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Abstract. The question of how to quantify the intensity of
extratropical cyclones (ETCs) does not have a simple an-
swer. To offer some perspective on this issue, we analyse
multiple measures of intensity for North Atlantic and Eu-
ropean ETCs for the extended winter season between 1979
and 2022 using ERA5 reanalysis data. The most relevant in-
tensity measures are identified by investigating relationships
between them and by performing a sparse principal compo-
nent analysis on the set of measures. We show that dynamical
intensity measures correlate strongly with each other, while
correlations are weaker for impact-relevant measures. Based
on the correlations and the sparse principal component anal-
ysis, we find that five intensity measures, namely 850 hPa
relative vorticity, 850 hPa wind speed, wind footprint, pre-
cipitation, and a storm severity index, describe ETC intensity
comprehensively and non-redundantly. Using these five mea-
sures as input, we objectively classify the ETCs with a clus-
ter analysis based on a Gaussian mixture model. The clus-
ter analysis is able to produce four clusters between which
ETCs differ in terms of their intensity, life cycle character-
istics such as deepening rate and lifetime, and geographical
location. A fourth of all ETCs belong to the weakest clus-
ter and occur mostly over Europe and in the Mediterranean
area. Nearly half of all ETCs belong to the average-intensity
cluster and occur mostly at the northeastern parts of the main
North Atlantic storm track. A fifth of all ETCs belong to the
second most intense cluster and occur mostly at the start of
the North Atlantic storm track. Finally, less than a 10th of
all ETCs belong to the most intense cluster and occur almost
equally everywhere. This last cluster includes a clear major-

ity of a set of investigated impactful storms (17 out of 21),
which demonstrates the ability of the method to identify po-
tentially damaging ETCs.

1 Introduction

Extratropical cyclones (ETCs), also referred to as mid-
latitude cyclones or low-pressure systems, constitute a sub-
stantial part of the atmospheric circulation in the mid-
latitudes and transport large amounts of heat, moisture, and
momentum polewards (Hartmann, 2015). ETCs are also re-
sponsible for most of the day-to-day variability in weather in
the mid-latitudes and are the dynamical cause for most of the
precipitation (Hawcroft et al., 2012). Furthermore, the most
extreme ETCs can be associated with heavy precipitation and
strong winds responsible for flooding, landslides, damage to
infrastructure, or diverse economic losses.

No two ETCs are the same, and there is great variabil-
ity in their shape, size, lifetime, and intensity (Nielsen and
Dole, 1992). Thus, many attempts of classifications have
been made and have often been driven by the desire to bet-
ter understand the development or the structure of certain
types of ETCs. For example, Zillman and Price (1972) and
Browning (1990) classified ETCs based on their cloud pat-
terns, whereas Field and Wood (2007) grouped ETCs based
on their low-level wind speed and their water vapour path in
an attempt to understand ETC precipitation. Attempts have
also been made to classify ETCs by their dynamical forc-
ing. For example, Thorncroft et al. (1993) and Schultz et al.
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(1998) separated ETCs that develop in different background
flows, whereas Petterssen and Smebye (1971), Deveson et al.
(2002), and Dacre and Gray (2009) grouped ETCs that are
dominated either by low-level thermal advection or by upper-
level vorticity advection. However, perhaps the most com-
mon approach to group or classify ETCs is based on a mea-
sure of their intensity. Previous studies have grouped ETCs
either by their maximum 850 hPa relative vorticity (VO), of-
ten focusing on the strongest storms (e.g. Catto et al., 2010;
Sinclair et al., 2020), or by the decrease in minimum mean
sea level pressure (MSLP) over a 24 h period, again com-
monly focusing on the most rapidly deepening storms (e.g.
Sanders and Gyakum, 1980; Reboita et al., 2021).

Quantifying the intensity of any given ETC in a concise
yet accurate manner is, however, a challenging task. Meteo-
rologists and climate scientists have faced this challenge for
many decades, and as such many methods and diagnostics
exist, but there is no clear “correct” way or “best” diagnos-
tic. The most common metrics used to quantify ETC inten-
sity, MSLP and VO, describe the synoptic-scale dynamics of
the ETCs and are strongly related to the horizontal pressure
gradient and large-scale winds. Historically, MSLP has been
provided by records from surface stations, while nowadays
VO is also commonly available from large gridded datasets
such as reanalyses. However, in many cases, neither the min-
imum MSLP nor maximum VO correlates well with the im-
pacts of a given ETC (e.g. Field and Wood, 2007; Roberts
et al., 2014; Sinclair and Catto, 2023). This is mainly due
to the presence of mesoscale features such as fronts, low-
level jets, and convergence bands which strongly influence
the wind and precipitation fields (Hewson and Neu, 2015).
Therefore, impact-relevant metrics which have no direct the-
oretical link to the traditional dynamically based metrics of
MSLP and VO have been introduced. Such metrics include
precipitation rates and accumulations (Hawcroft et al., 2012),
sizes of wind footprints (Roberts et al., 2014), and storm
severity indices (Leckebusch et al., 2008a).

Though challenging, quantifying the intensity of ETCs is
crucial for climate studies. Firstly, many studies have used
reanalysis datasets to quantitatively describe the state of the
current climate in terms of number, location, and intensity of
ETCs (e.g. Hoskins and Hodges, 2002; Rudeva and Gulev,
2007; Jeglum et al., 2010; Laurila et al., 2021a). Secondly,
a manageable number of metrics which are easy to compute
(concise metrics) are needed to identify whether any trends in
ETC intensity have already occurred or may do in the future
as the climate changes. For example, simulations from the
Coupled Model Intercomparison Project (CMIP) have been
extensively analysed to determine how the intensity of ETCs
may change in the future (e.g. Zappa et al., 2013b; Colle
et al., 2013; Seiler and Zwiers, 2016; Chang, 2018; Priest-
ley and Catto, 2022; Dolores-Tesillos et al., 2022). Thirdly,
concise metrics of ETC intensity enable the comparison of
the representation of ETCs in different datasets. For exam-
ple, ETC climatologies can differ between different reanal-

ysis datasets because ETCs differ in the underlying models,
data assimilation methods, or the spatial and temporal res-
olution of the reanalyses (Wang et al., 2016). Furthermore,
by comparing ETCs in historical simulations to ETCs in re-
analysis datasets, it is possible to determine how accurately
climate models reproduce the current climate (Catto et al.,
2010; Priestley et al., 2020).

Up to now, most studies have only quantified ETC inten-
sity using a single metric, or, if more than one has been con-
sidered, they have been used independently of each other.
This may result in some information being omitted, as each
metric only gives information about one aspect of ETCs. For
example, two ETCs with the same minimum MSLP may
have considerably different wind gusts associated with them
or be very different in size (Sinclair, 1997). Considering a
vast number and diversity of measures would likely give an
in-depth description of all ETCs, but this would become im-
practical to deal with, hard to visualize, and challenging for
forecasters and researchers to easily comprehend. Therefore,
an optimal balance should be sought. In this context, auto-
mated and objective methods need to be applied to group
ETCs using more than one metric or the spatial variation in
a variable. For this purpose, machine learning methods have
gained popularity in recent years due to their predictive and
classification abilities (e.g. Catto, 2018; Sinclair and Catto,
2023; Wang et al., 2024). Of the many ways to classify mete-
orological datasets, unsupervised learning (i.e. clustering) is
often prioritized to group elements of the dataset without any
a priori knowledge. One such method is the Gaussian mix-
ture model (GMM) which has been used in meteorological
applications before (e.g. Vrac et al., 2005; Watanabe et al.,
2020) but not widely in the context of ETCs.

The purpose of the study is to classify ETCs using multiple
measures of intensity. The first aim is to identify how a num-
ber of commonly used ETC intensity measures relate to each
other and then to identify the optimal metrics which, when
considered together, fully describe the intensity of ETCs. The
second aim is to classify the wintertime ETCs in the North
Atlantic and in the European region based on this subset of
intensity measures and to quantify the characteristics of each
cluster. The last aim of this study is to show where some of
the previously studied high-impact ETCs occur in our phase
space of intensity and ETC classification.

The paper is structured as follows. Section 2 explains how
the dataset of ETC tracks and intensity measures was cre-
ated. Section 3 describes the methods used in the analysis of
the data. Section 4 contains the results of the study which
are then discussed in Sect. 5. Finally, Sect. 6 concludes the
results.
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2 Creation of ETC intensity dataset

2.1 ERA5 reanalysis

ERA5 (Hersbach et al., 2020) is an open-access global
reanalysis dataset provided by the European Centre for
Medium-range Weather Forecasts (ECMWF). It has a hor-
izontal spectral resolution of TL639, which corresponds to
a grid spacing of 0.28°/31km at the Equator on the native
regular Gaussian grid of ERA5. We use ERA5 pressure level
data and selected surface fields with 3-hourly resolution from
1979–2022 to both create ETC tracks (Sect. 2.2) and extract
the ETC intensity measures (Sect. 2.3).

