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Abstract. Tropical and extratropical cyclones, which can
cause coastal flooding, are among the most devastating natu-
ral hazards. Understanding coastal flood risk better can help
to reduce their potential impacts. Global flood models play
a key role in this process. In recent years, global models
and methods for flood hazard simulation have improved, but
they are still limited in the actionable information that they
can provide at local scales. One notable limitation is the in-
sufficient resolution of global models, which cannot accu-
rately capture the complexities of storms and the topogra-
phy of specific regions. Additionally, most large-scale haz-
ard assessments tend to focus solely on either offshore wa-
ter level simulations or overland flooding, often relying on
static flood modelling approaches. In this study, we intro-
duce the MOSAIC (MOdelling Sea level And Inundation
for Cyclones) framework, a flexible Python-based frame-
work designed to dynamically simulate both offshore wa-
ter levels and coastal flooding. MOSAIC provides a multi-
scale modelling approach to automatically generate and nest
high-resolution local models within a coarser global model.
This approach seeks to simulate more accurate water levels,
thereby enhancing coastal boundary conditions for dynamic
flood modelling. We showcase the potential of MOSAIC us-
ing three historical storm events, with the aim of assessing
the effects of temporal- and spatial-resolution refinements
and bathymetry data. Our findings indicate that the impor-
tance of model refinements is linked to the topography of the
study area and the storm characteristics. For instance, refin-
ing the temporal output resolution has a significant impact
on small and rapidly intensifying tropical cyclones but is less
critical for extratropical cyclones. Additionally, the refine-
ment of spatial output locations is particularly relevant in re-

gions where water levels exhibit high spatial heterogeneity
along the coast. In regions with complex topography, grid re-
finement and higher-resolution bathymetry play a more sig-
nificant role. MOSAIC provides an automated approach to
provide flood maps at a local scale. Our results confirm the
proof of concept that the automated approach of MOSAIC
can be used to provide high-resolution flood maps without
the need for calibration or other manual steps. As such, MO-
SAIC provides a bridge between fully global and fully lo-
cal modelling approaches. In future work, further validation
could be carried out to explore the optimal settings for differ-
ent regions in more detail.

1 Introduction

Coastal flood events can have devastating impacts on so-
cieties, economies, and the environment when they affect
densely populated and low-lying coastal areas (Wadey et al.,
2015). Tropical cyclones (TCs) and extratropical cyclones
(ETCs) are the cause of the most severe coastal flooding
events (Douris et al., 2021; Haigh et al., 2016; UNDRR,
2020; Wahl et al., 2017). For example, Hurricane Harvey
in 2017 is one of the costliest storms in the United States’
history, with estimated damage of USD 125 billion. Typhoon
Idai in Mozambique in 2019 caused around 600 deaths
and economic damage of USD 770 million (Nhamo and
Chikodzi, 2021; Sebastian et al., 2021). In 1953, an ETC was
the cause of the most severe coastal flood event in northwest
Europe, resulting in more than 2000 deaths (Wadey et al.,
2015). More recently, in 2010, ETC Xynthia hit the Atlantic
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coast of France, causing 47 deaths and EUR 1.2 billion worth
of economic damage (CGEDD, 2010).

Coastal flood events are driven by extreme sea levels, re-
sulting from a combination of mean sea level variations,
tides, storm surges, and waves (Kirezci et al., 2020; Marcos
et al., 2019; Vousdoukas et al., 2017, 2018b; Wahl, 2017).
In recent years, several studies have applied global hydro-
dynamic models to simulate coastal water levels (Dullaart et
al., 2021; Muis et al., 2016; Pringle et al., 2021; Vousdoukas
et al., 2016b; Wang and Bernier, 2023). Subsequently, these
water levels have been used to derive extreme-water-level
values for various return periods. These extreme water levels
have then been used as input for global overland flood models
(Wing et al., 2024), and the resulting flood hazard maps have
been used to assess flood exposure and risk (Vousdoukas et
al., 2016a). While these global studies have greatly improved
our understanding of large-scale coastal flood risks, they do
not yet have the accuracy to provide actionable information
about coastal flood events at local scales.

The accuracy of large-scale hazard assessments is lim-
ited by several factors related to the quality of the input
data and assumptions underlying the modelling approaches.
Until now, the vast majority of large-scale hazard assess-
ments have primarily been focused on either modelling ex-
treme water levels or modelling overland floods. Each model
component has its own limitations. We identify here three
main methodological limitations of large-scale hazard as-
sessments. First, coastal geometry strongly influences ex-
treme sea levels (Mori et al., 2014; Woodruff et al., 2023),
with large variability at the local scale. Consequently, in re-
gions with complex morphologies, such as estuaries, semi-
enclosed bays, or barrier systems, global models lack the
resolution required to accurately resolve the extreme sea lev-
els (Bunya et al., 2010; Dietrich et al., 2010; Islam et al.,
2021). Grid refinement and nesting of local high-resolution
models within coarser global models can result in improved
coastal boundary conditions. Pelupessy et al. (2017) used a
multiscale approach to obtain realistic boundary conditions
by nesting a high-resolution barotropic model inside of a
global circulation model. Similarly, the Coastal Storm Mod-
eling System (CoSMoS) combines global climate models
and oceanographic models that are dynamically downscaled
to assess compound flooding and coastal changes at the re-
gional to local scale (Barnard et al., 2014, 2019, 2025; Neder-
hoff et al., 2024). Camus et al. (2011) used a dynamic down-
scaling approach to translate global wave data into higher-
spatiotemporal-resolution waves for the Spanish coast. Sec-
ond, the accuracy of input datasets such as the meteorolog-
ical forcing and the bathymetry has a large influence on the
total water levels. Coarse meteorological forcings – in terms
of both spatial and temporal resolution – might not be able
to resolve intense storms (Hodges et al., 2017; Murakami,
2014; Thomas et al., 2021), while errors in the bathymetric
datasets will propagate to the modelling of storm surge lev-
els (Woodruff et al., 2023). Third, coastal flooding is a dy-

namic process where flood duration and physical processes
play a key role. However, given the high computational costs
associated with using hydrodynamic flood models, their use
has been limited to local applications. Most large-scale haz-
ard assessments have used static flood modelling methods,
which neglect flood dynamics (Hinkel et al., 2014; Muis et
al., 2016; Ramirez et al., 2016; Vafeidis et al., 2019; Vous-
doukas et al., 2016a). Additionally, large-scale hazard as-
sessments typically focus on a single flood driver (Alfieri et
al., 2017; Hirabayashi et al., 2021; Tiggeloven et al., 2020;
Vousdoukas et al., 2018a; Ward et al., 2020). However, TC
and ETC events often produce precipitation, river discharge,
storm surges, and waves, all of which can contribute to flood-
ing. When these drivers occur in combination, they can sig-
nificantly amplify flood hazards and risks. This is demon-
strated by the modelling of, for example, hurricane Florence,
which hit the USA in 2018 (Gori et al., 2020). Few large-
scale studies have analysed the effects and interactions of
multiple flood drivers. While Bates et al. (2021) performed
a combined risk assessment of fluvial, pluvial, and coastal
flooding for the continental USA, Eilander et al. (2023) in-
troduced a globally applicable compound flood modelling
framework that accounts for precipitation, river discharge,
and storm tides.

