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Abstract. Strong winter wind storms can lead to billions of
euros in forestry losses, disrupt train services and necessi-
tate millions of euros in spending on vegetation management
along the German railway system. Therefore, understanding
the link between tree fall and wind is crucial.

Existing tree fall studies often emphasize tree and soil
factors more than meteorology. Using a tree fall dataset
from Deutsche Bahn (DB; 2017–2021) and meteorological
data from the ERA5 reanalysis and RADOLAN (Routinev-
erfahren zur Online-Aneichung der Radarniederschlagsdaten
mit Hilfe von automatischen Bodenniederschlagsstationen
(Ombrometer)) radar, we employed stepwise model selec-
tion to build a logistic regression model predicting the risk
of a tree falling on a railway line in a 31 km grid cell.

While the daily maximum gust speed (the maximum wind
speed in a model time step at 10 m height) is the strongest risk
factor, we also found that the duration of strong wind speeds
(wind speeds above the local 90th percentile), the gust factor
(the ratio of the maximum daily gust wind speed to the mean
daily gust speed), precipitation, soil water volume, air density
and the precipitation sum of the previous year are impactful.
Therefore, our findings suggest that high wind speeds, a low
gust factor and a prolonged duration of strong winds, espe-
cially in combination with wet conditions (high precipitation
and high soil moisture) and high air density, increase tree fall
risk. Incorporating meteorological parameters linked to local

climatological conditions (through anomalies or in relation
to local percentiles) improved the model accuracy. This in-
dicates the importance of considering tree adaptation to the
environment.

1 Introduction

Strong wind speeds are a major factor leading to tree fall
and are therefore a risk both to the railway service and
forestry. Strong winter wind storms can cause billions of eu-
ros in damages for forestry (Gliksman et al., 2023). These
losses have been increasing over recent decades (Gregow
et al., 2017). Additionally, there is an interconnection be-
tween storm damage and other ecological risks like droughts
and bark beetle infestation in summer or the unfreezing of
soils in winter which put further stress on forest ecosys-
tems and are likely to change in a warming climate (Gregow,
2013; Temperli et al., 2013; Seidl et al., 2014; Stadelmann et
al., 2014; Venäläinen et al., 2020). In 2018, Deutsche Bahn
(DB) increased its budget for vegetation management to en-
hance storm safety, now spending approximately EUR 125
million annually (DB, 2023). And yet the cost of tree fall
remains of the order of millions of euros per year (Meßen-
zehl, 2019). With 68 % of railway tracks lined by trees and
forests, ongoing management is necessary. Since 2018, over
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1000 workers have been employed to monitor and maintain
railway vegetation (DB, 2023). Despite these efforts, there
was an annual average of approximately 3000 tree fall in-
cidents from 2017 to 2021, causing service disruptions and
infrastructure damage. In recent years interest in the topic
has increased. A number of studies on tree fall hazards show
that this problem is also present outside the German rail-
way network (Bíl et al., 2017; Koks et al., 2019; Kučera and
Dobesova, 2021; Szymczak et al., 2022). Therefore, it is vital
to study the relationship of tree fall and wind. Such research
aids the management of vegetation alongside transportation
routes as well as the development of climate-resilient forests.
There are many studies which investigate the impact of wind
speed on tree fall, including tree motion measurements and
tree-pulling experiments (Peltola et al., 2000; Kamimura et
al., 2012; Schindler and Kolbe, 2020; Jackson et al., 2021),
mechanistic modelling (Gardiner et al., 2008; Hale et al.,
2015; Kamimura et al., 2016; Costa et al., 2023), and statisti-
cal and machine learning approaches (Schindler et al., 2009;
Schmidt et al., 2010; Hanewinkel et al., 2014; Hale et al.,
2015; Jung et al., 2016; Kamimura et al., 2016; Kamo et al.,
2016; Hart et al., 2019; Valta et al., 2019; Zeppenfeld et al.,
2023). One issue the field of tree and forest damage mod-
elling faces is the lack of highly resolved gust and airflow
data. Great efforts have been made in recent years to develop
small-scale gust speed products which can also be used for
impact modelling (Primo, 2016; Albrecht et al., 2019; Schulz
and Lerch, 2022). Additionally, there are a number of stud-
ies that identify, track and classify the storms most damag-
ing to forests and infrastructure (Mohr et al., 2017; Jung and
Schindler, 2019; Tervo et al., 2021). Among the statistical
modelling approaches, logistic regression models are very
common and are also used in our study. Numerous existing
studies on storm damage focus on a single storm event or a
small spatial region (Albrecht et al., 2012; Hale et al., 2015;
Kamimura et al., 2016; Hart et al., 2019; Hall et al., 2020;
Zeppenfeld et al., 2023). Consequently, there is a need for
long-term and large-scale investigations in this field.

Additionally, previous studies have mainly analysed the
impact of tree-, stand- and soil-related factors on wind-
induced damages but often excluded metrology. Those which
consider meteorological predictors often focus on the rela-
tionship between tree damage and mean or maximum wind
speeds (Schindler et al., 2009; Jung et al., 2016; Morimoto et
al., 2019). Yet, there are some other meteorological predic-
tors which are considered in previous works and which we
will consider as well.

To account for the turbulent aspect of wind, some studies
employ the gust factor. There are different understandings of
the term gust factor in the fields of meteorology and forestry.
In forestry the gust factor is often referred to as the ratio of
the maximum to mean bending moment experienced by a
tree (Gardiner et al., 1997). In other works the gust factor
is defined as the ratio of the maximum short-term-averaged
wind speed over a shorter duration ts to a long-term-averaged

wind speed over a longer duration tl (Ancelin et al., 2004;
Gromke and Ruck, 2018). The durations ts and tl then need
to be adapted to the specific research questions. Wind load is
the wind force per area applied to a tree and the product of
a tree’s specific drag coefficient, air density, a tree’s exposed
frontal area and wind speed (see Eq. 13). Wind load and air
density are considered in a few studies on tree fall and storm
damage (Schelhaas et al., 2007; Ciftci et al., 2014; Gromke
and Ruck, 2018; Sterken, 2021) as well as the wind direction
(Akay and Taş, 2019; Valta et al., 2019). The role of the wind
event duration is also discussed in some literature (Gardiner
et al., 2013; Mitchell, 2013; Kamimura et al., 2022) but is
not studied in detail. Next to wind, snow, frozen soils and
precipitation have been identified as impactful meteorologi-
cal factors (Peltola et al., 2000; Gardiner et al., 2010; Pasztor
et al., 2015; Kamo et al., 2016). For example, heavy rain or
snow during a storm event may add considerable weight to
the crowns and increase tree fall risk (Gardiner et al., 2010).
A decrease of frozen soils in the past as well as in future
climate scenarios has been found for example for Finland,
where it was connected to higher risks of uprooting (Gregow,
2013; Lehtonen et al., 2019). Soil moisture is also sometimes
considered (Kamo et al., 2016; Csilléry et al., 2017), as ex-
cessive water in the soil is expected to weaken root anchorage
(Kamimura et al., 2012; Défossez et al., 2021). However, the
role of soil moisture on tree fall risk is not completely clear
and only a few field experiments have been done on the topic
(Gardiner, 2021). Both very wet and very dry soils might
have a negative impact. The legacy effects of drought may
cause lasting changes in tree physiology and weaken the tree
(Kannenberg et al., 2020; Zweifel et al., 2020; Haberstroh
and Werner, 2022). Therefore, droughts are expected to in-
crease damage caused by wind (Gardiner et al., 2013). Yet,
Csilléry et al. (2017) found both positive and negative effects
on tree damage. They suggest that in some stands drought
weakens the trees and makes them more vulnerable to wind
loading, while in others dry soils make them less vulnerable
to overturning.

