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Abstract. On 8 August 2017, a strong earthquake of mag-
nitude 7.0 occurred in Jiuzhaigou, Sichuan Province, China.
To assess pre-earthquake anomalies, we utilized variational
mode decomposition to preprocess borehole strain observa-
tion data and combined them with a graph WaveNet neural
network model to process data from multiple stations. We
obtained 1-year data from four stations near the epicenter
as the training dataset and data from 1 January to 10 Au-
gust 2017 as the test dataset. For the prediction results of
the variational mode decomposition–graph WaveNet model,
the anomalous days were extracted using statistical methods,
and the results of anomalous-day accumulation at multiple
stations showed that an increase in the number of anomalous
days occurred 15–32 d before the earthquake. The acceler-
ation effect of anomalous accumulation was most obvious
20 d before the earthquake, and an increase in the number of
anomalous days also occurred in the 1 to 3 d post-earthquake.
We tentatively deduce that the pre-earthquake anomalies are
caused by the diffusion of strain energy near the epicenter
during the accumulation process, which can be used as a sig-
nal of pre-seismic anomalies, whereas the post-earthquake
anomalies are caused by the frequent occurrence of after-
shocks.

1 Introduction

Earthquakes are vibrations caused by the rapid release of
energy from the Earth’s crust, causing deformation. They
damage the ground, buildings, transport, and other facilities
and can lead to secondary disasters such as volcanic erup-

tions (Nishimura, 2017), tsunamis, and epidemics, which
can cause serious harm to human society and the econ-
omy. Therefore, studying earthquake precursors is crucial.
Researchers have explored possible anomalies before earth-
quakes in many fields, including strain (Yu et al., 2021; Chi et
al., 2019; Zhu et al., 2018), geomagnetism (Zhu et al., 2021;
Yao et al., 2022), geothermics (Zhang and Li, 2023; Hafeez
et al., 2022), subsurface fluids (Liu et al., 2014; Yadav et al.,
2023), and the ionosphere (Shi et al., 2023; Akhoondzadeh
et al., 2022).

Strain, as the most direct physical quantity indicating the
transition from elastic deformation to rock damage and desta-
bilization due to stress changes, is more likely to exhibit
anomalous changes in rocks before an earthquake (Yue et al.,
2020). Borehole observation can capture subtle phenomena
in the process of seismicity in a timely manner, and bore-
hole strain observation data can reflect the stress and strain
changes in rocks. Obtaining such data involves installing an
instrument probe in the soil or rock layer, tens or even hun-
dreds of meters underground. Scholars worldwide have ac-
cumulated numerous research results on extracting and iden-
tifying pre-seismic anomalous signals using borehole strain
observation data. Shu and Zhang (1997) first used capaci-
tive borehole strainmeters to successfully predict a magni-
tude 6.4 earthquake in Wushi County, and Kitagawa et al.
(2006) observed a change in crustal strain before the 2004
Sumatra–Andaman earthquake (magnitude 9.0). Chi (2013)
studied the tidal distortion strain anomalies before the 2008
Wenchuan and 2013 Lushan earthquakes and preliminarily
determined that these anomalies were the strain precursors
of the two strong earthquakes. Qiu et al. (2015) analyzed sig-
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nificant anomalous changes in the days before the Lushan
earthquake and concluded that the anomalies recorded by
borehole strainmeters were related to the genesis of the earth-
quake.

There are many processing methods for seismic signals,
including many common and effective methods. Ma et al.
(2011) used digital filtering techniques to study the body
strain and barometric pressure data from Yixian Station from
2002 to 2007, removed the long-period components in the
raw data, and analyzed the high-frequency spectral char-
acteristics of the body strain with the fast Fourier trans-
form method. Deng et al. (2015) used the Fourier trans-
form method to generate a spectral decomposition method
for high-resolution seismic images based on the frequency–
amplitude spectrum of the signal, which was applied in the
extraction of weak signals from deep-reflection earthquakes.
Zhang (2018) used the continuous wavelet transform method
to analyze the time–frequency analysis of the borehole strain
data from Guza Station, extracted the strain anomalies in the
time–frequency spectrum, and analyzed the correlation be-
tween the strain anomalies and the seismic precursor anoma-
lies. The empirical mode decomposition (EMD) method can
smooth the non-smooth signals to obtain a series of com-
ponents with different frequencies (intrinsic modal function,
IMF), by which the non-smooth, non-linear signals can be
decomposed into smooth signals with different timescales
(Lei et al., 2022). Yang et al. (2014) used the Hilbert–Huang
transform (HHT) method to analyze the marginal spectral
features of the unexplained large tensile jumps recorded
in the borehole body strain at the Qianling seismic station
in February–June 2012 and judged that the main cause of
this strain anomaly was a power supply problem. However,
EMD suffers from the mode aliasing phenomenon, the end-
point effect, and difficulty in determining the stopping con-
dition. Compared with the recursive decomposition mode of
EMD, variational mode decomposition (VMD) transforms
the signal decomposition into a variational decomposition
mode, which essentially comprises a set of multiple adap-
tive Wiener filters, and VMD can realize the adaptive seg-
mentation of each component in the frequency domain of
the signal, which can effectively overcome the mode alias-
ing phenomenon generated by EMD decomposition and has a
stronger noise robustness and a weaker end-point effect than
EMD. Therefore, the VMD method is suitable for analyz-
ing non-linear, non-smooth signals such as steps, jumps, and
burr. The VMD method has been widely used in fields such
as geoscience, and the results of processing seismic signals
are significantly better than the other signal processing meth-
ods mentioned above (Zhang et al., 2022; Rao et al., 2024;
Liu et al., 2016b; Li et al., 2018).

