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Abstract. Digital elevation models (DEMs) play a key role
in slope instability studies, ranging from landslide detec-
tion and recognition to landslide prediction. DEMs assist
these investigations by reproducing landscape morphological
features and deriving relevant predisposing factors, such as
slope gradient, roughness, aspect, and curvature. Addition-
ally, DEMs are useful for delineating map units with homo-
geneous morphological characteristics, such as slope units
(SUs).

In many cases, the selection of a DEM depends on fac-
tors like accessibility and resolution, without considering its
actual accuracy. In this study, we compared freely available
global elevation models (Advanced Land Observing Satellite
(ALOS) World 3D-30m, Copernicus GLO-30 (COP), For-
est And Buildings removed COP DEM (FABDEM)) and a
national dataset (TINITALY) with a reference model (local
airborne lidar) to identify the most suitable DEM for rep-
resenting fine-scale morphology and delineating SUs in the
Marche region, Italy, for landslide susceptibility studies. Fur-
thermore, we proposed a novel approach for selecting the op-
timal SU partition.

The DEM comparison was based on several criteria, in-
cluding elevation, residual DEMs, roughness indices, slope
variations, and the ability to delineate SUs. TINITALY, re-
sampled at a 30m×30m pixel size, was found to be the most
suitable DEM for representing fine-scale terrain morphology.
It was then used to generate the optimal SU partition among
18 combinations. These combinations were evaluated using

both existing and newly integrated metrics alongside mapped
landslide inventories to optimize terrain delineation and con-
tribute to landslide susceptibility studies.

1 Introduction

Open-access global digital elevation models (DEMs) have
been commonly used for a vast range of geomorphological
studies, which have required modeling or analysis of terrain
surface in mountain environments, where these DEMs have
been characterized by a marked quality deterioration (Guth
et al., 2024; Trevisani et al., 2023a). One of the many uses of
DEMs has been to serve as the base input for analyzing land-
slide morphological features, evaluating the state and type
of activity, and generating landslide susceptibility models
(Brock et al., 2020). Among multiple methods of data-driven
(Ahmed et al., 2023; Lombardo et al., 2020; Lombardo and
Tanyas, 2020; Titti et al., 2021a) and physical-based models
(Van den Bout et al., 2021) to predict, investigate (Brenning,
2005; Pirasteh and Li, 2017; Steger et al., 2023), and detect
landslides (Qin et al., 2013), the elevation model has been
of essential importance. DEMs are utilized to derive terrain-
based characteristics (Brock et al., 2020; Mahalingam and
Olsen, 2016), which have been conditioned by their resolu-
tion. In the literature, DEM resolution and its influence have
been tested in several aspects, such as in landslide model-
ing and hazard assessment (Catani et al., 2013; Claessens et
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al., 2005; Fenton et al., 2013; Huang et al., 2023), in 3D
physical models (Qiu et al., 2022), and in morphological
quality assessment explored at regional scales (Grohmann,
2018; Hawker et al., 2019; Trevisani et al., 2023a).

Comparisons among DEMs to evaluate the most suitable
product are based on different criteria, and the results have
likely varied as per the test site. Thus, even if the same cri-
teria have been used to rank DEMs, regional topography has
influenced the preference of the elevation model in different
areas (Florinsky et al., 2019; Zhang et al., 2019). Land cover
has been particularly important when global DEMs (Bielski
et al., 2024), such as the Copernicus GLO-30 (COP) and the
Advanced Land Observing Satellite (ALOS) World 3D-30m,
have been used to derive a digital terrain model (DTM), given
that most of the time these products resemble a digital surface
model (DSM; Guth and Geoffroy, 2021).

An ongoing initiative, the Digital Elevation Model In-
tercomparison eXercise (DEMIX; Strobl et al., 2021), has
aimed to align methodologies, allowing for criteria-based
ranking of global DEMs. In the first application (Bielski et
al., 2024), metrics related to slope and roughness have been
considered in addition to those related to elevation differ-
ences; the approach has been developed further, adopting
new metrics and a wide range of geomorphometric deriva-
tives (Guth et al., 2024). Global DEMs have been com-
monly used in geoscientific research due to their spatial ex-
tent and public accessibility, whereas national DEMs (Gesch
et al., 2018; Muralikrishnan et al., 2013; Tarquini et al., 2007)
have generally been tailored to represent country-specific
land surface and morphology at a higher spatial resolution
and accuracy to serve geoscience applications. The Shut-
tle Radar Topography Mission (SRTM; Jarvis et al., 2008),
ALOS (Takaku et al., 2014), and the Terra Advanced Space-
borne Thermal Emission and Reflection Radiometer Global
DEM (ASTER GDEM; Abrams et al., 2010) have been
among the most widely used, freely accessible, and initial
global DEMs utilized in geomorphic analyses (Becek, 2014;
Florinsky et al., 2019; Mahalingam and Olsen, 2016; Tre-
visani et al., 2023a; Zhang et al., 2019). However, several
factors must be considered when implementing these global
datasets in a localized area for landslide recognition, map-
ping, and assessment.

Landslide inventories and elevation models have been es-
sential inputs for data-driven landslide models, for which
the DEM has been used to derive morphological parameters
such as slope angle and slope aspect. For these derivatives
to be as accurate as possible in a model, the DEM qual-
ity (Claessens et al., 2005; Mahalingam and Olsen, 2016;
Saleem et al., 2019) should satisfy the representation of fine-
scale morphology (Chaplot et al., 2006; Florinsky, 1998). In
other words, the DEM quality significantly affects the pre-
diction capacity of a model. The errors contained within a
DEM, even when small, propagate in derivatives of eleva-
tion (Karakas et al., 2022; Mahalingam and Olsen, 2016;
Pawluszek and Borkowski, 2017; Saleem et al., 2019), which

have been weighed as important factors in landslide occur-
rence. The various available DEMs have been generated us-
ing a range of technologies. While significant efforts have
been made to improve DEMs over time, the accuracy of
these models has remained a critical issue. Selecting an ap-
propriate DEM has proven to be more important than the
number of DEM-derived factors used in landslide assessment
(Kamiński, 2020).

