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Abstract. This study introduces a new approach to multi-
hazard risk assessment, leveraging hypergraph theory to
model the interconnected risks posed by cascading natural
hazards. Traditional single-hazard risk models fail to account
for the complex interrelationships and compounding effects
of multiple simultaneous or sequential hazards. By concep-
tualising risks within a hypergraph framework, our model
overcomes these limitations, enabling efficient simulation of
multi-hazard interactions and their impacts on infrastructure.
We apply this model to the 2015 Mw 7.8 Gorkha earthquake
in Nepal as a case study, demonstrating its ability to simulate
the primary and secondary effects of the earthquake on build-
ings and roads across the whole earthquake-affected area.
The model predicts the overall pattern of earthquake-induced
building damage and landslide impacts, albeit with a ten-
dency towards over-prediction. Our findings underscore the
potential of the hypergraph approach for multi-hazard risk
assessment, offering advances in rapid computation and sce-
nario exploration for cascading geo-hazards. This approach
could provide valuable insights for disaster risk reduction
and humanitarian contingency planning, where the anticipa-
tion of large-scale trends is often more important than the
prediction of detailed impacts.

1 Introduction

There has been a growing recognition over the last 15 years
that natural hazards can interact and occur in conjunction
with each other, leading to a potential compounding effect
that is greater than the sum of the single-hazard impacts
(Kappes et al., 2012; Arosio et al., 2020; Terzi et al., 2019).
While the global prevalence of cascading hazards specifi-
cally is difficult to quantify reliably, there are increasing calls
for effective multi-hazard risk assessments (e.g. Ward et al.,
2022). Multi-hazards are defined by the UNISDR (2016) as
“events [that] may occur simultaneously, cascadingly or cu-
mulatively over time, and taking into account the potential
interrelated effects”. Multi-hazard approaches seek to over-
come the limitations of a narrower focus on single-hazard
models, which are unable to account for the observed inter-
relationships between different hazards as well as potential
compounding or cascading effects (e.g. Gill and Malamud,
2014; Tilloy et al., 2019; Dunant, 2021; Ming et al., 2022).
Multi-hazard approaches to risk are now widely encouraged
(e.g. UNISDR, 2005; Government Office for Science, 2012)
and are increasingly integrated into risk assessment (see re-
cent reviews by Gill et al., 2022; Ward et al., 2022).
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There remain, however, some important challenges and
limitations with multi-hazard risk assessment. Because of
the difficulties in recognising, understanding, and defining
the interrelationships between hazards, as well as the lack of
data on their co-dependence (Tilloy et al., 2019; Hochrainer-
Stigler et al., 2023), most “multi-hazard risk” models sim-
ply overlay single hazards without considering their interac-
tions – an approach that Gill and Malamud (2014) termed
“multi-layer single hazard”. Even when hazard–hazard in-
teractions are considered in risk models, there is still a lack
of comprehensive approaches that capture the intricate in-
terplay among hazards, exposure, and vulnerability beyond
simple spatial overlaps (Mignan et al., 2014; De Ruiter et
al., 2020). These interactions are critical because of the
possibility that risks may be clustered in space and time
or may amplify each other, as demonstrated by Mignan et
al. (2014). Zschau (2017) extended the ideas of Gill and
Malamud (2014) to risk assessment, distinguishing between
risk from single hazards, risk from multi-layer single haz-
ards, and risk from multi-hazards – the latter allowing for
dynamic hazard interactions but no dynamic interactions
between hazard and exposure or vulnerability. Hochrainer-
Stigler et al. (2023) noted that hazard–exposure relationships
and changes in exposure over time, as well as vulnerabil-
ity, are also critical to fully characterise multi-risks. This
complexity means that multi-hazard risk modelling can be
both computationally expensive and extremely demanding of
quality input data (e.g. Kappes et al., 2012). Multi-hazard
risk models may also be limited by the diversity of hazard
types that can be incorporated, mismatches in the appropri-
ate spatial and temporal scale of analyses, and complex data
requirements (e.g. Kappes et al., 2012; Tilloy et al., 2019;
Dunant, 2021).

A further complication is the growing need for national,
regional, or even global-scale risk assessments in order to un-
derstand potential patterns of impacts, provide science-based
evidence for disaster risk reduction and advocacy, and allow
coordinated planning (see review by Ward et al., 2020). At
the same time, data are available at ever-increasing spatial
and temporal resolution, including information on popula-
tions, building stock, and topography, as well as datasets on
hazard drivers such as rainfall forecasts or observed precipi-
tation. While these are welcome developments, the combina-
tion of demands for increasing scale and increasingly fine-
spatial- and fine-temporal-resolution data leads to a much
higher computational burden. Addressing the need for both
larger spatial scales and finer spatio-temporal resolutions is a
growing challenge for the assessment of multi-hazard risks.
The distribution of risk may also be highly spatially imbal-
anced if exposed elements are concentrated in specific ar-
eas, meaning that grid-based or GIS-based approaches to risk
modelling may expend a lot of computational effort on areas
where risk is low or negligible.

To address these concerns, Dunant et al. (2021a) proposed
a novel approach to multi-hazard risk modelling using graph
theory. In this framework, both the hazards and the elements
at risk are modelled as a set of interconnections between
nodes. For example, a house can be linked to ground accel-
erations in an earthquake or a hillslope to rainfall in a storm.
This framework can then be used to generate many disaster
scenarios by cascading from node to node according to a set
of rules (e.g. a threshold earthquake shaking value for slope
failure). The resulting network model is highly computation-
ally efficient, and the network structure is a natural fit to the
simulation of coincident or cascading events and their propa-
gation through exposure networks (Dunant et al., 2021a) be-
cause network structures are purposefully designed to cap-
ture the interdependencies and feedbacks among different el-
ements. The framework is agnostic to the types of objects
that can be included, so it can be easily adapted to include
hazard–hazard, hazard–exposure, and hazard–vulnerability
relationships. It is also highly flexible so that the links be-
tween objects can be represented via different interactions
depending on the level of understanding and data availability,
including threshold values, empirical functions, fuzzy distri-
butions, process models, or other approaches (e.g. Tilloy et
al., 2019).

Despite its advantages, however, the network model suf-
fers from some important limitations. Most critically, be-
cause the interactions in a network model are modelled as
pairs, the computational burden grows substantially as the
number of components (nodes and edges) of the model in-
creases. Prior applications focused on the epicentral area of
the 2016 Mw 7.8 Kaikōura earthquake (Dunant et al., 2021a)
and the area around Franz Josef township (Dunant et al.,
2021b), both in New Zealand and containing on the order
of hundreds of nodes. Expanding the network model to a na-
tional scale at a similar resolution would increase the model
size by several orders of magnitude. Similarly, increasing the
number of hazards that are considered would lead to a com-
binatorial increase in interactions and rapid growth in com-
putation time.