We aim to develop a meteorology-based tree fall impact
model, which is a first step toward a more complex predic-
tive tree fall model. On the one hand, such a predictive model
could be used to identify areas at risk and support manage-
ment decisions, for example, which trees to cut down, espe-
cially when environmental and forest data become available
and can be taken into account in the future. On the other
hand, the model can be applied to climate model data to
identify future changes in tree fall risk. To accomplish this,
we need to identify meteorological parameters and parameter
combinations that impact tree fall risk alongside railway lines
in Germany over the long term and across a large-scale area.
We aim to deepen the understanding of tree fall risk and wind
and to explore how far wind-related parameters like the daily
maximum gust speed, the gust factor, air density, wind load,
the duration of strong wind speeds or wind direction have
an impact on tree fall. We also examine the impacts of other
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Figure 1. All tree fall events (orange dots) alongside railway lines
(black lines) in Germany in the extended winter season (October–
March) of 2017–2021.

predictors related to meteorology that have been included in
previous studies, such as soil moisture, precipitation, snow
or soil frost. Additionally, we study legacy effects of dry and
wet spells by including the soil water volume and precipita-
tion in antecedent time periods.

We will introduce both the tree fall data as well as the me-
teorological data used in this study (Sect. 3). We will describe
the background theory and the selection process for the lo-
gistic regression model (Sect. 4), and we will finally present
(Sect. 5) and discuss (Sect. 6) our results and conclude with
our most important findings (Sect. 7).

2 Data

2.1 Tree fall data

Tree fall events along the German railway network were de-
rived from a dataset created by Deutsche Bahn (Fig. 2). The
data consist of disturbance events reported by rail drivers and
local inspectors. These reports were later merged into one
dataset by the railway infrastructure company InfraGO AG
(formerly called Netz AG) of Deutsche Bahn. For each tree

Figure 2. Percentage of tree fall events per month alongside Ger-
man railway lines for the period 2017–2021.

Figure 3. Percentage of tree falls per day relative to the total number
of tree falls over the entire period alongside German railway lines.
Summer and winter are colour-coded. Most extreme peaks of event
numbers are caused by winter wind storms, for example Friederike
(18 January 2018), Sabine (20 February 2020) and Hendrik (21 Oc-
tober 2021).

fall event, the date and time of the report, the coordinates
of the event, and further railway-related information like the
route section number are included.

The highest number of monthly tree fall events occurs
from January to March and from June to August. There is
also a peak in October (Fig. 3). The most extreme daily num-
ber of tree fall occurs during the winter season and is con-
nected to winter wind storm events due to extra-tropical cy-
clones (Fig. 4).

2.2 Meteorological data

We used hourly ERA5 data (Hersbach et al., 2020; Hers-
bach et al., 2023) for all meteorological parameters, except
precipitation. ERA5 (provided by the ECMWF, European
Centre for Medium-Range Weather Forecasts) is a reanaly-
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sis dataset from 1940 to the present with a spatial resolution
of ∼ 31 km. It was accessed using the ClimXtreme Central
Evaluation System framework (Kadow et al., 2021). We per-
formed our analysis only for the extended winter season (Oc-
tober to March) to focus on winter wind storms, which cause
the most extreme peaks in tree fall events. We used hourly
data to calculate daily means, sums or maxima for each pre-
dictor (see Table 1) as well as local percentiles (2nd, 10th,
90th and 98th) in each grid cell over the years 2000 to 2019
for some predictors. The CDO module (Climate Data Op-
erators; Schulzweida, 2023) was used for each of these op-
erations. The advantage of using wind speeds from ERA5
is the coverage of the complete area and period under in-
vestigation. For these reasons ERA5 and similar reanalysis
products are already used as input data in many forecast and
impact models (Pardowitz et al., 2016; Valta et al., 2019;
Battaglioli et al., 2023; Cusack, 2023). Previous versions of
the ECMWF reanalysis have successfully been used to re-
produce windstorm-related damage as recorded by the Ger-
man Insurance Association (Donat et al., 2010; Prahl et al.,
2015), suggesting the usability of these data in spite of devi-
ations with local station measurements (Minola et al., 2020).
Studies comparing wind speed observation with the ERA5
reanalysis find good correlations (Minola et al., 2020; Molina
et al., 2021).

For precipitation data we used RADOLAN (Routinever-
fahren zur Online-Aneichung der Radarniederschlagsdaten
mit Hilfe von automatischen Bodenniederschlagsstationen
(Ombrometer)) data provided by the German Weather Ser-
vice (Bartels et al., 2004; DWD, 2004) with a spatial res-
olution of 1 km. RADOLAN combines radar reflectivity,
measured by the 16 C-band Doppler radars of the Ger-
man weather radar network, and ground-based precipitation
gauge measurements.

3 Methods

In this section, we describe data pre-processing as well as
the theoretical background and the model selection process
for the logistic regression model. The aim of this model is to
calculate the probability of at least one tree falling on a given
day in a 31 km grid cell, depending on meteorological pa-
rameters. It is used to analyse the impact of a set of predictor
variables.

3.1 Data pre-processing

A shapefile of the German railway lines (DB, 2019) was used
to mask the ERA5 grid and select all grid cells in Germany
that are crossed by at least one railway line. We calculated
the rail density (total length of all railway lines in kilometres)
for each grid cell in order to quantify the length of exposed
railway lines.

Daily mean air density ρ was calculated as

ρ = p/R · T , (1)

where p is the daily mean surface air pressure (hPa), T is
the daily mean near-surface air temperature (K) (both derived
from ERA5 hourly data) and R is the universal gas constant
(8.314 J K−1 mol−1).

Daily precipitation sums were calculated from the hourly
data. We then remapped the precipitation radar data to
the ERA5 grid using bilinear interpolation by applying the
remapbil function of the CDO module and thus ascribing
daily precipitation sums to each grid cell. We calculated per-
centile exceedance of the 2nd, 10th, 90th and 98th percentile
for gust speed maxima, the soil water volume, and precipita-
tion via the relation of the daily value and the local percentile.