In this study, we present the open-source MOSAIC (MOd-
elling Sea level And Inundation for Cyclones) framework
to simulate TC and ETC water levels and coastal flooding
events. Coastal flooding is dynamically modelled by cou-
pling two existing modelling approaches: (1) to simulate wa-
ter levels generated by storm surges and tides, it couples
the hydrodynamic Global Tide and Surge Model (GTSM)
and Delft3D Flexible Mesh software and (2) to dynami-
cally simulate overland flooding, it couples the simulated wa-
ter levels with the Super-Fast INundation of CoastS model
(SFINCS). MOSAIC is based on Python and global datasets
and, as such, provides a globally applicable and reproducible
approach that can automatically build and process Delft3D
Flexible Mesh and SFINCS models. As such, it is well suited
to a model comparison study to test different model setups.

Here we showcase the potential of the MOSAIC frame-
work by applying it to three case studies where large storm
surges caused catastrophic flooding events, namely the his-
torical storm events of TC Irma, TC Haiyan, and ETC Xyn-
thia (see Fig. 1; Bertin et al., 2012; Cangialosi et al., 2018;
Lapidez et al., 2015). For each of these storms, we simulate
the coastal water levels and flood depths using automatically
built uncalibrated models. Where available, we evaluate the
model performance by comparing it to observed water levels
and flood maps. Moreover, we perform a sensitivity analysis
of different modelling settings. This includes the effects of
the model resolution, output resolution, and improvements
in bathymetry.

Nat. Hazards Earth Syst. Sci., 25, 2287–2315, 2025 https://doi.org/10.5194/nhess-25-2287-2025



I. Benito et al.: A multiscale modelling framework of coastal flooding events 2289

Figure 1. Case studies analysed in this paper. (a) Tropical cyclone Irma, (b) tropical cyclone Haiyan, and (c) extratropical cyclone Xynthia.
The red area indicates the modelling domain of the flood analysis.

2 The MOSAIC modelling framework

The MOSAIC modelling framework, shown in Fig. 2, is
a Python-based framework that integrates different pack-
ages, models, and software. It consists of two main com-
ponents: (1) the simulation of global coastal boundary con-
ditions with the Global Tide and Surge Model (GTSM)
(Sect. 2.1), including the dynamic downscaling with a lo-
cal high-resolution model (Sect. 2.1.3), and (2) the over-
land flood hazard simulations using the SFINCS model
(Sect. 2.2). Python scripts that enable adjustments to the
GTSM settings are used to generate different model con-
figurations. For the flood hazard simulations, MOSAIC uses
Hydro Model Tools (HydroMT) to prepare and postprocess
SFINCS model input and output data.

2.1 Derivation of coastal boundary conditions

2.1.1 Meteorological forcing

The meteorological forcing datasets used in this study vary
per storm. For ETC Xynthia and TC Irma, we use mean
sea level pressure and the 10 m meridional and zonal wind
components from the ERA5 reanalysis dataset at a horizon-
tal resolution of 0.25° and a 1 h temporal resolution (Hers-
bach et al., 2019). Because TC Haiyan is not well resolved
in ERA5 (see Fig. A1), we use pressure and wind from trop-
ical cyclone track data merged with data from ERA5. The
tropical cyclone track data are retrieved from the Joint Ty-
phoon Warning Center at 6-hourly intervals (Naval Mete-
orology and Oceanography Command, 2022) and are con-
verted to a polar grid with 36 radial bins, 375 angular bins,
and a radius of 350 km using the Holland parametric wind
model (Holland et al., 2010). Following the methodology of
Dullaart et al. (2021) and Lin and Chavas (2012), we apply
an anticlockwise rotation angle of β = 20° and set the storm
translation to a surface background wind reduction factor of
α = 0.55. Additionally, we use an empirical surface wind re-

duction factor (SWRF) of 0.85 (Batts et al., 1980) and con-
vert 1 min average winds to 10 min averages using a factor
of 0.915 (Harper et al., 2010). The Holland model’s output
provides a file that defines a polar grid containing pressure
and wind fields. To extend the pressure and wind fields be-
yond the Holland model’s defined TC boundary, we linearly
interpolate these fields on the outermost 75 % to align with
the ERA5 background data (Deltares, 2024).

2.1.2 Global storm surge and tide model

MOSAIC uses GTSM v4.1 to simulate water levels resulting
from tides and storm surges, ignoring baroclinic and wave
contributions. GTSM is a global depth-averaged hydrody-
namic model based on Delft3D Flexible Mesh (Kernkamp et
al., 2011). It has a spatially varying resolution of 25 km deep
in the ocean and 2.5 km along the coasts (1.25 km for Eu-
rope) (Dullaart et al., 2020; Muis et al., 2020). The spatially
varying resolution makes it computationally efficient for the
simulation of water levels at large scales. The bathymetry
in the model is the 15 arcsec resolution European Marine
Observation and Data Network bathymetry dataset for Eu-
rope (EMODnet; Consortium EMODnet Bathymetry, 2018)
and the 30 arcsec General Bathymetric Chart of Oceans 2019
dataset for the rest of the globe (GEBCO, 2014). Tides
are generated internally with tide generating forces, while
storm surges originate from external forcing using pressure
and wind fields (Sect. 2.1.1; Muis et al., 2020). A con-
stant Charnock coefficient of 0.041 is applied to translate
wind speeds from the external forcing into wind drag, and
a background pressure of 101 325 Pa is considered. GTSM
has been successfully validated using different meteorologi-
cal datasets and has been shown to provide accurate extreme
sea levels (Dullaart et al., 2020; Muis et al., 2016, 2020). Ver-
sion 4.1 is a calibrated version of the model with improved
parameterisations for internal tides and bottom-friction coef-
ficients (Deltares, 2021; Wang et al., 2022b). GTSM provides
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Figure 2. Flowchart showing the input (in orange), models (in green), outputs (in blue), Python packages (in red), and the optional dynamic
downscaling feature (in yellow) of MOSAIC.

as output water level time series over a grid in the ocean and
for locations along every ∼ 5 km of the coast.

To validate the coastal component of our modelling frame-
work, we compare water levels from GTSM to observed wa-
ter levels from tide gauge stations of the Global Extreme Sea
Level Analysis (GESLA) dataset (Haigh et al., 2023). This
comparison is made for case studies where the GTSM output
locations are found near tide gauge stations from GESLA
(see Fig. 3). GTSM output is referenced to mean sea level
(MSL). We translate the reference level of the GESLA wa-
ter levels to the MSL by removing the annual average water
level for each year and subsequently by removing the mean
over the 1985–2005 period from the detrended time series.
To assess the accuracy of GTSM, we calculate Pearson’s cor-
relation coefficient and the root-mean-squared error (RMSE;
see Table A1). Figures 4 and 5 show the time series of water
levels at different tide gauge stations during the landfalls of
TC Irma and ETC Xynthia, respectively. Pearson’s correla-
tion between the GTSM-simulated and observed water lev-
els is high for both events, indicating good agreement. For
TC Irma, the average correlation across the nine stations is
0.93, with a standard deviation of 0.06 m. For ETC Xynthia,
the average correlation across the six stations is 1.00, with a
standard deviation of 0.01. Additionally, TC Irma has an av-
erage RMSE of 0.28 m with a standard deviation of 0.09 m.
ETC Xynthia has an RMSE of 0.22 m, with a standard de-
viation of 0.08 m. The stations performing worse are those
located in enclosed harbours or behind the barrier islands.
The RMSE values of GTSM for both storms show results
comparable to other large-scale studies that have used hy-
drodynamic models to simulate storm tides of storm events.
Marsooli and Lin (2018) and Gori et al. (2023), for example,
used the ADvanced CIRCulation model (ADCIRC) to simu-
late storm tides, with an average RMSE over stations of 0.31
and 0.29 m, respectively. Vogt et al. (2024) used the Geo-
CLaw solver and reported an average RMSE of 0.24 m over
213 tide gauge stations but with Pearson’s correlation of 0.5,
showing less agreement with observed storm tides than the
MOSAIC model setup presented in this study.

