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Abstract. Micro-businesses are important sources of liveli-
hood for low- and middle-income households. In Ho Chi
Minh City (HCMC), Vietnam, many micro-businesses are
set up on the ground floor of residential houses susceptible
to urban floods. Increasing flood risk in HCMC threatens the
financial resources of micro-businesses by damaging busi-
ness contents and causing business interruptions. Since flood
loss estimations are rarely conducted at an object-level res-
olution and are often focused on households or large com-
panies, the commercial losses suffered by micro-businesses
are often overlooked. This study aims to derive the drivers of
flood losses [%] for micro-businesses by applying a condi-
tional random forest to survey data (relative business con-
tent losses: n = 317; relative business interruption losses:
n =361) collected from micro-businesses in HCMC. The
variability in the losses of business contents and losses due to
business interruption were adequately explained by the rev-
enue of the businesses from monthly sales, the age of the
building where the business is established, and the hydro-
logical characteristics of the flood. Based on the identified
drivers, probabilistic loss models (nonparametric Bayesian
networks) were developed using a combination of data-
driven and expert-based model formulation. The models es-
timated the flood losses for HCMC’s micro-businesses with
a mean absolute error of 3.8 % for content losses (observed
mean: 4.7 %, Q50: 0.0) and 18.7 % for business interruption
losses (observed mean: 18.2 %, Q50: 10). The Bayesian net-
work model for business interruption had similar predictive
performance when it was regionally transferred and applied
to comparable survey data from another Vietnamese city, Can

Tho. The flood loss models introduced in this study make
it possible to derive flood risk metrics specific to micro-
businesses to support adaptation decision-making and risk
transfer mechanisms.

1 Introduction

Comprehensive risk management requires empirical evi-
dence related to the drivers of risk and assessment of po-
tential impacts. The lack of information on vulnerability of
certain economic sectors or social groups and their often lim-
ited participation in local risk management in turn foster a
lack of awareness among decision-makers, leading to biased
risk management strategies. As impacts of climate change
become more severe, comprehensive risk management that
protects society as a whole is imperative — in particular the
vulnerable and underrepresented groups. However, it is of-
ten not feasible in low- and middle-income countries due
to poor data availability. An example of a vulnerable eco-
nomic sector in a society with a high flood risk, which is
explored in this study, is micro-businesses in Ho Chi Minh
City (HCMC), Vietnam. These micro-sized companies are
quite common across Southeast (SE) and South (S) Asia; a
description of their operations and economic relevance with
regard to Vietnam’s urban areas is provided in Sect. 2.1.

In addition to the frequently studied structural damage, the
commercial sector, specifically micro-businesses, also suffer
directly from economic loss of business contents (e.g. inven-
tory, goods, equipment) and due to business interruption. The
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latter refers to the decline in business revenue due to inter-
rupted operations of flood-affected businesses during a ref-
erence period, such as the flood month or period of flooding
(Meyer et al., 2013; Chinh et al., 2016). However, our defini-
tion of interruption losses does not consider long-term losses
or impacts on businesses outside the flood zone. The liter-
ature on commercial losses often focuses on companies of
various sizes in Europe or the USA, and these studies indi-
cate that indirect losses represent a significant share of flood
consequences (e.g. Hallegatte, 2008; Merz et al., 2010; Koks
and Thissen, 2016; Sieg et al., 2019; Tsinda et al., 2019).
Since the business structures and resources available to larger
firms differ considerably from those of small- and micro-
sized companies (Leitold and Diez, 2019), the state-of-the-
art approaches for commercial flood loss modelling are not
generalizable to Vietnam’s micro-businesses. However, the
better the drivers of flood losses for a specific sector are un-
derstood, the more informed loss assessments can be made
and investments towards flood adaptation can be improved
(Sieg et al., 2017).

Modelling flood losses in low- and middle-income coun-
tries is often hampered by the lack of comprehensive and
open-source data, which necessitates reliance on primary
data collection campaigns. The lack of information on flood
losses among micro-businesses is explained by the fact that
they mainly operate in the informal sector, which makes it
difficult to record and thus to estimate their flood losses
(Garschagen, 2015; Rand and Tarp, 2020). Despite these lim-
itations, some studies have analysed and modelled content
losses of micro-, small-, and medium-sized companies in SE
and S Asia (Chinh et al., 2016; Wijayanti et al., 2017; Saman-
tha, 2018). To the authors’ knowledge, there is no existing
analysis elucidating the drivers of flood losses specific to
micro-businesses in the context of low- and middle-income
countries. However, the identification of the drivers of loss
is crucial to develop meaningful flood loss models that cap-
ture the role the drivers play in influencing losses (Rozer
et al., 2019). The heterogeneity in flood loss processes at
the object level necessitates the development of multivari-
able, probabilistic approaches capable of capturing nonlin-
ear effects (Schroter et al., 2014; Vogel et al., 2014; Rozer
et al., 2019; Paprotny et al., 2020; Paprotny et al., 2021;
Rafiezadeh Shahi et al., 2024). The absence of such proba-
bilistic loss models in the context of micro-businesses im-
pedes the quantification and inclusion of uncertainties for
adaptation decision-making. Furthermore, multivariate flood
loss models are rarely evaluated under conditions other than
those under which they were developed; consequently, their
applicability to spatial/temporal transfers remains unknown
(Apel et al., 2009; Gerl et al., 2014; Ootegem et al., 2017,
Vogel et al., 2018; Amadio et al., 2019). Our study aims
to address these limitations of the state-of-the-art flood loss
modelling approaches for micro-businesses in the context
of low- and middle-income countries by deriving empiri-
cal evidence related to the drivers of flood losses of micro-
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businesses in HCMC, by calibrating and validating process-
based Bayesian network (BN) models for HCMC that predict
content and business interruption losses, and by evaluating
the transferability of the models by applying them to compa-
rable data from a different city (Can Tho).

