
Supplement of Nat. Hazards Earth Syst. Sci., 25, 267–285, 2025
https://doi.org/10.5194/nhess-25-267-2025-supplement
© Author(s) 2025. CC BY 4.0 License.

Supplement of

Impacts from cascading multi-hazards using hypergraphs:
a case study from the 2015 Gorkha earthquake in Nepal
Alexandre Dunant et al.

Correspondence to: Alexandre Dunant (alexandre.dunant@durham.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.



S1. Slope unit explanation and parameters 

 

To define slope units, we use the methodology of Alvioli et al. (2016, 2020) as described in detail by Kincey et 

al. (2022) in their derivation of slope units for Nepal. We refer the reader to Kincey et al. (2022) for a full 

evaluation. The methodology divides a landscape into individual units separated by drainages and divide 

boundaries, according to a set of user-specified parameters. We use the r.slopeunits package within GRASS GIS 

v.7.8.4, run on the AW3D digital elevation model resampled to a cell size of 10 x 10 m. We choose minimum 

parameter settings from the range of values recommended by Alvioli et al. (2016) to ensure that smaller slope 

units were retained and to match observed hillslope length scales in Nepal. The resulting slope unit map is 

shown in Figure S1. Parameter names and values are as follows: 

  

● The drainage area threshold thresh = 5,000,000 m² identifies cells with a flow accumulation greater 

than the threshold, delineating drainage lines and subsequently forming catchments that are subdivided 

into half basins (HBs). 

● The minimum surface area areamin = 50,000 m² defines the smallest acceptable area for a slope unit.  

● The minimum circular variance of terrain aspect within a slope unit cvmin = 0.2 plays a crucial role in 

determining the uniformity of HBs concerning terrain aspect. This parameter, calculated as 1 – (|R|/Nv), 

where Nv is the number of grid cells in each half basin and |R| is the magnitude of the vector resulting 

from the summation of all unit vectors describing the orientation of each grid cell, influences the 

degree of homogeneity in aspect among slope units. Small values of cvmin result in HBs with more 

uniform aspect, large values in less uniformity. 

● The reduction factor rf = 10 governs the rate at which the drainage area threshold thresh decreases for 

subsequent iterations. A smaller value of rf results in a faster decrease, enabling more subdivisions and 

iterations, albeit at the cost of processing time.  

● The cleaning parameter cleansize = 20,000 m² sets the threshold value for cleaning procedures, 

removing slope units smaller than this area. It is also used in additional cleaning steps that inspect for 

unrealistic elongation or aspect similarity. 



 

Figure S1: Map of slope units for Nepal, using the parameter values given above. The inset shows a detailed area of 

north-central Nepal, illustrating the detailed relationship between slope unit boundaries (red) and topography. 

 

S2. Coseismic landslide susceptibility 

 

To estimate the spatial pattern landsliding due to the 2015 Gorkha earthquake, we utilise a landslide 

susceptibility layer for Nepal with a cell size of 10 x 10 m that is trained on the 2015 coseismic landslide 

inventory. Landslide susceptibility is determined with a static susceptibility model that depends upon seven 

topographic factors: elevation, hillslope aspect, distance to rivers, plan-view curvature, regional relief, local 

hillslope gradient over a 3 x 3 cell window, and a terrain ruggedness index. All factors are derived from the 

AW3D digital elevation model resampled to a cell size of 10 x 10 m.  

Distance to rivers has been calculated as the straight-line (Euclidean) distance from each pixel to the nearest 

river and river confluence, respectively. Rivers are defined using a flow accumulation tool that identifies rivers 

based on an upstream area threshold of 5km2. 

Regional relief represents the standard deviation in elevations in a window surrounding each pixel using the 

Focal Statistics tool in ArcGIS with a 1kmx1km square window. 

Terrain ruggedness index is the average difference between the elevation of the central pixel and each of the 8 

adjacent pixels which is calculated using the DEM and Focal Statistics tool in ArcGIS. 

 

We generate the susceptibility model using a gradient boosting machine learning approach, XGBoost (Chen and 

Guestrin., 2016), implemented in Python. The model is trained with the coseismic landslide inventory (epoch 4) 

of Kincey et al. (2021) which covered the 14 worst affected districts during the 2015 Gorkha earthquake; we 



randomly selected 20% of grid cells for model validation and used the remaining 80% of cells for model 

training. This yields an area under the receiver operating characteristic (ROC) curve of 0.86 (Fig. S2).  