Another use of DEMs has been the delineation of mapping
units (Schlögel et al., 2018). Mapping units have been used to
subdivide the study area into homogeneous, elemental units,
such as administrative units (Lombardo et al., 2019), terrain
units (Van Westen et al., 1997), unique condition units (Titti
et al., 2021b), grid cells (Reichenbach et al., 2018), and slope
units (SUs) (Ahmed et al., 2023). SUs were initially intro-
duced by Carrara et al. (1991) as portions of territory, pre-
senting homogeneous morphological characteristics for land-
slide identification and susceptibility mapping. The SU, ac-
cording to the scale adopted, has served as a solution that
adequately represents unstable slopes.

To assess the suitability of DEMs for landslide susceptibil-
ity and prediction, it has been essential to conduct a quality
assessment of these models, which has commonly referred
to the spatial resolution alone. Therefore, global DSMs and
a national Italian DTM have been compared with a local ac-
curate elevation model (airborne lidar) in the context of ter-
rain representation and its delineation. The Italian DTM has
already been investigated in some studies, mainly focusing
on hydrogeomorphology studies (Pulighe and Fava, 2013;
Zingaro et al., 2021; Annis et al., 2020; Tavares da Costa et
al., 2019). Accordingly, quality evaluation from the perspec-
tive of fine-scale morphology and geomorphometric deriva-
tives in the context of landslide science has remained an in-
teresting aspect to explore further.

This study aimed to optimize inputs used for represent-
ing morphological data in landslide susceptibility assessment
and to understand their interactions by identifying the most
suitable DEM for accurately representing fine-scale slope
morphology, proposing a new metric for analyzing optimal
SU parameters for landslide susceptibility mapping, integrat-
ing landslide inventory data with landslide area and number,
and extending and applying the methodology to test land-
slide susceptibility at a regional scale in the Marche region
of central Italy.

2 Study area

In this study, we have selected two distinct study areas. The
first area of interest (AOIa) encompasses the entire Marche
region, located in central-eastern Italy (Fig. 1, AOIa). From a
morphological point of view, this region is characterized by
three different types of landforms that extend in the north–
south direction. In the western part, the region is crossed
by the Apennines, which can reach, in this area, a peak of
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2476 m a.s.l. at Monte Vettore. In the central part of the re-
gion, the reliefs degrade to more rounded hills up to the
flat eastern coastal strip. From a geological perspective, the
Apennines, a Neogene fold-and-thrust belt that formed fol-
lowing the closure of the Mesozoic Tethys Ocean, are char-
acterized by calcareous, calcareous–marly, and arenaceous
units, as well as pelitic–arenaceous and marly–arenaceous
units, ranging in age from the Jurassic to the Neogene.
Several small rivers traverse the region from west to east.
In particular, the basins of the Misa, Esino, Cesano, and
Metauro rivers were affected by an exceptional thunderstorm
in September 2022, triggering floods and landslides (Corti et
al., 2024). One of the highest rainfall intensities of the 2022
event was registered in a sub-portion of the Marche region,
which has been selected as the second study area (AOIb) for
this work (Fig. 1, AOIb). This selection is based on not only
the consequences of the exceptional rainfall event but also
the fact that, morphologically, it is typically representative
of the mountainous terrain of Marche. Moreover, this area is
covered by a high-resolution dataset (1 m pixel size), which
allows us to effectively conduct the experiments as described
later in this work.

A relevant portion of the territory of the Marche region
(AOIa) presents slope failures. The most populated dataset
of landslides in the area is the inventory of the Piano Stral-
cio per l’Assetto Idrogeologico (PAI) of the Marche region
(Fig. 1). In the area of the Marche region (AOIa), the PAI
counts 19 296 inventoried landslides for a total landslide area
of 1394 km2, which covers 15 % of the total regional surface
classified as flow, slide, and complex landslides (Cruden and
Varnes, 1996).

3 Materials and methods

The methodology implemented in this study aims to as-
sess the quality of freely available DEMs, framing their use
in landslide susceptibility assessment. DEMs have been es-
sential because they allow for the derivation of landslide-
predisposing factors and generate a morphology-based ter-
rain subdivision: SUs. Thus, these two uses of a DEM in
landslide susceptibility assessment have been investigated.

The analysis has been conducted in two sequential phases
(Fig. 2). In the first phase, the differences in DEM derivatives
were assessed by comparing global DEMs and a national
DEM to a local high-resolution reference elevation dataset
in AOIb. In the second phase, we evaluated 18 SU partitions
on the basis of internal and external homogeneity, landslide
extension, and landslide number using the best-performing
open-source DEM, which was identified in the first phase of
this study.

3.1 Phase 1: DEM assessment

In this phase, the accuracy of three global DEMs, as men-
tioned below, and one national DEM (TINITALY) was eval-
uated through a comparison with a local airborne lidar in the
study area AOIb.

ALOS (ALOS World 3D – 30m;
https://doi.org/10.5069/G94M92HB, OpenTopography,
2024) was released by the Japan Aerospace Exploration
Agency (JAXA) in 2015, at a horizontal resolution of
1 arcsec or approximately 30 m as a DSM (Caglar et
al., 2018). This product, surveyed from 2006 to 2011, uses
the 5 m mesh of World 3D topographic data and is provided
in two resampled versions by JAXA (mean resampling
kernel is used in this study), with elevation expressed
according to the Earth Gravitational Model 1996 (EGM96).

COP (European Space Agency, 2024) was obtained from
WorldDEM at 1 arcsec as a DSM, a product of the radar data
acquisition of the 12 m TanDEM-X mission from 2011 to
2015. The Forest And Buildings removed COP DEM (FAB-
DEM; Hawker et al., 2022) was made available as a cor-
rected global DTM available at 1 arcsec grid spacing (60° S–
80° N) derived from COP. Machine learning techniques have
been devised to improve mean absolute vertical error in built-
up and forested areas in comparison to COP (Hawker et
al., 2022). Both FABDEM and COP elevations have been
referenced to the EGM 2008 geoid.