Finally, we collected all these data for the months of Oc-
tober to March in 2017 to 2021 in a dataset containing grid
cell IDs, a variety of daily meteorological predictors (see Ta-
ble 1), rail density, and the daily occurrence of at least one
tree fall event in the grid cell given as true or false. This
dataset contains only grid cells crossed by at least one rail-
way line.

3.2 Logistic regression

Logistic regression was used to relate the probability of an
event to a linear combination of predictor variables, which
is converted with the logit link function into the scale of a
probability:

logit(2)= ln
(

2

1−2

)
= a+b1·x1+b2·x2+. . .+bk ·xk. (2)

Here, θ is the probability of an event, x1−k is the predic-
tor variables, b1−k are the estimated coefficients and a is the
intercept term. Equation (2) can be rearranged in the follow-
ing way to calculate the event probability (MacKenzie et al.,
2018):

2=
exp(a+ b1 · x1+ b2 · x2+ . . .+ bk · xk)

1+ exp(a+ b1 · x1+ b2 · x2+ . . .+ bk · xk)
. (3)

Interactions allow for expressing the dependence of two
or more variables on each other in a model. The effect (a.k.a.
the estimated coefficient) for one predictor might change de-
pending on the value of another predictor. Compared to a
model without interaction (see Eq. 2), two predictors that are
assumed to have an influence on each other are multiplied
and a coefficient is estimated for this new term, resulting in

2=
exp(a+ b1 · x1+ b2 · x2+ b3 · x1 · x2. . .+ bk · xk)

1+ exp(a+ b1 · x1+ b2 · x2+ b3 · x1 · x2+ . . .+ bk · xk)
, (4)

where b3 is the estimated coefficient for the interaction of
the predictors x1 and x2. It represents how the effect of x1
on the event probability changes with x2 (and vice versa).

Nat. Hazards Earth Syst. Sci., 25, 2179–2196, 2025 https://doi.org/10.5194/nhess-25-2179-2025



R. Lorenz et al.: Tree fall along railway lines 2183

A significant b3 would indicate that the effect of x1 on the
probability is different at different levels of x2.

For quantifying the model’s forecast quality we use the
Brier skill score (BSS), which is based on the Brier score
(BS) (Wilks, 2011):

BS=
1
N

N∑
i=1
(fi − oi)

2, (5)

where N is the number of observations, f is the forecast
probability and o is the outcome (either 1 or 0). The BSS
is then calculated as

BSS= 1−BS/BSref, (6)

where BS is the modelled Brier score and BSref is the score of
a reference model, in this case a model that simply assumes
the mean tree fall probability in each grid cell. This mean
probability is used as the forecast probability f in BSref and
compared to the outcome o. The BSS ranges from −∞ to 1,
where a positive value indicates that the model is better than
the reference model. For calculating the BSS we use 10-fold
cross validation. Here, the dataset is randomly divided into
10 equal sequences. The model is trained on 9 sequences,
while the BS score is calculated for the 10th sequence and
used for validation. This is repeated 10 times, each time using
a different sequence for the validation.

We selected a set of meteorological parameters based on
the literature cited in the Introduction and grouped them into
11 predictor classes, e.g. “wind”, “snow” and “precipitation”
(see Table A1 for full list of predictors and classes). To test
for legacy effects we also include the precipitation sum and
soil water volume from antecedent time periods of 3 months,
9 months and 1 year. The goal is not to build the “perfect”
model but to examine which predictor classes influence tree
fall, which are not influential and which are most clearly im-
proving the skill of the model against the basic reference
model.

Since the length of railway lines in a grid cell is highly
influential regarding the tree fall probability, this variable is
included as well.

We were interested in the impact of each predictor class
and also the predictor modifications (for example anomalies
or relations to local percentiles) which improve the model
skill the most. At the same time we wanted to avoid multi-
collinearity. Therefore, model selection followed three crite-
ria:

1. There must be exactly one predictor from each predic-
tor class in the model (see Table A1 for a full list of
predictors and classes).

2. Only the predictor of each class improving the model’s
BSS the most is added to the model.

3. The predictor has to be significant with p < 0.05 based
on Student’s t test.

We then moved gradually from class to class. We added and
removed each of the predictors in the class in a stepwise ap-
proach, keeping only the class predictor with the best BSS
performance.

We assume gust speeds to be the key predictor, but interac-
tions with other predictors that influence a tree’s vulnerability
are likely. Therefore, we added interaction terms between the
daily maximum gust speed and each other model predictor
in the model in the same stepwise approach. Again, we only
kept the interaction term if it improved the model’s BSS.

After adding all predictors to the model we tested for mul-
ticollinearity. Multicollinearity exists when two or more pre-
dictors in a regression model are moderately or highly corre-
lated with one another. We used the variance inflation factor
(VIF) to test for multicollinearity:

VIFj =
1

1−R2
j

, (7)

where R2
j is the R2 value obtained by regressing the j th

predictor on the remaining predictors. All predictors with
VIF< 5 were considered to have no critical multicollinear-
ity (Sheather, 2009).

We calculated the standardized effect size for each predic-
tor to estimate their effects on tree fall probability compared
to each other. For this, we standardized the absolute value of
the predictor’s estimated coefficient by calculating the stan-
dardized coefficient or beta coefficient:

β = bj
sxj

sy
, (8)

where bj is the estimated coefficient for the j th predictor, sxj
is the standard deviation of the independent predictor xj and
sy is the standard deviation of the dependent variable y.

Finally, we tested the significance of each independent
variable in the model. We kept only those independent vari-
ables that are significant (with p < 0.05 based on Student’s
t test) and then continued analysis with this reduced model.

4 Results

In this section we describe the selected model and the impact
of the model predictors on tree fall risk.

As can be seen in Figs. 3 and 4, winter wind storms cause
the highest number of tree fall events, while a very high
monthly number of tree fall events occurs from January to
March, the season of winter wind storms. However, meteo-
rological predictors other than wind speed caused by storms
factor into tree fall risk: according to the selection criteria de-
scribed in Sect. 4 the resulting model (using the McCullagh
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and Nelder, 1989, model notation) is

tree fall∼ rd+ vmax_anom+ dur90+ gf

+ sin(2 · pi/360 ·winddir)+ cos(2 · pi/360 ·winddir)
+ sd+ Tslfrost+ pr90+ swvlanom+ pr_365+ swvl_365
+ ρ+ vmax_anom : dur90+ vmax_anom : gf. (9)

Explanations for the different predictor abbreviations are
given in Tables 1 and A1. This model predicts the tree
fall risk for each grid cell using the meteorological vari-
ables of each cell as input. The terms vmax_anom:dur90 and
vmax_anom:gf represent the interactions of the gust speed with
duration and the gust factor. They serve to account for the
fact that the individual parameters do not change tree fall
risk independently. Their impact in the model becomes ap-
parent mainly on days with relatively high wind speeds. See
Sect. 6.3 for further discussion of this effect. Sine and co-
sine terms are used for winddir to ensure that the tree fall
probability as a function of winddir has the same values at 0
and 360°. The model’s BSS is 0.069, compared to a BSS of
0.0637 for

tree fall ∼ rd+ vmax, (10)

showing an improvement of model skill when using addi-
tional meteorological predictors compared to just rail density
rd and the daily maximum gust speed vmax.