2.1.3 Dynamic downscaling

The dynamic downscaling within MOSAIC consists of
two parts. First, MOSAIC generates a local high-resolution
model with Delft3D Flexible Mesh using the Python pack-
age dfm_tools (Veenstra, 2024). Dfm_tools allows us to auto-
matically create a local modelling grid with a spatially vary-
ing resolution based on the specified maximum and mini-
mum grid cell sizes as well as Courant’s number derived
from the bathymetry data provided (Veenstra, 2024). The
bathymetry of the local model can be updated by interpo-
lating a new bathymetric dataset into the newly generated
grid. The settings to automatically generate the local high-
resolution models used in this study can be found in Sect. 2.3.
Second, MOSAIC uses an offline coupling approach to nest
the local Delft3D Flexible Mesh model within GTSM. A
Python script is used to first identify the boundaries of the lo-
cal Delft3D Flexible Mesh model. These boundaries are then
used to determine the specific locations where GTSM out-
put should be extracted. Subsequently, GTSM provides the
water level time series at the boundaries of the local model.
Finally, the local high-resolution model is executed using the
water levels derived from GTSM as forcing input, together
with the same meteorological forcing as for GTSM.

2.2 Hydrodynamic flood hazard modelling setup

MOSAIC uses the Super-Fast INundation of CoastS
(SFINCS) model to simulate overland storm surge flood
depths. SFINCS is a reduced-physics hydrodynamic model
developed for a more computationally efficient dynamic
flooding approach than full shallow-water-equation models
(Leijnse et al., 2021). It solves simplified equations of mass
and momentum, similar to the LISFLOOD-FP model (Bates
et al., 2010). SFINCS has been successfully applied to model
compound flooding from tropical cyclone Irma in 2017 (Lei-
jnse et al., 2021). Its modelling output results in similar re-
sults to those from full shallow-water-equation models, while
reducing computational expenses by a factor of 100 (Leijnse
et al., 2021). To speed up the flood model simulations, we
use the subgrid schematisation from SFINCS for all the sim-
ulations (Leijnse et al., 2020).
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Figure 3. GESLA tide gauge stations for the Irma (a) and Xynthia (b) case studies.

Figure 4. Validation of water levels for the Irma case study for the nine tide gauge stations depicted in Fig. 3a.

For this study, we use GEBCO 2020 (15 arcsec spatial res-
olution; Weatherall et al., 2020) as the input dataset for the
bathymetry and FABDEM (30 m spatial resolution; Hawker
et al., 2022) as the input dataset for the land elevation, except
for ETC Xynthia. For ETC Xynthia, we use the 5 m reso-
lution lidar-based digital elevation model (DEM) developed
by the French National Geographic Institute (IGN) because
it better represents dikes in the region, leading to better flood

estimates than with FABDEM (see Fig. A14). The spatially
varying roughness coefficients used within SFINCS are de-
rived from the land use maps of the Copernicus Global Land
Service (Buchhorn et al., 2020). Within MOSAIC, SFINCS
is coupled offline with water levels from GTSM at a 1 h reso-
lution for the default settings. The Mean Dynamic Topogra-
phy (DTU10MDT; Andersen and Knudsen, 2009) is used to
convert the vertical reference of the water levels from mean
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Figure 5. Validation of water levels for the Xynthia case study for the six tide gauge stations depicted in Fig. 3b.

sea level to the EGM2008 geoid. The resulting flood hazard
maps have a resolution of 30 m.

To build the SFINCS models and couple them with
GTSM, MOSAIC uses the HydroMTv0.7.1 (Hydro Model
Tools) package (Eilander et al., 2023). HydroMT is an
open-source Python package, which provides automated and
reproducible model building and analysis of results. Hy-
droMT uses a modular approach in which datasets and model
setup configurations can easily be interchanged. In the MO-
SAIC framework presented in this paper, we take advan-
tage of HydroMT in several ways: (1) to automatically con-
vert the forcing files from GTSM and the other inputs into
the model-specific input format, (2) to easily build a repro-
ducible SFINCS model, and (3) to perform the analysis of
the SFINCS model output. SFINCS is forced with GTSM
water level time series at locations along every∼ 5 km of the
coastline and provides as output the water level time series
for each grid cell. Finally, flood depth maps are derived from
the maximum water levels by subtracting the DEM.

To validate the hydrodynamic flood hazard modelling
component of the modelling framework, we compare the
modelled flood extents with observed flood extents derived
from field measurements. This comparison is done for Xyn-
thia, the only case study for which observed flood extent data
are available (Breilh et al., 2013; DDTM, 2011). We mea-
sure the model skill using (1) the hit rate (H ), defined as
the flood area correctly simulated over the observed flooded
area (Eq. 1); (2) the false-alarm ratio (F ), defined as the area
wrongly simulated over the observed flooded area (Eq. 2);
and (3) the critical-success index (C), defined as the area cor-
rectly simulated as flooded over the union of the observed
and modelled flooded areas (Eq. 3). Figure 6 shows the skill
of the modelled maximum flood extents with SFINCS us-

ing the GTSM water levels as forcing. The hit rate is 0.78,
correctly representing the flooding in most regions and only
underestimating it in regions further inland. The false-alarm
ratio of the model is 0.62. Flooding is overestimated in the
north, likely due to the lack of flood protection measures in-
cluded in the model that are present in reality. The critical-
success index is 0.48 as a result of the areas that are simulated
well and those that are over and underpredicted. While the
performance of the flood model is negatively affected by the
quality of the topography and the representation of local fea-
tures such as dikes, we consider the performance sufficient
for large-scale modelling and comparable to other studies
such as Ramirez et al. (2016) and Vousdoukas et al. (2016b).