2.2 ETC tracking

ETC tracks are identified with the objective feature track-
ing software TRACK (Hodges, 1994, 1995, 1999b). TRACK
uses a Lagrangian approach of tracking individual cyclones
by identifying extrema in a given field and following them
through time. To track ETCs, we use the 3-hourly VO field at
the native horizontal resolution of ERA5 which is first trun-
cated to T42 spectral resolution (310km at the Equator) to
exclude small-scale features and ensure that only synoptic-
scale ETCs are identified. Wave numbers less than five are
also removed to filter out planetary-scale waves. For the re-
maining wave numbers, local maxima are identified in the
filtered VO field and a nearest-neighbour approach is used
to connect them into ETC tracks. TRACK produces output
which consists of the horizontal location (longitude and lat-
itude) and magnitude of the T42 VO maxima for each time
step in each ETC track.

We further filter the ETC tracks using the following crite-
ria:

1. To exclude stationary and short-lived systems, the tracks
need to be at least 1000km long and last for at least 2 d
(16 time steps in the 3-hourly data).

2. Weak systems are excluded by using a minimum thresh-
old of 1× 10−5 s−1 for the T42 VO.

3. Like in Sinclair and Catto (2023), the maximum T42
VO of the track must occur 24 h after genesis (the first
time step) or later.

4. The maximum T42 VO needs to occur inside the area
80° W to 40° E in longitude and 30° N to 75° N in lati-
tude (the magenta box in Fig. 1).

In total, in the 43 extended winters we find 7361 tracks meet-
ing these criteria.

Statistical diagnostic fields of ETC tracks, such as track
density, are calculated by using spherical kernel estimators
provided by TRACK (Hodges, 1996, 1999a, 2008). Figure 1
shows the climatology of track density of the 7361 ETC
tracks. In Fig. 1 we see that track density is the largest

Figure 1. Climatology of ETC track density for the 43 October–
March seasons in areas, where on average at least one track per
5° spherical cap (∼ 106 km2) occurs per season. The magenta box
bounded by 80° W, 40° E, 30° N, and 75° N shows the area inside
which the ETCs need to have their maximum T42 VO. The hatching
indicates areas where the average monthly mean value of surface
pressure between October 1979 and March 2022 is below 850hPa
and the tracks may therefore be non-physical.

along the North Atlantic storm track, beginning at the east-
ern coast of North America and extending northeastward to-
wards northern Europe. A local maximum in track density
can also be seen in the Mediterranean basin. This is despite
the fact that the tracking algorithm we use and the filters we
applied are more designed to identify ETCs in the main storm
tracks than in the Mediterranean, where ETCs tend to be
smaller and shorter-lived (Campins et al., 2011). Similar dis-
tributions of track density during winter (DJF) were identi-
fied previously by Priestley et al. (2020) in historical CMIP6
simulations and by Hoskins and Hodges (2002) in ECMWF
analyses using the same tracking algorithm. Campins et al.
(2011), Aragão and Porcù (2022), and Doiteau et al. (2024),
who focused on the Mediterranean region, determined the
Gulf of Genoa as the location of maximum track density dur-
ing DJF, whereas we have a maximum over the Tyrrhenian
Sea. This difference can be explained by the sensitivity of the
tracking method in this particular basin (see Flaounas et al.,
2023, for details). However, the overall number of tracks in
the Mediterranean area in these previous studies is in agree-
ment with our distribution.

2.3 Intensity measures

We use ERA5 reanalysis data to create a set of intensity mea-
sures for the tracked ETCs. We reduce the amount of data to
obtain one value per intensity measure per track. All the in-
tensity measures can be calculated from any other reanalysis
dataset.

The intensity measures can be divided into two categories.
The first category consists of dynamical measures which de-
scribe physical aspects of ETCs and can be obtained from
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the reanalysis with no or minimal post-processing. The sec-
ond category consists of what we call impact-relevant mea-
sures. These are diagnostic variables which are designed to
quantify the aspects of ETCs that possibly have societal im-
pacts. We emphasize that the impact-relevant measures do
not necessarily directly translate into impacts but are based
on variables which quantify the ETC features that have been
found to cause the most damage to infrastructure.

All intensity measures and the details of how they are pro-
duced are described in detail in the following subsections
(Sect. 2.3.1 and 2.3.2), and the measures are summarized in
Table 1. Most of the variables are on the native ERA5 grid
with the horizontal resolution of 0.28°. The exceptions are
850 hPa wind speed and 10 m wind speed, which are on a
0.25° regular longitude–latitude grid. This is solely because
we already had these data locally available. However, this
difference in resolution is small and very unlikely to affect
the results.

2.3.1 Dynamical measures

The baseline for the intensity measures is VO, a widely used
measure of ETC intensity. We use VO at the T42 resolution
directly from the output of TRACK. For the sake of simplic-
ity, we refer to the location of the VO maximum as the ETC
centre, although the physical centre of the ETC is not neces-
sarily located exactly at the same point.

The next dynamical variable we include is based on MSLP,
which along with VO is a widely used measure of ETC in-
tensity (e.g. Priestley et al., 2020). To account for the ef-
fect of the background environment on the MSLP values
(i.e. large-scale temporal variations and climatological de-
pendence of latitude; Anderson et al., 2003), we subtract a
monthly mean value from the MSLP field to obtain an MSLP
anomaly (MSLPa). We use the MSLPa field to find the near-
est local minimum around the VO maximum. This is done
by using bilinear spline interpolation and a steepest-descent
method with TRACK. The local minimum MSLPa is found
inside a circle centred around the VO maximum and has a
radius of 6 geodesic degrees (equivalent to about 670km).
Various values were tested for the radius, and 6 geodesic de-
grees was discovered to be the most suitable (not shown).
This value is also used by e.g. Li et al. (2014). Most of the
MSLPa minima are within 100km of the VO maxima, and
very few values are actually found at a distance of 670km
(see Fig. S1 in the Supplement). For a small number (3%) of
maximum VO values, TRACK is unable to find an associated
MSLPa value. These ETCs are omitted from the dataset.

Finally, we include winds from multiple levels as dy-
namical intensity measures. For a comprehensive overview
of winds associated with ETCs, we include the maximum
wind speed at 850 hPa (WS850), 925 hPa (WS925), and 10 m
(WS10) within 6 geodesic degrees from the VO centre, a ra-
dius also used by Zappa et al. (2013a) and Gramcianinov
et al. (2020). We also include the wind gusts at 10 m (FG10)

as the maximum within 6 geodesic degrees, but unlike for the
other three wind variables, we do not use an instantaneous
value. Wind gust is highly variable in time, and therefore we
take the maximum value of the previous 3 h. As for MSLPa,
various values were explored for the radius of the area for all
wind speed measures (not shown).

2.3.2 Impact-relevant measures

The first impact-relevant intensity measure is based on pre-
cipitation, which is an hourly accumulated field in ERA5.
We sum precipitation values over 3 h to correspond to our
time interval and define a precipitation diagnostic (PRECIP)
as the average precipitation rate within an area, with a defi-
nition adapted from Sinclair and Catto (2023):

PRECIP=
1
AT

m∑
i=1

PiAi, (1)

where Pi is the 3-hourly precipitation rate at grid point i, Ai
is the area of the grid point, m is the number of grid points
in which Pi exceeds a specific threshold value, and AT is
the total area of the m grid points. The precipitation is con-
sidered and averaged only within a specific geodesic radius
around the ETC centre. We use the same values as Sinclair
and Catto (2023) adapted to our grid and time resolution,
i.e. a geodesic radius of 12° and a minimum precipitation
rate of 0.5mm (3h)−1.