In Table 1 the predictors, their definitions, and correspond-
ing model coefficients and metrics are listed. All coefficients
except for those of snow depth (sd), soil frost (Tslfrost) and the
mean soil water volume during the previous year (swvl_365)
are significantly different from 0. We find the highest effect
sizes (with absolute standardized coefficients greater than 1)
for the gust speed anomaly (vmax_anom), the interaction of the
gust speed anomaly and the duration of strong wind speeds
(dur90), the interaction of the gust speed anomaly and the
gust factor (gf), rail density (rd), and the duration of strong
wind speeds. Interactions between the gust speed anomaly
and other predictors (except the duration of strong wind
speeds and the gust factor) do not improve the model’s BSS.

For daily precipitation, the daily soil water volume and the
daily maximum gust speed we compare unmodified predic-
tors and predictors related to local conditions (using anoma-
lies or percentiles) and find that the latter improve the BSS
more, with pr90, swvlanom and vmax_anom being the best pre-
dictors.

To test for multicollinearity, we use the VIF and find all
values to be below 5 and therefore not critically correlated
with each other. Interaction terms are excluded from this as
they are naturally highly correlated with the interaction part-
ners.

In a second step we adapt the model and identify all non-
significant predictors: sd, Tslfrost and swvl_365. To reduce
model complexity we remove these predictors. After remov-
ing the three non-significant predictors the BSS remains at

0.069. This results in the following model:

tree fall∼ rd+ vmax_anom+ dur90+ gf

+ sin(2 · pi/360 ·winddir)+ cos(2 · pi/360 ·winddir)
+ pr90+ swvlanom+ pr_365+ ρ+ vmax_anom: dur90

+ vmax_anom:gf. (11)

We find that the rail density, anomaly of daily maximum
gust speeds vmax_anom, duration of strong wind speeds based
on the local 90th gust speed percentile dur90, gust factor gf,
wind direction winddir, precipitation related to the local 90th
percentile pr90, soil water volume anomaly swvlanom, precip-
itation sum in the previous year pr_365, air density ρ, and
the two interactions of the gust speed anomaly with either
the gust factor or duration of strong wind speeds were sig-
nificant, improved the model’s BSS and therefore meet the
model selection criteria. This model is used to plot the func-
tional relationships between the tree fall probability and me-
teorological predictors (Fig. 5). For these plots one model pa-
rameter is varied, while the others are fixed to a certain value
(detailed in the caption of Fig. 5) that was determined during
previous data exploration. For the fixed values of vmax anom
and dur90 we picked 18 m s−1 and 5 h, which represent val-
ues of a short but strong winter storm. A wind speed of
18 m s−1 is exceeded on about 0.5 % of days and thus oc-
curs approximately 2 days a year. For swvlanom and pr90
we selected values that represent a dry situation, thus very
low soil moisture and very low precipitation. For wind di-
rection we picked a north-easterly wind. For the other vari-
ables (pr_365, ρ) we chose the average over the time period
2017–2021. Based on these plots and the standardized coef-
ficients (Table 1) we find a relatively strong increasing im-
pact on tree fall risk for vmax_anom, dur90 and rd. We find
a relatively weak but still significant increasing impact for
swvlanom, pr90, ρ and pr_365. We find a relatively strong de-
creasing effect for gf and a relatively weak impact for wind-
dir with easterly to south-easterly winds having a decreasing
and westerly to north-westerly winds having an increasing
impact respectively.

Based on these findings, we propose that high and pro-
longed wind speeds, especially in combination with wet con-
ditions (high precipitation and high soil moisture) and high
air density, increase tree fall risk.

5 Discussion

There are a vast number of studies which contributed sig-
nificantly to understanding storm impacts on forests, partic-
ularly in areas such as impact modelling (Gardiner et al.,
2008; Hale et al., 2015; Kamimura et al., 2016; Valta et
al., 2019; Costa et al., 2023), wind climatology (Mohr et
al., 2017; Jung and Schindler, 2019; Tervo et al., 2021), or
field campaigns and pulling experiments (Kamimura et al.,
2016; Kamo et al., 2016; Schindler and Kolbe, 2020). A key
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Table 1. Model predictors (ordered by their effect size) and their corresponding model coefficients and metrics. Bold numbers indicate values
below the required threshold for significance and multi-correlation (with p < 0.05 based on Student’s t test and VIF< 5). See Table A1 for
further details.

Standardized Standard
Variable Definition Coefficient coefficient error p VIF

vmax_anom Daily anomaly of vmax (difference to lo-
cal monthly mean gust speeds at 10 m
height) [m s−1]

0.1906 5.3527 0.0083 < 0.05 3.907

vmax_anom:dur90 Interaction 0.0058 3.6927 0.0003 < 0.05 –

vmax_anom:gf Interaction −0.0246 −2.2063 0.0027 < 0.05 –

rd Rail density: total length of all railway
lines in a 31 km grid cell [km]

0.0102 2.1946 0.0003 < 0.05 1.037

dur90 Daily number of hours where gust speed
exceeds the local 90th gust speed per-
centile [h]

−0.0491 −1.7746 0.0039 < 0.05 3.202

swvlanom Daily anomaly of the daily mean of soil
water volume (swvl) at a depth of 28–
100 cm (difference to the local monthly
mean soil water volume) [m3 m−3]

4.9985 0.7136 0.4001 < 0.05 1.144

pr90 Relation of pr to the local 90th precipita-
tion percentile (pr / p90) [mm]

0.0019 0.6493 0.0002 < 0.05 1.247

gf Gust factor: vmax/vmean (the ratio of the
maximum daily gust speed and the daily
mean of the hourly maximum gust speeds
at 10 m height) [–]

0.1559 0.5193 0.0300 < 0.05 2.037

cos(2 · pi/360 ·winddir) Mean daily wind direction [°] 0.1843 0.3779 0.0273 < 0.05 1.099

ρ Air density (see Eq. 1) [kg m−3] 1.8108 0.2704 0.5274 < 0.05 2.109

sin(2 · pi/360 ·winddir) Mean daily wind direction [°] −0.0916 −0.2178 0.0261 < 0.05 1.293

pr_365 Sum of the daily precipitation sum for the
previous 365 d [mm]