Most studies on borehole strain data are limited to analyz-
ing data from individual stations, ignoring the spatial rela-
tionships between stations in a seismic network. Most seis-
mic analysis methods require knowledge of the geographic
locations constituting the seismic network (van den Ende and

Ampuero, 2020). Graph neural networks (GNNs) have be-
come a popular deep-learning method with fast computing
and strong feature extraction abilities. For a graph data struc-
ture composed of a seismic station network, a GNN can be
used to mine additional hidden information between nodes.
For example, in a traffic flow prediction task, nodes usually
represent traffic monitoring points and node features can be
divided into explicit and implicit features. Explicit features
are data that can be directly observed, e.g., the speed of ve-
hicles passing through a node, while implicit features are in-
formation indirectly obtained through model learning or data
mining methods, e.g., the congestion pattern of a specific
node at different times of the day found by analyzing histori-
cal and real-time data (Chen et al., 2023). At present, the ap-
plication of GNNs has achieved good results in many fields,
but its application in the field of Earth science is still rela-
tively small (Lin, 2022; Bilal et al., 2022; Liu, 2022). Sub-
sequently, the method holds great potential for application in
the data analysis of seismic networks.

In our case study, a method based on a variational mode
decomposition–graph WaveNet (VMD–GWN) model was
proposed to predict borehole strain data from multiple sta-
tions, and the pre-seismic anomalies of the Jiuzhaigou earth-
quake were extracted based on the prediction intervals. The
VMD method can automatically extract the local features of
the signal, avoiding the problem of manually selecting the
basis function in the traditional decomposition method and
using the VMD to preprocess the measured borehole strain
data. For the graphical data structure consisting of a network
of seismic stations, we take the monitoring stations at differ-
ent locations as nodes and the data directly observed by each
station as explicit features. By analyzing the historical obser-
vation data of the stations and the distances between the sta-
tions, we can mine the implicit features such as the response
patterns of different stations in different seismic events or
the correlation between stations. The graph WaveNet model
considers the characteristics of the nodes themselves as well
as the spatial relationships between different nodes, uses the
GWN to jointly analyze the borehole strain data from the
seismic networks near the epicenter of Jiuzhaigou, and ob-
tains the prediction results from different stations. Based on
the prediction results, pre-earthquake anomalous days were
extracted, the anomalous extraction results were fitted using
the S-shape function, and the anomalous days were extracted
and the S-shape fitting results analyzed. The rest of the pa-
per is organized as follows: in Sect. 2, the Jiuzhaigou earth-
quake is presented. In Sect. 3, borehole data, station data, and
the division of the dataset are presented. Section 4 presents
the methodology and the model used in this study. Section 5
presents the parameter selection, prediction results, anomaly
extraction results, and discussion. Finally, the conclusions
are presented in Sect. 6.
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2 Case study

The Sichuan Basin is at the junction of the Eurasian Plate and
the Indian Plate and is influenced by the neighboring moun-
tain ranges and plateaus, forming several fracture zones, and
its unique geographic location has led to frequent earth-
quakes within Sichuan (Zhang, 2023). On 8 August 2017, a
magnitude 7.0 earthquake occurred in Sichuan, with the epi-
center located in Jiuzhaigou County, Aba Prefecture, Sichuan
Province, at 33.2° N, 103.82° E, with a depth of 20 km. On
14 August 2017, it was determined that 25 people had been
killed, 525 people had been injured, 6 people were missing,
and 73 671 houses had been damaged (Yi et al., 2017). The
Jiuzhaigou earthquake was the third-largest earthquake of re-
cent years in the active tectonic zone along the eastern margin
of the Ba Yan Ka La block, the first two being the Wenchuan
earthquake (magnitude 8.0) in 2008 and the Lushan earth-
quake (magnitude 7.0) in 2013. Unlike the latter two earth-
quakes, the epicenter of the Jiuzhaigou earthquake was lo-
cated at the confluence of the East Kunlun Fracture Zone of
the Ba Yan Ka La block on the Tibetan Plateau, the Min-
jiang River fracture, the Tazang fracture, and the Huya frac-
ture (Xu et al., 2017). A topographic map of Jiuzhaigou at
the epicenter is shown in Fig. 1.