Here we propose a new approach to modelling the impacts
of multi-hazards using hypergraphs – two-dimensional sur-
face equivalents of the pairwise links found in the graph-
theory network model of Dunant et al. (2021a). The hyper-
graph model retains the advantages of the network approach
while simultaneously reducing the model complexity. Below,
we first present a brief review of graphs and hypergraphs and
outline the benefits of using hypergraphs in a multi-hazard
risk modelling framework. We describe the structure of the
multi-hazard impact model, including its components and the
interactions between nodes. We illustrate its application by
simulating the impacts from the 2015 Mw 7.8 Gorkha earth-
quake in Nepal, as an exemplar of a large-scale event that
had cascading effects on people and infrastructure due to
both primary and secondary hazards. We close by consid-
ering wider potential applications of the hypergraph model,
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including national- or regional-scale disaster scenario ensem-
bles and how they might be used to support humanitarian
contingency planning (e.g. Robinson et al., 2018).

2 Summary of graph and hypergraph approaches

A graph is essentially a mathematical representation
of a network. The term was originally introduced by
Sylvester (1878), but graph theory had been used more than
a hundred years before by Euler (1741) to solve the “Seven
Bridges of Königsberg” problem. Since then, graph theory
has been used in a wide variety of fields such as geography,
computer science, social science, and biology (e.g. Buzna et
al., 2006; Chorley and Kennedy, 1971; Dezső and Barabási,
2002; Dorogovtsev and Mendes, 2003).

A graph comprises a set of nodes connected by edges. In
the context of risks posed by environmental hazards, such
nodes may represent a geographical location (spatially ex-
plicit; e.g. a fault segment or a house) or a nominal prop-
erty (spatially implicit; e.g. the occurrence of an earthquake),
and the edges represent the relations between the nodes
(e.g. earthquake shaking affecting exposed houses) (Fig. 1a).

A defining characteristic of graphs is the set of pairwise
connections or edges between nodes that define the relation-
ships between these nodes. For example, we would represent
earthquake shaking on a set of hillslopes as edges between
the earthquake and each hillslope that is affected. In tabu-
lar form, each edge is represented by a row in a relational
database, called an incidence matrix (Fig. 1a). The edges are
directional, so a two-way relationship – for example, a hill-
slope potentially affecting a road via landslides and a road
potentially affecting a hillslope via excavation and steepen-
ing – would be represented by two separate rows.

As summarised by Dunant et al. (2021a), here we consider
relationships between nodes that are observed or felt – that
is, via shaking, mass movement, or water flow. We also con-
sider that nodes are connected if (1) the geographical effect
of one node overlaps that of another and (2) that effect is
relevant to considering impacts from hazards. For example,
earthquake ground shaking might affect a hillslope and trig-
ger a new landslide or the mobilisation of loose material in a
debris flow; to allow for these effects, we would represent the
relationship between earthquake and the hillslope as an edge
and the relationship between the hillslope and any houses or
road segments on it as a series of additional edges (Fig. 1a).
If we were to assume that the earthquake ground motion can
potentially cause direct impacts on houses but not roads, then
the earthquake would be connected to the houses by edges
but not to the road segments (Fig. 1a).

In contrast, a hypergraph is a special type of graph where
the edges, called hyperedges, can link one or more nodes
(Fig. 1b). This allows us to represent interactions that ex-
tend beyond a single pair of nodes (Wolf et al., 2016). Com-
pared to pairwise edges, which only connect two nodes, hy-

peredges can connect multiple nodes and provide a more nat-
ural representation for the spatial overlap between exposed
elements, like houses, and geographical hazard footprints.
Hyperedges can thus represent nested information between
the nodes of the system, such as their properties or locations,
with far fewer tabular entries (Fig. 1b). The hypergraph uses
fewer edges to represent the same number of interactions for
a given number of nodes; this size difference (e.g. for the ex-
ample in Fig. 1, 11×8= 88 entries for the graph framework
and 3×8= 24 for the hypergraph framework) highlights the
efficiency of the hypergraph approach.

The increased efficiency enabled by hypergraphs becomes
more apparent when dealing with large, interconnected
datasets and when iterative data manipulation is required. For
example, we can run hundreds or thousands of separate simu-
lations on the same hypergraph, choosing different events or
altering input parameters within a Monte Carlo framework
(e.g. Dunant et al., 2021a) to generate ensemble distributions
of scenario outcomes (Robinson et al., 2018). The improve-
ment in computation time allows the hypergraph framework
to be applied to multi-hazards risk assessment over larger ex-
tents, over longer time periods, and with more complex inter-
actions than would be feasible using a GIS-based approach
or standard graph framework.

3 Methodology

Below we describe the set-up and operation of the multi-
hazard hypergraph model and describe its application to the
2015 Gorkha earthquake.

3.1 Model overview and set-up

The model is based around a set of interactions between
elements in Nepal that are drawn from experience in both
the annual monsoon (Kincey et al., 2022; Jimee et al.,
2019; Goda et al., 2015; Rosser et al., 2021; Kargel et al.,
2016) and recent earthquakes, including the 2015 Gorkha
event (e.g. Roback et al., 2018; Milledge et al., 2019;
Kincey et al., 2021). For the simulations in this paper, the
model is driven only by earthquakes (Fig. 2) and seeks
to assess the risk to buildings and roads at a national
scale. Earthquake shaking is simulated as a spatial distri-
bution of peak ground acceleration (PGA) values; these
could be derived from measurements or generated for a
potential scenario earthquake via a shaking model. For
the experiments shown here, we use empirical PGA val-
ues estimated by the US Geological Survey ShakeMap for
the 2015 Gorkha earthquake (https://earthquake.usgs.gov/
earthquakes/eventpage/us20002926/shakemap/pga, last ac-
cess: 1 March 2022). Earthquake shaking can affect infras-
tructure either directly (described via a set of fragility func-
tions) or by triggering landslides. Landslides, in turn, may
affect both buildings and roads. In this version of the model,
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Figure 1. Graph (a) and hypergraph (b) representations of a hypothetical set of hazard and exposure interactions. The same set of elements
are represented in both graphical form (top panels) and tabular form as incidence matrices (bottom panels). In the tables, a blank cell means
no interaction between the nodes, and a value of 1 means that interactions are possible between the nodes.

Figure 2. Driving stimuli and important process interactions for the
area affected by the 2015 Gorkha earthquake in Nepal. The ele-
ments that are included in the multi-hazard impact experiments doc-
umented here are shown in bold text.

other hazards such as rainfall and floods are not considered,
but they could be added via additional sets of hyperedges and
interactions.