0.0002 0.1974 0.0001 < 0.05 1.476

sd Snow from the snow-covered area of an
ERA5 grid box (depth the water would
have if the snow melted and was spread
evenly over the whole grid box) [m]

0.4455 0.0422 0.6199 >0.05 1.199

swvl_365 Sum of the daily mean of the soil water
volume at a depth of 28–100 cm for the
previous 365 d

−0.0966 −0.0235 0.2432 > 0.05 1.223

Tslfrost Frozen soil: true or false (based on Tsl <
0 K)

−9.0727 −0.0069 70.6317 > 0.05 1.000
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Figure 4. Changes in tree fall probability in an ERA5 grid cell with
100 km railway length (urban conditions) depending on different
parameters. In each figure one model parameter is varied, while the
others are fixed to a certain value: vmax_anom = 18 m s−1, dur90 =
5 h, gf= 2.2, pr90 = 20 mm, winddir= 41°, swvlanom = 0 m3 m−3,
pr_365= 663 mm and ρ = 1.2 kg m3. Grey areas signify the confi-
dence interval with a level of 95 %.

goal of these research efforts is to develop functional fore-
cast models which can predict tree and forest damage. Such
a model should be applicable to major tree species, diverse
landscapes and various forest types. It would help to iden-
tify areas of risk, estimate damages in a future climate sce-
nario or during possible extreme events, and assess manage-
ment strategies for foresters and infrastructure providers like
Deutsche Bahn (Akay and Taş, 2019; Albrecht et al., 2019).
However, there are several hurdles on the way to this goal.
(1) There are a lack of damage data covering large areas and
longer time periods which are needed to train these models
and often a lack of environmental data to feed into them (Hart
et al., 2019; Maringer et al., 2020). (2) There is also a lack
of highly resolved gust speed data. Such data are needed to
fully understand and model tree damage (Jung and Schindler,
2019; Gregow et al., 2020). (3) Many of the existing stud-
ies focus on a partial aspect of the issue, for example on a
small spatial region, a single damaging storm event or one
tree species (often due to the lack of bigger data). (4) And

finally such a model would need to incorporate parameters
from many relevant fields (such as tree biology, forestry, me-
teorology, fluid dynamics, pedology and others) as well as
their interactions. So far, many studies have focused on the
parameters from their respective fields. These issues make it
difficult to apply existing works to different tree species or
forest types and also to use the existing impact models on
data from climate models. Several works call for more im-
pact data and longer time series, addressing the interaction
of multiple risks, and inter-disciplinary approaches and co-
operation (Valta et al., 2019; Gregow et al., 2020; Venäläinen
et al., 2020; Gardiner, 2021). Additionally, there is ongoing
work dedicated to developing more accurate small-scale gust
speed products (Primo, 2016; Schulz and Lerch, 2022).

In the field of forest impact modelling many models fo-
cus on biological and environmental predictors such as tree,
stand and soil properties (Mayer et al., 2005; Schindler et al.,
2009; Kamo et al., 2016; Kabir et al., 2018; Díaz-Yáñez et
al., 2019; Hart et al., 2019; Wohlgemuth et al., 2022). Me-
teorological predictors like precipitation or soil moisture are
considered less often (Schmidt et al., 2010; Hall et al., 2020).
Wind is mostly considered regarding the mean or maximum
wind speed (Hale et al., 2015; Morimoto et al., 2019; Hall et
al., 2020). This focus on environmental predictors and mean
wind speeds is often also true for studies that consider tree
fall on railway lines (Bíl et al., 2017; Kučera and Dobesova,
2021; Gardiner et al., 2024).

Many impact studies focus on singular and very dam-
aging storm events (Hale et al., 2015; Kabir et al., 2018;
Hart et al., 2019; Hall et al., 2020; Zeppenfeld et al., 2023).
Those who study longer time periods are often focused on
small areas such as experimental plots (Albrecht et al., 2012;
Kamimura et al., 2016) or smaller administrative units (Jung
et al., 2016). In this study, we try to contribute to this ongoing
research using data covering a large area over several years
(2017 to 2021) and exploring the impact of different mete-
orological factors. In a next step, our model can be applied
to gridded climate model data to estimate risks for trees in
future climate scenarios.

We focused on not only different types of meteorological
predictors, including those that describe wind characteristics,
but also predictors describing precipitation and soil condi-
tions. We showed that meteorological predictors other than
the mean or maximum wind speed have a significant effect
on tree fall risk and improve the model’s predictive skill.

5.1 Model building and predictor selection

The model selection process resulted in a model with 10 in-
dependent variables and 2 interactions, raising the possibil-
ity of over-complexity. To account for this we calculated the
Akaike information criterion (AIC), which is a relative mea-
sure showing how well different models fit the data. It pe-
nalizes numbers of independent variables that are too high.
The model with the lowest AIC value is considered the best.
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We calculated the AIC for the resulting model as well as re-
duced versions of the model in which we left out (1) the in-
teractions, (2) all predictors with an absolute standardized
coefficient < 1 and (3) all predictors with an absolute stan-
dardized coefficient < 0.5. We find that our selected model
has the lowest AIC (56 985.43) compared to options 1 to 3
(57 339.14, 57 512.49 and 57 062.27 respectively).

In our model the influence of the wind direction on tree
fall risk is relatively small compared to the effect of the
wind speed itself. Nonetheless, it appears that north-westerly
winds slightly increase tree fall risk. This seems counter-
intuitive as this is the predominant wind direction in Ger-
many. It is assumed that trees adapt to the dominant wind di-
rection and that untypical wind directions, in this case east-
erly winds, increase tree fall risk (Bonnesoeur et al., 2016;
Valta et al., 2019). An explanation might be that westerly
winds are on average stronger. ERA5 is not a perfect repre-
sentation of local winds and sometimes underestimates gust
speeds (Molina et al., 2021). Thus, in cases where ERA5 un-
derestimates the real gust speeds but shows westerly winds
the wind direction might become a proxy for stronger winds.
While Akay and Taş (2019) found the wind direction at three
stations to be one of the predictors with the highest impact
on storm damage risk, it has a relatively small effect in our
model. Their result may be related to the role of wind direc-
tion on wind speeds at stations located in an area with high
orography, which is much weaker in the rather coarse ERA5
data. Certainly there can also be a relationship between the
wind direction and a tree’s exposure, for example depending
on the topography, the tree’s acclimation to the average local
wind direction (Mitchell, 2013) or the location of the tree to
an exposed edge (Quine et al., 2021). We did not account for
these factors. Future modelling might benefit by adding local
tree wind exposure.

Duration of strong winds is important because trees do not
fail instantly but fail with repeated swaying that fractures
the root–soil system, and this process can take many hours
(Kamimura et al., 2022). The gust factor and air density are
also known to be critical components in calculations of tree
wind damage risk (see Eqs. 4.4, 4.12 and 4.15 in Quine et al.,
2021).