Next, we construct a wind footprint diagnostic to measure
the area of the ETC wind field. The wind footprint (WFP) is
defined as

WFP=
m∑
i=1

Ai, (2)

where Ai is the area of grid point i and m is the number
of grid points within a given radius from the ETC centre in
which the 3-hourly maximum of 10 m wind gust exceeds a
specific threshold. A geodesic radius of 10° was found to be
the best compromise for capturing winds associated with a
given ETC from an area as large as possible without contam-
inating the WFP with winds related to neighbouring ETCs
(see Fig. S2). For the threshold, we use a relatively small
value of 15ms−1 to have a non-zero WFP for moderate ETCs
as well. The value was chosen by considering thresholds
used by various national weather services in Europe to issue
the lowest-level (yellow) wind warnings over land. In Fin-
land this value is 15ms−1 in summer and 20ms−1 in winter
(FMI, 2018), whereas the corresponding values in Norway
are 17 and 19ms−1 (METNorway, 2021). In Ireland this
value is 25ms−1 (MetÉireann, 2024), whereas in Germany
the threshold is 14ms−1 (DWD, 2015). The low threshold
selected here is also justified based on the fact that in ERA5,
the wind gust may be underestimated in some areas (Chen
et al., 2024; Minola et al., 2020).
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Table 1. Summary of all 11 intensity measures. The columns are the full name, abbreviated name, the type of value extracted, the maximum
distance from the VO maximum (in geodesic degrees) to which the values are searched for, and time step with respect to the time of VO
maximum (in hours). The horizontal line separates the measures into dynamical and impact-relevant ones.

Measure Abbreviation Type Distance Time step

850 hPa relative vorticity VO Maximum T42 0 0
Mean sea level pressure anomaly MSLPa Nearest local minimum 6 0
850 hPa wind speed WS850 Maximum 6 0
925 hPa wind speed WS925 Maximum 6 0
10 m wind speed WS10 Maximum 6 0
10 m wind gust FG10 Maximum 6 0

Precipitation PRECIP Avg. where ≥ 0.5mm (3h)−1 12 −12
Accumulated precipitation PRECIPacc Avg. where ≥ 0.5mm (3h)−1 12 Accumulated
Wind footprint WFP Area where gust ≥ 15ms−1 10 0
Storm severity index SSI Sum over area 10 0
Accumulated storm severity index SSIacc Sum over area 10 Time-integrated

Finally, we include a storm severity index (SSI) to quantify
the possible impact from wind associated with ETCs. Differ-
ent SSI metrics have been previously used to successfully
estimate the societal impact of ETCs (Klawa and Ulbrich,
2003; Pinto et al., 2007; Leckebusch et al., 2007). We use
an SSI metric adapted from Leckebusch et al. (2008a). Here,
SSI is calculated at each grid point within a circular area with
a fixed radius around the ETC centre throughout the ETC life
cycle. Our definition of SSI is as follows:

SSI=
1
Aref

m∑
i=1

max(0,
vi

v98,i
− 1)3Ai, (3)

where vi is the maximum 10 m wind gust within 3 h and v98,i
is the climatological 98th percentile value of 10 m wind gust
at grid point i, Ai is the area of the grid point, m is the num-
ber of grid points within a certain geodesic radius from the
ETC centre, and Aref is the area of the largest point in the
grid (at the Equator). Scaling SSI values with the relative
area of each grid point ensures that an ETC is considered
more severe because the impacted area is larger, independent
of latitude. We use a geodesic radius of 10° to compute the
SSI. This value was discovered to be the most suitable based
on a similar analysis as the one performed for the WFP (see
Fig. S4).

The climatology of 10 m wind gust is calculated for the
whole period from October 1979 to March 2022, including
the summer months as well. We include summer months in
the climatology since the justification for using the 98th per-
centile as a threshold for the wind gust is based on the find-
ing that damage from winds occurs locally on 2% of all days
(Palutikof and Skellern, 1991). In some regions (e.g. parts
of Scandinavia, in the Mediterranean, or southeastern Eu-
rope) the climatological 98th percentile values of 10 m wind
gust are quite small (Fig. S3) and unlikely to cause severe
damage. Karremann et al. (2014) avoided this discrepancy
between the definition of SSI and actual wind gust values

by implementing a fixed minimum threshold. For impactful
events in the Mediterranean region, Nissen et al. (2010) re-
quired a minimum duration of 18 h and minimum affected
area of around 36000km2. We do not use a minimum wind
gust or area threshold for the SSI, since such an approach is
already evaluated by the WFP, which is based on a fixed gust
threshold.

For each ETC track, we restrict the analysis to only one
time step per intensity measure. For all intensity measures
other than PRECIP, the value at the time of maximum VO
along the track is chosen, since the maximum value of the
intensity measures also occurs at the same time or at the ad-
jacent time step on average (see Fig. S5). The maximum pre-
cipitation rate occurs on average 12 h before the time of max-
imum VO (see Fig. S5f). For this reason, PRECIP is evalu-
ated at this time step.

We also include accumulated versions of PRECIP and SSI.
We construct an accumulated precipitation measure (PRECI-
Pacc) by summing together all PRECIP values along each
track and an accumulated SSI measure (SSIacc) by time-
integrating successive SSI values along each track.

3 Methods

3.1 Correlation analysis

We use two different correlation metrics to quantify co-
occurrence relationships between the intensity measures. The
first one is the widely used Pearson’s correlation coefficient,
r , which evaluates linear dependence. The second one is mu-
tual information (MI), which we use to quantify non-linear
dependencies. MI is a measure of dependence between two
random variables based on their joint and marginal entropies
(Cover and Thomas, 2006). In other words, it quantifies how
much information can be obtained about one random vari-
able by observing another random variable. MI has values
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in the interval [0, ∞), but it can be converted into a corre-
lation coefficient, ρ, by normalizing it to a range [0, 1]. The
normalization is computed using the Python package ennemi
(Laarne et al., 2021, 2022) as follows:

ρ =
√

1− exp(−2MI). (4)

Using two different kinds of correlation metrics is bene-
ficial because in addition to quantifying the strength of the
relationship, we can learn about its type as well. Because MI
is able to quantify non-linear relationships in addition to lin-
ear ones, similar values of r and ρ indicate a linear relation-
ship between two variables, whereas higher ρ than r values
indicate a relationship with a non-linear component.

3.2 Principal component analysis

Principal component analysis (PCA) aims to find an orthog-
onal linear transformation that maximizes the variance pro-
jected onto each of the newly found axes. This method is used
in all fields of science, including meteorology (Statheropou-
los et al., 1998; Nagendra and Khare, 2003), and has also
been applied in studies on cyclones (Lou et al., 2012; Nakajo
et al., 2014; Chen et al., 2019). One of the main features of
PCA is its ability to reduce the dimensionality of a given
problem by ignoring the axes explaining a negligible amount
of the original variance. However, one of its main drawbacks
is the interpretability of the results as each axis is expressed
by a linear combination of the original feature space, often
mobilizing the entire space. Sparse PCA (sPCA) alleviates
this issue by proposing a PCA with sparse loadings, i.e. set-
ting some of the coefficients in the linear expression of the
PCA’s axes to zero (Zou et al., 2006; Zou and Xue, 2018).
However, sPCA is a lossy compression technique with an
important dependency on the dimension of the projective hy-
perplane.

Consequently, in this study we will guide the sPCA
by a classical PCA analysis (respectively scikit-learn’s
SparsePCA and PCA; Pedregosa et al., 2011). We apply the
PCA to estimate the explained variance against the number
of principal components (PCs). Then, we select the number
of components which explains more than 90 % of the vari-
ance. This number of components is then used as the main
parameter of the sPCA and is applied to the same dataset.
Therefore, we minimize the risk of losing too much infor-
mation with PCA by conserving a satisfying interpretability
with sPCA. Based on the correlations and the sPCA results,
we select a reduced subset of intensity measures to use as in-
put for the cluster analysis. This subset is conceived to reduce
information redundancy whilst maintaining the interpretabil-
ity of the original set of measures.

3.3 Cluster analysis

A cluster analysis using the GMM aims to fit several mul-
tivariate Gaussian distributions to a dataset. As such, each

cluster may be represented as a multidimensional Gaussian
probability density function extending throughout the whole
feature space, in our case the small subset of intensity mea-
sures produced by the sPCA analysis. The main drawback of
the GMM is that the number of clusters has to be input, and
the optimal number of clusters cannot be known in advance.
The elbow method is used to disambiguate this choice and
select the number of clusters which (1) maximizes Silhou-
ette score (Shahapure and Nicholas, 2020) and (2) does not
fall in the over-fitting learning plateau (i.e. when the Silhou-
ette score is constant). In other words, the optimal number of
clusters is the case avoiding both under- and over-fitting.

We use the GMM (scikit-learn’s GaussianMixture; Pe-
dregosa et al., 2011) on the reduced subset of intensity mea-
sures selected by our sPCA method. To choose the correct
number of clusters to be found, we first use the elbow method
to select two values to test before the over-fitting plateau is
reached, as shown in Fig. S6. Then, we use the following
stability test to refine our decision to one value. Our stabil-
ity test aims to verify if the clusters’ centroids predicted by
several instances of the GMM are intercomparable. We first
compute the Euclidean distance between the reference cen-
troids and the centroids predicted by 1000 other instances.
Then, the arguments of the minimum of the Euclidean dis-
tances are taken for each predicted clusters. If the arguments
of the minimum are not repeating, it means a permutation
of the clusters is able to successfully compare two instances
of the GMM. In other words, we test the sensitivity of our
cluster analysis to the chosen number of clusters. A stabil-
ity score has been defined as the average number of clusters
which are not intercomparable between two instances of the
GMM. Thus, a stability score of zero is considered optimal.
Stability scores are shown in Table S1 in the Supplement. As
a result, we select n= 4 as our optimal number of clusters
as this value falls in the elbow criteria and has the lowest
stability score.