TINITALY versions 1.0 (Tarquini et al., 2007) and 1.1
(Tarquini et al., 2023) cover the entire Italian territory as
a DTM available at a 10 m pixel size. Heterogenous data,
mainly based on regional technical cartography (CTR) with
elevations derived by means of a photogrammetric method,
have been used to build a national-scale model. In particu-
lar, the CTR map scaled at 1 : 10000 with a 10 m interval for
contour lines is used for the Marche region in the compilation
of TINITALY. A triangular irregular network (TIN) structure
has been employed in constructing the DEM to tackle vary-
ing data densities and redundancies. Merging various types
of input data is followed by significant investigation to ensure
the seamless production of a high-resolution (and potentially
the most accurate) representation of Italy, with a root mean
square error ranging from 0.1 to 6 m (Tarquini et al., 2007).

The reference DEM (as it is referred to hereafter) is a DTM
that was acquired in 2012 using airborne lidar. It has a pixel
size of 1m×1m and a reported vertical and planimetric accu-
racy of 15 and 30 cm, respectively (Ministero dell’Ambiente
e della Sicurezza Energetica, https://gn.mase.gov.it/portale/
pst-dati-lidar, last access: 2 July 2025). This reference DEM
was aggregated by averaging the pixel size to 30 m.

The global DEMs (COP, FABDEM, ALOS) and TINI-
TALY were projected to WGS84 UTM 33N, with pixel sizes
of 30 and 10 m, respectively, using bilinear interpolation to
align with the reference DEM. The inclusion of COP and
FABDEM, along with ALOS as a global DEM and TINI-
TALY as a national-scale elevation model for comparison,
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Figure 1. Study area in central Italy. On the left is the study area AOIa, encompassing the entire Marche region, which was analyzed in the
second phase of the study. The geological classification is ordered by age (Quaternary, Cretaceous–lower Pliocene, lower Pliocene–lower
Pleistocene, middle–upper Miocene, upper Eocene–upper Miocene, upper Trias–middle Eocene). On the right is the study area AOIb, a
sub-portion of the Marche region where we conducted the DEM analysis in the first phase covered by the 1 m pixel size airborne lidar survey.
The Piano Stralcio per l’Assetto Idrogeologico (PAI) landslide inventory of the Marche region identifies 19 296 landslide bodies as polygons.
The top-left image background is from © Google Maps 2019.

has been adopted by several studies (Bielski et al., 2024;
Guth and Geoffroy, 2021; Meadows et al., 2024; Osama
et al., 2023; Trevisani et al., 2023a). All the DEMs, ex-
cept TINITALY (geoid model not publicly available), have
been transformed into a common geoid model, EGM2008,
for alignment and comparison with the reference grid. TINI-
TALY is based on the Italian geodetic network (IGM95)
where the measured ground points have been described
by the Italian geoid called ITALGEO 2005 (Albertella et
al., 2008; Barzaghi et al., 2007). Barzaghi and Carrion (2009)
have concluded that the difference between ITALGEO05 (re-
gional geoid model) and EGM2008 (global geoid model) is
negligible for many applications, and both are capable of rep-
resenting the region of Italy. Therefore, no geoid transforma-
tion for TINITALY is required.

To perform the quality assessment of selected DEMs, el-
evation differences were considered for compatibility with

previous studies. Indeed, studies focusing on DEM compar-
isons (Polidori and El Hage, 2020) are generally based on
elevation differences, using standard statistical metrics such
as standard deviation and root mean square error (RMSE),
and, in some cases, slope and aspect have been considered
(Meadows et al., 2024; Zhang et al., 2019). However, as
suggested in many studies (Bielski et al., 2024; Crema et
al., 2020; Florinsky et al., 2019; Gesch, 2018; Guth and Ge-
offroy, 2021; Kakavas et al., 2020; Liu et al., 2019; Purin-
ton and Bookhagen, 2017; Trevisani et al., 2023a), statistical
metrics of elevation differences alone fail to fully capture the
quality of DEMs, including the capability to represent fine-
scale morphology and the presence of artifacts. Therefore,
for this reason and because the focus of this work is primar-
ily on investigating the accuracy of the DEMs’ geomorpho-
metric derivatives, along with the differences in elevation,
a straightforward and simple approach has been proposed
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Figure 2. Workflow of the two-phase analysis. Phase 1 DEM assessment: comparison of global DEMs and a national DEM to a local high-
resolution reference elevation model (with reference to AOIb). Phase 2 slope unit delineation: selection of the optimal parameters for SU
delineation (with reference to AOIa).

to take the local spatial variability of surfaces into account
based on a geostatistical-based methodology (Isaaks and Sri-
vastava, 1989), as discussed by Trevisani et al. (2023a).

The approach is based on the derivation of a residual
DEM, also known as the topographic position index (TPI;
Guisan et al., 1999; Hiller and Smith, 2008; Wilson and Gal-
lant, 2000), and the calculation of roughness indices. The
residual DEM, derived by detrending the original surface, en-
ables us to highlight the capability of DEMs to reproduce lo-
cal fine-scale morphology. Moreover, the residual DEM has
been used as input for the calculation of roughness indices,
such as the standard deviation of residual DEM (Grohmann
et al., 2011), or even geostatistically based estimators, such
as a variogram (Eq. 1, with p = 2) and madogram (Eq. 1,
with p = 1). Equation (2) represents the more robust median
absolute differences (MADs; Trevisani and Cavalli, 2016;
Trevisani and Rocca, 2015). The generalization of the var-
iogram is described in Eq. (1) and MAD in Eq. (2):

γ (h)p =
1

2N(h)

∑N(h)

α=1
|z(ua)− z(ua +h)|p

=
1
2
·mean(|1(h) |p) , (1)

where

1(h)a = z(ua)− z(ua +h)

MAD(h)= |1(h)α=median| . (2)

Here h is the separation vector (lag) between two locations
(u), z(u) is the value of the variable of interest in the lo-

cation u (e.g., residual elevation), and N(h) is the num-
ber of point pairs with a separation vector h found in the
search window considered. Accordingly, the variogram is
half of the mean squared differences 1(h)a , and the MAD
is the median of the absolute differences 1(h)a . It should be
highlighted that there are roughness indices such as MADk2
and the radial roughness index (RRI) that have been calcu-
lated directly from the DEM without detrending (Trevisani
et al., 2023c, b).