We found that both the soil water volume anomaly and
daily precipitation sum have an increasing impact on tree
fall probability, which is in agreement with previous studies
(Kamimura et al., 2016; Hall et al., 2020). This could be due
to the fact that heavy precipitation can contribute to the ac-
cumulation of weight on tree crowns, consequently increas-
ing wind-induced stress (Neild and Wood, 1999; Gardiner et
al., 2010; Hale et al., 2015). Additionally, water-logged soils
can have a negative affect on root anchorage (Kamimura et
al., 2012). The influence of precipitation and soil moisture
on tree fall during winter will likely increase in northern
forest areas. Here rising temperatures and shortened winter
decrease soil frost and thus root anchorage (Gregow et al.,
2017, 2020; Lehtonen et al., 2019; Venäläinen et al., 2020).

We also included predictors describing antecedent soil
moisture and precipitation conditions, namely mean soil wa-
ter volume accumulation and the precipitation sum of the
previous 12 months. The antecedent soil water volume is
not significant in our model, but the precipitation sum of
the previous year is, showing a weak increasing impact on
tree fall risk. The role of droughts in other hazards such as
fires or bark beetle infestation is well studied (Venäläinen
et al., 2020; Singh et al., 2024). However, research on the
impact of drought on wind-induced tree damage is inconclu-
sive. Csilléry et al. (2017) found both positive but mainly
negative effects on tree damage. They suggest that in some
stands drought weakens the trees and makes them more vul-
nerable to wind loading, while in others dry soils make them
less vulnerable to overturning. We suggest that further re-
search should consider antecedent weather situations in more
detail, for example, by including indices like the standard-
ized precipitation–evapotranspiration index (SPEI), which
has been used in recent research on forest disturbance (Klein
et al., 2019; Gazol and Camarero, 2022). It is also likely that
trees react very differently to dry and wet conditions depend-
ing on their species, height or soil type. Whenever such in-
formation is available, it should be included in the analysis.

Several studies have found snow and frozen soil to be
influential (Peltola et al., 2000; Hanewinkel et al., 2008;
Kamimura et al., 2012; Kamo et al., 2016). Snow loading can
apply stress on the canopy and branches, and this stress can
be increased by additional wind (Kamo et al., 2016; Zubkov
et al., 2023). Frozen soil has been shown to prevent uproot-
ing (Gardiner et al., 2010; Pasztor et al., 2015). Yet, in our
study snow and soil frost did not prove to be significant. This
is likely connected to the rare occurrence of such conditions
in Germany between 2017 and 2021. On average, over all
model grid cells snow depth exceeded 0.05 m water equiva-
lent only on 1.3 % of all winter days and soil frost occurred
only on 0.03 % of the days. Our snow data are derived from
ERA5 and are therefore modelled data. In their evaluation of
snow cover properties in ERA5, Kouki et al. (2023) found
that ERA5 generally overestimates snow water equivalent in
the Northern Hemisphere. Thus, snow coverage might even
be lower than shown in our data. Using measured instead of
modelled snow data could potentially improve the modelling
results.

For wind speed, precipitation and soil water volume we
compared unaltered predictors with anomalies and percentile
exceedances. For all three parameter types, we found that
predictors based on percentile exceedances (pr90) or anoma-
lies (swvlanom, vmax_anom) improve the model’s BSS the most
and, thus, reflect the trees’ ability to acclimate. Trees adapt to
the local climate (Mitchell, 2013; Gardiner et al., 2016), and
what might be windy or dry conditions for a tree in one re-
gion might be average in another. When modelling tree dam-
age over larger spatial regions, we therefore suggest relating
meteorological predictors to local climatological conditions,
for example using anomalies or percentiles.
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We found that air density has a positive impact on tree fall
risk. As our model includes both the maximum gust speed
and air density we considered wind load as a model predictor.
Wind load is proportional to air density and the square of
wind speed:

wl= 1/2CρAv2, (12)

where C is a non-dimensional drag coefficient, ρ is the air
density (kg m−3),A is the frontal area and v is the wind speed
(m s−1) (Ciftci et al., 2014; Gardiner et al., 2016; Quine et al.,
2021). Therefore, wind load is highly correlated with wind
speed. In our data, vmax_anom and wind load have a high Pear-
son correlation coefficient of 0.95. Due to this, they should
not be used together in a single model since a high correlation
between parameters makes model interpretation difficult. As
both the drag coefficient and the tree’s frontal area are un-
known, we reduced the equation to

wl= 1/2ρv2. (13)

We tested a model that used wind load instead of air den-
sity and vmax_anom. We removed air density from the predic-
tors of Eq. (11) and exchanged vmax_anom with wind load.
We found a lower BSS for this model of 0.0678 compared to
0.069. Yet, wind load is highly significant and has a strong ef-
fect size with a standardized coefficient of 4.07. Additionally,
the wind load model has a marginally lower AIC (56 980.45)
than the original model (56 985.43). Due to the lower BSS,
wl did not meet the selection criteria in our modelling pro-
cess. Yet, it is certainly influential regarding tree fall and
might add value to other impact models. We suggest con-
sidering it in future studies.

5.2 The effect of interaction terms

Interactions can show the combined effect predictors may
have on model outcome and how the effect of one predic-
tor changes depending on the value of the other. We tested
if interaction terms with the gust speed anomaly add to the
model skill and found positive results for the interaction with
the duration of strong wind speeds as well as gust factor. Both
predictor interactions improve the BSS and are highly signif-
icant (see Table 1).

A low gust factor could be the result of a day with a high
maximum gust speed and a high mean gust speed as well
as the result of a low maximum gust speed and a low mean
gust speed. Thus, this predictor lacks information without the
interaction with the maximum gust speed. The duration of
strong wind speeds depends on the local 90th gust speed per-
centile. As the average 90th percentile in our data is 12 m s−1,
a wide range of gust speeds exceed the percentile since a vmax
greater than 30 m s−1 is possible during strong storms. Here
too, the interaction adds missing information to the model.
The duration and gust factor are not strongly correlated (with
a Spearman’s correlation coefficient of 0.15) and therefore

provide complementary information as long durations are ac-
companied by a vast range of gust factor values.

In Fig. 5 the effect of the duration of strong wind speeds
and gust factor for the model with and without interaction
terms is compared. When the interactions are removed, the
decreasing impact of the gust factor on tree fall probability
is much smaller, while the duration of strong wind speeds
seems to be not at all connected to tree fall probability. The
effect size of these predictors also decreases strongly: in a
model without interactions, the standardized coefficient of
the gust factor is −0.3181 and that of the duration of strong
wind speeds is 0.0275 (compare to Table 1). Only when we
add the interaction does the impact of these predictors be-
come visible, thus showing their combined effect. Further-
more, the model without interactions has a BSS of only
0.0678 compared to 0.069 for the model that includes inter-
actions (Eq. 11).