To model coseismic landslides, we subdivide the land-
scape into discrete units and consider the characteristics of
the topography as well as the driving mechanisms within

those subdivisions. Here we divide the landscape into slope
units that are bounded by drainages and divide lines (Alvi-
oli et al., 2016; Woodard et al., 2024) (see Supplement and
Fig. S1). Woodard et al. (2024) demonstrated that slope units
are preferable to gridded topography when representing land-
slide susceptibility, especially for input landslide data that are
imprecise or highly spatially variable in quality. The slope
units were generated following the procedure from Kincey
et al. (2021) where a DEM is used to segment the landscape
into distinct terrain units defined by hydrological and geo-
morphological boundaries.

The hyperedges are constructed based on the interactions
in Fig. 2. A hyperedge connects the earthquake node with all
of the slope units and buildings within the “footprint” of the
earthquake, defined by the extent of a minimum PGA (X in
g) contour. Similarly, hyperedges connect each slope unit
with the buildings and roads (divided into 100 m segments)
within it; we therefore assume that landslides from one slope
unit cannot impact elements in another. Attributes for each
building, road segment, and slope unit, such as location,
PGA, building type, and landslide susceptibility, are stored
on the hyperedges and can be displayed as continuous values
in a tabular form. We describe each of these attributes below.
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We use building locations and roads taken from the
Humanitarian OpenStreetMap Team, covering the whole
of Nepal and available at https://data.humdata.org/dataset/
hotosm_npl_buildings (last access: 1 January 2022) and
https://data.humdata.org/dataset/hotosm_npl_roads (last ac-
cess: 1 January 2021), respectively. The datasets con-
tain ca. 7.1 million building polygons and ca. 3 mil-
lion road segments. Because we lack specific informa-
tion on the construction type of each building to as-
sess its fragility, we instead use exposure data from
the Modeling Exposure Through Earth Observation Rou-
tines (METEOR) project (https://maps.meteor-project.org/
map/building-exposure-map-of-nepal, last access: 1 Jan-
uary 2021) (version 2020-02-15), which includes a list of
building types and the number and value of each type within
each cell of a 90× 90 m grid across Nepal. The METEOR
project used a combination of Earth observation (EO) data,
such as satellite imagery, and ground-based sampling to clas-
sify homogeneous development regions and assess vulnera-
bility of building structures in countries like Nepal and the
United States. The development patterns are then associated
with typologies observed on the ground (https://nora.nerc.ac.
uk/id/eprint/533439/, last access: 1 January 2021) to create
a national-scale vulnerability layer. The PGA value of the
2015 Gorkha earthquake is extracted at the centroid of each
METEOR grid cell. To account for variability in construc-
tion detail and quality within these broad types, we adopt
low, middle, and high fragility functions for the “complete
damage” state for typical building types in Nepal from the
METEOR dataset (Fig. 3). We take the definition of “com-
plete damage” from the Hazus framework of the US Federal
Emergency Management Agency (FEMA, 2020). We gen-
erate a weighted-average fragility function for the buildings
within each 90× 90 m grid cell based on the proportion of
different building types; thus, in the absence of any national-
scale building-specific information, all buildings within that
cell are assumed to have the same average fragility. We assess
the likelihood of complete damage because this implies loss
of usability or habitability, with consequences for displace-
ment and disruption to life and livelihoods, and is typically
used to estimate fatality and injury rates (FEMA, 2020).

We estimate landslide susceptibility based on topographic
factors alone, using a seven-parameter static susceptibility
model that incorporates elevation, hillslope aspect, distance
to rivers, plan-view curvature, regional relief, local hills-
lope gradient, and a terrain ruggedness index. These factors
are derived from a 10 m digital elevation model (DEM) that
was downsampled from the 5 m Advanced Land Observing
Satellite World 3D DEM (https://www.aw3d.jp/en/products/
standard/, last access: 1 January 2021). We generate the sus-
ceptibility model using a gradient-boosting machine learn-
ing approach, XGBoost, implemented in Python. For the ex-
periments shown here, the susceptibility model is trained
on the locations of coseismic landslides triggered by the
2015 Gorkha earthquake as mapped by Kincey et al. (2021),

yielding an area under the receiver operating characteris-
tic (ROC) curve of 0.75 (Fig. S2). We stress that this suscepti-
bility layer is used simply as an exemplar which is optimised
for the 2015 Gorkha earthquake; for other model applica-
tions, susceptibility data generated with other approaches
(see review in Reichenbach et al., 2018) or trained on differ-
ent inventories could be substituted. Because landslide sus-
ceptibility is modelled on a 10× 10 m grid, each slope unit
contains a unique distribution of cell-wise susceptibility val-
ues in the range [0, 1], and each building polygon or road
segment overlaps with one or more cell-wise susceptibility
values. Importantly, because the multi-hazard model is in-
tended to simulate dynamic cascading scenarios, we choose
not to include earthquake shaking as a determining factor
in the static landslide susceptibility model. This choice pre-
serves independence between shaking, landslide triggering,
and the propagation of hazards along the hyperedges within
the model.

We extract the mean and standard deviation of susceptibil-
ity for each slope unit, building, and road segment, although
other measures of the distribution could also be used. Be-
cause we lack general building or road fragility functions for
landslides that are comparable to those for earthquakes and
that encompass the wide range of possible landslide types
and sizes (see Luo et al., 2023, for a recent review), we adopt
a simplified binary vulnerability model such that any build-
ing or road that is affected by a landslide is considered “im-
pacted”.

3.2 Simulation steps

In each simulation, the model works iteratively through the
hyperedges that connect the driving stimulus of earthquake
shaking to the other elements in the model, checking against
a condition to see whether that hyperedge of the network is
“activated” – i.e. a building is damaged by earthquake shak-
ing or a slope unit is affected by one or more landslides. Ac-
tivation of that hyperedge then allows the stimulus to prop-
agate and potentially to cascade along other hyperedges if
further conditions are met (Fig. 4). The simulation continues
until all cascades stop and no further impacts are possible.