 

The relative importance of the features in our XGBoost-based susceptibility model was assessed through the 

‘feature_importances_’ class from the scikit-learn Python library. This measurement is derived by evaluating 

how significantly each feature decreases the model's loss function. Specifically, the importance score for each 

feature is calculated by counting how frequently a feature is used to split the data across all decision trees, 

weighting these counts by the improvement (gain) brought about by each split, and normalizing these values by 

the total gains across the model. 

 

 

Figure S2: A, map of susceptibility to coseismic landslides derived from the static seven-parameter susceptibility 

model and the XGBoost algorithm. Susceptibility values range from 0 to 1. B, receiver operating characteristic curve 

derived for a random selection of 20% of grid cells. Values show area under the curve (AUC) and maximum F1 

score. Dashed line shows the random case (AUC = 0.5). C, relative feature importance of the seven topographic 

factors derived from the XGBoost algorithm. DistToStreams, distance to the nearest river; PlanCurv, plan-view 

curvature; TRI, terrain ruggedness index. 

 

 



S3. Relationship between PGA and landslide occurrence 

 

A logistic regression algorithm is used to investigate the relationship between peak ground acceleration (PGA) 

values and the occurrence of landslides. Initially, the script creates a feature matrix `X` containing PGA values 

and a target variable `y` that encodes whether a landslide occurred (1) or not (0) based on the presence of 

landslide events. These variables are derived from a geospatial dataset, where the PGA values are resampled at 

centroids of slope units and merged with the number of landslides in those units. The dataset is then split into 

training and testing subsets, with 80% of the data used for training and 20% reserved for testing. The logistic 

regression model is trained on the training data to predict the binary outcome of landslide or no-landslide in the 

slope unit. This model is fitted using the default settings of Python library Scikit-learn’s ‘LogisticRegression’ 

class, aiming to learn the probability of landslide occurrences as a function of the PGA values. This yields an 

area under the receiver operating characteristic (ROC) curve of 0.93. The characteristics of the normal 

cumulative density function (CDF) are a mean value of 0.506 and a standard deviation of 0.127. 

 

 

Figure S3: A, relationship between PGA and the probability of coseismic landslide occurrence. B, receiver operating 

characteristic curve derived for a random selection of 20% of slope units. Value shows the area under the curve 

(AUC) and the dashed line shows the random case (AUC = 0.5). 

 

S4. Distributions of susceptibility per slope unit 

 

Each slope unit (Fig. S1) contains a unique distribution of landslide susceptibility values. When a slope unit is 

activated during a model run, sampling this unique distribution to determine whether or not a landslide has been 

triggered would require the model to hold that distribution in memory, and would slow the model run time 

substantially. As a simplification, we instead calculate the mean and standard deviation of landslide 

susceptibility values within each slope unit in advance, and add them as attributes to each slope unit. This allows 

us to simulate the distribution of susceptibility values with a Gaussian distribution using the same mean and 

standard deviation during each pass through the hypergraph network. Values drawn from this synthetic Gaussian 

distribution are then compared with a uniform random deviate to determine whether one or more landslides has 

been triggered in that slope unit. 

To evaluate the validity of this simplification, Figure S4 shows the actual distributions of landslide susceptibility 

values from a random selection of slope units across Nepal, along with the corresponding synthetic Gaussian 



distributions with the same mean and standard deviation values. While the actual distributions take a variety of 

forms and are both left- and right-skewed, a Gaussian distribution provides a reasonable approximation to the 

true distribution of values in most cases. 

 

 

Figure S4: Actual and modelled distributions of landslide susceptibility values in a range of slope units across Nepal. 

A, locations of randomly-selected slope units. Numbers correspond to sub-figures in panel B. Coordinate axes show 

easting and northing values in UTM Zone 48. B, actual and modelled synthetic distributions of landslide 

susceptibility values. Blue bars show actual values as probability density of susceptibility pixel values, red lines show 

modelled Gaussian distributions with the same mean and standard deviation, and vertical dashed red lines show 

mean values. 
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