The paper is organized as follows (see Fig. S1 in the Sup-
plement): Sect. 2 comprises an overview of the research do-
main and the empirical survey datasets used in the study;
Sect. 3 has the methodology implemented, including the fea-
ture selection and the development of probabilistic flood loss
models; Sect. 4 presents and discusses the results of this
study; and the conclusions follow in Sect. 5.

2 Case studies and data
2.1 Case studies

HCMC is one of the world’s most flood-risk-exposed
cities under current and future conditions (Hallegatte et al.,
2013; Scussolini et al., 2017). Similar to other SE Asian
metropolises, HCMC lies in a river delta area close to the
coast. These densely populated, flat, riverine, and coastal re-
gions experience regular flooding, in particular during the
rainy season (Garschagen, 2015; Tierolf et al., 2021; Nguyen
et al., 2021). In HCMC, these regular floods are often the
result of compound events caused by the simultaneous oc-
currence of high tides, heavy rainfall, and high flows of the
Saigon and Dong Nai rivers and their tributaries (Tran, 2014;
Thuy et al., 2019). Other large cities in the delta areas of
South Vietnam also experience regular urban flooding, for
instance, Can Tho city in the Mekong Delta (abbreviated
as Can Tho). Urban floods in Can Tho are predominantly
fluvial in nature, such as a major flood event in 2011. De-
spite the ongoing efforts to improve protection and adapta-
tion measures at the private and municipal levels, climate
change and the ongoing growth of these important economic
centres increase their risk to urban flooding (Giineralp et al.,
2015; Rentschler et al., 2022). The existing infrastructure
and adaptation measures in these cities are unable to coun-
terbalance the new risks caused by intensified flood events
and ongoing urban pressure (e.g. Bouwer, 2011; Bloch et al.,
2012; Formetta and Feyen, 2019; Kreibich et al., 2022). The
overview map in Fig. 1 illustrates the locations of both cities
(HCMC, Can Tho) used in the case studies of this paper.

We define micro-businesses, including household busi-
nesses, according to the definition of the World Bank: very
small businesses with fewer than 10 employees. However,
this general definition for micro-businesses needs to be
adapted to the regional context of SE and S Asia. Micro-
businesses in these countries usually tend to employ fewer
than three people. In most cases, micro-businesses are lo-
cated on the ground floor of a building with residences on the
upper floors, commonly called shop houses, in Vietnamese
cities. Micro-businesses provide an important source of in-
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come for unemployed family members and people with lim-
ited opportunities on the labour market, the same as for mi-
grant workers and people who received fewer possibilities
for schooling (Samantha, 2018). Together with the opera-
tions of small- and medium-sized companies (SMEs), micro-
businesses have driven the rapid economic development of
many SE Asian states in the past decades (Trinh and Thanh,
2017). According to Vietnam’s economic census of 2017,
around 75 % of all enterprises are micro-businesses in the
country (General Statistics Office, 2018). Vietnam’s micro-
businesses engage around 11 % of all employees (General
Statistics Office, 2018), and the density of micro-businesses
is particularly high in economic centres such as HCMC and
other delta cities like Can Tho. The economic importance of
HCMC becomes evident when the region’s contribution to
Vietnam’s total economic output is considered — the HCMC
region accounts for approximately 40 % of the national GDP
(General Statistics Office, 2018). These values highlight the
relevance of micro-businesses for Vietnam’s local and na-
tional economy.

The micro-business owners are particularly vulnerable to
the negative consequences of regular flooding due to their
limited financial resources and inadequate support by local
authorities and the government (Leitold et al., 2020). As a
consequence, the owners often rely on their neighbouring
network to cope with flooding (Chinh et al., 2016, 2017,
Leitold and Revilla Diez, 2019; Leitold et al., 2021). Bank
loans or micro-credit are less common due to the usually
rather low credit rating of the owners (Patankar, 2019). In
terms of flood losses, this means that repair measures and
other business investments are often directly financed by the
savings of the micro-business owner. Insufficient or missing
flood insurance policies can further exacerbate the situation
of flood-affected businesses (KPMG, 2016; Patankar, 2019).
Aside from temporal decline in revenue, repair costs, or poor
future prospects, the worst-case impacts may include busi-
ness closures or unemployment among business owners and
their employees (Bloch et al., 2012).

2.2 Data - post-flood survey of micro-businesses

The flood loss models for micro-businesses are built using
empirical data from HCMC, and the transferability of the
models is evaluated using empirical data from Can Tho.
Both datasets are based on in-person structured surveys un-
dertaken with flood-affected micro-businesses owners. The
owner or the manager of the micro-business was asked to re-
spond to the survey. They were informed about the project,
how their responses would be used, and that they could leave
the survey at any time. No personal or health-related infor-
mation was collected in either survey. The data are stored
and handled exclusively within the German Research Centre
for Geosciences (GFZ) in compliance with data privacy and
data protection regulations.
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The workflow of this study presents the preparation of the
survey datasets in the first main step (see Fig. S1); the re-
spective key aspects are described in detail in the following
sections and in Sect. S1 in the Supplement.

2.2.1 Ho Chi Minh City

The survey in HCMC was conducted during September—
October 2020 and collected responses of 250 micro-
businesses that experienced flooding between 2010 and the
time of the survey (2020). The majority of micro-businesses
surveyed in HCMC are shops or retailers (76 %), mostly sell-
ing groceries or other everyday objects. Around 17 % are ser-
vices, such as restaurants or repair shop, and only 7 % pro-
duce consumer goods or processes raw materials. The shares
of the business sectors presented in the HCMC survey are
representative of the whole of Vietnam (General Statistics
Office, 2018).

In order to achieve a reasonable representation of HCMC,
we selected the districts with the most frequent flood risk and
heterogeneity in socio-economic conditions. Within each dis-
trict, the shop houses were chosen randomly. The sample size
in each district was not chosen based on statistical consider-
ations but on recommendation from local experts.