In the experiments shown here, the first step is to work
through the hyperedge that connects the earthquake to the
individual buildings to assess their damage state. For each
building, we assign the PGA value at the centroid of its
90× 90 m METEOR grid cell. We use the high, middle, and
low weighted mean fragility functions for that grid cell to
determine the likelihood of that building being completely
damaged – which is equivalent to the proportion of buildings
within that 90× 90 m grid cell in the METEOR dataset that
is completely damaged. This likelihood of complete dam-
age [0, 1] reproduces the weighted mean fragility when ap-
plied over the METEOR grid cell. The low, middle, and high
cases provide a range of outcomes for an individual build-
ing at a specific PGA value. The per-building likelihoods of

https://doi.org/10.5194/nhess-25-267-2025 Nat. Hazards Earth Syst. Sci., 25, 267–285, 2025

https://data.humdata.org/dataset/hotosm_npl_buildings
https://data.humdata.org/dataset/hotosm_npl_buildings
https://data.humdata.org/dataset/hotosm_npl_roads
https://maps.meteor-project.org/map/building-exposure-map-of-nepal
https://maps.meteor-project.org/map/building-exposure-map-of-nepal
https://nora.nerc.ac.uk/id/eprint/533439/
https://nora.nerc.ac.uk/id/eprint/533439/
https://www.aw3d.jp/en/products/standard/
https://www.aw3d.jp/en/products/standard/


272 A. Dunant et al.: Impacts from cascading multi-hazards using hypergraphs

Figure 3. Fragility functions used in the hypergraph network modelling. Each panel shows fragility curves for a different building type in the
METEOR dataset which relate the peak ground acceleration (PGA, in g) to the probability of being reduced to a complete damage state. Note
that each sigmoidal fragility curve is defined by two parameters: a mean or scale parameter that sets the PGA value for a 50 % probability of
complete damage and a standard deviation (SD) that defines the spread of the curve. Parameter values and sources for the fragility curves are
included in the plots.
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Figure 4. Step-by-step overview of the hypergraph framework for modelling cascading multi-hazard impacts. The hypergraph is represented
in a simplified example on the left, and the algorithm steps are specified on the right. The simplified hypergraph assumes a landscape with
two slope units, each of which contains two buildings and two road segments. The causal cascades of the algorithm are represented in three
steps: from top to bottom, these are (1) earthquake shaking, (2) tests for “activation” of a hillslope and “triggering” of landslides, and (3) tests
for impacts on structures by landslides. In the simplified hypergraph, black outlines show the hyperedges where hazards occur (e.g. landslides
are triggered by the earthquake) and the nodes that are damaged by either shaking (step 2) or landsliding (step 3). The process is embedded
in an iterative Monte Carlo simulation to determine the uncertainty associated with each step, creating a series of disaster scenarios that can
be queried for further analysis.

complete damage under the three cases can then be summed
by slope unit or administrative area to give the total predicted
number of completely damaged buildings in each area.

Next, we assess which slope units are “activated” by
ground shaking (Fig. 4). Activation of a slope unit means
that the ground accelerations are high enough to potentially
trigger one or more landslides if this is permitted by the to-
pographic conditions as represented by the landslide suscep-
tibility. Again, this allows the stimulus to propagate within
the earthquake hyperedge to the slope unit and potentially to
cascade within that slope unit (and affect buildings or road
segments within it). In these experiments, we conduct a lo-
gistic regression between PGA and the locations of land-
slides in the inventory of coseismic landslides triggered by
the 2015 Gorkha earthquake (Kincey et al., 2021) to define
the regional-scale probability of landslide occurrence as a
lognormal function of PGA (see Supplement and Fig. S3).

We begin by calculating the mean PGA value for each
slope unit. This mean PGA value is then used to determine
the probability of a landslide occurring within that slope
unit, based on the lognormal distribution previously men-
tioned. To simulate whether a landslide may actually occurs,
we compare this calculated probability to a randomly gen-
erated number from a uniform distribution. The value sam-
ple is coming uniformly distributed over the half-open inter-
val [0, 1). In other words, any value within the given interval
is equally likely to be drawn. If the probability exceeds the
random number, the slope unit is considered “activated”, in-
dicating that the conditions are sufficient for a potential land-
slide.

Over many simulations, slope units with a higher fre-
quency of observed coseismic landslides will generally be
activated more often, reflecting their greater susceptibility to
landsliding. However, because the activation in each simula-
tion depends on the random number generated, the specific
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pattern of activated slope units will differ from one simu-
lation to the next. As a result, different portions of the hy-
pergraph network are sampled in each individual simulation,
providing a varied assessment of potential cascading scenar-
ios.

Once a slope unit is activated, the model advances to as-
sess the potential impact on subsequent components of the
network, specifically focusing on whether buildings or road
segments within the slope unit are directly affected by a land-
slide (as illustrated in Fig. 4). This assessment is conducted
through a two-step process in the experiments presented here.
First, the model checks whether a landslide actually occurred
within the activated slope unit. Even if the shaking was in-
tense enough to “activate” the slope unit, the slope might
still not experience a landslide due to its low susceptibility.
In other words, an activated slope unit does not always result
in a “triggered” landslide.

Triggering in the slope unit is determined by drawing a
value (A) from a Gaussian distribution of landslide suscepti-
bility with the same mean and standard deviation as the dis-
tribution of susceptibility values in that slope unit and com-
paring that value with a uniform random deviate (B). We
employ a Gaussian distribution for efficiency, as this can be
calculated in advance of the simulation, and note that it pro-
vides a reasonable fit to the actual distribution across a wide
range of slope units (Supplement, Fig. S4). If the suscepti-
bility value A is smaller than B, then no landslide has oc-
curred in that slope unit, and propagation along that hyper-
edge stops. If A is larger than B, then one or more landslides
have occurred in that slope unit. We then check if each build-
ing and road segment within the slope unit is affected by this
landsliding by comparing the landslide susceptibility value
at the infrastructure location with another uniform random
deviate. If the random deviate exceeds the landslide suscep-
tibility value, then the building or road segment remains un-
affected by the landslide (in other words, even if a landslide
happens in the slope unit, it does not affect the building or
road). Then, the simulation continues to evaluate other build-
ings or roads within the same slope unit and then moves on to
other slope units activated by the earthquake. If the random
deviate is less than the susceptibility value, then the building
or road segment is impacted by landsliding. In this case, we
add it to the pool of affected elements for this simulation and
move to the next building or road. We continue this process
to search iteratively through all slope units in the network to
generate a single cascading impact scenario.

3.3 Outputs and evaluation

The iterative simulation process outlined above is repeated
within a Monte Carlo framework to create an ensemble of
scenarios, each of which explores a different set of outcomes
within the same set of hyperedges. In the experiments shown
here, we generate 10 000 scenarios from the initial stimulus
of the 2015 Gorkha earthquake. Hence, all scenarios in these

experiments use the same spatial distribution of PGA values,
and thus the probability of an individual building suffering
complete damage by shaking stays the same. What differs
between scenarios are the details of which slope units are ac-
tivated, which slope units experience landsliding, and which
buildings or road segments are impacted by those landslides.
Thus, we take the likelihood of a structure being affected
by landsliding over the whole ensemble as the proportion of
the 10 000 scenarios in which the structure is impacted. This
leads to a shaking impact likelihood and a landslide impact
likelihood, both in the range [0, 1], for each of the buildings
and road segments in our combined dataset.