4 Results

4.1 Relationships between intensity measures

Distributions of all 11 intensity measures are shown in
Fig. 2. We see in Fig. 2a–f that the dynamical intensity
measures have Gaussian-like distributions. Distributions of
VO, MSLPa, and WS850 (Fig. 2a–c) are slightly skewed
towards more intense values, whereas WS925, WS10, and
FG10 have more symmetric distributions (Fig. 2d–f). Similar
distributions for these measures have been previously found
by e.g. Bengtsson et al. (2006, 2009), Zappa et al. (2013a),
and Gramcianinov et al. (2020). Compared to the dynam-
ical intensity measures, the distributions of the impact-
relevant measures are much less Gaussian-like (Fig. 2g–k).
Out of these, PRECIP has the most Gaussian-like distribu-
tion (Fig. 2g) but is more positively skewed than any of the
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dynamical measures’ distributions. With a slightly different
definition, Zappa et al. (2013b) found a similar distribution
for precipitation. The distribution of PRECIPacc (Fig. 2h) is
even more positively skewed than that of PRECIP as the dif-
ferences between ETCs are emphasized with the added effect
of the duration of the track. WFP (Fig. 2i) has a very different
distribution to the other intensity metrics with a large peak at
the smaller end of the distribution and is very flat almost un-
til the largest values. Only around 80 ETCs have a WFP of
zero (not shown), which means that the first bin has the most
ETCs with non-zero WFP. The WFP values decrease rapidly
at the large end of the distribution as the radius threshold is
reached (the theoretical maximum value of WFP is around
3.9× 106 km2). The shapes of the SSI distributions are even
more extreme (Fig. 2j–k, shown on semi-log axes). The cube
of the wind exceedance in Eq. (3) for SSI emphasizes differ-
ences between small and large values. Therefore, there are
many very small values and few large values. For example,
there are outlier ETCs in which the values of SSI and SSIacc
are more than twice the value of the next largest one. These
outlier ETCs are the 1993 Storm of the Century (Huo et al.,
1995) and ex-hurricane Wilma (Pasch et al., 2006), respec-
tively.

We investigate the Pearson correlation coefficients (r) in
Fig. 3a and correlation coefficients from MI (ρ) in Fig. 3b for
relationships between all 11 intensity measures. The relation-
ships can be roughly divided into two groups based on their
strength: the first group contains the six dynamical measures
and WFP, and the second one the two SSI and two precipi-
tation measures. All the Pearson correlations are statistically
significant (not shown).

Correlations between all measures in the group consist-
ing of the dynamical measures and WFP are strong, with a
Pearson’s r of at least 0.7 for every combination (Fig. 3a).
The strongest correlations are between the four wind speed
measures (WS850, WS925, WS10, and FG10). A particu-
larly strong correlation is between WS10 and FG10, with a
Pearson’s r of 0.97. This is surprising, given that in the Inte-
grated Forecast System, which is used to produce ERA5, the
parameterization for wind gusts includes a term to represent
the contribution of convective downdraughts and a term to
account for surface roughness, in addition to the 10 m wind
speed term (Bechtold and Bidlot, 2009). The very strong cor-
relation between WS10 and FG10 found here indicates that
the convective downdraughts and surface friction contribute
a minimal amount to the wind gusts in ETCs in ERA5. The
weakest correlations in the first group of measures are be-
tween MSLPa and the wind speed measures, with r val-
ues between 0.71 and 0.76. Correlation coefficients from MI
(Fig. 3b) are consistently, yet only slightly, larger than Pear-
son’s r for the measures in the first group. The small differ-
ences between the two correlation coefficients suggest that
the relationships are linear.

Relationships of the measures in the second group, SSI and
precipitation measures, are weaker than those of the mea-

sures in the first group. This can be explained by the dif-
ferent shapes of the distributions in Fig. 2. For both SSI
and precipitation measures, the largest values of Pearson’s
r (around 0.5) are between the corresponding accumulated
and instantaneous versions. For any of the measures in the
second group, the strongest correlation with a measure in
the first group is between PRECIP and VO, with a value
of r = 0.47. This may be explained by precipitation-related
diabatic heating producing a low-level potential vorticity
anomaly which feeds back to the 850 hPa relative vorticity
(Davis and Emanuel, 1991).

Correlations between SSI and precipitation measures are
the weakest in terms of r and among the weakest in terms
of ρ. For these measures, the ρ values are consistently larger
than r values, and the difference is larger than for measures
in the first group. The relationships are thus more non-linear.
The difference is also larger for SSI than precipitation mea-
sures. This is not unexpected given the highly non-Gaussian
distribution of the SSI measures. However, the ρ values are
still not as large as for the first group, with the strongest cor-
relation coefficients from MI between FG10 and SSI having
ρ = 0.71.

4.2 PCA and sparse PCA

The result of the PCA is obtained with the 11 intensity mea-
sures as input (Fig. 4). The weights of the intensity measures
in the first four PCs (Fig. 4b–e) indicate that there are mul-
tiple measures with a contribution of similar magnitude in
each PC. For example, in the first PC (Fig. 4b) WFP has
the largest weight, but VO, MSLPa, and all wind speed mea-
sures have similar, non-negligible weight. In Fig. 4a, which
shows ETCs projected onto the first three PCs of the PCA
space, this can be seen in the even spread of points all over
the axes. Based on the result of the PCA, it is not straight-
forward to determine which intensity measures have redun-
dancy between them and which do not. Therefore, it is diffi-
cult to use only the PCA for dimensionality reduction in the
original dataset. However, we can use the fact that the first
four PCs of the PCA contain 94% of explained variance in
the dataset to constrain the sPCA. The result of the sPCA
constrained to 4 PCs with the 11 intensity measures as in-
put is shown in Fig. 5. As opposed to the result of the PCA,
now each of the four PCs consists almost completely of ei-
ther a single intensity measure or a group of similar inten-
sity measures. We see this in their larger weight compared
to the other measures, which have a weight close to or ex-
actly zero in the same PC (Fig. 5b–e). The PCs can therefore
be labelled as mainly consisting of (1) the four dynamical
wind speed measures (WS850, WS925, WS10, and FG10),
(2) PRECIP, (3) WFP, and (4) VO and MSLPa. Minor con-
tributions in terms of weight come from (1) VO, (2) PRECI-
Pacc and VO, (3) WS10 and FG10, and (4) WS850. The only
measures which have no weight in any of the PCs are the two
SSI measures.
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Figure 2. Distributions of intensity measures at the selected times along the tracks (see text in Sect. 2.3 and Table 1 for details). Note that
panels (j) and (k) are shown on the logarithmic y axes.

Figure 3. (a) Pearson’s r and (b) MI correlation coefficients ρ for the ETC intensity measures. All values of Pearson’s r involving MSLPa
are negative, but an absolute value is shown for them to aid comparison with other coefficients.
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Figure 4. (a) ETCs projected onto the PCA space. PC1 and PC2 are the horizontal and vertical axes, respectively, and PC3 is shown in
colours. Inset in the bottom left corner shows cumulative proportion of explained variance (percent) as a function of number of PCs. Inset
in the bottom right corner shows loadings of PC1 and PC2 as vectors. (b–e) Weights of input measures in the first four PCs. Weights with
larger magnitudes indicate more contribution of the specific intensity measure to the PC. The numbers in parentheses indicate the proportion
of total explained variance in a given PC.

Figure 5. (a) ETCs projected onto the sPCA space. PC1 and PC2 are the horizontal and vertical axes, respectively, and PC3 is shown in
colours. Inset in the bottom right corner shows loadings of PC1 and PC2 as vectors. The percentages indicate how large a proportion of all
tracks falls into each sector (on which side of the mean, i.e. negative or positive value of PC). The labels “calm” and “windy”, “dry” and
“rainy”, and “small” and “big” refer to the qualitative interpretation of PC1, PC2, and PC3, respectively. (b–e) Weights of input measures in
the four PCs.