The combined effect of the predictors is illustrated in
Fig. 6. We compare the model outcome depending on the
duration of strong wind speeds for two values of vmax_anom,
10 and 18 m s−1. Both represent values that exceed the 98th
percentile of daily gust speeds in most grid cells, but one
represents a low exceedance, while the other is very high.
The duration of strong wind speeds has a much stronger in-
creasing impact on tree fall probability in the second sce-
nario. This also fits with the observations of Kamimura et
al. (2022), who showed that even in a typhoon with very high
wind speeds the duration of the storm was important regard-
ing the occurrence of damage.

A high maximum daily gust speed could be not only the re-
sult of just one strong gust but also the result of a stormy day
with lasting high wind speeds. Adding additional wind prop-
erties like the gust factor or duration of strong wind speeds
can help differentiate between these scenarios. Figure 7 illus-
trates this. Here, we compare modelled tree fall probabilities
for a day with a high gust factor and low duration of strong
wind speeds (a gusty day) and a day with a low gust factor
and long duration of strong wind speeds (a day of sustained
high wind speeds). The relationship between vmax_anom and
the tree fall probability is much weaker on the gusty day,
showing how strongly the interaction with additional wind
properties can change tree fall risk.

5.3 Limitations

This study aimed, among other things, to create a meteoro-
logical basis for a predictive tree fall model that can support
decisions regarding the management of vegetation along-
side transportation routes, as well as climate-resilient forests.
However, local ecological information (soil, tree species,
stand structure, etc.) is not taken into account. Thus, the re-
sults are not representative of every individual setting but
rather for an average setting across Germany.

Many studies have pointed out the influence of tree, stand
and soil factors (Mayer et al., 2005; Kamo et al., 2016; Kabir
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Figure 5. Comparison of the effects of the duration of strong wind speeds (dur90, a) and the gust factor (gf, b) on tree fall risk for the model
with and without interaction terms. Parameters are fixed to the same values as in Fig. 4 with vmax_anom = 18 m s−1. Grey areas signify the
confidence interval with a level of 95 %.

Figure 6. Interaction effect of vmax_anom and storm duration for
two different values of vmax_anom (10 and 18 m s−1). All other pa-
rameters are fixed to the same values as in Fig. 4. Grey areas signify
the confidence interval with a level of 95 %.

et al., 2018; Díaz-Yáñez et al., 2019; Hart et al., 2019; Gar-
diner, 2021; Wohlgemuth et al., 2022) on wind damage vul-
nerability. Thus, model results could vary if such information
were to be incorporated. The tree fall risk according to this
model might vary at the same gust speed level for different
trees and different stands. For example, Gardiner et al. (2024)
demonstrated how critical wind speeds for tree fall along rail-
way lines vary significantly depending on factors such as tree
height, canopy shape, and whether the tree is coniferous or
deciduous. However, our results show clear evidence for the
importance of specific meteorological predictors in tree fall
and storm damage modelling. Finding the specific relation-
ships for meteorological predictors and different tree species,
forest types and soil types should be the next step in under-
standing the impact of different meteorological conditions on
wind damage.

In the dataset about 25 % of tree fall events occur at a max-
imum daily gust speed below 11 m s−1. These tree fall events
might be caused by processes unrelated to meteorology. Valta
et al. (2019) point out that an individual tree fall instance
is already possible at low wind speeds such as 15 m s−1.
Events at an even lower speed cannot be ruled out. On the

other hand, these events might be related to wind events not
resolved by the ERA5 reanalysis and thus caused by wind
speeds that were higher in reality than shown in the data.
For example, convection is not explicitly resolved by the un-
derlying atmospheric model of ERA5. Therefore, the wind
speeds caused by convective events are likely to be underes-
timated. Additionally, the coarse resolution of ERA5 is gen-
erally suboptimal when trying to connect small-scale events
such as a single tree fall instance with meteorological data.
Yet, at the time of our research ERA5 was the only reanalysis
dataset covering the years 2017 to 2021. While evaluations
of ERA5 gust speeds with observational data point out some
limitations, they also find the data in general to be a good
representation of local measurements. Molina et al. (2021)
compare hourly 10 m wind speed from ERA5 with wind ob-
servations from 245 stations across Europe. They find that
“Most of the stations exhibit hourly [Pearson correlation co-
efficients] ranging from 0.8 to 0.9, indicating that ERA5 is
able to reproduce the wind speed spectrum range ... for any
location over Europe”. Minola et al. (2020) compare ERA5
with hourly near-surface wind speed and gust observations
across Sweden for 2013–2017. They, too, find Pearson cor-
relations of 0.8 and higher for daily maximum gust speeds.
However, they do point out that “evident discrepancies are
still found across the inland and mountain regions” and that
higher wind speeds and gust speeds display stronger nega-
tive biases. Data with higher spatial resolutions that include
convective effects might help in understanding the effects of
thunderstorms and other small-scale phenomena in future re-
search. There is already some concern that such phenomena
are becoming more problematic in Europe (Suvanto et al.,
2016; Sulik and Kejna, 2020).

The addition and removal of model predictors during the
stepwise model selection process caused only very small
changes in the model’s BSS, which was very low to begin
with. This is quite likely connected to all of the limitations
listed above. Models which are able to add tree, soil or stand
data or have access to meteorological data of a higher spatial
resolution will likely produce a better model skill rating and
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Figure 7. Comparison of the interaction effect. Gusty day: dur90 =
2 h and gf= 5; sustained day: dur90 = 12 h and gf= 2. All other
parameters are fixed to the same values as in Fig. 4. Grey areas
signify the confidence interval with a level of 95 %.

be able to examine the relationships of tree fall and mete-
orology in more detail. Nonetheless, our approach provides
clear evidence about which meteorological predictors have a
significant impact and indicates the magnitude of their effect.

6 Conclusions

Our aim was to investigate the relationship between tree fall
and wind as well as other meteorological conditions. For this,
we used a stepwise approach to build a logistic regression
model predicting tree fall risk.

We showed that high and prolonged wind speeds, es-
pecially in combination with wet conditions (high precip-
itation and high soil moisture) and a high air density, in-
crease tree fall risk. We find a relatively strong increas-
ing impact on tree fall risk for the daily maximum gust
speed anomaly and duration of strong wind speeds. We find
a relatively weak but still significant increasing impact for
the daily soil water volume anomaly, the daily precipita-
tion exceedance of the 90th percentile, daily air density and
the precipitation sum of the previous year. We find a rel-
atively strong decreasing effect for the gust factor and a
relatively weak impact for wind direction, with easterly to
south-easterly winds having a decreasing and westerly to
north-westerly winds having an increasing impact. Snow and
soil frost predictors, which were found to be important in
past research, have no significant impact in our model.
To account for the potential acclimation of trees to the lo-
cal climate we compared unmodified predictors and pre-
dictors related to local conditions (using anomalies or per-
centiles) for the daily precipitation, daily soil water volume
and daily maximum gust speed. We find that the latter pre-
dictors, which reflect acclimation, improve the model’s skill
the most. Finally we showed that the inclusion of interaction
terms improved the model’s skill score, changed modelled
risk probabilities and helped to illustrate the combined effect
meteorological predictors may have on tree fall probability.