H =
Fmodelled ∩ Fobserved

Fobserved
(1)

F =
Fmodelled/Fobserved

Fobserved
(2)

C =
Fmodelled ∩ Fobserved

Fmodelled ∪Fobserved
(3)

2.3 Sensitivity analysis

Using the MOSAIC modelling framework, we analyse the
effects of refining the resolution of GTSM on the simulated
water levels and assess how these propagate to the results
for the flood hazard simulated by SFINCS. As described in
Table 1, we categorise model configurations in two distinct
groups. The first group, which contains the global model
configurations (G), includes the default model configuration
(G1) and configurations that modify only the global GTSM
model (G2 and G3). In this group, the refinements applied
are as follows: (1) the temporal output resolution, which is
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Figure 6. Validation of the flood hazard modelling component of
the modelling framework for the Xynthia case study using the wa-
ter levels of the default configuration of GTSM as forcing. The
map compares the modelled and observed maximum flood extents,
where green indicates flood areas simulated correctly, blue shows
flood areas not simulated but observed, and red shows flood areas
simulated but not observed. Performance indicators for the hit rate
(H ), false-alarm ratio (F ), and critical-success index (C) are shown
in the panel.

different from the implicitly calculated simulation time step
of GTSM, is refined from 1 h to 10 min, allowing us to cap-
ture more changes in water levels, including the peaks of the
water levels (G2), and (2) the spatial output resolution is re-
fined from locations along the coast every ∼ 5 to ∼ 2 km,
providing more coastal boundary conditions for the hydro-
dynamic flood hazard model (G3). The second group, which
contains the nested model configurations (N), includes those
model configurations that use a nested local model within the
global model GTSM by performing dynamic downscaling.
These model configurations include (1) the nesting of local
high-resolution models with refined grids and GTSM (N1)
and (2) the nesting of local high-resolution models with re-
fined grids and updated bathymetry and GTSM (N2). Finally,
we evaluate the combined effects of all these refinements
through the “fully refined” configuration (N3), which inte-
grates both the enhanced temporal and spatial resolutions and
the nested high-resolution models and updated bathymetry.
The validation of GTSM and SFINCS shows sufficient per-
formance for all the model configurations from Table 1 and
Fig. 7 (see Table A1 and Figs. A2, A3 and A15).

3 Sensitivity analysis of the model results

3.1 Multiscale storm surge modelling

Figure 8a, e, and i show the maximum water levels simu-
lated by G1 for the three case studies and depict the maxi-
mum observed water levels for various GESLA tide gauge
stations. To understand the effect of each individual refine-
ment in the maximum water levels, Fig. 8 presents the dif-
ferences in maximum water levels between each refinement
and the model configuration G1. Figure 9 presents the dif-
ferences in maximum water levels between the fully refined
model configuration N3 and the model configuration G1.

3.1.1 Effects of higher resolution on water levels

Figure 8b, f, and j show that the refinement of the temporal
output resolution of GTSM from 1 h to the 10 min intervals
of G2 results in higher maximum water levels across the en-
tire model domain for all three case studies. For TC Irma
(Fig. 8b), the sensitivity of the water levels to the temporal
refinement is relatively small, less than 10 cm. The small ef-
fect of the temporal refinement for TC Irma can be observed
as well in Table A1 and Fig. A2, where G1 and G2 present
similar time series and performance coefficients when com-
pared to the observed water levels. For TC Haiyan (Fig. 8f),
the sensitivity of the water levels is significant. Water levels
increase due to the temporal refinement up to 2 m along the
coastlines where TC Haiyan made landfall, showing that the
1 h resolution is too coarse to accurately capture the water
level response. The cause of this is that TC Haiyan had rapid
intensification, and when modelling water levels at a 1 h res-
olution, we overlook the storm’s peak, resulting in an under-
estimation of the maximum water levels. G2, however, can
capture the peak of TC Haiyan more precisely (see Figs. A4
and A5). For ETC Xynthia (Fig. 8j), the sensitivity of the
water levels to the temporal refinement is relatively small,
less than 10 cm on average and slightly higher in enclosed
basins and estuaries near La Rochelle. The small changes in
water levels for ETC Xynthia are due to the inherent char-
acteristics of ETCs, which typically have larger dimensions,
lower intensity, and a slower rate of intensification compared
to TCs. This means that the changes in water levels can be
captured well at a 1 h resolution. The small effect of the tem-
poral refinement for ETC Xynthia can be observed as well
in Table A1 and Fig. A3, where G1 and G2 present similar
time series and performance coefficients when compared to
observed water levels.

The model configuration G3, where the spatial output res-
olution is refined, is not shown in Fig. 8 because increasing
the number of water level locations does not change the water
level values themselves. However, this refinement becomes
significant when these values are applied as coastal boundary
conditions to SFINCS (see Sect. 3.2.1), as a greater number
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Table 1. GTSM model configurations used in the sensitivity analysis.

Model configuration Nomen- GTSM grid Bathymetry Spatial output Temporal output
clature resolution resolution resolution

Default configuration G1 ∼ 25 to 2.5/1.25 km GEBCO20191 Original (∼ 5 km) 1 h
Refined temporal output resolution G2 ∼ 25 to 2.5/1.25 km GEBCO20191 Original (∼ 5 km) 10 min
Refined spatial output G3 ∼ 25 to 2.5/1.25 km GEBCO20191 Refined (∼ 2 km) 1 h
Dynamic downscaling (refined grid) N1 ∼ 25 to 0.45 km GEBCO20191 Original (∼ 5 km) 1 h2

Dynamic downscaling (refined grid N2 ∼ 25 to 0.45 km GEBCO2023 Original (∼ 5 km) 1 h2

+ updated bathymetry)
Fully refined configuration N3 ∼ 25 to 0.45 km GEBCO2023 Refined (∼ 2 km) 10 min2

1 EMODnet2018 for Europe (Xynthia case study). 2 For the model configurations N1, N2, and N3, the temporal output resolution is also the temporal resolution of the
coupling between GTSM and the local high-resolution model.

of coastal boundary conditions gives additional information
to the flood model.

3.1.2 Effects of dynamic downscaling with original
bathymetry on water levels

Figure 8c, g, and k show that the model configuration N1
results in significant changes in water levels for all case stud-
ies. The largest differences occur along the coasts, where
the largest changes in the model grid size resolution occur.
For TC Irma (Fig. 8c), the nesting of a local model at a
high resolution with GEBCO2019 results in maximum wa-
ter levels that are up to 0.3 m higher than G1 in the south-
west of Florida. These differences between N1 and G1 grad-
ually increase over time and are at a maximum at the peak
of TC Irma (Fig. A10). While a higher grid resolution af-
fects the tidal propagation mainly along the coast of Florida
(Figs. A6 and A7), storm surge propagation is more sensi-
tive to the bathymetry used (Figs. A8 and A9). A high res-
olution is needed in areas with steep bathymetry. In contrast
to the coarser grid of G1, N1 resolves complex topographic
features around the barrier islands better (Fig. A11), allow-
ing water to flow more freely through these barriers. At the
10 September 2017 time step in Fig. A10, when there is a
negative surge north of the barrier island, G1 produces higher
water levels because water remains trapped in the north. Con-
versely, during the peak of TC Irma on 11 September 2017,
the water levels in G1 are lower than in N1 because less water
is able to travel northwards. The increased northward surge
of N1 propagates further into the Gulf of Mexico, leading
to higher water levels that also propagate further into the
Gulf of Mexico (see Fig. A10). Water levels for nine tide
gauge stations along the coast indicate that while G1 under-
estimates the peak of TC Irma in most locations (Fig. A2, all
stations but station 7), N1 simulates higher peaks on average,
resulting sometimes in overestimations (Fig. A2, station 9).
The improved resolution of topographic features in the bar-
rier island region allows stations nearby (Fig. A2, stations 4
and 9) to capture the event’s peak better compared to G1.
Additionally, the performance of N1 is slightly better than