The PCs now have a straightforward physical interpreta-
tion, and we can label the axes in the sPCA space according
to ETC features quantified by the most important intensity
measures in the PCs (e.g. windiness). In Fig. 5a the ETCs
are shown projected onto the first three PCs of the sPCA
space in which PC1 goes from “calm” to “windy”, PC2 goes
from “dry” to “rainy”, and PC3 goes from “small” to “big”.
For reference, the most “average” ETC in the sPCA space

(the smallest Euclidean distance from origin) has a WS850
value of 30.2ms−1, PRECIP of 2.3mm (3h)−1, WFP of
1.7× 106 km2, and VO of 6.8× 10−5 s−1. Compared to the
projection of the PCA space in Fig. 4a, the ETCs fall into the
sPCA space much less symmetrically. The strong correlation
between the wind speeds (PC1) and WFP (PC3) is evident as
most of the tracks are on the same side of the mean of the PC
(value 0) for PC1 and PC3 (either calm and small or windy
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and big). Precipitation (PC2) has a weaker correlation with
the winds and WFP, which can be seen in the more even dis-
tribution of positive and negative PC3 values on either side
of the PC2 mean than of the PC1 mean. However, more than
half of the ETCs (56%) are in sectors in which all the three
PCs are on the same side of the mean, i.e. in the qualitative
binary representation of the sPCA space either calm, dry, and
small (32%) or windy, rainy, and big (24%).

We use the result of the sPCA to reduce the number of nec-
essary intensity measures in the dataset for the comprehen-
sive description of ETC intensity. Despite strong correlations
between the winds, WFP, and VO, we retain them separately
in the reduced set as they appear each on their own in the
sPCA. We choose to keep five intensity measures in the final
set for the comprehensive and non-redundant representation
of ETC intensity.

1. WS850. All four wind speed measures are highly corre-
lated with each other and grouped in PC1 of the sPCA.
WS850 is chosen because of its link to VO in PC4.

2. PRECIP. PRECIP is from sPCA.

3. WFP. WFP is from sPCA.

4. VO. VO is from sPCA. It is preferred over MSLPa be-
cause of its minor weight in PC1 and PC2.

5. SSI. Although SSI has zero weight in sPCA, it is in-
cluded since it is weakly correlated with the other in-
tensity measures and has a more non-linear relationship
with them. It can therefore be used to better separate the
feature space (non-linearly).

4.3 Cluster analysis

The cluster analysis was performed using the method de-
scribed in Sect. 3.3 with the reduced set of intensity mea-
sures identified in Sect. 4.2 as input. The number of clusters
was chosen to be four. Each ETC is assigned into the most
probable cluster based on the multivariate Gaussian probabil-
ity density distribution. The clusters are named based on the
average magnitudes of the input measures and the average
geographical locations of ETCs in them. These are explained
in detail in the following sections. The four obtained clusters
are denoted as

1. HighSSI (proportion of total ETCs in the cluster:
8.57%)

2. Intense (21.46 %)

3. AvgMST (average main storm track, 44.42%) and

4. Weak (25.54%).

4.3.1 ETC intensity measures

Distributions of all 11 intensity measures for ETCs in each
of the clusters are shown in Fig. 6. For each intensity mea-
sure, the distributions are significantly different between the
four clusters at the 5% level based on the Mann–Whitney
U test (Mann and Whitney, 1947, not shown). The shapes
of the intensity measures’ distributions in different clusters
are largely similar in nature to the full distributions shown in
Fig. 2. For example, in each cluster the distribution of VO
is Gaussian-like (Fig. 6a). In terms of both the mean and the
median, the average magnitude of VO in the clusters in de-
creasing order is HighSSI, Intense, AvgMST, and Weak. All
distributions of WS850 (Fig. 6b) and WS10 (Fig. 6h) are also
Gaussian-like with similar shapes between the clusters. The
order of the average magnitudes is the same as for VO. For
MSLPa (Fig. 6f) and WS925 (Fig. 6g) the shapes of HighSSI,
Intense, and AvgMST distributions are more similar between
each other than for the previously mentioned intensity mea-
sures. However, the order of the average magnitudes of the
intensity measures is the same. Finally, clusters HighSSI and
Intense both have broad, non-Gaussian distributions with al-
most flat tops (Fig. 6i). The order of the average magnitudes
is, however, the same as for the other dynamical measures.

Like the full distributions in Fig. 2, the distributions of
the impact-relevant intensity measures in the clusters are
less Gaussian-like than those of the dynamical measures. In
the distributions of WFP for the different clusters, the or-
der of average magnitudes is the same as in the dynami-
cal measures, but there is more overlap between the three
most intense clusters (Fig. 6d). For PRECIP, clusters Weak
and AvgMST have narrow Gaussian-like distributions, while
distributions of clusters Intense and HighSSI are positively
skewed (Fig. 6c). The PRECIP distributions largely over-
lap, especially between clusters Intense and HighSSI. In fact,
PRECIP is the only intensity measure for which the mean
value is the largest for cluster Intense instead of cluster High-
SSI. SSI distributions of clusters Weak and AvgMST heav-
ily overlap and comprise most of the smallest SSI values
(Fig. 6e). There is little overlap with the other two clusters,
as most SSI values in cluster Intense are larger than any value
in the two weaker clusters (Weak and AvgMST), and almost
all values in cluster HighSSI are larger than any value in the
other three clusters. These three distinct ranges of SSI val-
ues are probably an effect of the highly skewed distribution
of SSI, and they indicate that SSI creates a lot of separation
between the clusters. For SSIacc there is a clear separation
between the mean values in the clusters, but there is much
more overlap between distributions than for SSI.

4.3.2 ETC characteristics

In addition to the intensity measures, we compare vari-
ous ETC characteristics between the four clusters. Figure 7
shows the distributions of latitude of genesis, meridional dis-
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Figure 6. Probability densities of the intensity measures in ETC clusters. The legend in each panel is ordered based on the means of the
distributions from largest to smallest. Note that panels (e) and (k) are shown on logarithmic axes.

placement (latitude of lysis minus latitude of genesis), lati-
tude of maximum VO, deepening rate (difference in MSLPa
24 h before and at time of minimum MSLPa), lifetime, and
mean displacement speed (averaged over the whole life cy-
cle) of ETCs in the four clusters. In general, compared to the
intensity measures, the distributions of ETC characteristics
have more overlap between the clusters. As was the situation
with the intensity measures, in almost all ETC characteristics
clusters HighSSI and Intense have the most similar distribu-
tions between each other. Despite this, all distributions are
statistically different at a significance level of at least 5% in
a Mann–Whitney U test, except for the latitude of genesis
of clusters HighSSI and Intense (not shown). This indicates
that cluster analysis based on intensity measures is able to
identify ETCs which are different in terms of their life cycle
characteristics in addition to their intensity. These differences
are described in detail in the following paragraphs.

The distributions of genesis latitude overlap consider-
ably between the clusters, and they all peak around 40° N
(Fig. 7a). Compared to the latitude of genesis, there is more
variation between clusters in the meridional displacement
of ETCs (Fig. 7b). The largest meridional displacement is

on average in cluster HighSSI with a peak around 25°.
Slightly smaller displacements are found in clusters Intense
and AvgMST, while cluster Weak has the most negative
displacement values (i.e. equatorward displacement) with a
peak in the distribution around −5°. This causes ETCs in
cluster Weak to have the smallest latitude of maximum VO
on average, with a peak around 35° (Fig. 7c). Although ETCs
in clusters HighSSI and Intense have on average a lower lati-
tude of genesis compared to cluster Weak, their larger merid-
ional displacement causes them to have on average a higher
latitude of maximum VO. In contrast, despite the slightly
smaller meridional displacement values compared to clusters
HighSSI and Intense, the highest latitudes of genesis cause
ETCs in cluster AvgMST to have on average the highest lati-
tude of maximum VO, with a peak in the distribution around
60° N.

All the distributions of deepening rate (Fig. 7d), lifetime
(Fig. 7e), and mean speed (Fig. 7f) are skewed to the right.
All of them also have the same order of average magnitude
between the clusters: (1) HighSSI, (2) Intense, (3) AvgMST,
and (4) Weak. This order is the same as in most of the in-
tensity measures in Fig. 6 as well as meridional displace-
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Figure 7. Probability densities of the ETC characteristics for the clusters. The legend in each panel is ordered based on the means of the
distributions from largest to smallest.

ment (Fig. 7b). An explanation for this similarity on the order
of average magnitude between intensity and the characteris-
tics is that, for example, higher wind speeds tend to relate to
higher displacement speeds, while larger deepening rates are
likely to result in deeper ETCs in terms of MSLPa.