3 Data

3.1 Borehole strain data

Multiple recent studies have verified the reliability of sam-
pled data from high-component borehole strainmeters, indi-
cating that four-component borehole strain observations can
detect seismic waves (Tang et al., 2023). The YRY-4 four-
component borehole strainmeter has the advantages of high
sensitivity, a wide observation bandwidth, self-consistent
data, and long-term stability. Its working principle is to mea-
sure the relative changes between rock apertures using ra-
dial displacement sensors and to record the sampled data in
minutes (Zhang and Niu, 2013; Lou and Tian, 2022). Four
probes mounted on the borehole strainmeters were spaced
45° apart. The measured value of any one element is recorded
as S1, which is rotated by 45° in turn, and the remaining three
elements are recorded as S2, S3, and S4, respectively. The
amount of change in the observed values of the four elements
satisfies the following self-consistent equation:

S1+ S3 = k(S2+ S4) , (1)

where k is the coefficient that satisfies the self-consistency of
the data, and we consider the data to be self-consistent when
k ≥ 0.95. The measured values of the four components were
converted as follows:
S13 = S1− S3,

S24 = S2− S4,

Sa = (S1+ S2+ S3+ S4)/2.

(2)

All three substitutions were significant. Among them, S13
and S24 are mutually independent shear strains and Sa is the
surface strain (Qiu et al., 2009). Compared with shear strain
S13, the surface strain Sa is more representative of the four
components measured by the YRY-4 borehole strainmeters,
so the data characteristics of surface strain Sa are used in this
paper as the object of study.

3.2 Station information

Dobrovolsky et al. (1979) determined the relationship be-
tween the magnitude and the radius of influence using the
following equation:

ρ = 100.43M km , (3)

where M denotes the magnitude of the earthquake and ρ
denotes the radius of influence of magnitude M . According
to the above formula, the influence range of the Jiuzhaigou
earthquake is approximately 1023 km, and the data from the
stations near the epicenter of the Jiuzhaigou earthquake were
analyzed. Linxia Station is the closest to the epicenter of
the Jiuzhaigou earthquake, with a distance of 272 km, and
the distances between the remaining stations and the epicen-
ter are 376 km for Guza Station, 402 km for Haiyuan Sta-
tion, and 775 km for Gaotai Station, indicating that these sta-
tions are capable of receiving the anomalous signals of the
Jiuzhaigou earthquake. Therefore, borehole strain data from
Linxia, Guza, Haiyuan, and Gaotai stations were selected as
the study objects. The latitude, longitude, distance from the
epicenter, and rock type of each station were analyzed, and
this basic information is listed in Table 1 (Yang et al., 2010;
Chen et al., 2024; Wu et al., 2010; Liu et al., 2016a).

The distance between any two stations was calculated
from the latitude and longitude of each station, and a
distance-based matrix was constructed from the distances be-
tween the stations, which were normalized to an adjacency
matrix. Figure 2 shows the node distance map comprising
the location of the epicenter of Jiuzhaigou and the distances
between the stations.

3.3 Division of dataset

The borehole strain data used in the study were obtained from
the Beijing Seismological Bureau. First, we validated the
borehole strain data from each station, and the validation re-
sults satisfied self-consistent equations. By performing strain
conversion on the four-component data Si from the borehole
strainmeters, two shear strains, S13 and S24, and three com-
ponents of the surface strain Sa were obtained, and the Sa
component data were used.

Through the analysis of data from each station, we iden-
tified smoother data segments to form the training dataset.
Notably, the data from Gaotai and Haiyuan stations in 2013,
the data from between 1 October 2015 and 30 September
2016 from Guza Station, and the data from Linxia Station in
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Figure 1. Topographic map of the epicenter of Jiuzhaigou earthquake. The blue star indicates the epicenter; the red line indicates the fault
zone; the orange boxes in grey areas indicate the study location. This map was generated by GMT software, v. 6.0.0rc5 (https://gmt-china.
org/, last access: 15 November 2024).

Table 1. Borehole strain observation stations.