To explore the trade-off between spatial resolution and
model performance, we aggregate the structure-level results
over successively larger administrative units. Nepal is di-
vided, from smallest unit to largest, into 6743 wards, 753 ur-
ban and rural municipalities, 77 districts, and 7 provinces.
Aggregation across these units allows us to evaluate the
performance of the model against independent measures of
earthquake impacts from the 2015 Gorkha earthquake at dif-
ferent spatial resolutions. For buildings damaged by earth-
quake shaking, we evaluate the model in two ways. First, we
sum up the per-building likelihoods of complete damage in
each district for the low, middle, and high fragility estimates
– which yields the number of completely damaged buildings
in each case – and compare those sums to incident reports
summarising the number of “fully damaged” buildings per
district and published on the Government of Nepal’s Bipad
Portal (http://drrportal.gov.np/, last access: 1 January 2022;
see also Chaulagain et al., 2018) based on the Post-Disaster
Needs Assessment (PDNA) (Government of Nepal – Na-
tional Planning Commission, 2015). This assesses the abil-
ity of the model to estimate the absolute number of dam-
aged buildings. While these data remain the most extensive
for validation purposes, the PDNA was done urgently after
the disaster with limited systematic gathering; hence it relies
on judgement by the PDNA participants and, therefore, car-
ries significant uncertainty (Lallemant et al., 2017). Note that
wards and municipalities were defined in the federal restruc-
turing of Nepal in 2017, and so data on damaged buildings
from the 2015 earthquake are not available at the ward or mu-
nicipality level. Second, we take the mean likelihood of com-
plete damage in each district, in the range [0, 1], and compare
that with the presence or absence of damaged buildings in
each of the 77 districts. This second measure is independent
of the absolute number of buildings and gives information in-
stead on the ability of the model to anticipate the occurrence
of one or more completely damaged buildings in an area.

For structures impacted by landslides, we derive similar
statistical measures for model evaluation. First, we sum up
the per-structure likelihoods of landslide impact over suc-
cessively larger areas of aggregation – ward, municipality,
district, and province. Because there are no systematic pub-
lished data on observed landslide impacts on buildings and
roads in the 2015 earthquake, we generate an estimate of af-
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fected structures by overlaying the coseismic landslide poly-
gons from Kincey et al. (2021) on our building and road
dataset; all structures that intersect with a mapped landslide
polygon are assumed to have been impacted by landsliding in
the earthquake. Note that this measure of landslide impacts
does not consider the significant post-earthquake changes in
landslide footprint and debris runout (e.g. Tian et al., 2020;
Kincey et al., 2022). Also, the coseismic landslides were
mapped on medium-resolution satellite imagery (ca. 10 m,
equivalent to our DEM and derived topographic metrics)
and so will have omitted small landslides or rockfalls, es-
pecially in areas of dense vegetation or steep topography
(e.g. Williams et al., 2018); this error and the inherent un-
certainty in mapped landslide outlines (Kincey et al., 2021)
mean that our estimate of the number of landslide-affected
structures is likely to represent a lower bound. We then sum
the observed number of impacted buildings and road seg-
ments by administrative area to compare with our modelled
totals. We also compare the mean likelihood of landslide im-
pact, averaged by administrative area and ranging from [0, 1],
with the presence or absence of landslide impacts in that area.
We evaluate the relationship between these parameters with
the area under the ROC curve and the F1 score.

4 Results

4.1 Impacts from earthquake shaking

We first consider modelled impacts from earthquake shak-
ing alone. Unsurprisingly, the probability of complete dam-
age per building, or equivalently the proportion of com-
pletely damaged buildings within each 90× 90 m exposure
grid cell, closely matches the estimated PGA contours from
the Gorkha earthquake (Fig. 5a). There are particularly high
probabilities in the hill and mountain districts, especially
to the east and northeast of Kathmandu, where the values
exceed 0.7. Notably, these values generally increase to the
north, and this increase is cut off only by the lack of buildings
above elevations of around 3500 m in northern Nepal (visible
as the white areas in Fig. 5a). The Kathmandu Valley itself
yields a low proportion of completely damaged buildings, de-
spite moderately high PGA values, due to the preponderance
of less-fragile building types.

We convert the proportion of completely damaged build-
ings per grid cell into a sum total aggregated over municipal-
ities (Fig. 5b) and districts (Fig. 5c). These totals reflect the
PGA pattern and the weighted mean fragility functions but
importantly also the number of buildings within each admin-
istrative area. When aggregated by municipality, the largest
modelled totals tend to occur in the more densely populated
Middle Hills in the vicinity of Kathmandu rather than the
more sparsely populated north. There are some notable ex-
ceptions to this pattern, such as Bharatpur to the south of
the earthquake epicentre (Fig. 5b), which combines a large

stock of fragile building types with moderately high PGA
values. When aggregated by district, the largest modelled to-
tals are again dominated by areas with both large numbers
of buildings and moderate to high PGA values (Fig. 5c).
With the exception of Chitwan to the south of the epicentre,
the largest totals are found in districts where PGA exceeded
0.4 g. It is instructive to compare the aggregated pattern by
district to the actual numbers of completely damaged build-
ings (Fig. 5d). There are broad similarities between modelled
and observed totals, especially in the hill and mountain dis-
tricts of Sindhupalchok, Nuwakot, and Kavrepalanchok. No-
tably, the model over-predicts the impacts in districts close
to the epicentre, including Gorkha and Chitwan, and under-
predicts the impacts at the eastern margin of the rupture in
Dolakha (Fig. 5d).

To better visualise the agreement between modelled and
observed totals of completely damaged buildings, we com-
pare the observed totals for all 77 districts in Nepal with
model results using the high, middle, and low fragility cases
(Fig. 6a). For most districts with non-zero impacts, the ob-
served totals fall within the range of model results using the
different fragility curves, with a slight bias toward model
over-prediction (Fig. 6b). Among the top 15 districts in terms
of modelled impacts, observed impacts fall below that range
in 3 districts (Chitwan, Tanahu, and Kaski; see Fig. 5c for
locations), within that range in 11, and above that range in
only 1 (Dolakha). Alternatively, out of the “14 worst-affected
districts” identified by the Government of Nepal, observed
impacts fall within the range of model results in 13 dis-
tricts, with Dolakha being the only outlier. The model thus
appears to be somewhat conservative in that it slightly over-
predicts building impacts due to shaking in the 2015 earth-
quake. The mismatch between modelled and observed totals
is not clearly related to building typologies (Fig. 6c). There
may be a weak correlation with shaking; districts with signif-
icant over-prediction tend to be those with lower mean PGA
values (typically < 0.44 g), while Dolakha has a larger mean
PGA (0.59 g), and we explore this point in the Discussion.