4.3.3 Geographical distribution of ETCs

Figure 8 shows the geographical distribution of ETCs in the
different clusters compared to the full climatology, and Fig. 9
shows the proportion of ETCs in each cluster in the boxes
shown in Fig. 8e, which offers more insight into the geo-
graphical distribution. In Fig. 8d we see that ETCs in cluster
Weak are mostly absent from the main North Atlantic storm
track area (the southwest to northeast tilted area of large track
densities in the North Atlantic in Fig. 8e). They are inversely
the most abundant in the Mediterranean basin. Mediterranean
cyclones are generally smaller and have shorter life cycles
than ETCs in other larger basins (Campins et al., 2011),
which may explain the larger number of Weak cyclones in
this region as their WFPs tend to be smaller. The high density
of cluster Weak ETCs in the Mediterranean is also consis-
tent with small values of latitude of maximum VO (Fig. 7c)
and meridional displacement (Fig. 7b), given the location
and orientation of the Mediterranean basin. In addition to the
Mediterranean basin, ETCs in cluster Weak comprise most
of the tracks in continental Europe (Fig. 8d). The occurrence
in this area also explains the smaller WFP values, as near-
surface wind speeds and gusts are lower over land than over

sea areas (Laurila et al., 2021b). However, it does not explain
the small SSI values, which depend on local FG10 values
instead of an absolute threshold.

From a qualitative perspective, the occurrence areas of
ETCs in cluster AvgMST (Fig. 8c) are a mirror image of the
ones in cluster Weak. As the name suggests, ETCs in clus-
ter AvgMST mostly occur along the main storm track with
a maximum between Greenland and Iceland. In Fig. 9 we
see that over the North Atlantic Ocean most ETCs are in this
cluster, especially in the “Arctic” area where their proportion
is more than 60%. However, we also see that in Europe al-
most half of ETCs are in cluster AvgMST. In general, ETCs
in this cluster occur more in the northern parts of the domain
and are largely absent south of 45° N. This can be seen also
in the northernmost values of genesis latitude (Fig. 7a) and
latitude of maximum VO (Fig. 7c).

ETCs in cluster Intense have a maximum in track density
over the eastern coast of the United States (Fig. 8b). Most
of them occur at the start of the storm track. Elsewhere in
the domain, differences are small compared to the full cli-
matology. The location of the tracks in cluster Intense partly
explains the large precipitation values in many of its ETCs,
as they occur in the southwestern parts of the domain at the
start of the storm track, which is an area with large ETC-
associated precipitation (Hawcroft et al., 2012), and over
oceans where surface moisture is abundant. Finally, Fig. 9
shows that also approximately 20% of Mediterranean ETCs
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Figure 8. (a–d) Anomalies of track density in the clusters compared to (e) the full climatology. Track densities are calculated separately for
the clusters; normalized by multiplying them with Ntot/Nc, where Nc is the number of tracks in a cluster and Ntot is the total number of
tracks; and the track density of the full climatology subtracted from them. The percentages in parentheses indicate the proportion of all tracks
in each cluster.

Figure 9. Proportion of ETCs in each cluster in the area boxes
shown in Fig. 8e. The occurrence area of an ETC is allocated based
on its location at time of maximum VO. The values are normalized
by the number of ETCs occurring in each box, which is shown by
the numbers at the top of the bars. Thus, the four bars for each area
sum up to one. Explanations for the abbreviations are as follows:
WAtl is western North Atlantic, EAtl is eastern North Atlantic, Eur
is Europe, and Med is Mediterranean.

belong to cluster Intense, indicating that strong ETCs do de-
velop in this region.

Due to the small size of cluster HighSSI (8.57% of all
tracks), the normalization of the track density by the total
number of tracks in the full climatology affects the distribu-
tion greatly, with individual tracks having a larger contribu-
tion than in the other clusters. Despite this, the distribution
of track density in cluster HighSSI (Fig. 8a) looks like what
one would expect based on its similarity to cluster Intense
in terms of intensity and ETC characteristics. As in cluster

Intense, the highest track densities occur at the start of the
storm track. However, the area of higher track density ex-
tends more to the northeast along the storm track (i.e. over
Ireland, Great Britain, and southern Scandinavia) than in
cluster Intense, but the values in this area are more discon-
tinuous with multiple local maxima, which is likely due to
the effect of normalization. The normalization also obscures
the fact that each area in Fig. 9 has a similar proportion of
cluster HighSSI ETCs (around 10%).

4.3.4 Temporal occurrence of ETCs

We investigate the temporal occurrence of the total number
of ETCs and the number of ETCs in each cluster with a trend
analysis. First, time series of ETC occurrence in each ex-
tended winter are smoothed by taking a 5-year running mean.
A Mann–Kendall test (Mann, 1945; Kendall, 1970) is per-
formed on these smoothed time series to detect trends us-
ing the Python package pyMannKendall (Hussain and Mah-
mud, 2019). We find that there is no trend in the total number
of ETCs within the study period (not shown). The time se-
ries of the number of ETCs in each cluster and the results
of the Mann–Kendall test are shown in Fig. 10. There is
large interannual variability in the number of ETCs per sea-
son, especially in clusters Intense (Fig. 10b) and AvgMST
(Fig. 10c), which is a similar result to that found by Lau-
rila et al. (2021a). The slope of the trend is positive in clus-
ter HighSSI (0.024ETCyr−1; Fig. 10a) and negative in clus-
ter AvgMST (−0.073ETCyr−1; Fig. 10c), but these trends
are not statistically significant. In contrast, statistically sig-
nificant (at 1% significance level) increasing and decreas-
ing trends are identified in clusters Intense (0.104ETCyr−1;
Fig. 10b) and Weak (−0.080ETCyr−1; Fig. 10d), respec-
tively. To understand why, we computed the trends in all 11
intensity measures for all ETCs (not shown). PRECIP, PRE-
CIPacc, and SSIacc have significantly increasing trends (at
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the 5% level), while none of the other intensity measures has
a trend. The increase in the number of cluster Intense ETCs,
which have the highest PRECIP values on average and the
largest PRECIPacc values for single ETCs, is thus consistent
with the increasing trend in precipitation in all ETCs. We
can therefore say that within our study period, the intensity
of ETCs has increased mostly in terms of precipitation.

4.4 Case study ETCs

In addition to the statistical approach, we investigate the clus-
ters in terms of individual ETCs. We select named ETCs
which mainly affected Europe and either occur in the Ex-
treme Wind Storms (XWS) catalogue (Roberts et al., 2014)
or a list of strong storms in Finland maintained by the Finnish
Meteorological Institute (FMI, 2024) or are well-known in-
tense Mediterranean cyclones. The 21 selected ETCs are
listed in Table 2, and their tracks are shown in Fig. S7. Fig-
ure 11 shows these storms projected onto the first two PCs of
the sPCA space and coloured by either their cluster (Fig. 11a)
or the value of PC3 of the sPCA (Fig. 11b).

Figure 11a shows that cluster HighSSI is disproportion-
ately represented in the set of named storms. Out of the 21
storms, 17 are assigned to cluster HighSSI despite it consist-
ing of less than 10 % of all ETC tracks in the dataset. The
four storms which do not belong to cluster HighSSI (Apollo,
Aapeli, Vivian, and Qendresa) have the smallest SSI values
of the 21 case studies, which cannot be seen in the PCs in
Fig. 5. These four are among the five storms with the small-
est PC4 values of the 21 case studies, which means they have
low VO and/or high MSLPa values (not shown). In Fig. 11b
we see that most of the 21 storms fall close to the mean value
of PC2, meaning that they have near-average precipitation.
Most storms which affected Europe are relatively close to
one another in the sPCA (e.g. Anatol, Kyrill, and Ulli), ex-
cept for Vivian, Xynthia, and Apollo which had more precipi-
tation and/or lower wind speeds. Although cluster HighSSI is
overwhelmingly the most common cluster among the named
storms, only 9 of the 21 storms have a positive value in all
four PCs (e.g. Christian/St. Jude has negative PC2 and PC3
values and a small PC4 value but still is a HighSSI storm).
This demonstrates the need to use more than one measure to
quantify ETC intensity.

At the same time, there is only one storm, Medicane
Apollo, which has a negative PC1 value, i.e. smaller than
average wind speed, and a PC3 close to the negative end,
i.e. small WFP. Apollo, however, has the sixth-largest PC2
value of the 21 case study ETCs, which is to be expected
since most of the damage was caused by precipitation rather
than wind. Apollo belongs to cluster Weak, since the clus-
ter analysis discriminates intensity more based on wind than
precipitation (cf. e.g. Fig. 6b and c). However, this may also
be due to the underestimation of the intensity of medicanes
in ERA5 (Pantillon et al., 2024).