Station name Longitude Epicenter Rock type Borehole Probe azimuth (one-way,
and latitude distance (km) depth (m) two-way, three-way, four-way)

Linxia Station 35.60° N, 103.20° E 272 Granite 44.7 92, 137, 182, 227
Guza Station 30.12° N, 102.18° E 376 Proterozoic granite 40.69 52, 97, 142, 187
Haiyuan Station 36.51° N, 105.61° E 402 Mafic rock 36.5 111, 156, 201, 246
Gaotai Station 39.40° N, 99.86° E 775 Hercynian granite 45 −65, −20, 25, 70

2014 exhibited smoother characteristics. The Sa component
of 1 year of relatively smooth borehole strain observations at
the four stations was used to study the Jiuzhaigou earthquake.
The first 75 % of this 1-year dataset was used for training, and
the remaining 25 % was used for validation, thus dividing the
training and validation sets. As shown in Fig. 3a, the data for
the Sa components of the training and validation datasets are
given. Since the data from Guza stations are up to 10 August
2017, the Sa components of the borehole strain data from
1 January to 10 August from the four stations were selected
for testing (Fig. 3b). The model obtained from the training
was based on relatively smooth data. Therefore, the predic-
tion obtained from the test dataset was also relatively smooth,
and the anomalies were better highlighted by comparing and
analyzing the prediction results with the original data of the
test set.

Figure 3 shows the raw data of the training set and the
test set. Evidently, only the test set data of Haiyuan Station
show the phenomenon of a “sudden jump”. Therefore, it was
difficult to make an accurate judgment regarding the analysis
of earthquakes based on the change patterns of raw data.

4 Method

4.1 Variational mode decomposition (VMD)

VMD is an adaptive, fully non-recursive approach to modal
variational and signal processing that achieves better results
when dealing with non-smooth sequence data. It achieves
this by decomposing the time-series data into a series of in-
trinsic modal functions (IMFs) with a finite bandwidth and it-
eratively searching for the optimal solution of the variational
modes (Dragomiretskiy and Zosso, 2014). The principle of
the VMD algorithm is to transform the decomposition pro-
cess into an optimization process, and the constrained varia-
tional problem obtained is as follows:

min
{uk},{ωk}

∑K

k=1

∥∥∥∥∂t {[(δ(t)+ j

πt

)
· uk(t)

]
e−jωk t

}∥∥∥∥2

2

s.t.
∑K

k=1
uk(t)= f (t) ,

(4)

where {uk} = {u1,u2, . . .,uK} and {ωk} = {ω1,ω2, . . .,ωK}

are shorthand symbols for all modes and their center frequen-
cies, respectively.

∑
K is the sum of all modes. Solving the
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Figure 2. Nodal-distance diagram constructed for borehole strain
observation stations. The red star represents the epicenter location.
LX, GZ, HY, and GT correspond to Linxia Station, Guza Station,
Haiyuan Station, and Gaotai Station, respectively. Purple represents
the distance between any two stations; the green line represents the
graph structure composed of four stations.

above equation yields the solution formula for the mode uk
as

ûn+1
k (ω)=

f̂ (ω)−
∑
i 6=kûi(ω)+

λ̂(ω)
2

1+ 2α(ω−ωk)2
. (5)

The equation for solving the center frequency is

ωn+1
k =

∫
∞

0 ω|ûk(ω)|
2dw∫

∞

0 |ûk(ω)|
2dw

. (6)

The focus of this study was not on the VMD algorithm,
which was only used for data preprocessing of the surface
strain Sa. For a detailed explanation of the algorithm, refer to
Dragomiretskiy and Zosso (2014).

The surface strain Sa data from Linxia Station were se-
lected for VMD processing. The decomposition bandwidth
was set to 2000, the number of modes decomposed was five,
and the convergence accuracy was 10−7. The decomposition
results are shown in Fig. 4. Comparing the decomposition re-
sults with the relevant influencing factors, it was found that
IMF1 represents the annual trend component and IMF2 rep-
resents the tide. The influence of IMF1 and IMF2 on the ob-
served borehole strain data was removed, and the remaining
three components were summed to obtain the VMD results.

4.2 Convolutional neural network (CNN)

Convolutional algorithms have been used for images; how-
ever, their applications are not limited to images. Informa-
tion extraction in the time dimension through convolutional
operations can process time-series data and effectively solve
time-series problems. With the rapid development of deep
learning and GPU arithmetic in recent years, researchers
have successfully applied convolutional neural networks to
time-series prediction tasks, including financial time-series
prediction (Solís et al., 2021; Kirisci and Cagcag Yolcu,
2022), wind speed series prediction (Manero et al., 2019;
Gan et al., 2021), and hydrological flow forecasting (Barino
et al., 2020; Shu et al., 2021).