The interviewees could respond to questions on two flood
events — the most severe event and the most recent event.
However, not every interviewee provided information on
both events, which led to 397 loss records in the HCMC
dataset. Each record in this dataset comprises information
about one or two types of flood losses experienced during
an event. In detail, 361 samples from the loss records con-
tain information about business interruption losses reported
as relative values (e.g. reduced sales and production), while
a similar sample size comprises flood losses of business con-
tents reported as monetary values (e.g. losses of furniture,
electrical devices, stored products, and vehicles). The con-
version of the latter loss type to relative scales reduced it to
317 samples (relative content loss) using the value of busi-
ness contents as exposure information (see Sect. S1). Con-
sequently, the sample size referring to relative content losses
(n =317) is smaller than for the relative interruption losses
(n = 361). Hereinafter both types of relative flood losses are
referred to as flood loss variables (Table 1).

Figure 1 visualizes the approximate locations of the micro-
businesses surveyed in HCMC. However, their exact geolo-
cations are not shown to protect the anonymity of the in-
terviewees. Furthermore, the map shows that the surveyed
micro-businesses are often located near an open channel or
tributary river.

2.2.2 Can Tho
Between August and December 2011, severe flooding af-

fected several districts of Can Tho, causing damage to
various economic sectors. The survey was undertaken in
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Table 1. Candidate predictors and target variables related to flood losses in HCMC.

Candidate Abbreviation Value range Explanation
predictor [mean; median]
Water depth [cm] water depth 1-150 Water depth refers to the measured flood water level above the ground floor
[34; 30] of the shop house.
Inundation inundation 0.2-240 Duration of flood inundation of the shop house.
duration [h] duration [11; 3]
Contamination contamination  0: none visible Type of visible contamination of the flood water.
(indicator) 1: light
2: heavier
[x;1]
Flow velocity flow velocity ~ 0.1-0.5 Flow velocity of flood water on the street.
[ms™ 1 ] (calm—turbulent)
[x; 0.3]
Structural structural 0.0-1.0 Ratio of the number of implemented measures and the number of possible
precautionary measures [0.2; 0.0] measures. These measures are often implemented during major renovations
measures or building construction. They comprise the usage of water-resistant building
(indicator) material and the elevation of the building or parts of it.
Nonstructural nonstructural  0.0-1.0 Ratio of the number of implemented measures and the number of possible
precautionary measures [0.4; 0.3] measures. These measures need to be purchased before the flood event. They
measures are quite affordable compared to structural measures and comprise
(indicator) wet-proofing of valuables, installation of the electricity control system at a
higher level, and the acquisition of mobile water barriers and pumping
equipment.
Emergency emergency 0.0-1.0 Ratio of the number of implemented measures and the number of possible
measures measures [0.4; 0.5] measures. These measures can be applied shortly before or during the flood
(indicator) event. They comprise the saving of documents; relocation of furniture,
vehicles, or products; usage of sandbags; and sealing of doors and windows.
Building age [yr] building age 0-100 The age of the shop houses at the time of flooding.
[20; 18]
Building area [m?] building area 12-850 Building footprint of the shop house.
[87:74]
Flood experience flood 3-151 Number of floods experienced between 2010 and 2020.
[n] experience [82; 76]
Flood resilience resilience 0-5 Interviewee’s appraisal of the support by authorities or by the neighbourhood.
(indicator) (weak—strong)
[x53]
Number of no. 1-9 Number of employees.
employees [n] employees [x;2]
Average income mthly. 18-3314 Available monthly income of the interviewee, in most cases the owner of the
[EUR, 2020 value]  income [430; 295] micro-business.
Average monthly mthly. sales 92-2762 Averaged revenue from monthly sales and production. The variable is
sale [EUR, 2020 [370; 276] representative of the value and quantity of goods and products held by an
value] individual micro-business; i.e. it reflects the business size and type.
Flood loss variables
Relative business rbred 0-100 Decline in revenue due to interrupted business operations (e.g. reduced
interruption loss [18.2; 10] production and sales) during the flood event [%]. The decline is relative to
[%] the potential revenue that would be generated without the flood. The values
were reported as integers: 0 % represents no business interruption; 100 %
complete business downtime during the flood event.
Relative loss of rcloss 0.0-93.5 Relative loss of business contents (e.g. machinery, goods, and products) split
contents [%] [4.7;0.0] into chance and the degree of content loss. Values equal to 0.0 % represent no
losses of contents (zero-loss case); values > 0.0 % incurred flood losses
relative to the value of business contents.
Chance of content  chance of 0, 1 (zero loss, Chance of flood-related losses of business content. 0 represents no loss of
loss rcloss loss) contents (zero-loss case); 1 the occurrence of loss of contents (loss case).
[x; 0]
Degree of content  degree of 0.2-93.5 Flood losses relative to the value of business contents only for loss cases [%];
loss [%] rcloss [12.3; 4.0] values close to 0 % represent minor flood losses of business contents; 100 %

is the total loss of business contents.
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Figure 1. Approximate locations of the micro-businesses surveyed that were affected by floods between 2010 and 2020 in Ho Chi Minh
City (HCMC) are marked by red squares; the exact geolocations are not shown to protect the interviewees’ anonymity. The values above the
squares refer to the number of micro-businesses located in each square. The geolocation of one micro-business was highly inaccurate, and
thus it is not shown in the map. The overview map on the lower-right side shows the locations of both study areas (HCMC and Can Tho) in
Southeast Asia. However, the geolocations of micro-businesses in Can Tho are not reported.