4.2 Impacts from coseismic landslides

As with shaking damage, the modelled probability of a build-
ing (Fig. 7a) or road segment (Fig. 7d) being impacted
by a coseismic landslide scales with PGA; this is simply
a consequence of the assumed relationship between PGA
and landslide triggering (Fig. S3). Higher probability val-
ues are found in northern areas of Nepal, where landslide
susceptibility is elevated (Fig. S2). We aggregate these prob-
abilities to estimate the number of impacted buildings and
road segments at the municipality (Fig. 7b and e) and dis-
trict (Fig. 7c and f) levels. The regions experiencing the
highest predicted impacts closely align with those observed,
notably concentrated in Sindhupalchok district, where both
modelled and observed landslide impacts are most prevalent
(Fig. 7c and f). Again, these areas predominantly lie in north-
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Figure 5. Modelled building impacts from shaking in the 2015 Gorkha earthquake. In all panels, the red contours show the estimated
PGA values from the earthquake (in g). Note that these results are derived from the middle-case fragility functions in Fig. 4. (a) Modelled
probability of complete damage for individual buildings across the country. This is equivalent to the proportion of completely damaged
buildings in each 90×90 m grid cell in the METEOR exposure dataset. (b) Modelled sum total of completely damaged buildings aggregated
by municipality. (c) Modelled sum total of completely damaged buildings aggregated by district. (d) Actual sum of reported “fully damaged”
buildings aggregated by district. Note similar colour scales in panels (c) and (d).

ern Nepal where susceptibility to landslides is greatest, con-
trasting somewhat with the distribution of modelled shaking
damage. This disparity may stem from the higher and more
widely dispersed density of buildings in the southern re-
gions. Consequently, while shaking-related damage appears
diffuse, landslide-related damage is more focused in specific
regions due to localised exposure. Importantly, the model an-
ticipates fewer building impacts from landslides by approxi-
mately an order of magnitude as compared to those damaged
by shaking (note the scale difference between Figs. 5 and 7).
We also note that, while the overall spatial patterns of mod-
elled building and road impacts are similar, the model pre-
dicts somewhat higher numbers of road impacts (by about
50 %) and that this generally matches the observed differ-
ences in intersections between these infrastructure types and
coseismic landslides (Fig. 7). Roads are typically sited along
or near valley floors, thus increasing their exposure to land-
slides. Additionally, there is a significant association between
roads and landslides (e.g. Hearn and Shakya, 2017; McAdoo

et al., 2018), suggesting that the interaction between land-
slides and roads may cover a broader spatial extent compared
to the relationship between landslides and buildings.

The correlation between the modelled and observed num-
bers of buildings impacted by landslides depends upon the
area over which they are aggregated (Fig. 8). At province
(n= 7) and district (n= 77) levels, there is an approximately
linear relationship between modelled and observed numbers
of buildings, with a Pearson’s correlation coefficient > 0.80
(Fig. 8). At municipality and ward levels, however, the corre-
lation is much weaker. Notably, modelled numbers of build-
ings over-predict the observed totals by a factor of about 0–
100, irrespective of the administrative area. Similar results
are seen for road segments: good linear correlations for
province- and district-level aggregation, much weaker per-
formance for municipalities and wards, and over-prediction
of impacts by a factor of about 20–25 (Fig. 8).

As a more permissive test of the model’s ability to antici-
pate landslide impacts, we also compare the mean likelihood
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Figure 6. (a) Comparison of modelled and observed numbers of completely damaged buildings per district in the 2015 Gorkha earthquake.
Bars show the range of modelled results for each district using high and low fragility cases (see Fig. 4), with the middle case shown by
the black arrow. Red dots show the reported numbers of “fully damaged” buildings. Blue numbers show the mean PGA for each district
(in g). The inset shows the same quantities with a logarithmic y-axis scale. (b) Mismatch between observed (Dobs) and modelled (Dmod)
numbers for each district, normalised by the total number of buildings in that district (N ). Negative values indicate model over-prediction,
while positive values indicate model under-prediction. Note that impacts in most of the districts with non-zero damage values are slightly
under-predicted. (c) Proportion of different building types in each district from the METEOR exposure dataset. There is no clear correlation
between the residuals in panel (b) and the dominant building types.

of landslide impacts, averaged by administrative area, with
the presence or absence of impacts in those areas. While the
area under the ROC curves is high for all aggregation levels
(Fig. 9), this is likely due to the strong imbalance between
prediction categories (i.e. there are many more non-impacted
buildings than impacted buildings, so the ROC curve is dom-
inated by the large number of true negative model results). In
contrast, precision–recall curves show a progressive decrease
in model performance at progressively smaller levels of ag-
gregation, from province to ward, and very low precision at

the scale of an individual building or road segment (Fig. 9).
Because F1 scores combine precision and recall, they show
a similar pattern (Fig. 9); across the full range of thresholds,
F1 scores for both buildings and roads (Fig. 9) are highest for
province- and district-level aggregation and lowest for ward-
level aggregation. For an optimal model threshold, province-
level aggregation achieves maximum F1 scores of ca. 0.8 for
buildings and ca. 0.65 for roads. The maximum F1 scores
for buildings are also around 0.8 for districts and diminish
progressively to 0.55 for municipalities and 0.4 for wards.
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Figure 7. Modelled structural impacts from coseismic landslides in the 2015 Gorkha earthquake. In all panels, the red contours show the esti-
mated PGA values from the earthquake (in g). The red crosses show observed landslide impacts on buildings (a–c) and road segments (d–f),
derived by mapping the intersections between those structure locations and the coseismic landslide inventory of Kincey et al. (2021). (a) Mod-
elled probability of impact for individual buildings across the country. (b) Sum of per-building probabilities aggregated by municipality, of
which there are 753 in Nepal. (c) Sum of per-building probabilities aggregated by district, of which there are 77 in Nepal. (d) Modelled proba-
bility of impact for individual 100 m road segments across the country. (e) Sum of per-road segment probabilities aggregated by municipality.
(f) Sum of per-road segment probabilities aggregated by district.

For roads, the maximum F1 scores are 0.8 for districts and
municipalities and 0.55 for wards. In sum, these results in-
dicate that, while the model can reproduce the spatial pat-
tern of landslide impacts at the provincial or district scale,
its predictive capability is much weaker when assessing im-

pacts within smaller administrative units like municipalities
and wards, and it should not be used to predict impacts on
individual buildings or road segments.
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Figure 8. Comparison of modelled (x axis) and observed (y axis) numbers of building and road impacts from coseismic landslides in the
2015 Gorkha earthquake, summed over different administrative areas. Straight lines show best-fit linear regression results. Note differences
in axis limits depending on the area of aggregation by province (red), district (orange), municipality (green), or ward (blue).