4.2.1 Temporal convolutional network (TCN)

In a neural network, a “layer” is a basic building block, and
each layer contains a set of neurons which accept input data,
perform specific computational operations, and then pass the
results to the next layer. Different types of layers have spe-
cific functions and characteristics, and by combining and
configuring different layers, powerful and flexible neural net-
work models can be constructed to achieve a variety of com-
plex tasks. A TCN is an improved form of a CNN that has
been shown to significantly outperform baseline recursive ar-
chitectures in numerous sequence modeling tasks (Gopali et
al., 2021; Bai et al., 2018; Abu Bakar et al., 2021). Com-
pared to recursive architectures, TCNs are more suitable for
domains with long memories, can be processed in parallel to
save time, and consist of modules such as causal and dilation
convolutions. Causal convolution is a unidirectional structure
that cannot detect future data and is a strict time-constrained
model. Moreover, it ensures causal temporal ordering when
data are extracted using feature information. When the causal
convolution needs to go back for a long time for historical
information, the number of convolution layers will need to
be high, and problems such as gradient vanishing will occur.
Dilation convolution allows partition sampling of the con-
volution input. Increasing the sensory field by introducing a
dilation factor enables a significant reduction in the number
of convolution layers while capturing longer temporal depen-
dencies. The relationships among the receptive field, dilation
factor, and convolution kernel are as follows:{
Fn = k(n= 1),

Fn = Fn−1+ (k− 1) · d(n > 1),
(7)

where n is the number of layers in the convolutional layer;
Fn is the sensory field of the nth convolutional layer; k is
the size of the convolutional kernel; and d is the size of the
dilation factor, which generally increases exponentially by 2
as the number of convolutional layers increases.
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Figure 3. Datasets of Sa components for Linxia, Guza, Haiyuan, and Gaotai stations. (a) Sa component data of each station for the training
dataset. (b) Sa component data of each station for the test dataset. The dashed red line indicates the time of the Jiuzhaigou earthquake. The
date format is yyyy.mm.dd.

Figure 4. Plot of decomposition results of Sa data using the VMD method at Linxia Station. The date format is yyyy.mm.dd.
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Figure 5. Structure of the gated TCN model.

4.2.2 Gated TCN

A gating mechanism is an important technique in neural net-
works, and the core idea behind it is to control the flow of
information dynamically so as to efficiently capture and uti-
lize long-dependent information. The gating mechanism con-
trols the flow of information through the design of a “gate”,
which is usually a neural network layer with an activation
function whose output value is located between 0 and 1, and
decides what information should be “remembered” and what
information should be “forgotten” by the output value. The
introduction of non-linear gating mechanisms into sequence
modeling can effectively control information transfer in hi-
erarchical structures (Dauphin et al., 2017; Van Den Oord et
al., 2016). The basic structure of the gated TCN is shown
in Fig. 5; two gates are introduced after the first convolu-
tion and are added to each convolution module of the normal
TCN, one of which is used for the convolution of the input
to extract features, with tanh as the activation function. The
other gate is used to control the processing and outflow of the
information, using sigmod to process it to a value between 0
and 1. The gated TCN model is expressed as

T = tanh(W1 · x+ b1) · sigmod(W2 · x+ b2) , (8)

where W1 and W2 represent the weight parameters of differ-
ent convolutions, b1 and b2 represent the corresponding bias
terms, · denotes the convolution operation, and T represents
the output of the gated TCN module.

This study was based on borehole strain data that comprise
a typical time series, and the temporal features of the bore-
hole strain data were extracted using a gated TCN.

4.3 Graph neural network (GNN)

Traditional deep-learning methods have achieved great suc-
cess in processing Euclidean spatial data such as speech and
images, whereas non-Euclidean spatial data such as social
networks (Liang, 2023; Shan et al., 2024) and knowledge
graphs (Li et al., 2023; Yin et al., 2024) have performed
less satisfactorily when using traditional deep-learning meth-
ods. GNNs have broken new ground in many application
scenarios for non-Euclidean spatial data by learning graph-

structured data and extracting and mining features and pat-
terns (Wu et al., 2020).

4.3.1 Graph convolution network (GCN)

The essence of a GCN is to extract the spatial features of the
graph structure and achieve information transfer and feature
extraction by performing a convolution operation on the fea-
ture vector through the adjacency matrix of the graph. Let the
number of nodes in the graph be N and the hidden state di-
mension of each node beD. The features of these nodes form
a matrix of size N×DX. The relationships between individ-
ual nodes can be extracted as a relationship matrix of size
N×NA. A is the adjacency matrix. In the graph structure,X
represents the node features, A represents the edge informa-
tion, and X and A are the input features of the GCN model.
The convolutional layer of the graph is defined as (Kipf and
Welling, 2016)

H (l+1)
= σ

(
D̃−

1
2 ÃD̃−

1
2H (l)W (l)

)
, (9)

where D̃ is the degree matrix of Ã. Ã is an unnormalized
matrix, and multiplying it directly by H changes the original
feature distribution. Ã= A+IN , IN is anN -dimensional unit
matrix, and adding the unit matrix allows the node’s own fea-
tures to be considered. D̃−

1
2 ÃD̃−

1
2 is a symmetrically nor-

malized matrix; W (l) is the weight matrix for the lth layer; σ
is the non-linear activation function; andH (l)

∈ RN×D is the
activation matrix of layer l, where H (0)

=X, H (L)
= Z, and

Z is the final feature extracted by the GCN.