January—February 2012 and received responses from 373
micro-businesses, out of which 313 furnished information on
losses of business contents and losses due to business inter-
ruption. The questionnaire is comparable to the survey under-
taken in HCMC, except that each interviewee reported only
about the most severe flood event in 2011 and provided infor-
mation about the value of their business contents. The latter
was used to calculate relative content losses. Furthermore,
the micro-businesses’ locations were not queried. All other
preprocessing steps were the same as for the HCMC data.

The value distributions of common variables from the
HCMC and Can Tho survey are shown in Fig. S2. Compared
to the HCMC survey, the Can Tho dataset includes fewer
micro-businesses operating in the trading sector (46 %). Con-
sequently, more respondents provide services (45 %) or be-
long to Can Tho’s manufacturing sector (9 %). Details on the
preprocessing of the Can Tho survey data are provided in
Sect. S1.

In order to derive the drivers of flood losses and to de-
velop the loss models, the 14 preprocessed candidate predic-
tors from the HCMC dataset are used (Table 1), while the
data from Can Tho are used to assess the models’ transfer-
ability.

https://doi.org/10.5194/nhess-25-2437-2025

3 Methodology

Our approach to modelling flood impacts specific to micro-
businesses consists of two components (see Fig. S1). First,
we identify the drivers of content and interruption losses of
HCMC’s micro-businesses based on the set of candidate pre-
dictors (Table 1). For this feature selection, a variant of the
random forest — the conditional random forest — was cho-
sen since it provides a feature importance method not biased
towards correlated predictors (see Sect. 3.1). Second, we cal-
ibrate probabilistic loss models — nonparametric Bayesian
networks — specific to the micro-businesses based on the
drivers identified (see Sect. 3.2).

Since more than half of the businesses in both cities re-
ported no or only marginal losses of contents (see Fig. S4a
and b), we model the chance of loss of business contents sep-
arately from the degree of loss. The former represents the
absence or presence of loss of contents of micro-businesses
and is binary (absence/presence), while the latter represents
the severity of the loss experienced and is a continuous value
(0, 100]. In contrast, a majority of the businesses reported in-
curring interruption losses; hence, the aspects of business in-
terruption loss (chance and degree of interruption loss) were
not considered separately (see Fig. S3).

The predictive performance of the machine learning (ML)
model used for feature selection and of the flood loss mod-
els was assessed by the mean absolute error (MAE), root-
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mean-squared error (RMSE), mean bias error (MBE), and
symmetric mean absolute percentage error (SMAPE). The
MAE metric was chosen due to its outlier robustness as a
selection criterion for the cross-validation of the ML-based
models (Chicco et al., 2021). The equations of the perfor-
mance metrics are listed in Table S1 in the Supplement.

3.1 Feature selection
3.1.1 Conditional random forest

The candidate predictors for flood losses presented in Table 1
exhibit a moderate to high degree of multicollinearity; for in-
stance, the flood-related features are strongly correlated with
each other. For this reason, conditional inference trees were
applied to account for these correlations during feature selec-
tion. Conditional inference trees were initially introduced by
Hothorn et al. (2006) and extended by Strobl et al. (2007) to
an ensemble of trees, a conditional inference random forest
(CRF). Each tree is grown only by a subset of features, which
were identified before as significant based on their p values
(Hothorn et al., 2006). Using this approach, predictive fea-
tures are identified despite their potential collinearity with
other candidate predictors. The choice of an unbiased ver-
sion of the permutation-based feature importance method —
namely conditional permutation importance (CPI) — further
reduces the chance of biased importance scores for corre-
lated features (Debeer and Strobl, 2020). The CPI accounts
for linear and nonlinear interactions of correlated predictors
using a chi-squared test (Debeer and Strobl, 2020). Although
the CPI is a measure well suited to feature selection in CRF
models (Levshina, 2020), the method is rather computation-
ally expensive, but it is applicable to the presented approach
due to the rather small sets of training samples.

For each of the flood loss variables a CRF model was
trained and evaluated via nested cross-validation. Nested
cross-validation is a state-of-the-art technique for determin-
ing the unbiased generalization ability of a model (Krstajic
et al., 2014). It is recommended for relatively small datasets
in particular (Brill, 2022; Liu et al., 2022). 10 repeated in-
ner folds were used for hyperparameter tuning and 10 outer
folds for performance evaluation of the estimators. Of these
10 evaluated estimators, the estimator with the best perfor-
mance (smallest MAE score) was used for feature selection,
i.e. for identifying the drivers of the degree of content loss
and relative interruption loss of micro-businesses.

3.2 Probabilistic flood loss models for micro-businesses
3.2.1 Probabilistic logistic regression

The chance of content loss, as one component of relative
content loss, is modelled using a probabilistic logistic re-
gression model applied to the candidate predictors from Ta-
ble 1. To prevent model overfitting, probabilistic logistic re-
gression incorporates L1 and L2 regularization, which ef-
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fectively manage multicollinearity in the feature space. The
model returns the probability of assigning a micro-business
to either the zero-loss or the loss category. However, the
sample sizes between both categories are imbalanced (see
Fig. S4a). To overcome this imbalance, the logistic regres-
sion model was trained on a weighted sample of zero-loss
and loss cases. Similar to the CRF (see Sect. 3.1.1), the lo-
gistic regression model was also trained and evaluated using
nested cross-validation consisting of 10 inner and 10 outer
folds. However, we used all validated classifiers for mod-
elling the chance of content loss rather than a single classifier
due to their moderate predictive performance.

3.2.2 Bayesian network

Bayesian networks (BNs) are probabilistic, graphical mod-
els with many applications to flood loss modelling (Vogel
et al., 2014; Wagenaar et al., 2018; Rozer et al., 2019; Pa-
protny et al., 2020, 2021; Rafiezadeh Shahi et al., 2024).
They perform better in regional transfer settings compared
to other ML-based models such as regularized linear regres-
sions since BNs can be applied to incomplete information.
Furthermore, they have the benefit of explicitly representing
the dependency structures, quantifying uncertainty, and in-
cluding expert knowledge alongside data. In more detail, the
dependency structure of a BN represents (assumed) causal
relations between variables; these dependencies can be set
based on knowledge or logical conclusions.

