org/10.1002/9780470172766
https://doi.org/10.1029/2019WR025577
https://doi.org/10.1007/s10346-010-0213-0
https://doi.org/10.1007/s10346-020-01400-y
https://doi.org/10.5038/1827-806X.37.1.1
https://doi.org/10.1007/s10346-025-02461-7
https://doi.org/10.1007/s10346-025-02461-7

	Abstract
	Introduction
	Materials and methods
	Case study
	Modelling the reference slope response to precipitation
	Empirical landslide threshold definition
	Real slope response to precipitation
	Uncertainty in the hydrometeorological variables for the threshold definition for a large area
	Uncertainty in the assessment of slope stability


	Results
	Reference slope
	Large scale

	Discussion
	Application to real landslide dataset

	Conclusions
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