A simple short-range omnidirectional roughness index,
such as MAD, calculated for lag distances of 2 pixels and
a circular kernel of 3 pixels, allows us to analyze fine-
grain roughness (see Trevisani et al., 2023b; Trevisani and
Rocca, 2015, for a full discussion). The MAD omnidirec-
tional roughness index essentially provides a measure of om-
nidirectional spatial variability (median differences in resid-
ual elevation) by comparing all pixel values separated by a
distance of |h| pixels in the moving window considered. An
alternative roughness index that does not require the def-
inition of calculation parameters is the RRI (Trevisani et
al., 2023c), which has been derived to improve the popular
topographic ruggedness index (TRI; Riley et al., 1999).

All the comparisons have been done using a pixel size of
30m× 30m. This value was assumed because it is closer
to the size of global 1 arcsec DEMs, except for TINITALY,
which was released with a pixel size of 10m× 10m. TINI-
TALY has been upscaled by mean-pixel aggregation to a
30m×30m pixel size. The 30 m DEM (TINITALY30m) has
also been compared with the 10 m pixel size version (TINI-
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TALY10m) in AOIb to assess the effect of upscaling on the
analysis. The aggregation at 30 m allows us to filter out (or at
least reduce) some characteristic artifacts of TINITALY, such
as triangular patterns due to interpolation in areas of low data
density and artificial terraces due to the interpolation of con-
tour lines. Given that slope, roughness indices, and the resid-
ual DEM are scale-dependent geomorphometric derivatives,
a normalization has been done to compare the results of the
differences between the derivatives at different resolutions of
TINITALY and the reference DEM. Accordingly, a normal-
ized difference has been adopted for each derivative D:

(DTINITALY−Dreference DEM)/(DTINITALY+Dreference DEM).

Finally, an additional analysis has been conducted. Since the
goal of the research proposes attribution to landslide stud-
ies, the DEM-derived slope difference distribution in the
landslide areas delineated by the PAI inventory is also in-
cluded. To prevent overestimation of landslide areas, poly-
gons contained within or significantly overlapping another
polygon (primarily representing landslide reactivations) have
been merged.

To further assist in evaluating the quality of DEMs in the
framework of landslide susceptibility assessment, SUs have
been generated using various DEMs (global and national).
This has allowed for a comparison of the SUs produced from
the reference DEM with those derived from the global DEMs
under evaluation, highlighting any differences in terrain par-
titioning and geometry. The software r.slopeunits (Alvioli
et al., 2016) was used to generate the SU maps, starting
from the SU parameters proposed by Alvioli et al. (2016) for
AOIb. After a few corrections and optimizations, the parame-
ters were set as a flow accumulation threshold of 5×105 m2,
a minimum SU area of 80 000 m2, circular variance of 0.4,
and a clean size of 60 000 m2, using the cleaning method
(flag m), which removes SUs smaller than the clean size,
oddly shaped polygons, and SUs with widths as small as two
grid cells (Alvioli et al., 2016). To quantify the similarity be-
tween SUs derived from the reference DEM and those de-
rived from each DEM under observation, the Jaccard index
(Jaccard, 1901) was utilized to estimate the intersection-over-
union (IoU) ratio between the reference SUs (in this case de-
rived from the reference DEM) and the predicted SUs (those
derived from the DEM being studied). The Jaccard index can
measure the segmentation of the SU in reference to the over-
lap of the defined shapes and the similarity in terrain rep-
resentation. Ranging from 0, signifying no similarity, to 1,
indicating identical sets, this index considers the combined
size, which is inclusive of the intersection. Hence, the higher
the index value, the better the delineation of terrain as per the
considered reference.

3.2 Phase 2: Slope unit delineation

This phase of the work focuses on the identification of the
most representative and freely available DEM to subdivide

the study area into SUs for landslide modeling. Therefore,
18 SU partitions have been generated with r.slopeunits soft-
ware and compared with landslide areas and landslide counts
mapped in the AOIa to find the optimal partitions. The op-
timal DEM obtained from the first phase was used to test
SU delineation in the study area with a range of parameters.
As proposed by Alvioli et al. (2016), an aspect segmentation
metric has been used to analyze the optimal parameters for
the Marche region, altering two parameters – the minimum
surface area of SU and the minimum circular variance for ter-
rain – and to fix the parameters flow accumulation and clean
size.

The aspect segmentation metric is based on the concept of
partitioning terrain by grouping pixels sharing similar aspect
properties. This has been transferred to SU delineation, under
the assumption that the partitioning has been evaluated based
on the internal homogeneity and external heterogeneity of the
SU. The aspect segmentation metric can be written as

F =
Vmax−V

Vmax−Vmin
+

Imax− I

Imax− Imin
, (3)

where V (SU homogeneity) is the local aspect variance; and
I is the autocorrelation, which represents the external hetero-
geneity of the adjacent SUs; and F evaluates the morphome-
tric delineation of each SU partition which varies with the
minimum area (a) and circular variance (c) (see Alvioli et
al., 2016, for more details). The first term of the F value is
estimated based on the homogeneity of pixels grouped into a
single SU; thus a higher value represents a better segmenta-
tion. In the same way, based on the second term of Eq. (3),
the greater the difference between the average aspect value
of each SU and each of the relative adjacent SUs, the higher
the F value. Overall, from a geometrical point of view, the
optimal a and c combination is the one that maximizes the
metric value.

Differently from Alvioli et al. (2016), where the area under
the curve (AUC) derived from landslide susceptibility assess-
ment was also considered in selecting the optimal SU param-
eters, this study proposes to compare landslide extension (A)
and landslide density (D) per SU. The former sums the per-
centage of the landslide area included inside the SU where
the failure has been triggered (from the initiation point). The
latter is the inverse of the average number of landslides in
each SU. A and D can be expressed as

A=

∑N
i=1li∑N
i=1Li

, (4)

1
D
=

∑N
i=1di

N
, (5)

where Li , in Eq. (4), is the total landslide area of all the
events triggered in the ith SU; li is the cumulative landslide
area inside the ith SU, which excludes the extension of land-
slides that occupy adjacent SUs; N , in Eq. (5), is the number
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of unstable SUs; and di is the number of landslides triggered
in the ith SU.