4.3.2 Graph WaveNet (GWN)

In this section, the GWN proposed by Wu et al. (2019) is de-
scribed. The authors introduced graph convolution into the
WaveNet model (Van Den Oord et al., 2016), taking into ac-
count the spatial relationships between nodes and the char-
acteristics of the node sequence data, and employed it for
a traffic prediction task. In our study, the observation sta-
tions are used as nodes, and the observation data are used
as attributes of the nodes. By connecting different stations as
edges and using the distance between stations as an attribute
of an edge, a node graph based on multi-station borehole
strain data is constituted. The node graph constructed from
the distances between borehole strain stations was chosen to
be constructed as an unordered graph as the information in-
teraction between the nodes is vague. In the GWN model,
each time block is followed by a graph convolution layer that
extracts the temporal features of the nodes using a gated TCN
and the spatial features of the nodes using a GCN.

4.4 VMD–GWN model

A flowchart of the VMD–GWN model is shown in Fig. 6.
It includes two parts. The first part is the data-preprocessing
module. First, a distance matrix was constructed based on
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Figure 6. Flowchart of the VMD–GWN model.

the distance between the nodes, and the distance matrix was
normalized as the adjacency matrix. Data from each station
were then collected and divided into training and test sets.
Next, the training set and test set data were preprocessed
separately using the VMD algorithm to obtain the required
training data and test data. The second part trains the neu-
ral network and obtains the prediction results. The adjacency
matrix and training data are input into the built GWN model
for training, and the adjacency matrix and test data are input
into the trained model to obtain the prediction results.

5 Results and discussion

5.1 Model hyperparameters

In this case, the VMD–GWN model was used to predict the
borehole strain data at each station. The data in this study are
derived from the minute observations of the borehole strain-
meters; after the raw data are preprocessed using the VMD
algorithm, the length of the data record remains the same.
According to the results of the preprocessing of the data from
the four stations, a data sequence with a size of 525 600× 4
was constituted as the training dataset, and a data sequence
with a size of 319680× 4 was constituted as the test dataset.
Sequence lengths of 60 and 1440 represent the lengths of
observations within an hour and within a day, respectively,
and the sequence length was hourly due to equipment limita-
tions. The model learns patterns and relationships in the data
through samples and labels in the training set; the validation
set is used to evaluate the performance of the model in order

to adjust and optimize the model to get the best configuration
and hyperparameters of the model. Our samples are the pre-
processed and sliced data segments, which have a length of
60 and represent 1 h of observations, and each sample con-
tains strain data from four different stations within 1 h. Our
labels refer to the target values corresponding to each sam-
ple, which represent the strain data segments after one time
step of the sample, and each label also contains strain data
from four different stations within 1 h. Slicing was done on
the preprocessed training dataset based on a sequence length
of 60. The initial 75 % of the samples and labels were ob-
tained from the training data, and the remaining 25 % were
samples and labels from the validation data. Figure 7a shows
a plot of the training dataset by slicing to form the samples
and labels. The same slicing process was applied to the test
dataset to obtain the samples and labels. Figure 7b illustrates
this slicing process for generating test dataset samples and
the final shape of the predicted data. The sequence length
of 60 corresponds to a 1 h prediction interval, meaning data
were predicted in 1 h increments (Wu et al., 2019; Zhang and
He, 2023).

The GWN model was divided into two modules: a 1D
gated TCN and a GCN. In this process, the convolution ker-
nel size was set to 2, and the expansion factor grew exponen-
tially in powers of 2. As the number of convolution layers in-
creased and the expansion factor grew exponentially, the re-
ceptive field of each unit expanded. With the sequence length
defined as 60, the number of convolutional layers was set to
six. The gated TCN, incorporating dilation causal convolu-
tion, captured longer-time-series features with fewer convo-
lutional layers. Additionally, a discard rate was applied to
the GCN convolution process to control model overfitting.
The optimal hyperparameters of the VMD–GWN model are
listed in Table 2.

5.2 Prediction results

The training data and neighbor matrix were used after pre-
processing to train the GWN neural network model, and the
validation data and neighbor matrix were used to evaluate the
trained model, select the optimal model based on the evalua-
tion results, and place the test data and neighbor matrix into
the optimal model to perform the prediction. According to
the prediction results, the data of each time step were com-
pared; the maximum value of each time step was taken as the
upper bound of the prediction interval, the minimum value
was taken as the lower bound of the prediction interval, and
the prediction interval was constructed according to the up-
per and lower bounds. Raw data and prediction intervals were
analyzed to determine abnormal results. As shown in Fig. 8,
the details of the prediction intervals and raw data of Linxia
Station are given.