In this study, nonparametric Bayesian networks, were cho-
sen to model the degree of content loss and to model the rel-
ative business interruption loss. As the term “nonparamet-
ric” indicates, this type of Bayesian network does not rely on
prior assumptions about the distribution of the data (Du and
Swamy, 2019). Nonparametric BNs were first introduced by
Kurowicka and Cooke (2006) and later extended by Hanea
et al. (2006, 2015). They instead make use of the ranks of
the empirical data, which is favourable in terms of the vary-
ing distributions of flood losses and their potential drivers.
These drivers are used to construct the graphs of the BNs.
Confirmed by the Cramér—von Mises measure for the single-
variable pairs of the BN graphs, the joint distributions of the
variables are represented by Gaussian copulas.

The flood loss models constructed are calibrated and val-
idated on the flood losses reported in HCMC. The perfor-
mance of the single Bayesian network model for relative in-
terruption loss was determined by 5-fold cross-validation,
while the performance of the modelling approach used for
relative content loss was assessed by calculating the predic-
tion bias directly between the reported losses and their prob-
abilistic estimates.

The transferability of these models is assessed based on
their performance predicting flood losses in Can Tho. The
performance of the models at each prediction task is bench-
marked against the performance of a reference random forest
(RF) model (Chinh et al., 2017).

https://doi.org/10.5194/nhess-25-2437-2025
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4 Results and discussion

The section is structured as follows. Firstly, the performance
metrics of the CRF model are reported, and the most impor-
tant flood loss drivers for micro-businesses are derived and
discussed briefly (see Sect. 4.1). Subsequently, the drivers
identified are used to construct the Bayesian network flood
loss models (see Sect. 4.2). The loss models are validated
(see Sect. 4.3) and their transferability to other delta cities
is tested using the survey data from Can Tho as a case
study (see Sect. 4.4). Finally, the model uncertainties and
the limitations of the proposed approach are discussed (see
Sect. 4.5).

4.1 Drivers of flood losses of micro-businesses

The cross-validation of the CRF model shows that all its es-
timators, validated on the outer folds of the nested cross-
validation, have similarly moderate performance when pre-
dicting the degree of losses of contents and the relative in-
terruption losses. Furthermore, the similar sets of hyperpa-
rameter values across the validated estimators show that the
ML algorithm applied is suitable for both prediction tasks.
The prediction of the degree of losses of contents results
in an averaged MAE of 12.8 %, an RMSE of 18.4 %, an
MBE of —0.2%, and a SMAPE of 51.4 %, while the pre-
diction of relative interruption losses leads to an averaged
MAE of 17.5%, an RMSE of 22.6 %, an MBE of 0.3 %,
and a SMAPE of 59.9 %. However, high SMAPE scores are
caused by less severe cases of content loss being overesti-
mated, while moderate- and severe-loss cases are often un-
derestimated by the estimators. The same applies to the pre-
diction of interruption losses.

Revenue returned from business operations (mthly. sales)
influences the severity (degree) of the loss of business con-
tents the most, while the number of emergency measures ap-
plied has the greatest impact on interruption losses. Further
main drivers for the degree of loss of contents and relative in-
terruption loss are the age of the shop house (building age),
hydrological variables, and monthly income (Fig. 2a and b).

The identified drivers of flood losses of micro-businesses
in HCMC differ partly from those of companies with less
flood experience in high-income countries. For instance, in
Germany, the company’s flood experience, size (number of
employees), and the building area were identified as relevant
for larger companies (e.g. Kreibich et al., 2007 (flood expe-
rience), Sieg et al., 2017 (employees — content loss), Sultana
et al., 2018 (employees — interruption loss), Schoppa et al.,
2020 (building area)). However, these factors were not found
to be critical in the case of HCMC. Of these factors, the miss-
ing role of flood experience could be explained by HCMC'’s
regular flooding, which leads to a high level of adaptive be-
haviour in the residents (Vishwanath Harish et al., 2023).
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4.2 Bayesian network flood loss models

The graph of the nonparametric Bayesian network for esti-
mating the degree of business content loss consists of six
nodes; the graph for relative business interruption loss had
five nodes. The structures of the graphs are visualized in
Figs. 3 and 4. The first parent node of each BN graph was
set based on the strongest unconditional rank correlation be-
tween a predictor and the target variable (degree of content
loss, relative interruption loss). This highest unconditional
correlation coefficient exists for both constructed BNs for the
variable pair of water depth inside the building and the cor-
responding flood loss variable (Spearman’s rank coefficient
value, rho, for degree of content loss, rho: 0.37; for relative
interruption loss, rho: 0.24). However, in the feature space for
relative interruption losses, an equally strong correlation ex-
ists between the target and the indicator of emergency mea-
sures. This feature was identified by the CRF model as the
most predictive for the estimation of the relative interrup-
tion losses (Fig. 2b) but was considered unimportant during
the conditionalization of the BN, so the corresponding graph
was constructed without it (Fig. 4). The variables for the re-
maining parent nodes were selected based on the strongest
conditional ranking correlation, using the CRF ranking as a
guideline to prioritize the testing of potential parent nodes.
The predictors of flood losses and their assumed depen-
dencies in the BN graphs are presented in the following:

— The degree of losses of business contents and relative
interruption losses correlate with water depth in the
shop houses (water depth). It is the predictor with the
strongest rank correlation with both flood loss types
(rho: 0.34 in Fig. 3, rtho: 0.23 in Fig. 4) and was also
previously identified as a relevant predictor by the CRF
model. Rising water levels in the building directly in-
crease the potential damage to low-lying goods, equip-
ment, and machinery (Kreibich et al., 2010; Chinh et al.,
2015; Sieg et al.,, 2017). Apart from (non)structural
damage, the flooding of the business premises them-
selves or indirect damage through power outages po-
tentially lead to business interruptions (Kreibich et al.,
2009; Sultana et al., 2018).