G1 for six tide gauge stations (stations 1–6), as reflected in
Table A1, which shows lower RMSE values. However, for
stations 7–9, G1 shows a slightly higher RMSE and Pear-
son’s correlation. For TC Haiyan (Fig. 8g), the differences in
maximum water levels are up to 1 m higher than in G1 near
the landfall regions. These differences occur due to the re-
finement of the grid from 2.5 km to 45 m, which results in
a significant increase in the number of model grid cells that
define regions of shallow bathymetry, especially around the
bay near Tacloban, resulting in a more detailed representa-
tion of water levels in that region. Thanks to the increase in
grid cells, the strait north of Tacloban for N1 is defined using
multiple grid cells in comparison to the two-grid-cell width
of G1 (see Fig. A12). Therefore, in that region, N1 allows us
to better resolve the topography of the region, and water can
travel more easily northwards. For ETC Xynthia (Fig. 8k),
the water levels from the nested local model at a high res-
olution are overall lower than the water levels for G1. Near
La Rochelle, those water levels are up to 0.2 m lower. When
comparing the performance of N1 with G1 (Table A1 and
Fig. A3), both model configurations can predict the time se-
ries pattern well, with high Pearson’s correlation coefficients.
Overall, the RMSE for Xynthia is similar for most tide gauge
stations, except for two stations located at the mouths of es-
tuaries (stations 3 and 6).

3.1.3 Effects of dynamic downscaling with updated
bathymetry on water levels

Figure 8d, h, and l show that the model configuration N2 re-
sults in relatively large changes in the water levels for all the
case studies. The largest differences occur along the coasts
and provide results similar to those from N1. For TC Irma
(Fig. 8d), the nesting of a local model at a high resolution
with the updated GEBCO2023 bathymetry results in maxi-
mum water levels that are 0.3 m higher than G1 in the south
of Florida. Compared to N1, model configuration N2 pro-
vides slightly higher water levels south of Florida. Those dif-
ferences come from differences between GEBCO2023 and
GEBCO2019 in the region. N2 shows a similar performance
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Figure 7. Overview of the model domains for the local high-resolution model and SFINCS for the three case studies (a, b, c), the default
GTSM grid zoomed in (d, e, f), the local high-resolution model grid zoomed in (g, h, i), and the GTSM spatial output locations for the default
configuration and the refined spatial output configuration zoomed in to the SFINCS study area (j, k, l).

to G1 and N1 across nine tide gauge stations (Table A1 and
Fig. A2). For TC Haiyan (Fig. 8h), the differences in maxi-
mum water levels are up to 1 m higher than G1 at the landfall
regions. Compared to N1, N2 provides, on average, higher
maximum water levels, except in the Bay of Tacloban, where
N1 presents higher maximum water levels on average. These
differences come from the differences between GEBCO2019
and GEBCO2023. For ETC Xynthia (Fig. 8l), the water lev-
els from the nested local model at a high resolution with
GEBCO2023 are lower overall than the water levels for G1.

Compared to N1, the model configuration N2 provides a sim-
ilar pattern of water level decrease; however, the maximum
water level reduction compared to G1 is slightly less than
for N1. The performance of N2, as shown in Table A1 and
Fig. A3, is comparable to that of G1 and N2, except at two
tide gauge stations (station 3 and 6) where GEBCO2023 does
not accurately capture the bathymetry of the river channels in
the estuaries. In contrast, EMODNET2018, the bathymetry
used in model configuration N1, resolves these details better
(see Fig. A13).
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Figure 8. Panels (a), (e), and (i) show the maximum water levels for the three case studies using configuration G1, along with observed
maximum water levels from GESLA tide gauge stations (inverted triangles). Panels (b), (f), and (j) show the difference in water levels
between G2 and G1; panels (c), (g), and (k) show the difference between N1 and G1; and panels (d), (h), and (l) show the difference between
N2 and G1. See Table 1 for configuration details

3.1.4 Effects of a fully refined model on water levels

In Fig. 9, we observe that the maximum water level differ-
ences between N3 and G1 lead to significantly different re-
sults for each case study. For TC Irma, N3 provides higher
maximum water levels throughout almost the whole domain,
resulting in a picture similar to that of N2 but with higher
water levels along the southeast coast. The maximum dif-
ferences in maximum water levels between N3 and N1 are
up to 0.3 m. For TC Haiyan, N3 provides maximum wa-
ter levels that resemble a combination of G2 in the regions
where temporal refinement is relevant and N2 in the rest
of the study area. The differences in maximum water lev-
els between N3 and G1 for Haiyan are more than 2 m at the
coast near Tacloban. Finally, for ETC Xynthia, N3 provides
slightly higher maximum water levels in the south of the do-
main compared to G1, where the effects of G2 predominate,
and lower maximum water levels in the north, where the ef-
fects of N2 are more dominant.

3.2 Hydrodynamic flood modelling

As a second step in the sensitivity analysis, we analyse how
the effects of the different storm surge model configurations
propagate to the SFINCS flood model. In Fig. 10, we com-
pare the maximum flood depths of each refinement and G1.
Figure 11 shows the maximum flood depth differences be-
tween N3 and G1.

3.2.1 Effects of a higher resolution on flood depths

Figure 10b, g, and l show that the refinement of GTSM’s
temporal output resolution from 1 h to the 10 min intervals
for G2 provides different results for each case study. For TC
Irma (Fig. 10b), the small increase in water levels as a result
of the temporal output refinement (Sect. 3.1.1) also results
in a small increase in flood depths. Conversely, TC Haiyan
(Fig. 10g) experiences much higher water levels along the
coast at a higher temporal resolution. As a result, it also ex-
periences significantly higher flood depths, surpassing G1 by
1m in regions near Tacloban. ETC Xynthia (Fig. 10l) expe-
riences an increase in water levels along the coast for the
10 min temporal output resolution, especially in the study re-
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Figure 9. Panels (a), (d), and (g) show the maximum water levels for the default configuration G1. Panels (b), (e), and (h) show the maximum
water levels for the fully refined configuration N3. Panels (c), (f), and (i) show the difference in maximum water levels between N3 and G1
for each case study.

gion of SFINCS. This results in an increase in flood depths
of up to 0.1 m. For ETC Xynthia, G2 shows a higher hit rate
and false-alarm ratio compared to G1 but the same critical-
success index (see Fig. A15).

Figure 10c, h, and m show that refinement of the spa-
tial output locations of G3 provides coastal boundary con-
ditions for SFINCS at additional locations, thereby provid-
ing more water level input to the flood model. Figure 10c
shows that this refinement results in lower flood depths north
of and around Jacksonville for TC Irma. Conversely, for TC
Haiyan (Fig. 10h), the increase in spatial inputs results in
higher flood depths in most of the study area, in particular
exceeding the G1 flood depths around Tacloban by more than
1 m. For ETC Xynthia (Fig. 10m), the refinement of spatial
water level inputs leads to higher flood depths north of La
Rochelle, up to 0.1 m, while south of La Rochelle, there are
barely any changes compared to G1. For ETC Xynthia, G3
shows the same hit rate as G1, a higher false-alarm ratio, and
the same critical-success index (see Fig. A15).