Many previous studies on tree fall and forest storm dam-
age are restricted to a single event or small research region.
Additionally, past research has primarily focused on tree, soil
and stand parameters. When studies have taken meteorology
into account, they often implemented only mean or maxi-
mum gust speeds. We were able to conduct a long-term and
large-scale study on tree fall risk and were able to show that
other wind-related parameters such as the gust factor, dura-
tion of strong wind speeds or air density as well as other
predictors related to meteorology, including precipitation and
soil moisture, have a significant impact on tree fall risk. Our
results also highlight the importance of using anomalies or
relations to local percentiles for meteorological predictors in
large-scale studies to account for the acclimation of trees to
their local climatic conditions.

This work is a step towards future research on the topic of
wind damage and tree fall. It shows how meteorological fac-
tors can be incorporated into a probabilistic tree fall model.
Such a model can be applied to climate model data to esti-
mate changes in tree fall risk in future climate scenarios and
during potential extreme events. We aim to elaborate on these
goals in future research.
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Appendix A

Table A1. List of meteorological predictors tested in the logistic regression model.

Predictor class Variable Definition Unit

Wind vmax Maximum daily gust speed of the maximum 3 s wind at 10 m height m s−1

vmean Daily mean of the hourly maximum gust speeds m s−1

vmax_2d Maximum daily gust speed of the current and previous day m s−1

vmax_90 Relation of vmax to the local 90th gust speed percentile (vmax / p90) [–]

vmax_98 Relation of vmax to the local 98th gust speed percentile (vmax / p98) [–]

vmax_anom Daily anomaly of vmax (difference to local monthly mean gust speeds) m s−1

wl Wind load: wind force per area applied to a tree (see Eq. 13) N m−2

Air density ρ Air density (see Eq. 1) kg m−3

Duration of strong
wind speeds

dur90 Daily number of hours where gust speed exceeds the local 90th gust
speed percentile

h

dur98 Daily number of hours where gust speed exceeds the local 98th gust
speed percentile

h

dur90_2d Number of hours where gust speed exceeds the local 90th gust speed
percentile during the current and previous day

h

dur98_2d Number of hours where gust speed exceeds the local 98th gust speed
percentile during the current and previous day

h

Wind direction winddir Mean daily wind direction °

Gust factor gf Gust factor: vmax/vmean (the ratio of the maximum daily gust speed and
the daily mean of the hourly maximum gust speeds at 10 m height)

[–]

Precipitation pr Daily precipitation sum derived from hourly RADOLAN radar data mm

pr_log log(1+pr) mm

pr90 Relation of pr to the local 90th precipitation percentile (pr / p90) [–]

pr98 Relation of pr to the local 98th precipitation percentile (pr / p98) [–]

pr90_T Exceedance of the local 90th precipitation percentile: true or false [T, F]

pr98_T Exceedance of the local 98th precipitation percentile: true or false [T, F]

Snow sf Daily sum of snow that falls to Earth’s surface m (water
equivalent)

sd Snow from the snow-covered area of an ERA5 grid box: depth the water
would have if the snow melted and was spread evenly over the whole
grid box

m (water
equivalent)

sf_T Snow is present: true or false (based on sf) [T, F]

sd_T Snow is present: true or false (based on sd) [T, F]

Soil temperature Tsl Daily mean of soil temperature at a depth of 28–100 cm K

Tsl98 Relation of Tsl to the local 98th Tsl percentile (Tsl/Tsl98) [–]

Tsl90 Relation of Tsl to the local 90th Tsl percentile (Tsl/Tsl90) [–]

Tsl10 Relation of Tsl to the local 10th Tsl percentile (Tsl/Tsl10) [–]
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Table A1. Continued.

Predictor class Variable Definition Unit

Tsl02 Relation of Tsl to the local 2nd Tsl percentile (Tsl/Tsl02) [–]

Tsl98_T Exceedance of the local 90th Tsl percentile: true or false [T, F]

Tsl90_T Exceedance of the local 98th Tsl percentile: true or false [T, F]

Tsl10_T Exceedance of the local 10th Tsl percentile: true or false [T, F]

Tsl02_T Exceedance of the local 2nd Tsl percentile: true or false [T, F]

Tsl_anom Daily anomaly of Tsl (difference to the local monthly mean soil
temperature)

K

Tslfrost Frozen soil: true or false (based on Tsl < 0 K) [T, F]

Soil moisture swvl Daily mean of soil water volume at a depth of 28–100 cm m3 m−3

swvl98 Relation of swvl to the local 98th swvl percentile (swvl / swvl98) [–]

swvl90 Relation of swvl to the local 90th swvl percentile (swvl / swvl90) [–]

swvl10 Relation of swvl to the local 10th swvl percentile (swvl / swvl10) [–]

swvl02 Relation of swvl to the local 2nd swvl percentile (swvl / swvl02) [–]

swvl90_T Exceedance of the local 90th swvl percentile: true or false [T, F]

swvl98_T Exceedance of the local 98th swvl percentile: true or false [T, F]

swvl10_T Exceedance of the local 10th swvl percentile: true or false [T, F]

swvl02_T Exceedance of the local 2nd swvl percentile: true or false [T, F]

swvlanom Daily anomaly of swvl (difference to the local monthly mean soil water
volume)

m3 m−3

Antecedent soil
moisture

swvl_30 Sum of swvl for the previous 30 d m3 m−3

swvl_90 Sum of swvl for the previous 90 d m3 m−3

swvl_365 Sum of swvl for the previous 365 d m3 m−3

Antecedent
precipitation

pr_30 Sum of pr for the previous 30 d mm

pr_90 Sum of pr for the previous 90 d mm

pr_365 Sum of pr for the previous 365 d mm

Data availability. The RADOLAN radar dataset by the German
Weather Service (DWD) is free for download from their open data
server (https://opendata.dwd.de/climate_environment/CDC/grids_
germany/hourly/radolan/historical/bin, DWD, 2004). The ERA5 at-
mospheric parameters are also free for download from the Climate
Data Store (CDS) of the Copernicus Climate Change Service (C3S)
(https://cds.climate.copernicus.eu, CDS, 2024). Due to the data pro-
tection policies of the data provider, Deutsche Bahn, the tree dam-
age data cannot be made available.
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