S(a,c)=
F(a,c)−Fmin(a,c)

Fmax(a,c)−Fmin(a,c)

·
A(a,c)−Amin(a,c)

Amax(a,c)−Amin(a,c)

·
D(a,c)−Dmin(a,c)

Dmax(a,c)−Dmin(a,c)
(6)

Here S is the final metric, which combines F , A, and D.
The optimal combination of a and c for SU delineation in
the study area selected is the one that maximizes the S met-
ric in Eq. (6). SU parameters for the experiment in the entire
Marche region have been tested with a flow accumulation
threshold of 10× 105 m2 and a clean size of 20 000 m2 us-
ing the cleaning method (flag m). The minimum area (a) has
been tested with 40, 80, 150, 200, 300, and 500×103 m2 with
a corresponding circular variance (c) of 0.1, 0.4, and 0.7 for
each a, making 18 combinations.

The Susceptibility Zoning plugin (SZ-plugin), integrated
with QGIS and developed by Titti et al. (2022), has been
used to calculate the aspect segmentation metric (F ) and to
map the landslide susceptibility in the Marche region (AOIa).
This analysis utilized the DEM selected in phase 1 and as-
sessed four SU delineations, ranked from highest to lowest
performance, as mapping units for evaluating landslide sus-
ceptibility. The analysis was conducted using a generalized
additive model (Loche et al., 2023). The covariate selection
includes lithology from a national dataset (http://portalesgi.
isprambiente.it/, last access: 2 July 2025) and land cover
(2018 CORINE, https://land.copernicus.eu/en, last access: 2
July 2025) as categorical covariates. The continuous covari-
ates were generated using the Spatial Reduction Tool (Titti et
al., 2022) from the phase-1-selected DEM derivatives: slope
angle, planar, and profile curvature as ordinal covariates and
northness and eastness as linear covariates. The collinearity
between the predisposing factors was evaluated using Pear-
son’s coefficient. The results were validated with a 10-fold
spatial cross validation, which clusters the dataset with a k-
means approach (Elia et al., 2023). The overall prediction
capacity was estimated with an ROC-based AUC (Fawcett,
2006), an F1 score (Singhal, 2001), and Coen’s Kappa score
(K; Kraemer, 2015).

4 Results

The differences between elevation, residual DEMs, rough-
ness indices, and slope variations within the four selected
open-access DEMs and the reference DEM are shown in
Fig. 3. The boxplots report the distribution of the differences,
highlighting the median and the first and third quartiles, ex-
cluding the outliers. Moreover, since the differences report
positive and negative values, the absolute mean difference
has been calculated. Therefore, the lower the variance and

Table 1. Jaccard index represented as intersection-over-union for
SUs generated from the DEMs under analysis and the reference li-
dar DEM SUs.

DEM IoU

ALOS 0.866
FABDEM 0.896
COP 0.887
TINITALY30m 0.912

the absolute mean difference, the better is the output consid-
ered.

Overall, TINITALY resampled at 30 m (TINITALY30m)
shows the best performance across all metrics, with a smaller
distribution of differences and a lower absolute mean dif-
ference. ALOS, on the other hand, displays the largest dif-
ference among all DEMs across all metrics. Between COP
and FABDEM, COP shows a larger distribution of eleva-
tion differences, and, as expected, COP has a stronger ten-
dency to overestimate elevation with respect to FABDEM
(Fig. 3). However, for slope (Fig. 3b) and isotropic roughness
(Fig. 3c), FABDEM displays more spread in differences.

Figure 4 exhibits the differences in the selected derivatives
between TINITALY30m and TINITALY10m. Apart from el-
evation, TINITALY at 10 m quantifies a larger distribution in
normalized differences for the terrain indices. The absolute
mean difference confirms this trend.

Since the main topic of our analysis is to support landslide
susceptibility mapping, we investigated the performance of
the selected DEMs to derive slope, which is considered to
be one of the most relevant landslide-predisposing factors, in
the area where landslide bodies have been mapped. Figure 5
shows the slope difference within the mapped polygons of
the PAI landslide inventory. TINITALY30m is seen to have
the smallest differences in terms of absolute mean and distri-
bution compared to all the other DEMs (Fig. 5a). Similarly,
in Fig. 5b, the distributions of the normalized differences in
TINITALY at 10 and 30 m clearly highlight the larger differ-
ence distribution of the 10 m DEM.

The last part of the DEM comparison investigates the ef-
fect on the SU delineation of different DEMs. Table 1 reports
the Jaccard index tested by comparing the SUs delineated
with DEMs at 30 m with those generated with the reference
DEM. The highest similarity index is for TINITALY30m.

The second phase of the analysis focused on optimal SU
delineation to assess landslide susceptibility in AOIa. Since
TINITALY30m was found as being the most accurate DEM
to represent the morphology of the mountainous area of the
Marche region in the previous analysis, we generated 18
SU combinations based on TINITALY30m to find the op-
timal SU partition of AOIa. Figure 6 shows the visual differ-
ences in delineation for some of the parameter combinations.
Smaller values of circular variance and minimum area re-
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Figure 3. Boxplots visualizing the differences among the DEMs at 30 m, using different metrics with the absolute mean calculated. (a) Ele-
vation, (b) slope, (c) isotropic roughness index, (d) radial roughness index, and (e) residual DEM.

sult in smaller dimensions of SUs, which can restrict hetero-
geneity between adjacent SUs. However, ideally, SUs should
maintain external heterogeneity for better terrain representa-
tion.

Figure 7 reports the behavior of the F , A, and D metrics
and the final S metric based on the 18 combinations of a and

c. Considering that each of the metrics represents a goodness
of fit for the final SU partition, the higher the F , A, and D,
the better the SU partition, excluding F , which shows an al-
most irregular pattern with the maximum at c equal to 0.1
and a equal to 40× 103 m2 (Fig. 7.1). A and D have a mu-
tually opposite, almost linear pattern, which reaches a maxi-
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Figure 4. Boxplots showing the differences in TINITALY at 10 and 30 m with respect to the reference lidar at the respective resolution, for
different indices with the absolute mean calculated. (a) Elevation, (b) slope, (c) isotropic roughness index, (d) radial roughness index, and
(e) residual DEM.

mum pairing: in A, where c is equal to 0.7 and a is each of
the values assigned (Fig. 7.2), and in D, with c equal to 0.1
and a equal to 40×103 m2 (Fig. 7.3). A shows better perfor-
mance, increasing the mapping unit extension of the study

area, whereas D shows better performance with smaller par-
titions.