3.2.2 Effects of dynamic downscaling with original
bathymetry on flood depths

Figure 10d, i, and n show that the model configuration N1
results in significant changes in the flood depths for all the
case studies. For TC Irma (Fig. 10d), model configuration
N1 leads to slightly higher water levels in comparison to G1.
Consequently, the resulting flood depths are also larger and
are more than 0.2 m above those of G1. Maximum water lev-
els for TC Haiyan (Fig. 10i) are generally higher along the
Bay of Tacloban when applying dynamic downscaling with
the original bathymetry. This results, on average, in higher
flood depths of more than 1 m compared to G1. Finally, ETC
Xynthia (Fig. 10n) presents lower water levels for N1 com-
pared to G1. Those lower water levels lead to lower flood
depths across the whole model domain. For ETC Xynthia,
N1 shows a lower hit rate and false-alarm ratio compared to
G1 and the same critical-success index (see Fig. A15).
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Figure 10. Panels (a), (f), and (k) show the maximum flood depth for the default configuration G1 for each case study. Panels (b), (g), and
(l) show the difference between the maximum flood depth for the refined temporal output resolution configuration G2 and G1. Panels (c), (h),
and (m) show the difference between the maximum flood depth for the refined spatial output configuration G3 and G1. Panels (d), (i), and
(n) show the difference between the maximum flood depth for the dynamic downscaling (refined grid) configuration N1 and G1. Panels (e),
(j), and (o) show the difference between the maximum flood depth for the dynamic downscaling (refined grid and updated bathymetry)
configuration N2 and G1.

3.2.3 Effects of dynamic downscaling with updated
bathymetry on flood depths

Figure 10e, j, and o show that the model configuration N2 re-
sults in significant changes in flood depths for all case stud-
ies. For TC Irma (Fig. 10e), model configuration N2 com-
pared to G1 leads to higher or lower water levels depending
on the region. Consequently, the resulting flood depths for N2
vary from 0.05 m lower to more than 0.2 m higher than G1.
Maximum water levels for TC Haiyan (Fig. 10j) are gener-
ally higher in the Bay of Tacloban for model configuration
N2 (when applying dynamic downscaling with the updated
bathymetry) compared to G1. This results in larger flood
depths, which, in some regions, result in a flood depth of
more than 1 m higher compared to G1. However, in Tacloban
Bay, N1 results, on average, in higher maximum water levels
than N2, which leads to lower flood depths for N2 in compar-
ison to N1. Finally, for ETC Xynthia (Fig. 10o) water levels
are lower for N2 compared to G1. Those lower water levels
lead to lower flood depths across the whole model domain.
For ETC Xynthia, N2 shows a lower hit rate and false-alarm
ratio compared to G1 and the same critical-success index (see
Fig. A15).

3.2.4 Effects of a fully refined model on flood depths

For TC Irma, N3 provides higher water levels throughout
large parts of the domain (Sect. 3.1.4) that translate into
higher flood depths up to more than 0.2 m near Jacksonville.
For TC Haiyan, N3 provides high water levels near Tacloban
(Sect. 3.1.4), translating into high flood depths up to more
than 1 m. Finally, ETC Xynthia presents lower water levels
for N3 near La Rochelle (Sect. 3.1.4), which translate into
lower flood depths along the coast.

To analyse the changes in flood depths over time, Fig. 12a,
b, and c show the flood depth time series at the SFINCS out-
put point locations outlined in Fig. 11 for all the model con-
figurations. The timing and shape of the flood depth time se-
ries remain consistent across all the model configurations for
all the case studies, and only slight differences in the mag-
nitude of the flood depths are visible. Figure 12a shows that
for TC Irma, all model configurations result in similar flood
depths, and only N1 results in slightly higher flood depths,
about 0.1 m higher than the others. Figure 12b shows that
for TC Haiyan, G1 results in the lowest flood peak, while
the temporal resolution of G2 plays a key role, enhancing
the flood peak approximately 1 m higher than in G1. Finally,
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Figure 11. Panels (a), (d), and (g) show the maximum flood depth for the default configuration G1 for each case study. Panels (b), (e), and
(h) show the maximum flood depth for the fully refined configuration N3. Panels (c), (f), and (i) show the difference between the maximum
flood depths for N3 and G1.

Fig. 12c shows that all global model configurations (G1, G2,
and G3) result in a first flood peak that is approximately 0.5 m
higher than that of the nested model configurations (N1, N2,
and N3). The second peak is simulated similarly by all model
configurations, with N1 being the configuration that provides
the lowest flood depths.

Panels a, b, and c in Fig. 12 only show the results for a
single SFINCS output point location. However, the refine-
ments might have most effect in other regions different from
the SFINCS output point locations. To understand the overall
effect of each refinement in the flood hazard maps, Fig. 12d,
e, and f show the flood volume time series across each of the
case study’s model domains. While the timing and shape of
the flood volume time series remains consistent across all the
model configurations for all the case studies, there are dif-
ferences in the magnitude of the flood volumes. Figure 12d
shows that for TC Irma, the nested models lead to the high-
est flood volumes, with N3 being the model configuration
that simulates the highest flood volume. On the other hand,
the increase in spatial output of GTSM from G3 results in the

lowest flood volumes. Figure 12e shows that for TC Haiyan,
N3 also leads to the highest flood volumes, while G1 results
in the lowest volumes. Finally, Fig. 12f shows that for ETC
Xynthia, the nested model configurations lead to the lowest
flood volumes, while the global models result in higher flood
volumes.

4 Discussion

4.1 Sensitivity analysis and model validation

The results of the sensitivity analysis reveal the complexity
of hydrodynamic modelling and the sensitivity to specific
local settings and storm characteristics. The effect of nest-
ing higher-resolution models on water level and flood depth
varies. For instance, the fully refined model configuration
N3 simulates higher water levels almost everywhere for TC
Irma. However, for TC Haiyan and ETC Xynthia, certain re-
gions show higher water levels with N3, while other regions
show lower water levels compared to the default global G1
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Figure 12. Flood depth time series for three observation points and flood volume time series for the SFINCS model domain of each case
study and model configuration (see Table 1). The spatial location of the SFINCS output point locations can be observed in Fig. 11a, d, and g.

configuration. Similarly, flood depths around Jacksonville for
TC Irma are generally higher with the refined model configu-
ration N3, although some areas experience lower values. For
TC Haiyan in Tacloban, flooding significantly increases with
the refinements, whereas for ETC Xynthia, flood depths de-
crease notably around La Rochelle.

Refining the temporal output resolution (model configura-
tion G2) has a significant influence on small, rapidly intensi-
fying TCs like Haiyan. Compared to the default global con-
figuration G1, this results in water levels and flood depths
that are 2 and 1 m higher. For ETCs, the refinement of
the temporal output resolution does not lead to substantial
changes in water levels or flood depths, indicating that a 1 h
temporal resolution is sufficient. Refining the spatial output
locations of GTSM (model configuration G3) provides more
detailed coastal boundary conditions for SFINCS. This is
most relevant for regions where the coastal water levels show
large spatial variations. For TC Haiyan, for example, the in-
crease in coastal output locations in the Bay of Tacloban
from 4 to 20 locations (see Fig. 7) leads to flood depths 1 m
higher than in G1. Furthermore, regions with more complex
topographies such as the south of Florida for TC Irma or the
Tacloban Bay for TC Haiyan are influenced by the grid re-
finement of N1, leading to larger differences compared to G1
in terms of water levels and, consequently, flooding. The up-
dating of bathymetry also plays an important role, contribut-
ing to differences between N1 and N2 in all the case studies.