Figure 9. ROC (top panels), F1 (lower left panels), and precision–recall (lower right panels) curves for coseismic landslide impacts of
buildings and road segments aggregated over province, district, municipality, ward, and individual infrastructure scales. Numbers in the top
panels show the area under the ROC curves. Line colours match the symbol colours in Fig. 8.
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5 Discussion

5.1 General observations

Overall, the hyperedge model is able to reproduce the overall
spatial pattern of the impacts from the Gorkha earthquake.
This lends some confidence that the model framework could
be adapted to estimate the potential impacts from a future
event, such as a large earthquake or rainstorm. While the
computational efficiency of the hyperedge approach is a no-
table strength – enabling rapid simulations involving exten-
sive elements, such as the approximately 7.1 million indi-
vidual buildings and 3 million road segments in our case –
its significance extends beyond speed and flexibility because
it fosters the generation of multi-hazard scenario ensembles,
diverging from the limitation of focusing solely on determin-
istic impact scenarios. Robinson et al. (2018) demonstrated
the advantages of scenario ensembles over the more com-
mon approach of single deterministic scenarios, especially
as a tool for facilitating awareness of what could be possible
in a future event. While the creation of multi-hazard scenario
ensembles is our wider goal, the experiments shown here fo-
cus on multiple realisations of the same past event for the
purpose of evaluation.

A key finding of the experiments is the trade-off between
model performance, in terms of the ability to anticipate both
the spatial pattern and number of impacts, and the resolu-
tion of the model outputs. Because of the probabilistic nature
of the model and limitations in our understanding of expo-
sure, earthquake shaking, and landslide susceptibilities, we
cannot say with confidence which buildings were impacted
by hazards related to the 2015 earthquake. As we aggregate
the model results over increasingly large areas, however, our
ability to rank those areas in terms of impact and to estimate
the number of structures affected increases monotonically.
While our results can therefore not be used to anticipate the
risk to individual households, they could be used by organ-
isations working at a larger scale to identify areas that are
more or less prone to different types of hazards and provide
a relative ranking in terms of the number and scale of ex-
pected impacts. Thus, the value and potential usefulness of
the hypergraph approach as implemented here lies more in
informing planning over larger spatial scales, at which the
model performs best, as opposed to rapid response to a par-
ticular event where detailed spatial information would be re-
quired. There is some indication that absolute numbers of
affected structures could be generated for larger administra-
tive units by extrapolating the scaling by our analysis of the
2015 earthquake (see, for example, Fig. 8), but we hesitate
to draw conclusions from a single earthquake without further
testing.

5.2 Over-prediction and relative impacts between
hazards

We note that the model over-predicts the number of impacts
at all levels of aggregation and is therefore conservative in
terms of anticipating the scale of impacts for the 2015 earth-
quake. The possible reasons for this over-prediction are
likely to differ for shaking and landslide impacts. The mis-
match in the number of buildings damaged by shaking is es-
pecially notable for districts with moderate mean PGA val-
ues (typically < 0.5 g; Fig. 6a). The sigmoidal fragility func-
tions used in the model are steepest at moderate PGA values
(Fig. 3); for the middle case, this corresponds to PGA val-
ues of ∼ 0.2–0.5 g for the most common building types in
Nepal. Thus, small uncertainties in PGA will yield large dif-
ferences in the likelihood of complete damage and thus in
the numbers of completely damaged buildings in our model
experiments. This issue is compounded by the highly uncer-
tain values of ground motion of the Gorkha earthquake stem-
ming from the paucity of strong-motion recordings, as noted
by Goda et al. (2015). We also note that our experiments do
not account for aftershocks, including the Mw 7.3 earthquake
that occurred on 12 May and that ruptured the eastern end of
the 25 April slip patch under Dolakha district (Avouac et al.,
2015). This event likely led to additional building damage
which was included in the observations but is not simulated
here, perhaps leading to under-prediction in Dolakha in par-
ticular.

Over-prediction of observed landslide impacts, in contrast,
may result from a range of different factors. As noted above,
in the absence of an independent dataset of landslide impacts
on buildings or roads for the 2015 earthquake, we have gener-
ated these data by intersecting those elements at risk with the
coseismic landslide inventory of Kincey et al. (2021). This
is likely to under-predict the actual number of impacts due
to errors and limitations in landslide mapping as well as the
potential for buildings to be omitted from the Humanitarian
OpenStreetMap Team database. It is also important to note
that our approach relies on a probabilistic sampling of an un-
derlying landslide susceptibility dataset in order to anticipate
(1) the slope units in which a landslide is most likely to be
triggered and (2) the buildings and road segments that were
most likely to be affected. Our results are thus highly de-
pendent upon the quality of the underlying susceptibility in-
formation. In the experiments described here, susceptibility
is a static quantity that depends only upon local topography.
Because we are focused on a single event, there is no direct
provision for dynamic variation in susceptibility over time or
for other factors that may affect landslide occurrence, such
as the presence or absence of antecedent rainfall, soil mois-
ture or other measures of ground condition, or land cover.
Further applications of the model could incorporate suscep-
tibility estimates that are trained on other landslide invento-
ries – for example, time-varying susceptibility that captures
the evolution of landslide hazard over time (e.g. Tian et al.,
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2020; Kincey et al., 2021, 2022) or that depends upon other
causative factors (e.g. Reichenbach et al., 2018).

Our model result that the number of buildings damaged
by ground shaking is approximately an order of magnitude
greater than that impacted by landslides is difficult to test
directly because of the lack of a systematic description of
the sources of building damage in the 2015 Gorkha earth-
quake. It is broadly consistent, however, with previous work
on the relative importance of secondary hazards – includ-
ing landslides – and ground shaking in determining earth-
quake losses. Bird and Bommer (2004) assessed the relative
impacts of ground shaking and ground failure on direct and
indirect losses from earthquakes. They found that fatal land-
slides occurred in 10 of their 50 studied earthquakes and that
landslides could be the primary cause of building damage in
affected areas, locally overshadowing ground shaking. Over-
all, however, ground shaking was the primary cause of build-
ing damage in 88 % of their studied earthquakes and land-
slides in only 6 %. They also found that landslide-induced
disruption of road or transport networks was much more
common than building damage, which matches our model
results for the Gorkha earthquake. Daniell et al. (2017) ar-
gued that ground shaking has caused 62 % of total economic
costs in earthquakes over the period 1900–2016, with land-
slides responsible for 5 % of total costs. Marano et al. (2010)
found that 21.5 % of the fatal earthquakes in the PAGER-
CAT database had deaths due to secondary hazards but that
these were rarely the main cause of death. Landslides were
the leading cause of non-shaking-related deaths if the great
2004 Sumatra earthquake was excluded, although they ac-
counted for about an-order-of-magnitude fewer deaths than
ground shaking. In contrast, Budimir et al. (2014) demon-
strated that earthquakes with landslides typically cause more
fatalities than those without, independent of other factors
such as earthquake size or affected population. Their results
demonstrate the need to account for the full multi-hazard cas-
cade in anticipating losses at anything other than a simplified
regional scale (e.g. Bird and Bommer, 2004; Daniell et al.,
2017).