In Fig. 8a, it can be seen that the prediction results are rela-
tively smooth at certain peak and trough positions. In Fig. 8b,
the prediction results are provided in detail and show that the
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Figure 7. Plot of data sliced to form samples and labels. (a) Data plot of samples and labels obtained from slicing the training dataset. The
green box represents generated sample data; the blue box represents generated label data. (b) Data graph of sample data and predicted result
shapes based on test dataset slices. The green box represents sample data; the blue box represents the predicted result shape.

Table 2. Optimal hyperparameters for the VMD–GWN model.

Hyperparameter Learning Dropout Weight Training Dilation Convolutional Input Output
rate decay rate epochs factor layers features features

Optimal value 0.001 0.5 0.0001 100 1, 2, 4, 8, 16, 32 6 1 60

prediction intervals exhibit a trend that is similar to the true
values, particularly for some peak and valley values of the
true data. In Fig. 8c, most of the true values are wrapped
within the prediction intervals, whereas the values outside
the prediction intervals are defined as anomalies by defining
their corresponding points as anomalies.

5.3 Abnormal extraction

For the extracted anomalies, it is difficult to judge the anoma-
lous days before and after the onset of the earthquake; thus,
we provide the judgment criteria for the anomalous days:
(a) there must be more than 15 points outside the interval
in a 30 min period and (b) the difference between the cen-
troid of the predicted interval and the actual value must be
greater than 1.5 times the bandwidth of the interval, and there
must be more than 3 such points in that 30 min period. Days
that satisfied the above conditions were defined as anomalous
days (Chi et al., 2023).

Bufe and Varnes (1993) and Bufe et al. (1994) found that
the clustering of intermediate events prior to a large shock
leads to a regional increase in the cumulative Benioff strain

ε(t), which can be fitted by a power-law time–destruction
relationship:

ε(t)= A+B(tf − t)
m, (10)

where A and B are constants; 0<m< 1 is a constant for
adjusting the power law; and tf is the predicted time of the
mainshock, i.e., the critical point in time for the accelera-
tion process of the cumulative Benioff strain (cumulative en-
ergy). This behavior has been interpreted as a critical pro-
cess preceding the movement of a large earthquake towards
a critical point (i.e., the mainshock). Bufe and Varnes (1993)
justify Eq. (10) with a simple model of damage mechanics.
De Santis (2014) studied the 2009 L’Aquila and 2012 Emilia
earthquakes based on seismic catalogues, showing concretely
how this accumulation of energy in space and time manifests.
The research idea of this paper is the extraction of multi-
station pre-earthquake anomalies based on spatio-temporal
features, and the fitting method proposed above has good
results in spatio-temporal terms. Additionally, this fitting
method has theoretical support and physical significance, so
for the anomalous results in our original paper, we use the
S-type function to do the fitting. De Santis et al. (2017) used
Swarm magnetosatellite data to study the 2015 Nepal earth-
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Figure 8. Detailed plot of prediction results of VMD–GWN model at Linxia Station with raw data. The red lines are raw data after prepro-
cessing, and the grey areas are prediction intervals. (a) Comparison plot of raw data and prediction intervals at Linxia Station. (b, c) Detailed
plots of raw data versus predicted intervals. The date format is yyyy.mm.dd.

quake and proposed an S-shape fitting function in anoma-
lous cumulative analysis; they found that S-shape fitting was
significantly superior to linear fitting. In this case, we stud-
ied the number of anomalous-day accumulations 2 months
before and 3 d after the earthquake and fitted the number of
anomalous-day accumulations with the S-shape function; the
results of the S-shape function fitting for the four stations are
shown in Fig. 9. We constructed the horizontal coordinates
centered on the date of the Jiuzhaigou earthquake, where the
negative sign indicates the number of days before the earth-
quake, the number of days after the earthquake are indicated
by values without a negative sign, and EQ indicates the date
of the earthquake (8 August 2017) in the center.

Through an analysis of the results of the accumulation of
anomalous days 2 months before and 3 d after the earthquake,
we reached the following conclusions.

The number of anomalous days began to gradually in-
crease from 7 July, and after continuing for 14 d until 24 July
(15 d before the earthquake), a brief 15 d pre-earthquake
quiet period occurred. Zhong et al. (2020) studied thermal in-
frared (TIR) data before the Jiuzhaigou earthquake and found
that there was a significant increase in TIR anomalies from
3 to 24 July, which coincided almost exactly with our study
period. Notably, we found that for all four stations in our
study, the number of anomalous days increased simultane-
ously, and the S-function fitting results showed significantly
accelerated anomalies. In order to verify the possibility that
we extracted anomalies at all of our multiple stations, we an-
alyzed the results of other studies using other data. Xu and
Li (2020) used seismic observation records from 31 stations
and found that the peaks occurred from 11 to 21 July prior

to the earthquake and that the high values at the 31 stations
were congruent. Xu et al. (2024) used broadband seismome-
ter data from 10 stations near the epicenter to calculate the
alignment entropy of the ground motion velocity and found
that the entropy decreases were observed at all stations from
14 to 22 July. Therefore, we believe that the simultaneous oc-
currences of anomalies at the selected stations were not coin-
cidental. For abnormal days, we only judge whether they are
abnormal and do not know the specific number of anoma-
lies. Therefore, we made a count of the judgment results that
met the conditions for each abnormal day, and we took the
statistical result as the number of abnormalities per day and
calculated the abnormal rate per day based on the number of
abnormalities per day. The statistical results of the abnormal
rate per day are shown in Fig. 10.

