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Abstract. Understanding coastal flood protection is crucial
for assessing risks from natural hazards and climate change.
However, there is a significant lack of quantitative data on
coastal flood protection and related standards, posing a major
barrier to risk assessment. The FLOod PROtection Standards
(FLOPROS) database, currently the only global database of
flood protection standards, relies on limited coastal obser-
vations and simplified assumptions. While widely used, it
cannot adequately constrain uncertainties in risk estimates
that are based on it. To address this gap, we call for a
global, community-driven effort to develop a more compre-
hensive dataset. As a first step, we present a dataset compil-
ing COASTtal flood PROtection Standards within EUrope
(COASTPROS-EU), elaborated from a survey distributed to
flood practitioners from several European countries. This
highlights the need for more extensive and coordinated data
collection efforts, using a transdisciplinary community-based
approach that ensures diverse societal representation.

1 Coastal flood protection

In Europe alone, damage costs from coastal flooding cur-
rently amount to EUR 1.4 billion annually, with around
100 000 people exposed (Feyen et al., 2020). The rise in
global temperatures caused by anthropogenic greenhouse gas
emissions means that the frequency and severity of coastal
flood events are projected to increase over the next decades,
for example due to sea level rise (Taherkhani et al., 2020).
Concurrently, the degradation of foreshore vegetation and

human-induced subsidence due to land use and sediment
retention by dams contribute to heightened coastal flood
hazards. This presents significant challenges for low-lying
coastal communities and ecosystems, which are home to a
large portion of the world’s population, land area, and assets
(Bevacqua et al., 2020; Reguero et al., 2015).

The latest IPCC synthesis report warns of significant, irre-
versible damage to coastal areas from climate-induced flood-
ing, with the coastal flood hazard continuing to increase well
beyond 2100 due to sea level rise (IPCC, 2023). Addition-
ally, exposure to coastal flood events is expected to increase
in the future due to factors such as increasing urbanization in
coastal areas (Darlington et al., 2023; Reimann et al., 2023;
Neumann et al., 2015).

Addressing coastal flood risk and understanding the poten-
tial future impacts requires a comprehensive understanding
of current coastal flood protection measures and standards,
in terms of both infrastructure (e.g. levees) and nature-based
solutions (e.g. mangroves) (Caretta et al., 2022; van Zelst et
al., 2021; Toimil et al., 2020). However, the complexity of
and challenges involved in quantitatively assessing the level
of protection that existing flood defences provide hinders our
understanding of flood protection on a global scale. For ex-
ample, challenges arise due to the complex interactions be-
tween natural (e.g. dunes) and artificial (e.g. dikes) barriers
(Hinkel et al., 2021). Enhanced and detailed data on coastal
flood protection are necessary to better prepare for and mit-
igate the risks associated with climate change and coastal
flooding.
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2 FLOPROS

In 2016, Scussolini et al. (2016) introduced the FLOPROS
database, providing the first global collection of information
on flood protection standards across different spatial scales.
It consolidates information on the protection standards (ex-
pressed as flood return periods) associated with protection
measures and regulations. FLOPROS is structured in three
layers: the design layer, which details the engineered protec-
tion levels of existing river and coastal flood infrastructure
derived from the literature; the policy layer, which speci-
fies legislative and normative standards for protection from
river and coastal floods, also derived from the literature; and
the model layer, which infers river flood protection standards
based on observed relationships with per capita wealth and
flood risk.

The FLOPROS model layer assumes a maximum flood
protection of a 1000-year return period and a minimum of
a 2-year return period (no protection). An algorithm inter-
polates these values based on GDP per capita for differ-
ent income regions. The model layer determines the pro-
tection standards for sub-country administrative units (the
second level of nomenclature of territorial units for statis-
tics, or NUTS2, according to Eurostat, 2018) by calculat-
ing the expected annual damage and interpolating additional
units linearly. This approach overlooks the complexities of
the various physical, socio-economic, and governance fac-
tors that influence flood protection standards, both between
and within regions (Klijn et al., 2021).