The product of the normalized metrics results in the S
value, which is maximized in the range of a between 300×
103 and 200× 103 m2 and by a value of 0.1 for c (Fig. 7.4).
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Figure 5. (a) Slope differences for 30 m DEMs as compared to the reference DEM in PAI landslide polygons. (b) Normalized difference in
slope with reference DEM for 10 and 30 m TINITALY in PAI landslide polygons.

Figure 6. SU combinations. A total of 9 out of the 18 combinations are shown to highlight the differences as the values of two parameters
change, i.e., minimum area and circular variance.
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Figure 7. The behavior of the F , A, and D metrics and the final S metric with respect to parameters a and c: (1) shows the F value of the
SU aspect segmentation metric, (2) visualizes the landslide extension inside a SU (A), (3) shows the landslide density (D), and (4) depicts
the results of the final combined metric S.

Therefore, among the tested combinations, c equal to 0.1 and
a equal to 300×103 m2 produce the optimal SU partition for
landslide susceptibility mapping in the Marche region with
an SU extension of 0.40 km2 on average (dataset freely avail-
able on Ahmed and Titti, 2024). In contrast, the worst-case
partition is the one which combines c equal to 150× 103 m2

and a equal to 0.7 with an SU extension of 0.84 km2 on av-
erage.

Consequently, a susceptibility assessment with the S

optimal- and worst-case SU partition was carried out. The
maps resulting from the susceptibility analysis and the rela-
tive confusion matrixes based on the S optimal- and worst-
case SU delineation of the TINITALY30m dataset are rep-
resented in Fig. 8, while the quality metrics generated from
the 10-fold spatial cross validation by ROC analysis are re-
ported in Fig. 9. The summary of these metrics is provided
in Table 2.

In addition, two more landslide susceptibility analyses
were carried out using SU partitions with intermediate S val-
ues – c equal to 200×103 m2 with a equal to 0.4 and c equal
to 40× 103 m2 with a equal to 0.1 – to investigate the rela-
tion between AUC and the number, or extension, of the slope
units (see Sect. 5).

5 Discussion

Based on the results of the quantitative comparison be-
tween ALOS, COP, FABDEM, TINITALY10m, and TINI-
TALY30m, the latter performed better than the other DEMs
as per the indices used in this study (Fig. 3). These com-
parisons are insightful with respect to morphological differ-

ences. For instance, in terms of roughness indices (Fig. 3d),
all DEMs tend to oversmooth compared with the reference
DEM. This can be indicative of the spatial support being
larger than 30 m in reality, meaning that the spatial data den-
sity is much lower than the given resolution. It is also inter-
esting to note the difference between COP and FABDEM.
FABDEM (DTM), being a product of COP (DSM), should
in essence be closer to the lidar representation of the terrain
with vegetation and buildings removed, but it produces a less
accurate output. The efforts to generate a DTM from COP
have been motivated by the application of flood modeling,
aiming to optimize terrain representation, especially in ar-
eas of relatively low elevation. However, the algorithm has
not been devised for optimizing geomorphometric deriva-
tives such as slope (Hawker et al., 2022). This can be partic-
ularly relevant when modeling slope instability. Thus, FAB-
DEM in the region considered does not improve the terrain
representation as compared to COP (Bielski et al., 2024).
This behavior is visible in Fig. 3, where FABDEM shows
larger difference distributions than COP for slope, residual
DEM, and both roughness indices. For instance, with regard
to roughness indices (Fig. 3d), all DEMs tend to oversmooth
compared to the reference DEM, which can be indicative of
the spatial support being larger than 30 m in reality, mean-
ing that the spatial data density is much lower than the given
resolution.

ALOS consistently features large differences in all com-
puted metrics against the other global DEMs, which could be
explained with the analysis of Caglar et al. (2018). They con-
cluded that ALOS contains a significant number of anomalies
in elevation values, possibly attributed to unfiltered sensor
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Figure 8. Landslide susceptibility mapping with TINITALY30m using (a) the selected optimal SU delineation (a = 300× 103 m2, c = 0.1)
with the relative confusion matrix (b) (TN 6 % of all units and 13 % of unstable units) and (c) the selected worst-case SU delineation
(a = 150× 103 m2, c = 0.7) with the relative confusion matrix (d) (TN 6 % of all units and 12 % of unstable units). The image background
is from © Google Maps 2019.

Table 2. Summary of confusion matrix from maps in Fig. 8 and performance metrics in Fig. 9.

True True False False AUC F1 score Cohen’s Kappa
positive (TP) negative (TN) positive (FP) negative (FN) index

S optimal 37 % 6 % 31 % 26 % 0.68 0.6 0.23
S worst case 45 % 6 % 24 % 25 % 0.74 0.67 0.29

noise and processing algorithms, which are often not eas-
ily identifiable. Nonetheless, ALOS still ranks well above
other global products, like SRTM and NASADEM, accord-
ing to quantitative assessments on DEM-derived parameters
and is still comparable with COP and FABDEM (Bielski et
al., 2024; Guth et al., 2024).

The numerical comparisons resulting in Fig. 3 can be sup-
ported by the graphical representation of the slope differ-

ences in Fig. 10. Although the spatial distribution of differ-
ences varies, larger differences are most noticeable in the
ALOS DEM, followed by COP and FABDEM, compared
to TINITALY30m, which exhibits fewer differences in slope
compared to the reference DEM.

TINITALY was originally published with a pixel size of
10m× 10m. Since the pixel sizes of the open global DEMs
selected to be compared with the reference DEM in AOIb
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Figure 9. ROC curve with AUC, F1 score, and Kappa coefficient values for 10-fold cross validation. (a) The optimal SU delineation
(a = 300× 103 m2, c = 0.1); (b) the worst-case SU delineation (a = 150× 103 m2, c = 0.7).