There are a couple of reasons why most of the selected
storms are more extreme in terms of wind (PC1) than precip-
itation (PC2). Firstly, the majority come from the XWS cata-
logue (Roberts et al., 2014), in which the storms are selected
using wind-based diagnostics. Secondly, ETCs with the high-
est PC2 values, and thus the most precipitation, occur mostly
over the ocean, where their effects are not felt and storms
do not get named. Thirdly, in our dataset ETCs which do
have high precipitation values over land areas occur mostly
over North America. This is demonstrated by the presence of
three North American storms in the top right corner of the
sPCA space in Fig. 11: ex-hurricanes Noel and Wilma and
the northeaster 1993 Storm of the Century. The remaining
selected storms with high PC2 values, Xynthia and Vivian,
had compound impacts with both heavy rainfall and strong
winds.

5 Discussion

Similar classes of ETCs have been found with cluster anal-
ysis methods in previous studies. Blender et al. (1997) used
k-means clustering and found three clusters of North Atlantic
ETC track orientations: stationary, northeastward, and zonal.
Qualitatively, our findings match theirs well. Their stationary
ETCs occurred mostly in the Mediterranean, Greenland, and
northern Canada and, as the name suggests, had small propa-
gation speeds. This is similar to our cluster Weak. Likewise,
their northeastward ETCs are similar to our clusters HighSSI
and Intense, with large meridional displacements and prop-
agation speeds. While their zonal ETCs match our cluster
AvgMST in terms of the more moderate meridional move-
ment, their zonal tracks are not concentrated at the end of
the storm track in the northeastern Atlantic like our AvgMST
ETCs are. In addition to the similarity in track orientations,
ETCs in their clusters had similar average intensities to ours.
In terms of geopotential height at 1000 hPa (Z1000), their
stationary ETCs had on average the weakest Z1000 gradi-
ent (comparable to low-level winds) and the highest Z1000
(comparable to MSLP), while northeastward ETCs had the
strongest Z1000 gradient and the lowest Z1000 values.

Similarly, Gaffney et al. (2007) performed cluster analy-
sis on North Atlantic ETC tracks with regression mixture
models, which are probabilistic methods like GMMs. Like
Blender et al. (1997), they found clusters with northeastward
and zonal track orientations. They, however, identified also
a cluster with northward track orientations but did not find
a cluster of stationary ETC tracks. Their northward-oriented
cluster tracks were mostly found near the eastern coast of
North America and were among the most intense ETCs in
terms of MSLP. This indicates that the northward-oriented
tracks could contain many of the same tracks as our clusters
HighSSI and Intense (e.g. post-tropical cyclones). They also
found that the northeastward-oriented ETCs were the fastest-
moving, while they found no significant differences in ETC
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Figure 10. Temporal trends of the number of ETCs in each cluster. The solid lines show the number of ETCs in each extended winter season,
and the dashed lines show 5-year running means. The dash-dotted lines show the slopes of the trend of the 5-year running means from a
Mann–Kendall test. The trend is given by the equation y = ax+ b, where y is ETC count, x is the year minus 1979, a is the slope (in
ETCyr−1), and b is the intercept in 1979 (in number of ETCs). Note that the vertical axes have different scales in each panel.

Figure 11. Case study storms in the sPCA space, coloured by (a) their predicted cluster and (b) their PC3 value. See Table 2 for abbreviations
of storm names.

lifetime between any of the clusters. This result is different
from ours, as we found a link between average dynamical
intensity and ETC speed and lifetime.

Leckebusch et al. (2008b) used similar methods to those
we used to relate large-scale flow patterns to different types
of ETCs. From a PCA performed on a Z1000 field they iden-

tified six large-scale flow patterns over Europe which they
used to classify winter storm situations with k-means clus-
tering. Of 55 identified pressure pattern clusters, 4 were clas-
sified as primary storm clusters. These primary storm clus-
ters were associated with more extreme ETCs, as 72% of
46 important European winter storms occurred during these
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Table 2. The named case study ETCs included in Fig. 11. The columns are the name of the ETC, abbreviation used in Fig. 11, time of
occurrence, the area the ETC mostly affected, and a reference study for the ETC.

Name Abbrev. Occurrence Affected area Reference

Aapeli/Alfrida AA Jan 2019 Northern Europe ECMWF (2021)
Anatol ANA Dec 1999 Northern Europe Ulbrich et al. (2001)
Andrea (secondary) AND Jan 2012 Mediterranean Kouroutzoglou et al. (2013)
Apollo/Nearchus AP Oct 2021 Mediterranean Menna et al. (2023)
Christian/St. Jude CH Oct 2013 Northwestern Europe Hewson et al. (2014)
Dagmar/Patrick/Tapani DAG Dec 2011 Northern Europe Weijenborg and Spengler (2020)
Daria/Burns’ Day Storm DAR Jan 1990 Northwestern Europe McCallum (1990)
Erwin/Gudrun ER Jan 2005 Northwestern Europe Suursaar et al. (2006), Baker (2009)
Fabien FA Dec 2019 Mediterranean Stojanovic et al. (2021)
Julia JU Feb 2012 Mediterranean Metheniti (2012)
Klaus KL Jan 2009 Southwestern Europe Liberato et al. (2011), Bertotti et al. (2012)
Kyrill KY Jan 2007 Western Europe Fink et al. (2009)
Lothar LO Dec 1999 Western Europe Ulbrich et al. (2001), Wernli et al. (2002)
Ex-hurricane Noel NO Nov 2007 Eastern North America Brennan et al. (2009)
Qendresa QE Nov 2014 Central Mediterranean Coll-Hidalgo et al. (2022)
1993 Storm of the Century SO Mar 1993 Eastern North America Huo et al. (1995)
Ulli UL Jan 2012 Northwestern Europe Fox et al. (2012), Smart and Browning (2014)
Vivian VI Feb 1990 Western Europe Schüepp et al. (1994)
Ex-hurricane Wilma WI Oct. 2005 Eastern North America Pasch et al. (2006)
Xaver XA Dec 2013 Northern Europe Hewson et al. (2014)
Xynthia XY Feb 2010 Western Europe Liberato et al. (2013), Ludwig et al. (2014)

clusters, while the overall relative frequency of occurrence of
the four clusters was only 5%. This result is reminiscent of
our finding that the majority of well-known impactful storms
are found in cluster HighSSI despite its small proportion of
all ETCs.

Others have also previously used phase spaces consisting
of different variables to categorize ETCs. Many have subjec-
tively divided phase spaces into various parts and analysed
ETCs in each part of the phase space separately. Graf et al.
(2017) performed PCA on 30 ETC precursors to classify
northern hemispheric cyclogenesis events. Although they
found no obvious clusters in the continuous phase space de-
termined by the genesis events, they were able to formulate
five ETC classes by using the first two components of the
PCA. The first PC determined whether an ETC genesis was
characterized by strong or weak moist processes, and the sec-
ond PC split the genesis events based on the type of forc-
ing mechanisms, as in Petterssen and Smebye (1971). Their
PCA classification was robust to the number of input fea-
tures, with 5 precursors producing similar results to the ini-
tial 30. They also determined that a majority (67%) of in-
vestigated well-known ETCs belonged to a single class. Fur-
thermore, all four case study ETCs that are shared between
their and our studies (Klaus, Kyrill, Lothar, and Xynthia) be-
longed to this class, while in our investigation they were all
found in cluster HighSSI. While they note that their analy-
sis cannot be used to directly attribute cyclogenesis events to
specific cyclone evolution, this is an interesting result.

Besson et al. (2021) investigated dry-dynamic forcing of
northern hemispheric ETCs by studying their Eady growth
rate and upper-level-induced quasi-geostrophic ascent. They
defined four categories of ETC forcing by selecting values
at the extreme corners of a two-dimensional phase space de-
termined by the two variables. They found that these four
categories of ETC forcing occur in different geographical ar-
eas and lead to ETCs which differ in their deepening rates
and have differences in their upper-level structure. Similar-
ities between their categories and our clusters can be seen
in the link between ETC deepening rates and occurrence ar-
eas of the four categories of ETC forcing. For example, a
combination of the two forcing mechanisms leading to large
deepening rates is found mostly at the start of the North At-
lantic storm track (see clusters HighSSI and Intense), while
combinations leading to the smallest deepening rates occur
more at the southern and southeastern parts of the North At-
lantic (see cluster Weak). Deepening rates in between these
extremes are associated with a combination of forcing mech-
anisms which occurs mostly in the northern parts of the North
Atlantic with a maximum density between Greenland and
Iceland (see cluster AvgMST). Similar analyses were done
by Binder et al. (2016) and Binder et al. (2023), who de-
termined three categories of ETC intensification for northern
hemispheric ETCs from a phase space of ETC deepening rate
and low-level warm conveyor belt air mass.