To our knowledge, FLOPROS, with its coastal update by
Tiggeloven et al. (2020), is the only global dataset document-
ing existing structural flood protection measures at the sub-
national level, making it a cornerstone in contemporary re-
search endeavours that assess flood risk. Consequently, the
database is frequently used in coastal flood assessments (e.g.
Almar et al., 2021; Hermans et al., 2023; Vousdoukas et al.,
2018; Yesudian and Dawson, 2021; Ward et al., 2017). FLO-
PROS was created to support research related to large-scale
flood risk management and has been utilized in several high-
level policy documents, including PESETA IV (Feyen et al.,
2020; PBL, 2023; UNEP, 2023). Initiatives such as the Inter-
sectoral Model Intercomparison Project (ISIMIP), which in-
tegrates these findings into integrated assessment models
like REMIND (Sauer et al., 2021), and web tools such as
Aqueduct Floods also rely on FLOPROS. Additionally, many
academic studies assessing current and future flood risk in
coastal areas depend on the FLOPROS database (e.g. Chen
et al., 2023; Tiggeloven et al., 2020; Mortensen et al., 2024;
Vousdoukas et al., 2020; Hermans et al., 2023; Devitt et al.,
2023; Haasnoot et al., 2021). As a result, FLOPROS is fun-
damental to current flood protection assumptions for coastal
flood risk and impact assessments.

However, due to the limitations of FLOPROS, especially
the limited number of observations for coastal flood protec-
tion (54 data points from 14 countries), we argue that cau-

tion should be exercised when utilizing it in coastal contexts.
Overreliance on the dataset may lead to an underestimation
of future climate risks, implying protection where it does not
exist, or an overestimation of adaptation efforts, thus under-
mining the urgency of climate mitigation.

3 Current and future efforts

Since the publication of FLOPROS, several initiatives have
aimed to improve the representation of flood protection for
coastal regions. FLOPROS mostly contains information on
river flood protection in its design and policy layers and has
information exclusively on river flood protection in its model
layer. Tiggeloven et al. (2020) extended this by calculating
flood protection for coastal regions globally using a com-
parable model-based approach but did not include policy or
design layers, which may lead to uncertainty. Despite these
advancements, a lack of a clear distinction between the use
of the original FLOPROS by Scussolini et al. (2016) and its
updated version by Tiggeloven et al. (2020) remains. Fre-
quently, both versions are cited without specifying whether
the coastal protection levels used are from the design, policy,
or model layer (Yesudian and Dawson, 2021). A notable rel-
evant advancement is openDELve, which compiles an open
database referencing the extent and design specifications of
levees for 152 deltas, including levee height, crest width, and
construction material, in a harmonized format (Nienhuis et
al., 2022). However, there is a clear contrast in data avail-
ability between regions such as Africa, Southeast Asia, and
South and Central America in comparison to Australia, Eu-
rope, the UK, and the USA (Nienhuis et al., 2022). An-
other significant research direction is the detection of flood
defence infrastructure from high-resolution elevation data.
Wing et al. (2019) used a detection algorithm to map lev-
ees in the contiguous USA, questioning the validity of the
wealth-to-protection relationships used in FLOPROS. A sim-
ilar method was subsequently applied by Sasaki et al. (2023).

Knowledge of river flood protection standards has been
enhanced by studies such as that of Boulange et al. (2021),
which reflect the protection provided downstream of global
hydro dams. In China, river flood protection standards at
higher resolution and confidence levels are available thanks
to Wang et al. (2021). Advanced statistical approaches
trained to infer flood protection standards from physical and
socio-economic variables have been developed by Zhao et
al. (2023). An indirect approach to infer flood protection
standards for Europe using new data on impacts and potential
flood occurrences was recently implemented by Paprotny et
al. (2024).

Nat. Hazards Earth Syst. Sci., 25, 2075–2080, 2025 https://doi.org/10.5194/nhess-25-2075-2025