— High flow velocities (flow velocity) on the streets are as-
sociated with more severe business interruptions, as in-
dicated by a correlation coefficient of 0.23 (Fig. 4), but
are not important for modelling the degree of content
losses. Business activities are potentially affected when
high velocities hamper transportation, such as when re-
located objects block the streets, or damage infrastruc-
ture, such as the energy systems (Bloch et al., 2012).
Additionally, flow velocities have a direct effect on the
water level in buildings by pressing water through open-
ings in windows or doors, as also expressed in the BN
graph for relative interruption losses of Fig. 4 (rho:
0.36). However, the missing impact of flow velocity
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Figure 3. Structure of the Bayesian network for predicting the degree of loss of the business contents (degree of rcloss). The values represent
the rank correlation coefficients between the variables (rho).

tailers, cannot or can only partially be relocated to other
premises.

on the degree of content loss is explained by the high
level of preparedness of HCMC’s residents, with coun-
termeasures such as the relocation of vehicles before
potential flooding (Chinh et al., 2016), whereas busi-
ness activities, especially those of shops and small re-

— Age of the shop house (building age) and degree of con-
tent loss have a negative relationship in the BN graph
(rho: —0.22 in Fig. 3). The majority of shop houses in
the HCMC samples were built in the 30 years before
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lation coefficients between the variables (rho).

the flood event, i.e. mainly between the 1980s and late
2000s. These “newer” shop houses reported the most
severe content losses, which can be explained by the
strong urban pressure in these decades. The findings are
confirmed by Downes and Storch (2014), Chinh et al.
(2015), and Nguyen et al. (2016), who highlight the
fact that “newer” buildings in HCMC are more flood-
exposed than “older” ones.

The revenue from business operations (mthly. sales) is
positively correlated with the degree of content loss in
the BN graph, as shown in Fig. 3 (tho: 0.29). Monthly
sales are seen as an indicator of the micro-business size
and its type of business contents, as they reflect the het-
erogeneity among companies (Schoppa et al., 2020).
The level of sales affect both exposure and vulnerabil-
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ity. Higher sales can increase exposure by driving ex-
pansion into risk-prone areas and requiring larger inven-
tories, which are more susceptible to extreme-weather
events. The variable of monthly sales has a negative
correlation with the uptake of nonstructural precaution-
ary measures in the graph for the degree of content loss
(rho: —0.18 in Fig. 3). This is theoretically explained by
the connections within the data: businesses with limited
revenue are more likely to acquire nonstructural mea-
sures before the flood event, as loss of contents would
have existential consequences for small retailers com-
pared to more prosperous businesses.

As shown by the BN graph in Fig. 3, the implementa-

tion of nonstructural precautionary measures (nonstruc-
tural measures) reduces the severity (degree) of content
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losses of micro-businesses (rho: —0.23 in Fig. 3), al-
though such measures are not relevant for modelling
relative interruption losses. The impact of precaution-
ary measures on reducing commercial content losses is
well studied (Kreibich et al., 2007, 2010; Chinh et al.,
2016; Sieg et al., 2017; Schoppa et al., 2020). Nonstruc-
tural measures usually prevent water from infiltrating
the building but not in all cases. For instance, Chinh
et al. (2016) found that in Can Tho, flood water can also
come from the sewage system and thus bypass the pre-
cautionary measures implemented. Consequently, there
is no link with water depth in our model due to the weak
correlation between water depth and nonstructural mea-
sures.

— The implementation of structural precautionary mea-
sures (structural measures) has mitigating effects on the
severity of content and interruption losses of micro-
businesses (rho: —0.19 in Fig. 3, rho: —0.11 in Fig. 4).
The moderate dependencies in the BN graphs are in line
with the findings of various studies, which highlight the
usage of structural measures as an efficient individual
precautionary measure (Scussolini et al., 2017; Trinh
and Thanh, 2017; Du et al., 2020; Vishwanath Harish
et al., 2023). The efficiency of these measures is repre-
sented indirectly in the BN graphs by lower water levels
in the shop houses and directly in the flood loss vari-
ables; e.g. in elevated buildings, there is less chance that
flood water will enter the building.

— A higher number of employees (no. employees) is
linked with lower interruption losses in the respective
BN graph (tho: —0.13 in Fig. 4). Despite its rather-weak
negative rank correlation, it improves the predictive ac-
curacy of the BN model. The number of employees
refers to the availability of human resources on which
the business owner can draw, which in turn affects the
possibility of keeping the business running during the
flood event, for example, by relocating important busi-
Ness processes.

4.3 Flood loss model validation
4.3.1 Relative content loss

At first glance, the modelling approach consisting of a logis-
tic regression and a Bayesian network seems to perform quite
well when predicting relative content losses (MAE: 3.8 %,
RMSE: 12.3 %). It marginally underestimates losses (MBE:
—2.4%) and has a remarkably low SMAPE of 16.3 %, indi-
cating a good level of precision. The mean value of the mod-
elled relative content losses is of a similar magnitude as the
observed loss ratios (observed mean: 4.7 %, predicted mean:
4.6 %), as shown also by the clustering of the data points in
the lower value range in Fig. 5a. However, the figure also
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illustrates that more severe losses of business contents are
consistently underestimated by the models.

The generally good predictive performance of the mod-
elling approach is caused by the frequently low probability
values for the chance of content loss. Having a critical look
at the predicted probabilities of the chance of content loss,
it becomes clear that the observed small prediction bias is
caused by the logistic regression, which classified most sam-
ples of the chance of content loss as zero-loss cases. Thus,
it assigns a low probability of losses to most predictor com-
binations (see the high share of cases predicted to be zero
losses in the left half of Fig. 6a).