are around 30m× 30m, we decided to conduct the entire
analysis using the same grid cell size of 30 m. Therefore, the
original TINITALY10m was resampled to a 30m×30m cell
size. Despite this, the accuracy of TINITALY10m was also
investigated, during which we compared the performance of
TINITALY30m and TINITALY10m using normalized differ-
ences instead of simple differences. Although this was not
the primary aim of the study, the tests indicate that TINI-
TALY at 30 m pixel size outperforms TINITALY at 10 m
pixel size (Fig. 4). These differences in performance, apart
from the expected lower uncertainty related to the larger spa-
tial support, may be attributed to the interpolation approach
used for TINITALY10m. In areas with low sampling den-
sity, noticeable artifacts appear, which can significantly af-
fect the calculation of geomorphometric derivatives. Resam-
pling from the original 10 m pixel size to a coarser one (30 m)
can partially filter out these artifacts. Thus, higher resolu-
tion does not necessarily guarantee better results if it is not
supported by high-quality elevation data or if it contains a
high number of artifacts (Chen et al., 2020; Mahalingam and
Olsen, 2016). Additionally, the use of contour lines as in-
put data for TINITALY10m along with a triangulator for
interpolation may result in spurious spikes at regular inter-
vals within elevation zones and in areas with triangular slope
faces (Zingaro et al., 2021). Considering the acquisition dates
of DEMs in comparison to the lidar, COP and ALOS were
surveyed closer to the time of the lidar than TINITALY, but
even so, TINITALY30m showed better results when com-
pared with the lidar. Comparing slope differences in land-
slide areas across the selected global open-access DEMs, as
well as TINITALY10m and TINITALY30m, yields similar
results. The graphs in Fig. 5 present a distribution of relative
differences similar to those in Figs. 3 and 4.

The similarity between the geometry of delineated SUs
with the same parameters, as compared with the ones de-
lineated from the reference DEM, indicates a higher value

of the Jaccard index for TINITALY30m. This means that the
SUs delineated using TINITALY30m most closely resemble
those from the reference lidar DEM. The remaining global
DEMs also produce SUs with a high similarity index.

In the end of phase 1, we can conclude that for the Marche
region, the use of the 30 m resampled TINITALY DEM is
recommended for SU definition; therefore the rest of the
analysis proposed for phase 2 was based on TINITALY30m.

Extending the analysis of SU delineation from AOIb, we
used multiple SU parameters for a more detailed analysis in
AOIa with landslide polygons. Understandably, slope-facing
direction and slope angle can be regarded as driving fac-
tors for slope failures and can be used to divide the terrain
into units that can morphologically describe landslide-prone
areas. Landslide susceptibility evaluates the probability of
occurrence of a landslide according to a set of variables.
Susceptibility depends upon a set of variables whose values
are associated in a unitary manner with each mapping unit.
Therefore, the mapping unit represents a portion of territory
that each variable describes numerically by a single value
as if it were a point object. Consequently, the smaller the
dimension of the mapping unit, the more representative the
single variable is. However, a spatial event such as a land-
slide, which is a non-point event, does not represent a homo-
geneous object according to the variables chosen to predict it
(i.e., the degree of slope is not homogeneous throughout the
landslide area). Thus, to evaluate the probability of occur-
rence of this event, it is necessary to identify unique values
for each chosen predictor calculated within a portion of terri-
tory that coincides as much as possible with the landslide. It
is also comprehensible that including stable areas, the portion
of territory that most closely resembles the landslide area is
the slope aspect, which can be represented by the SU. There-
fore, to satisfy both of the requirements described above, the
mapping unit should be as concise as possible to describe the
shape of the landslide area.
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Figure 10. Difference in slope (degrees) between the four tested
DEMs (30 m) and the reference lidar DEM, by subtracting the lidar
value from the test DEM value.

The methodology adopted to evaluate the SU subdivision
was designed to address the aforementioned requirements
by integrating new metrics specifically tailored for landslide
studies, considering the relevance of terrain units to landslide
inventories. In addition to the aspect segmentation metric (F )
proposed by Alvioli et al. (2016), the landslide extension co-
efficient (A) and the landslide density coefficient (D) have
also been included. In a way, the F metric can define the
shape of the SU on the basis of the spatial aspect distribu-
tion (Fig. 11a and b), while a balance between A and D can
define the extension of the SU.

According to A, the optimal SUs are those that contain
the entire landslide, with no landslide area falling into adja-
cent SUs. The landslide coefficient A may not fully capture
the extent of landslide area, especially when dealing with
landslides characterized by high mobility, as in the case of
flow-like landslides, which can reach considerable distances
where the run-out may move beyond the homogenous slope
aspect. Nevertheless, the frequency distribution of the land-
slide classes in the landslide inventory will balance the A

value, therefore the run-out of flow-like landslides may have
an impact on the SU dimensions if their presence is signif-
icant in the inventory. Otherwise, part of the unstable area
may fall into the adjacent SUs. Consequently, the larger the
SU, the higher the probability of including the entire land-
slide, as is visible in Fig. 11c and d, where an example of the
lowest- and highest-performing SU partition according to A
is represented. In contrast toA, theD metric would avoid the
overestimation of the SU dimension, which should be lim-
ited, ideally, to a single landslide (see the example in Fig. 11e
and f). The correct use of the D metric requires that reacti-
vated landslides should be excluded and regarded as unique
events to avoid doubling the number of polygons in the same
spatial unit.

The variability of the SU extension with respect to the pa-
rameters a and c can also be described through the number
of unstable units in relation to the total number of SUs. Fig-
ure 12 shows that as D increases and A decreases, the unsta-
ble units increase. As D increases and A decreases, the SU
extension is reduced, and therefore SU count increases.

All metrics unified in S maximize their effect, as shown
in an example in Fig. 13, where the comparable differences
explain the concept of the relation between the number and
extent of landslides contained in the SUs. While it is diffi-
cult to minimize SU area and contain the landslide area, it
should be considered that the spatial and areal accuracy of
landslide inventories can significantly affect the output since
the best terrain partition is interpreted based on the dimen-
sions and number of landslide polygons. In this case study,
the PAI of the Marche region was used to test the method-
ology, and while the landslide inventory plays a crucial role,
it has to be mentioned that the dataset used may come with
limitations. The inventory has not been systematically up-
dated for the mapped landslide areas, and the dataset has
been updated using reports from scientific literature, local
authorities, and projects of the municipalities (Costanzo and
Irigaray, 2020). Nonetheless, the methodology remains com-
patible with landslide polygons and SUs, supporting the se-
lection of an optimal terrain partitioning.