N. van Maanen et al.: Bridging the data gap 2077

4 COASTPROS-EU: a coastal flood protection
standards database for Europe

Despite various advancements in recent years, a dataset with
comprehensive global representation of coastal flood protec-
tion measures and their standards is still lacking. We present
here COASTtal flood PROtection Standards within EUrope
(COASTPROS-EU), a new database on policy standards and
defence structures along the European coast (Table S1 in
the Supplement). The database builds upon the efforts of
FLOPROS and its subsequent improvement by Tiggeloven
et al. (2020). However, it differs from FLOPROS by specif-
ically compiling information on European coastal defences
for each NUTS2 region. Furthermore, it references three ty-
pologies of layers, namely geolocated coastal defences, re-
gional coastal defence policies, and modelled defences based
on Tiggeloven et al. (2020). Where applicable, flood pro-
tection standards are expressed in return periods. The sum-
mary return period summarizes the most accurate informa-
tion layer type regarding flood protection collected. This col-
umn prioritizes the layer types in the following order: (a) ge-
olocated coastal defences, (b) policy standards, and, lastly,
(c) modelled defence if no other information is applicable.
The overview of the data availability summary is mapped
in Fig. 1. The database was produced through two key ini-
tiatives. First, an online survey was distributed within the
networks of the CoCliCo project (European Union’s Hori-
zon 2020 research and innovation programme Coastal Cli-
mate Core Services under grant agreement no. 101003598)
and the Institute for Environmental Studies (IVM) of Vrije
Universiteit Amsterdam. Second, a data workshop was held
at Vrije Universiteit Amsterdam in November 2023, where
flood experts collected information on flood defence and pro-
tection standards in their respective languages using the aca-
demic and grey literature (policy reports and governmental
data portals) (Koks and De Plaen, 2023).

The survey consists of an online form targeting flood ex-
perts. It collects information related to the scale of the pro-
tection measure, the area protected, the flood protection level
expressed in the return period, and the year of implemen-
tation. In the case of a lack of information on physical de-
fences, an indication of policy standards applicable to the
area could be filled in by the associated policy measure. Fi-
nally, additional data such as geospatial layer or other rel-
evant information could be uploaded. The information col-
lected was then manually summarized in the geospatial and
policy layers of the database. The survey answers were then
archived in an Excel file referenced in the Zenodo repository
(De Plaen et al., 2024).

Through these combined efforts, we aim to provide a more
accurate and comprehensive understanding of coastal flood
protection measures. By incorporating diverse data sources
and methodologies, this new database addresses the critical
need for detailed, reliable information to better prepare for

Figure 1. Data availability overview of COASTPROS-EU, repre-
senting the best-available coastal protection standards in Europe per
NUTS2 region for three typologies of layers: geolocated coastal de-
fences, policy standards, and modelled defence standards.

and mitigate the risks associated with climate change and
coastal flooding.

While this dataset marks an initial step, certain limita-
tions must be acknowledged. Firstly, our new dataset is re-
stricted to Europe and therefore does not meet the need
for a global assessment. Moreover, the way that protection
levels are quantified and evaluated is critical. Current ap-
proaches mainly rely on return periods, providing a standard-
ized framework suitable for large-scale or regional analyses,
with the flexibility to convert between return periods and
defence heights. However, incorporating defence heights re-
mains essential, as their significance varies depending on the
specific context and research questions.

5 The way forward: embracing a transdisciplinary
community-based approach

A global effort is needed to improve data on coastal flood
protection, ensuring representation across diverse social
groups, languages, and data-scarce regions. This requires a
structured, transdisciplinary approach that integrates institu-
tional support, community-driven data collection, and multi-
ple sources of information to enhance flood risk assessments
and policy alignment.

Our dataset provides a starting point, but a broader, more
structured effort beyond academia is necessary. Institutional
support is key to ensuring sustained data collection and
standardized national-level reporting. Cultural differences in
flood protection – such as variations in design standards and
their local implementation – must be captured. While FLO-
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PROS and COASTPROS remain relevant, future efforts must
expand coverage, improve accessibility, and establish glob-
ally consistent methodologies.

Earth observation data remain essential for large-scale as-
sessments of coastal flood protection, offering standardized
insights into infrastructure and nature-based solutions. How-
ever, satellite data alone are insufficient. A multi-method
approach integrating satellite-derived information with local
expertise, participatory mapping, and national policy assess-
ments is critical. OpenStreetMap (OSM) provides an oppor-
tunity for community-driven mapping, particularly in regions
lacking official records. Aligning these efforts with struc-
tured policy reviews and national reporting frameworks will
bridge the gap between local knowledge and institutional
decision-making.

Standardized national-level reporting is crucial for im-
proving flood risk assessments and ensuring cross-country
comparability. Systematic reviews of national policies, in-
cluding flood design standards and their local application,
will enhance data consistency and policy impact. Rather than
relying solely on surveys, concrete recommendations should
guide reporting frameworks and promote best practices. By
integrating institutional expertise, satellite observations, and
community-driven contributions, we can build a more com-
prehensive and equitable approach to flood risk assessment –
one that strengthens resilience worldwide.

Data availability. The Excel file and GIS shapefile of
COASTPROS-EU are available on the following repository:
https://doi.org/10.5281/zenodo.15024139 (De Plaen et al., 2025).
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