5.3 Limitations

While the model operates on a hyperedge that connects ev-
ery structure within the dataset, there are a number of factors
that cannot be resolved at a building scale. Notably, PGA val-
ues were gridded at a spatial resolution of 100 m by 100 m,
meaning that we have no information on the actual accelera-
tions experienced by individual buildings or road segments.
Similarly, while landslide susceptibility was estimated using
a comparatively fine-scale DEM with a grid size of 10×10 m,
each individual building or road segment occupies at most a
few grid cells and the susceptibility values are thus highly
location-dependent. It is also important to note that we do
not simulate the triggering, occurrence, and runout of indi-
vidual landslides, nor do we “place” landslides in the land-

scape as would be done for example in a landscape evolution
model (e.g. Croissant et al., 2017, 2019). Such a calculation
would dramatically increase the model complexity, making
it infeasible to construct a multi-hazard scenario ensemble
at a national scale. Because of this limitation, we cannot di-
rectly evaluate which elements at risk are directly impacted
by landslides, nor can we anticipate which elements may be
affected by the remobilisation and runout of landslide debris
(e.g. Kincey et al., 2022). By sampling the landslide suscep-
tibility distribution for each slope unit and the landslide sus-
ceptibility values for each building, we are (over enough it-
erations) recovering those distributions, but we cannot over-
come the inherent uncertainty in susceptibility at those lo-
cations. Finally, the METEOR exposure dataset contains in-
formation on the building types and numbers within each
90× 90 m grid cell, but we have no information on the type
and fragility of individual buildings. Therefore, while impact
likelihood is calculated at the scale of individual structures,
we stress that this estimate is only meaningful across the
whole scenario ensemble and should never be interpreted as
a statement that “building X will be affected by this earth-
quake”.

5.4 Other applications

Because of its efficiency, the framework allows exploration
of other elements of model performance, including the dis-
tinction between false positive and false negative errors.
While performance measures such as the area under an ROC
or precision–recall curve can be used to define an “optimum”
model outcome, the model application and users may deter-
mine which type of error is more important to minimise. For
example, a humanitarian organisation may view false posi-
tives as more acceptable than false negatives; the former may
lead at worst to unnecessary preparations, whereas the latter
means that impacts are not anticipated and may delay relief
and recovery efforts. By quickly generating numerous multi-
hazard scenarios, the framework can be run with users to
explore these different outcomes and to examine the speci-
ficity of model results to the details of a particular scenario
(e.g. Robinson et al., 2018). The model could also be used
to explore “what if” questions with users to examine the ef-
fects of particular interventions or remediation measures. In
addition, the efficiency of the framework could be used to
explore the evolution of risk over time, where increased sim-
ulation length or time resolution would lead to an increase in
computational cost. Thus, the effects of policy decisions, cli-
mate change and consequent changes in hazard occurrence,
or demographic shifts on the pattern of anticipated impacts
could be explored (Zschau, 2017).

The flexibility of the hyperedge framework also lends it-
self to other types of simulation. Other elements of the multi-
hazard chain shown in Fig. 2 could be included; for example,
susceptibility to landslide debris remobilisation and runout
could be included and sampled for each element at risk, al-
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lowing the model to anticipate both the direct impacts within
an event and the potential longer-term impacts arising from
later secondary hazards (e.g. Fan et al., 2019; Kincey et al.,
2022). Impacts from other types of driving events, such as
monsoon rainfall, could also be explored. It would be fea-
sible, for example, to generate an ensemble of scenarios
around different rainfall patterns associated with a seasonal
monsoon outlook or with different iterations of shorter-term
weather forecasts to look at the pattern and specificity of im-
pacts. Such an application would be subject to the compara-
tively low spatial resolution of both observational (e.g. Hou
et al., 2014) and forecast rainfall data products so that – just
as with the earthquake scenarios developed here – the im-
pact results at the scale of an individual structure would not
be meaningful. The hyperedge framework would, however,
allow exploration of the trade-offs between aggregation and
model performance, as demonstrated here, and could be use-
ful for informing humanitarian contingency planning for an-
nual rainfall-related impacts in Nepal and other monsoon-
affected countries.

6 Conclusions

Accounting for the multi-hazard aspects of risk is crucial
for disaster risk reduction and humanitarian planning. Tra-
ditional approaches to risk modelling tend to omit the in-
teractions between hazards and, even when these interac-
tions are accounted for, may struggle to meet the compu-
tational demands posed by such complex scenarios. Here,
we demonstrate that a new model based on hypergraph the-
ory, a type of network modelling approach, is able to effi-
ciently simulate multi-hazard risk. The model framework ac-
counts for the interactions between a driving stimulus such
as an earthquake or rainstorm with processes on the land-
scape (such as landslides) and exposed infrastructure. Be-
yond overcoming computational challenges, this framework
can facilitate multi-hazard risk assessments by enabling the
generation of ensembles to explore the importance of differ-
ent geophysical hazards, larger areas, longer time frames, and
diverse counterfactual scenarios. This versatility enhances
our understanding of complex risk landscapes and empowers
decision-makers with valuable insights for proactive disaster
preparedness and response strategies.

We explore the capabilities of the model through a case
study of the 2015 Mw 7.8 Gorkha earthquake in Nepal, which
caused widespread damage due to both primary shaking and
secondary landslides. We find that the model can reproduce
the overall spatial pattern of earthquake impacts. The ob-
served numbers of completely damaged buildings in most
districts, including 13 out of the 14 worst-affected districts,
fall within the range of model predictions, which depends
primarily on the assumed fragility functions for the typical
building types found in Nepal. The model also broadly re-
produces the spatial patterns of structures that were damaged

by coseismic landslides in the earthquake, although it over-
estimates the absolute number of impacts. This may be due
to limitations in the data used by the model to determine im-
pacts. Importantly, there is an increase in model performance
when the results are aggregated over larger administrative ar-
eas; the model does a reasonable job of anticipating the rela-
tive impacts at a province or district scale but performs much
less well at the smaller scales of municipalities or wards. This
result suggests that the hypergraph framework could be use-
fully applied to rank administrative areas by expected im-
pacts, for example due to a future earthquake or rainstorm,
to underpin pre-disaster contingency planning efforts where
large-scale trends are more important than detailed impact
predictions. The computational efficiency of the hypergraph
framework, even at the scale of an entire country such as
Nepal, lends itself to the generation of multiple impact sce-
narios and raises the possibility of using an ensemble of po-
tential scenario results rather than depending upon single-
event scenarios for disaster preparedness and planning.
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