The large number of observations of content loss wrongly
predicted to be zero losses further illustrates this (see false
positives in the lower-left corner of Fig. 6b); only 25 % of
the content losses experienced (loss cases) are correctly pre-
dicted by the ML classifiers (see true negatives in the lower-
right corner of Fig. 6b).

As a consequence, most estimates of the relative loss of
business content are reduced by more than half as soon as
they are multiplied by the predicted probabilities for chance
of loss. In particular, the estimates of severe cases of con-
tent loss are reduced in their magnitudes. Furthermore, the
ML-based classifiers could hardly distinguish between cases
with an absence of loss (zero loss) and small loss fractions
(near-zero loss), which further reduced their calibration and
performance.

In comparison to the modelling approach, the reference
random forest model (Chinh et al., 2017) does not capture
reported cases of zero loss as such. This is shown when com-
paring the predicted values of zero-loss cases from the mod-
elling approach (see the grey dots in Fig. 5a) with the ones
from the reference RF model (see grey dots in Fig. 5b). How-
ever, the general predictive performance is only marginally
worse (Table 2). The cross-validated RF estimators have, on
average, similar RMSE (12.4 %) and MBE (1.3 %) magni-
tudes as those in the modelling approach but have higher
MAE (7.2 %) and SMAPE (78.9 %) values.

4.3.2 Relative interruption loss

The cross-validation of the BN model for relative interrup-
tion losses results in an averaged MAE of 18.7 %, an RMSE
of 24.5%, an MBE of 0.17 %, and a SMAPE of 61.9 %.
The modelled mean value of the interruption losses is almost
equal to the observed mean of around 18.5 %, yet the varia-
tion in the observations is not well represented in the model
estimates, as visualized in Fig. 7a. Nearly all reported cases
of interruption loss are predicted by the BN, with loss frac-
tions between 10 % and 40 %. This is much narrower com-
pared to the variation seen in the reported loss ratios, ranging
between a 0% and a 100 % decrease in business revenue.
Additionally, the figure shows that more severe cases of in-
terruption loss are underestimated by the BN despite their
rather frequent occurrence.
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The reference RF model results in similarly high predic-
tion errors as the BN (Table 2). They overestimate cases of
zero and near-zero loss in particular and underestimate se-
vere loss cases (Fig. 7a and b).

4.4 Transferability of the flood loss models

In order to test the transferability, the interruption loss model
calibrated on micro-businesses in HCMC was applied to pre-
dict interruption losses in Can Tho using a comparable sur-
vey dataset. The same procedure was applied to the models
for content loss. However, the transferred logistic regression
model was not able to capture the variation in chance of loss
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in the Can Tho samples. Thus, the study only presents the
results of the transferred Bayesian network model for inter-
ruption losses and the corresponding reference random forest
model.

The generalization ability of the BN model to the Can Tho
samples results in similar prediction errors than during train-
ing on the HCMC samples, except for the SMAPE score. The
transfer of the BN leads to an MAE of 17.9 %, an RMSE of
23.5 %, an MBE of 0.2 %, and a SMAPE of 23.2 %. The er-
ror scores show that the model’s capacity to estimate inter-
ruption losses remains unchanged when transferred to Can
Tho in contrast to the transferability of the reference random
forest model, which resulted in degraded performance (Ta-
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Table 2. Model validation of flood loss models in HCMC and in the transfer region (Can Tho). The different sample sizes are due to the
differences in the number of cases reported and in the way in which incomplete samples are treated in the models. MAE scores highlighted

in bold font indicate the best-performing model in each subgroup.

Model validation [sample size] MAE [%] RMSE [%] MBE [%] SMAPE [%]
HCMC
rcloss LR + BN [284] 3.8 12.3 —24 16.3
RF [284] 7.2 12.4 1.3 78.9
rbred BN [361] 18.7 24.5 0.17 61.9
RF [314] 16.4 21.8 1.7 58.6
Can Tho (transfer region)
rcloss LR + BN [266] X X X X
RF [266] 13.5 19.6 0.8 75.0
rbred BN [313] 17.9 23.5 0.2 23.2
RF [267] 25.7 32.6 —23.5 41.1

rcloss: relative loss of business content, rbred: relative loss due to business interruption, LR: probabilistic logistic regression, BN:
Bayesian network, RF: reference random forest, x: not applicable.
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Figure 7. Scatterplots for observed and modelled relative interruption losses (rbred) of HCMC’s micro-businesses for (a) the Bayesian
network and (b) the reference random forest model used for benchmarking. The grey points represent observations of zero loss, i.e. the

absence of interruption loss.

ble 2). These findings are shown by the cumulative distribu-
tion functions (CDFs) in Fig. 8a and b. The cumulative distri-
butions shown in this study represent the change in the pre-
dictive accuracy of a model due to regional transfer. In other
words, the CDFs provide insight into the extent to which a
transferred flood loss model suffers from the different in-
formation contained in the Can Tho samples. The CDFs are
shown in their normalized version to facilitate comparability
despite different sample sizes.

The probability of the BN predicting a Can Tho sam-
ple precisely (prediction bias < +10 %) remains unchanged
(Fig. 8a) but drops for the reference RF model from around
45 % (HCMC samples) to 25 % (Can Tho samples) (Fig. 8b).
The reference RF model underestimates interruption losses
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in nearly 90 % of the Can Tho samples but in only 30 % of
the HCMC samples (Fig. 8b). These findings show that the
reference RF model is less transferable than the BN model,
despite both models performing similarly well at their cali-
bration sites (i.e. HCMC).