While these types of analyses are suitable for studying
the precursors and forcing mechanisms of ETCs, we demon-
strate that the classification of ETCs based on their inten-
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sity benefits from an added level of objectivity via the clus-
ter analysis. This can be seen in the overlap between the in-
tensity measure distributions for different clusters in Fig. 6.
Despite this overlap introduced by the objective method, our
clusters can be at least qualitatively linked to classes of ETCs
obtained with more subjective methods as described above.
In fact, a possible course of future study is the identification
of the variability in the ETC precursors and forcing mecha-
nisms within our clusters. We believe that this form of analy-
sis, which links the intensity and relevance for impacts to the
genesis environment of ETCs, would offer a new perspective
on the classification of ETC life cycles and possibly improve
the predictability of ETC intensity.

An investigation of well-known case study ETCs showed
that proportionally, the majority of impactful storms belong
to cluster HighSSI (17 out of 21). This highlights the ability
of the cluster analysis to identify intense storms. However,
we cannot say that all ETCs in cluster HighSSI are impactful
or damaging. In addition to the statistical nature of the clus-
ter analysis, this is due to the fact that apart from SSI, which
is based on local climatological values, the impact-relevant
intensity measures do not discriminate between land and sea
areas. ETCs have on average larger WFP values and/or more
precipitation over the ocean and on the eastern coast of North
America (Hawcroft et al., 2012; Laurila et al., 2021b), which
inevitably leads to some non-impactful ETCs being classified
as Intense or HighSSI. It also explains why many European
storms in Fig. 11 have below-average precipitation and why
Medicane Apollo is classified as a cluster Weak storm. On
the other hand, the analysis showed that SSI, which does not
by definition have larger values over sea than land, is an im-
portant measure in determining the cluster of an ETC whose
other intensity measures have close to average values. How-
ever, SSI alone cannot be used to identify impactful storms
since it is relevant for impacts due to wind only, while other
factors in ETCs such as precipitation can also cause signif-
icant damage (e.g. Medicane Apollo). This emphasizes the
fact that multiple intensity measures should be used to quan-
tify the intensity of ETCs.

A limitation of our study is the use of only one data
source (ERA5) and one ETC tracking algorithm (TRACK).
Firstly, the representation of ETCs has been found to vary
between reanalysis datasets (Hodges et al., 2011; Wang
et al., 2016). Secondly, ERA5 underestimates precipitation
and strong low-level winds in some areas (Chen et al., 2024;
Minola et al., 2020). This underestimation may cause our
precipitation or wind distributions to be too narrow, which
may have an effect on the cluster analysis through, for ex-
ample, creating more overlap in precipitation between the
clusters than without the bias. Thirdly, earlier studies have
shown that ETC climatologies may differ in distributions and
trends due to sensitivity to the tracking algorithm because
using different variables and thresholds leads to identifying
different categories of ETCs (Raible et al., 2008; Neu et al.,
2013; Flaounas et al., 2023). Another limitation of our study

is that the criteria used for the ETC tracking are optimized for
the North Atlantic. Therefore, some Mediterranean ETCs are
excluded from our set of tracks since they can be more sta-
tionary, have shorter lifetimes, and have their maximum vor-
ticity within the first 24 h. Flaounas et al. (2023) compared
10 ETC tracking algorithms in the Mediterranean area, one
of which was TRACK. In their comparison, TRACK pro-
duced the longest lifetimes and largest propagation speeds
for ETCs in the Mediterranean. Despite these limitations,
our study brings valuable new knowledge on which inten-
sity measures should be used to comprehensively and non-
redundantly quantify the intensity of ETCs.

6 Conclusions

We created a dataset of extratropical cyclone (ETC) inten-
sity measures for 43 extended winters of North Atlantic and
European ETC tracks and performed sparse principal compo-
nent analysis (sPCA) to identify the measures which explain
most of the variability in the dataset. Using the results of the
sPCA and correlations between the intensity measures, we
determined five measures for the comprehensive and non-
redundant representation of ETC intensity: 850 hPa relative
vorticity, 850 hPa wind speed, wind footprint, precipitation,
and a storm severity index (SSI).

Our analysis shows that while there is strong correlation
between different dynamical ETC intensity measures, there
is a much weaker link between the dynamical intensity and
impact-relevant measures. A correlation of similar strength
between wind speed and precipitation was found previously
by Pfahl and Sprenger (2016), who determined a correlation
coefficient of 0.36. Therefore, when using ETC intensity as
a broad term, i.e. including the impacts as well as the me-
teorological intensity in the definition, we need to consider
the non-linear and weakly correlated relationship between
the two and use more than one or two measures to describe
the intensity. We recommend studies which aim to quantify
future changes in ETC intensity to consider the five variables
we determined.

We used these five intensity measures as input to a cluster
analysis performed with a Gaussian mixture model (GMM)
to create classes of ETCs. We found four clusters in which
ETCs are significantly different in terms of their intensity.
Cluster Weak has on average the weakest ETCs (25.54% of
all ETCs), cluster AvgMST contains average-intensity ETCs
(44.42%), and clusters Intense and HighSSI are composed of
more intense ETCs (21.46% and 8.57%, respectively). For
all intensity measures except for precipitation, the clusters
are in the same relative order in terms of average magnitude:
HighSSI, Intense, AvgMST, and Weak. However, the clus-
ters are not discrete in the feature space defined by the in-
tensity measures since there is overlap in the distributions of
the intensity measures between the clusters. The most over-
lap is between clusters Intense and HighSSI. This overlap,
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the small size of cluster HighSSI, and the large SSI values
in its ETCs indicate that cluster HighSSI, which contains the
most extreme and potentially impactful ETCs, is a subset of
cluster Intense. Of all intensity measures, there is the least
overlap between clusters in the distributions of the SSI. This,
along with the fact that a large majority of the named impact-
ful storms considered in this study (17 out of 21) belong to
cluster HighSSI despite the cluster accounting for less than
10% of all ETCs, suggests that SSI is useful in identifying
impactful ETCs, which is in agreement with previous studies
(Klawa and Ulbrich, 2003; Leckebusch et al., 2007, 2008a;
Donat et al., 2011).

The clusters are different in terms of their characteristics
and geographical location of occurrence as well. The average
intensity of ETCs in the clusters can be qualitatively linked to
their deepening rate, lifetime, and mean propagation speed.
The weaker ETCs occur more frequently in Europe and in the
Mediterranean basin than over the Atlantic Ocean, but High-
SSI ETCs are almost as frequent everywhere when normal-
ized with respect to the climatological distribution of ETC
occurrence. The number of ETCs in cluster Intense increased
from 1979 to 2022, while the number of ETCs in cluster
Weak decreased, which is mostly caused by a positive trend
in precipitation. This increasing trend in ETC precipitation
is in agreement with Li et al. (2014), who compared a re-
cent warmer period (in average sea surface temperature) as
an analogue of future climate change to an earlier base period
and found that while precipitation was larger in the warmer
period than the base period, there was no consistent change
in vorticity or wind speed. There is also a significant increase
in accumulated SSI (SSIacc) which, without an increase in
maximum wind gusts at 10 m (FG10), can be explained by
an increase in extreme wind gust values in North Atlantic
ETCs from 1979 to 2021 found by Karwat et al. (2022).

Our objective classification of ETCs based on their inten-
sity offers a new perspective on the multitude of ETC classi-
fications reviewed in Catto (2016). Our classification is per-
formed using variables which are available or easy to com-
pute from both model and reanalysis data. Both the sPCA
model and the GMM instance trained with our dataset are
provided as downloadable Python objects in a repository
(Cornér et al., 2024). For any dataset including ETC tracks
and an associated value of each of the intensity measures per
track, the sPCA model can be used to project ETCs onto the
sPCA space shown in Fig 5a. Moreover, to predict the clus-
ter of each ETC in the same or a similar dataset, the GMM
instance can be used with the five intensity measures listed
above as input. Building on the work of Bengtsson et al.
(2009) and Champion et al. (2011), who studied the intensity
and extreme weather from ETCs in future climates, utilizing
this kind of classification in climate projection studies could
give insight into how different kinds of ETCs respond to cli-
mate change. In addition to climate applications, quantifying
the intensity of ETCs is also important in terms of numerical
weather prediction. This is especially true in the current age,

when ensemble prediction systems are key to produce prob-
abilistic forecasts and vast amounts of data. Being able to
identify ETCs in each ensemble member and compute their
intensity allows for an accurate estimate of the uncertainty in
how strong and how potentially impactful a specific ETC will
be. Furthermore, this allows a vast amount of information to
be condensed to a level that is manageable for operational
forecasters, who often are working under time pressure.
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