The validation of our results also highlights the complex-
ities of hydrodynamic modelling and how each specific set-
ting impacts overall performance. It is challenging to assess
the storm surge model performance due to the limited num-
ber of tide gauge stations available, with poor spatial cover-
age in many regions (Haigh et al., 2023). Another source of
uncertainty is the location of these tide gauge stations, which
are often situated in enclosed basins or harbours, where hy-
drodynamic models have more difficulty simulating water

levels compared to open-sea conditions. Besides, the valida-
tion of the flood hazard models is difficult due to the con-
tribution of other flood drivers neglected in this study. The
automated, uncalibrated MOSAIC configurations tested in
this study have a storm surge modelling performance with
Pearson’s correlations above 0.92 and an average RMSE of
less than 0.3 m. These results are comparable to the well-
established GTSM model (Muis et al., 2016) and to other
large-scale studies (Gori et al., 2023; Marsooli and Lin, 2018;
Vogt et al., 2024). Similarly, the flood hazard modelling
results align with those from other studies that simulated
coastal flooding from ETC Xynthia (Ramirez et al., 2016;
Vousdoukas et al., 2016a). All model configuration refine-
ments perform adequately and have similar results, making it
difficult to determine which configuration consistently pro-
vides the best overall performance based on the validation.
This outcome largely depends on the storm characteristics
and regional topography.

4.2 Limitations

There are several limitations that need to be taken into ac-
count when using MOSAIC. Limitations that are linked to
general flood hazard modelling and are not specific to MO-
SAIC include the following: (1) the meteorological forcing
data can be a large source of uncertainty when modelling ex-
treme water levels (Dullaart et al., 2020). MOSAIC allows us
to combine the results of the Holland parametric wind model
with climate reanalysis datasets to enhance the wind and
pressure fields at the peripheries of the TCs. Nonetheless, the
implementation of more advanced parametric wind models
or high-resolution climate data could further improve the wa-
ter level simulations (Emanuel and Rotunno, 2011; Hu et al.,
2011). (2) The accuracy of the bathymetry has a large influ-
ence on storm surge modelling (Mori et al., 2014; Woodruff
et al., 2023). Global bathymetry is rather coarse and can have
large errors (Weatherall et al., 2020), but for many regions,

Nat. Hazards Earth Syst. Sci., 25, 2287–2315, 2025 https://doi.org/10.5194/nhess-25-2287-2025



I. Benito et al.: A multiscale modelling framework of coastal flooding events 2301

high-resolution and accurate bathymetry is not available.
This will impact the effect of dynamic downscaling, where
MOSAIC uses bathymetry data to generate the model grid.
Using higher-resolution local bathymetry enables finer grid
refinement and higher accuracy of local data (Consortium
EMODnet Bathymetry, 2018; NOAA, 2014; NOAA National
Geophysical Data Center, 2001), which can enhance the ac-
curacy of the results (Woodruff et al., 2023). (3) The accuracy
of digital elevation models (DEMs) has a large influence on
flood modelling (Hawker et al., 2022). In this paper, we use
FABDEM and IGN, but MOSAIC allows us to replace the
DEM with any dataset, and we recommend that users of MO-
SAIC use the best data available for their region of interest.
In addition to the effects of DEMs, the presence of flood pro-
tection structures has a substantial impact on flood hazard
models. The neglect of dikes in our SFINCS model is one
of the reasons why our modelling framework overestimates
flooding for ETC Xynthia. MOSAIC’s HydroMT component
supports the implementation of levees as 1D line features in
the SFINCS model, and this ability could be used when there
is local information on flood protection levels.

The main limitation specific to the automated approach
of MOSAIC is related to the generation of the local high-
resolution models. These automatically generated models
can present instabilities when refined grid cells are present
at the model boundaries. Therefore, care needs to be taken
when applying dynamic downscaling. To solve this prob-
lem, the first 0.3° around the model domain are not refined
in this study. When changes in grid refinement are abrupt,
for example due to steep bathymetry, model instabilities can
also occur. The nesting of multiple models inside of each
other would allow for a smoother grid transition and might
solve this issue. Nevertheless, placing the model boundaries
in such a way that they do not cut through topographically
complex regions is recommended. Furthermore, it is to be
noted that the models presented here (except G1) are uncal-
ibrated. Although they show adequate performance, detailed
calibration of the bed level, bottom friction, and roughness
coefficients could improve the modelling results (Wang et al.,
2022a).

Automated modelling tools like MOSAIC have the advan-
tage of being efficient, reducing potential human errors, and
being reproducible and transparent. However, they also have
their limitations. Users must be aware of the underlying mod-
elling assumptions and should carefully review the model
outputs of their specific case study (Remmers et al., 2024).

4.3 Directions for future research

There are various directions to further develop and improve
MOSAIC. In this study, we have implemented MOSAIC
to simulate coastal flooding driven by storm surges. How-
ever, flooding typically results from a combination of var-
ious drivers. Our results underestimate flooding near estu-
aries and deltas due to the exclusion of precipitation and

river discharge and underestimate it near steep coasts due
to the exclusion of waves and overtopping. Considering the
fact that HydroMT and SFINCS can include pluvial and flu-
vial drivers (Eilander et al., 2023), there is potential to in-
corporate the modelling of compound events into MOSAIC.
Waves can significantly contribute to coastal flooding and,
in some regions, are the dominant driver of extreme water
levels (Parker et al., 2023). However, the inclusion of wave
contributions in large-scale assessments has been limited due
to the computational cost of traditional wave-resolving nu-
merical models. The development of more computationally
efficient wave solvers offers an opportunity to implement dy-
namic wave simulations in large-scale assessments and in
MOSAIC. For instance, Leijnse et al. (2024) developed an
efficient solver currently being integrated into SFINCS. Fur-
thermore, this first version of MOSAIC makes use of of-
fline coupling for both the local high-resolution model and
the SFINCS model. However, new software developments
such as the Oceanographic Multi-purpose Software Environ-
ment (OMUSeE; Pelupessy et al., 2017) could be used to en-
able online coupling, as well as to further expand MOSAIC
by allowing for coupling with other models such as hydro-
logical or ocean models. We envisage various directions for
the future application of MOSAIC beyond the modelling of
historical coastal floods presented here. By leveraging the
flexibility of MOSAIC to modify input datasets, the mod-
elling framework can be used to study events under historical
and climate change conditions. Furthermore, taking advan-
tage of MOSAIC’s multiscale modelling approach, TC/ETC
high-resolution hazard assessments can be obtained globally.
When linked to impact models, such as Delft-FIAT (Slager et
al., 2016), MOSAIC could also be used for risk assessments.