Transfer experiments on (Bayesian network) flood loss
models have highlighted the fact that model transfer usually
leads to a stagnation or drop in the model’s performance, in
particular, when the new conditions differ remarkably from
those in the calibration region (Schroter et al., 2014; Wage-
naar et al., 2018). However, there was no drop in the per-
formance of the BN model when transferred across regions.
This is due to very similar local conditions between the cali-
bration site (HCMC) and transfer site (Can Tho). These local
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Figure 8. The cumulative distribution function (CDF, normalized) of prediction errors for modelling business interruption losses (rbred) in
HCMC and in the transfer region, Can Tho. (a) The CDF of the Bayesian network performance; (b) the CDF of the reference random forest
model performance. The CDF for the reference RF model is cut by 50 %, as no larger prediction errors exist.

conditions are reflected in the similar predictor ranges and
distributions of both survey datasets (see Fig. S2). Addition-
ally, the high heterogeneity in the HCMC samples, in particu-
lar in the hydrological, building-related, and business-related
predictors, has the potential to increase the model robustness
for new study sites (Wagenaar et al., 2018).

4.5 Applicability, limitations, and uncertainties

Reliable flood loss models are essential tools for stakehold-
ers and practitioners across multiple sectors, including in-
surance, urban planning, flood risk management, and cli-
mate adaptation decision-making. The flood loss models pre-
sented in this study specifically address the economic im-
pacts of flooding on micro-businesses in Vietnamese cities,
focusing on business interruptions and content losses. To our
knowledge, this type of economic sector is underrepresented
in risk management, and the proposed models can advance
decision-making with a focus on this sector. By represent-
ing key drivers of loss as graph structures, the models offer
an interpretable and transparent framework for understand-
ing how various factors contribute to flood-related damage.
The models are based on nonparametric Bayesian networks,
which enable probabilistic estimation of flood losses while
explicitly quantifying uncertainty in both data and model for-
mulation. This feature makes the models particularly robust,
allowing for transparent assessment of risk and greater confi-
dence in the results. Unlike traditional deterministic models,
the Bayesian approach ensures flexibility in handling incom-
plete or uncertain data, which is a common challenge in flood
loss estimation. The combination of an interpretable model
structure and transparent uncertainty quantification opens the
door to operationalize this modelling approach in practical
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settings. It provides stakeholders with a clearer understand-
ing of how flood losses are calculated, promoting trust and
facilitating decision-making. Furthermore, the model’s abil-
ity to function effectively even with missing or limited data
enhances its transferability to similar geographic regions and
contexts. This adaptability is particularly valuable when ex-
panding its application to data-scarce environments or to
rapidly urbanizing areas where flood risks are evolving.

Despite these advantages, the models rely on empirical
post-event survey datasets and have certain limitations. For
instance, the sample was obtained voluntarily, which may
introduce selection bias. The study focused on frequently
flooded regions, including both well-established city areas
and newly urbanized zones, to represent the city’s expansion.
However, the absence of official loss data prevents the vali-
dation of the reported figures, given the potential for under-
reporting in particular. In addition to the biases in the survey
data, the modelling results indicate high uncertainty in recon-
structing flood losses from survey data. One possible further
analysis would be comparing the model estimates with those
from other studies. However, comparability is limited by the
fact that in contrast to our object-level modelling, state-of-
the-art flood loss modelling in low- and middle-income coun-
tries is mainly carried out on the mesoscale or macroscale
(Booij, 2004; Aerts et al., 2020; Tierolf et al., 2021), with
commercial losses reported only in absolute values (Wi-
jayanti et al., 2017; Patankar, 2019; Tsinda et al., 2019) and
often without validation (Ke et al., 2012; Patankar and Pat-
wardhan, 2015; Yang et al., 2016).

We did not observe an increase in model uncertainty in the
Bayesian network model for interruption losses due to the
regional transfer. Furthermore, the mean values of the empir-
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ical interruption losses are within the uncertainty ranges for
both regions (within the 95 % confidence interval). However,
as seen above, the majority of interruption-related losses are
remarkably underestimated by the flood loss models.

The example of regional transfer illustrates the potential of
nonparametric, continuous Bayesian network models com-
pared to random forest models. However, since the transfer-
ability was validated for only one case study, there is a need
to calibrate and validate the loss models using further local
and temporal conditions.

5 Conclusions

We proposed a first approach to estimate flood losses of
micro-businesses by combining expert knowledge with sur-
vey data on flood-affected micro-businesses from HCMC
and Can Tho in Vietnam. A conditional random forest model
was applied to obtain the main drivers of content and inter-
ruption losses from a set of heterogeneous samples and po-
tential predictors that are partly correlated to each other. The
drivers identified were used to calibrate knowledge-based
probabilistic loss models consisting of nonparametric, con-
tinuous Bayesian networks and logistic regression. The find-
ings of this study indicate that information on business rev-
enue from monthly sales and production, building age, and
hydrological characteristics of the flood is crucial in estimat-
ing content and interruption losses for micro-businesses.

The probabilistic flood loss models were calibrated and
validated against reported flood losses in HCMC and in a
transfer case study in Can Tho. The study resulted in in-
terpretable and transferrable probabilistic flood loss models
to predict the content losses and business interruption losses
of micro-businesses. In addition, the models are openly pro-
vided, and integrating them with flood risk assessments has
the potential to advance risk management decision-making
with a focus on micro-businesses.

Code and data availability. The survey data will be
made openly available on the HOWAS21 database
(https://doi.org/10.1594/GFZ.SDDB.HOWAS21, GFZ Ger-
man Research Centre for Geosciences, 2020) after an embargo of
3 years after the end of the project (in 2027). In the meantime, the
data can be accessed from the authors. The source code (Python)
is openly available at https://doi.org/10.5281/zenodo.15226141
(Buch, 2025). The Bayesian network flood loss models were cre-
ated with the PyBanshee toolbox (Koot et al., 2023); the conditional
random forest models are based on the R package partykit (Hothorn
et al., 2023, https://CRAN.R-project.org/package=partykit).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/nhess-25-2437-2025-supplement.
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