Two susceptibility analyses have been carried out by se-
lecting the S optimal- and worst-case SU partitions. Since
the goal of this study is not to assess landslide susceptibility
of the Marche region but to investigate the potential effect
of a thought-out SU delineation for landslide susceptibility
evaluated with largely used metrics such as AUC, F1 score,
and Cohen’s Kappa score, the predisposing factors selected
for the susceptibility analysis are not entirely representative
of the geo-environmental conditions. In particular, not all
predisposing factors (e.g., land use and vegetation indices)
have been considered (see also Titti et al., 2024). There-
fore, the cross-validation results (Fig. 9a) of the susceptibil-
ity map (Fig. 8a) calculated with the optimal SU subdivision
do not perform well in the metrics considered (AUC= 0.68,
F1 score= 0.6, K = 0.23 on average). Nevertheless, it is in-
teresting to highlight the trend of the relation between the
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Figure 11. Selection of SU partition of a sub-portion of the study area AOIa. (a, b) The SU partitions with the lowest and the highest value of
F , respectively; (c, d) the SU partitions with the lowest and the highest value of A, respectively; and (e, f) the SU partitions with the lowest
and the highest value of D, respectively.
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Figure 12. Evolution of the portion of unstable SUs in the study area with varying values of a and c.

Figure 13. SU partitions of a sub-portion of the Marche study area
(AOIa) compared to landslide distribution from the PAI. (a) The
SU partition (a : 150× 103 m2 and c : 0.7) with the lowest value of
S and (b) the SU partition (a : 300× 103 m2 and c : 0.1) with the
highest value of S.

mapping unit extension and the AUC value along with other
metrics.

AUC is calculated as the integral of the ROC curve. The
ROC curve depends on the balance between unstable units
and stable units in the training dataset. Thus, the higher the
ratio between the number of unstable SUs and the total num-
ber of SUs, the higher the AUC because the model’s ability to
recognize true positive (TP) mapping units increases, thereby
increasing the true positive rate (TPR) of the ROC curve.
In the 18 combinations selected to investigate the highest-
performing a and c values for SU delineation, we did not
change the landslide number but rather the extension of the
SUs whose trend is visible through the number of SU pat-
terns in Fig. 14. Considering all the combinations of a and c
performed in our experiment, the higher the extension of the
mapping units, the higher the proportion between the number
of unstable units and the number of all the mapping units and
the higher the AUC (Fig. 14). The same considerations can
be made for the F1 score and Cohen’s Kappa index, whose
behavior follows a similar trend to that of the AUC.

Therefore, at least in the experiments carried out for this
study, the metrics selected are not suitable for comparing sus-
ceptibility maps directly because the training datasets are dif-
ferently balanced. Nevertheless, a comparison between the S
optimal- and S worst-case susceptibility maps, as shown in
Fig. 8a and c, respectively, can still be made. Graphically, the
maps exhibit a similar spatial pattern of landslide probability
of occurrence. This is further supported by the fact that the
number of TN units relative to unstable units is nearly the
same, at 13 % and 12 % for the S optimal- and the S worst-
case scenarios, respectively. The primary distinction lies in
the susceptibility value, which is on average lower in the S
optimal-case delineation than in the S worst-case delineation.
This difference is attributed to the overestimation of unstable
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Figure 14. Trend in the number of unstable SUs and total SUs (of 18 combinations for a and c) and the behavior of the metrics resulting
from the landslide susceptibility analysis. The parameters (a, c) are labeled along the performance metrics to represent the respective trend.

units in the S worst-case scenario due to the imbalance be-
tween stable and unstable units.

6 Conclusions

This study encompasses DEM utilization from the viewpoint
of fine-scale morphology and terrain subdivision into map-
ping units in the framework of regional predictive landslide
modeling. The aim is to compare freely available global
and national DEMs, from which morphological landslide-
predisposing factors and optimized terrain partition into
slope units are derived to map landslide susceptibility. There-
fore, the investigation initially identified the optimal DEM
among those available and then selected the optimal SU par-
tition in the alternative combinations generated.

The global DEMs (ALOS, COP, FABDEM) and TINI-
TALY resampled at 30 m have shown considerable differ-
ences compared to the reference DEM (an airborne lidar
resampled at a 30 m pixel size) in the selected geomorpho-
metric derivatives in AOIb. Concerning the SU delineation,
TINITALY30m has shown the best performance; thus, it was
selected to generate 18-parameter SU subdivisions in AOIa.
To define the optimal SU delineation, a novel method has
been proposed, which evaluates SU alternatives based on in-
ternal aspect homogeneity/external heterogeneity, the num-
ber of landslides, and landslide extension. According to the
S metric (Eq. 6), the SU partition generated with c equal
to 0.1 and a equal to 300× 103 m2 results in the optimal
subdivision, contrasting with c equal to 0.7 and a equal to
150× 103 m2 as the worst-case subdivision.

Ultimately, to understand the effect of the terrain partition
on the landslide susceptibility model, we performed the S
optimal- and the S worst-case landslide susceptibility. It is
understood that the performance metrics (AUC, F1, K) of
the landslide susceptibility models do not necessarily equate
with the S metric performance. Indeed, AUC, F1, and K de-
pict opposite trends to those of the S metric.

Although only TINITALY30m was used to extend the
analysis for SU experiments, COP, as the second-best-
performing DEM for fine-scale morphology, can also be con-
sidered in future studies. A holistic comparison could help
evaluate its effectiveness in landslide susceptibility studies.
Moreover, since the result of the S method depends on the
landslide inventory, further research could pave the way for
space–time inventories that perform multi-temporal SU de-
lineations to reach the best terrain delineation for slope fail-
ure prediction. Developing space–time landslide inventories
and adapting SU delineation for dynamic, evolving terrains
could significantly enhance the predictive capability of land-
slide models. Ultimately, continued innovation in DEM se-
lection, SU partitioning methods, and landslide inventory de-
velopment will contribute to more effective landslide risk
management strategies and mitigation efforts.

Data availability. The optimal SU partition of the
Marche study area (AOIa) is freely available at
https://doi.org/10.5281/zenodo.13769104 (Ahmed and Titti,
2024).

The DEMs used include COP and ALOS
(https://doi.org/10.5069/G9028PQB, European Space
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Agency, 2024 and https://doi.org/10.5069/G94M92HB,
Japan Aerospace Exploration Agency, 2021), FABDEM
(https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn,
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(https://doi.org/10.13127/tinitaly/1.1, Tarquini et al., 20023).
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