4.4 Added value of the MOSAIC framework

The main added value of MOSAIC is its flexibility, simulat-
ing water levels and coastal flooding anywhere in the world,
with customisable datasets and resolutions that enable effi-
cient, region-specific storm event simulations. Users of MO-
SAIC can easily simulate storm events in any region with this
modelling framework. First, they can select the appropriate
meteorological forcing. Within MOSAIC, users can choose
gridded meteorological data from reanalysis datasets or cli-
mate models to simulate ETCs or TCs, provided that the data
accurately capture the TC wind and pressure fields (as seen
with ETC Xynthia and TC Irma in this study). Alternatively,
they can select a hybrid approach that combines the Hol-
land model with ERA5 in the background when modelling
smaller TCs with rapid intensification (such as TC Haiyan in
this study). Depending on the specific storm simulated and
the study area, users can select different model refinements.
For rapidly intensifying storms, users can choose a more re-
fined temporal output resolution, while nested models can
help resolve the topography and bathymetry in regions with
complex coastlines. If the users have coastal boundary condi-
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tions available, MOSAIC can automatically generate stand-
alone local high-resolution Delft3D FM models without hav-
ing to couple them with GTSM. Although uncalibrated, these
model configurations demonstrate similar performance to
the well-established global model GTSM but at a signifi-
cantly lower computational cost. The hydrodynamic flood
modelling part of MOSAIC offers user-defined settings as
well, enabling users, for instance, to choose the most suit-
able DEM for their study area or implement flood protection
measures through MOSAIC’s HydroMT component.

5 Concluding remarks

The MOSAIC modelling framework introduced in this study
allows us to dynamically simulate coastal flooding events
through the coupling of dynamic water level and overland
flood models, making use of a Python environment. This ap-
proach is automated and reproducible and, combined with
the underlying global datasets used, makes it globally ap-
plicable. MOSAIC’s flexibility allows us to easily simu-
late coastal flooding events globally, while also using lo-
cal high-resolution models. Based on our results, we con-
clude that the refinement of the global modelling approach
can significantly impact the simulation of coastal water lev-
els and flood depths at the local scale, although the differ-
ences in local settings mean that there is no one-size-fits-all
approach. We recommend a higher-temporal-output resolu-
tion for rapidly intensifying TCs; a spatial output refinement
for regions with heterogeneous water levels; and nested lo-
cal models with high-resolution bathymetry, if available, for
regions with complex topography. The flexibility and ease
of use of MOSAIC make it a valuable resource for users to
further explore the optimal settings for their case study and
region of interest.
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Appendix A: Supporting tables and figures

Table A1. Validation indicators that compare the maximum total water levels and observations from GESLA for the Irma and Xynthia case
studies.

Irma RMSE [m] Pearson’s correlation [–]

Station G1 G2 N1 N2 G1 G2 N1 N2

1 0.41 0.41 0.39 0.40 0.92 0.92 0.92 0.92
2 0.28 0.27 0.25 0.25 0.98 0.98 0.98 0.98
3 0.33 0.33 0.32 0.33 0.79 0.78 0.81 0.79
4 0.27 0.26 0.21 0.24 0.96 0.96 0.96 0.94
5 0.35 0.35 0.33 0.31 0.93 0.93 0.93 0.93
6 0.18 0.18 0.17 0.21 0.98 0.98 0.98 0.94
7 0.17 0.17 0.14 0.14 0.97 0.97 0.95 0.95
8 0.39 0.39 0.42 0.45 0.92 0.92 0.90 0.88
9 0.16 0.16 0.18 0.10 0.93 0.92 0.90 0.96

Average 0.28 0.28 0.27 0.27 0.93 0.93 0.93 0.92

Standard deviation 0.09 0.09 0.10 0.11 0.06 0.06 0.05 0.05

Xynthia RMSE [m] Pearson’s correlation [–]

Station G1 G2 N1 N2 G1 G2 N1 N2

1 0.12 0.13 0.13 0.13 1.00 1.00 1.00 1.00
2 0.27 0.29 0.22 0.26 0.99 0.99 0.99 0.99
3 0.21 0.20 0.47 0.61 0.99 0.99 0.95 0.91
4 0.20 0.21 0.19 0.34 1.00 1.00 1.00 0.98
5 0.18 0.18 0.24 0.25 1.00 1.00 0.99 0.99
6 0.34 0.31 0.49 0.92 0.99 0.99 0.98 0.90

Average 0.22 0.22 0.29 0.42 1.00 1.00 0.99 0.96

Standard deviation 0.08 0.07 0.15 0.29 0.01 0.01 0.02 0.04
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Figure A1. Maximum water level outputs of GTSM for the Haiyan case study with different meteorological forcings. (a) Maximum total
water levels with the Holland model combined with ERA5 as forcing. (b) Maximum total water levels with ERA5 as forcing.

Figure A2. Validation of total water levels for the Irma case study for the nine locations depicted in Fig. 3a.
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Figure A3. Validation of total water levels for the Xynthia case study for the six locations depicted in Fig. 3b.

Figure A4. GTSM output locations for the Haiyan case study.
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Figure A5. Haiyan total water level time series for the GTSM output locations provided in Fig. A4. Time series for the default configuration
(G1) and the refined temporal output resolution configuration (G2).

Figure A6. Maximum water levels for the tide-only simulation of G1 (a). The difference between the maximum water level for the tide-only
simulations of N1 and G1 (b).
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Figure A7. Water levels for the tide-only simulations for the Irma case study model configurations G1 and N1 for the nine locations depicted
in Fig. 3a.

Figure A8. Maximum water levels for the storm-surge-only simulation of G1 (a). The difference between the maximum water level for the
tide-only simulations of N1 and G1 (b).
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Figure A9. Water levels for the storm-surge-only simulations for the Irma case study model configurations G1 and N1 for the nine locations
depicted in Fig. 3a.

Figure A10. The difference in water levels for the storm-surge-only simulations of N1 and G1 for different time steps: before TC Irma made
landfall (7 until 9 September 2017), during the peak (between 10 and 11 September 2017), and after the peak (12 September 2017).
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Figure A11. (a) GEBCO2019 for the study area; the black rectangle shows the barrier island region from the middle and right panels.
(b) Bathymetry in the barrier island interpolated to the grid of the model configuration N1. (c) Bathymetry in the barrier island interpolated
to the grid of the model configuration G1.

Figure A12. A close look at the unstructured grid of the global GTSM model with a grid resolution up to 2.5 km along the coast (a) and the
nested grid of dynamic downscaling with a grid resolution up to 0.45 km along the coast (b) for the Haiyan case study.
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Figure A13. A close look at the bathymetry of two stations (a, b: station 6 and c, d: station 3) that provide lower performance with updated
bathymetry for the Xynthia case study. (a, c) Bathymetric map of EMODNet2018. (b, d) Bathymetric map of GEBCO2023.

Figure A14. Validation of flood extents for the Xynthia case study against observed flood extents. The maps compare the modelled and
observed maximum flood extents for a SFINCS model generated with ING’s DEM (a) and FABDEM (b), where green indicates flood areas
simulated correctly, blue shows flood areas not simulated but observed, and red shows flood areas simulated but not predicted. Performance
indicators for the hit rate (H ), false-alarm ratio (F ), and critical-success index (C) are shown in each panel.
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Figure A15. Validation of flood extents for the Xynthia case study against observed flood extents. The maps compare the modelled and
observed maximum flood extents for each model configuration; see Table 1, where green indicates flood areas simulated correctly, blue
shows flood areas not simulated but observed, and red shows flood areas simulated but not predicted. Performance indicators for the hit rate
(H ), false-alarm ratio (F ), and critical-success index (C) for each configuration are shown in each panel.
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