As shown in Fig. 10a, in the time range from 60 d be-
fore the earthquake to 33 d before the earthquake, all four
stations showed only a very small number of anomalies; at
32 d before the earthquake, anomalies appeared at a num-
ber of stations and the anomalies also increased significantly,
with Haiyuan Station showing the most significant number
of anomalies. The dashed box in Fig. 10a corresponds to the
time period from 32 d before the earthquake to 15 d before
the earthquake, and a detailed view of this period is shown in
Fig. 10b. We find that there are several stations with anoma-
lies at the same time at 32, 21, 20, and 17 d before the earth-
quake, among which all four stations have anomalies on the
20th day before the earthquake, and from the value of the
anomaly rate, the anomaly rate on the 17th day before the
earthquake has a very obvious decrease, so we believe that a
turning point occurs on the 20th day before the earthquake,
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Figure 9. Fitting results of cumulative number of anomalous days for four stations. The dashed red line represents the time of the earthquake;
different marker shapes indicate anomalous days at stations; curves of different colors represent the results of the S-shape fit of anomalous
accumulation by station.

Figure 10. Daily anomaly rate statistics for four stations. Differently colored bars represent the daily anomaly rates of different stations
(a) Daily anomaly rate statistics from 60 d before to 3 d after the earthquake. (b) Daily anomaly rate statistics from 32 d before the earthquake
to 15 d before the earthquake.
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which corresponds to the time when the accelerating effect
of the S-shape fitting is the most obvious. After the 17th day
before the earthquake, there was a quiet period when no sta-
tion detected anomalies until the earthquake occurred. The
combined analysis of Figs. 9 and 10 gives a fuller picture of
the process of pre-seismic anomalous changes.

Zhang et al. (2018) analyzed the temporal and spatial evo-
lution characteristics of the precursor anomalies of the Ji-
uzhaigou earthquake and found that the short-term phases of
the precursor anomalies of the Jiuzhaigou earthquake are di-
vided into two phases, γ 1 and γ 2, among which the anoma-
lies in the γ 2 phase are deformation anomalies, which are
manifested as the expansion of anomalies from the near-
source area to outside of the epicenter. Wang et al. (1984)
found that the extension of precursor anomalies to the pe-
riphery of the epicenter was due to the subcritical extension
of cracks, and they justified their conclusions based on the
inversion results of the precursor observations of resistivity.
Guo et al. (2020) analyzed the deformation process in the
unstable state of a fault and defined the meta-stable (or sub-
stable) state of a fault as the transition stage from peak stress
to fast destabilizing critical stress throughout the slow load-
ing and fast unloading. At this stage, the accumulated strain
energy starts to be released. Based on the conclusion of Yu et
al. (2019), we believe that the anomalies extracted from mul-
tiple stations at the same time were involved in the final stage
of the formation of the Jiuzhaigou earthquake, starting in July
2017, when the anomalies in the epicenter area gradually de-
creased and began to diffuse to the periphery and the stresses
in the diffusion area of the epicenter were in a stage of cumu-
lative enhancement. The anomalies received from our four
stations came from the accumulation of strain energy during
the diffusion process and eventually, due to the accumulation
of strain energy exceeding the medium-strength limit, led to
the occurrence of the Jiuzhaigou earthquake.

6 Conclusion

In this study, we employed a VMD–GWN method to study
the anomalies of multi-station borehole strain data prior to
the Jiuzhaigou earthquake. The influence of annual trends
and tides on the borehole observation data was removed us-
ing VMD. The GWN model predicted the smooth data from
each station in 2017, and anomalies were extracted by com-
paring the prediction results with the original data. Anoma-
lous days were defined, and their cumulative results were fit-
ted using an S-shape function. Analysis showed that 15 to
32 d before the earthquake, the number of anomalous days in-
creased at all stations, with the most significant acceleration
observed 20 d prior to the earthquake. An increase in anoma-
lous days was also noted 1 to 3 d after the earthquake. We
believe the pre-earthquake anomalies are due to the diffusion
of strain energy in the epicentral region, indicating proseis-
mic anomalies, while post-earthquake anomalies result from

aftershocks. Given the complexity of and variability in earth-
quakes, further research is needed to refine the extraction and
identification of pre-seismic borehole strain anomalies.
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