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Abstract. Estimates of the risk posed by rare and potentially
catastrophic weather events are often derived from relatively
short measurement records, which renders them highly un-
certain. By replacing measurements with much larger sets
of simulated weather data, the statistical error can in prin-
ciple be made arbitrarily small. However, systematic errors
in the meteorological model output can easily outweigh the
gain in precision. We assess the value of simulated weather
data for a particularly demanding task: the quantitative as-
sessment of coastal flood hazard for the Netherlands. In par-
ticular, we analyse how (and by how much) the uncertainty
in return values of wind stress and coastal water level for re-
turn periods of up to 10 million years can be reduced. Based
on insights from physics and extreme value theory as well as
evidence from data, we argue that simulated weather data are
suitable for estimating the shape of the upper tail of the dis-
tribution function of stress, even if stress from present-day
weather prediction models may be too high or too low. We
extend this argument to simulated data of water level along
the Dutch coast. As scale and location parameters can be es-
timated with sufficient precision from relatively short mea-
surement records of water level, we estimate return values
from a combination of measurements (for scale/location) and
simulated data (for shape). We assess the reduction in uncer-
tainty achieved and discuss strengths and limitations of the
approach as well as prospects for further exploitation of sim-
ulated weather data to quantify flood hazard.

1 Introduction: scope and purpose

Mitigation of the risk of catastrophic weather events often
requires knowledge of the frequencies of occurrence of rare
conditions such as wind speed, rainfall depth, flood level, or
precipitation deficit exceeding high values (e.g. Ward et al.,
2020; Bousquet and Bernardara, 2021; Gründemann et al.,
2023). These frequencies, or the corresponding return val-
ues (see the glossary in Appendix A), are usually estimated
from relatively short records of measurements or reanalysis
data which typically cover 50–150 years (e.g. Woodworth et
al., 2016; Ramon et al., 2019; Xiang et al., 2021). As fre-
quencies of interest may range from 0.02 yr−1 (return period
of 50 years) to 10−6 yr−1 (return period of 1 million years),
such estimates tend to be highly uncertain (e.g. Dillingh et
al., 1993; Caires, 2009).

Several approaches have been proposed to reduce the un-
certainty: spatial pooling of data or spatial smoothing of
estimates (e.g. Hosking and Wallis, 1997; Bardet, 2011;
Calafat and Marcos, 2020), the use of non-systematic histor-
ical records of floods (e.g. Reis and Stedinger, 2005; Parkes
and Demeritt, 2016; Hamdi et al., 2015; Van Gelder, 1996;
Baart, 2011), and the use of simulated weather data (e.g. van
den Brink et al., 2004, 2005; van den Brink and Können,
2008, 2011; van den Brink and de Goederen, 2017; Kelder
et al., 2020, 2022a, b; Ruff and Pfahl, 2024; Bevacqua et al.,
2023). Each of these approaches may contribute to reduce
the uncertainty, depending on the amount, spatial sampling
density and/or quality of the available data. However, the
use of simulated data for the statistical analysis of extreme
weather events could be a real game changer, as the amount
of data is in principle unlimited. Very large datasets of simu-
lated weather representative of the climate of recent decades
are already available.
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An example is the SEAS5 ensemble seasonal forecast
archive from ECMWF (ECMWF, 2018a, b); for a single site,
SEAS5 offers more than 8000 years of simulated weather
data. Use of these data as a replacement for measurement
records covering up to 140 years can reduce the sampling
error (see Appendix A) in return values by a factor of
√

8000/140> 7. However, weather data simulated by mod-
els may suffer from various forms of bias, due to limited
knowledge or inaccurate representation of physical processes
and limited accuracy of numerical approximations in these
models. For simulated weather data, this is potentially a big-
ger issue than for (re)analyses of the weather of the past,
which are tightly constrained by weather observations (e.g.
Bauer et al., 2015; Hersbach et al., 2020). Therefore, as
Kelder et al. (2022a) argue, simulations cannot be used with-
out a thorough assessment addressing known model short-
comings that may invalidate the simulations, the physical
credibility of simulations, or the compatibility of the simu-
lations with observations.

Here, we assess the value of simulated weather data for
a particularly demanding task: the quantitative assessment of
coastal flood risk for the Netherlands. With most of the coun-
try formed as a delta of the Rhine, Meuse and Scheldt rivers,
flooding due to high river discharge or storm surge poses an
existential threat (e.g. Tessler et al., 2015; Ward et al., 2018).
Its adjacency to the shallow North Sea renders the Nether-
lands particularly exposed to storm surge, compounded by
severe wave conditions (Gerritsen, 2005). Because of the
high population density and concentration of economic as-
sets in coastal provinces, flooding following the breach of
a seawall or dune strip or the failure of a storm surge barrier
can be catastrophic. Therefore, current flood safety standards
require that coastal flooding occurs less frequently than once
in 5000 to 106 years, depending on the location (Jonkman
et al., 2016; Kok et al., 2018). This requires estimates of re-
turn values of coastal water level for return periods of at least
1 order of magnitude larger than 106 years, because (a), due
to the action of waves, flooding may also occur at relatively
low water levels and (b) flood frequency needs to account
for various uncertainties. Previous estimates of return values
of coastal water level from up to 140 years of measurement
data are highly uncertain. For example, Dillingh et al. (1993),
which was used for many years as a standard for the design
and testing of coastal flood protection, gives a 95 % confi-
dence interval for the 104-year return water level at Hoek van
Holland (Hook of Holland) (tidal station 2 in Fig. 1) of 3.1–
6.9 m relative to NAP (the national datum). At higher return
periods, the uncertainty is even larger.

High uncertainty has serious implications. Flood-
protecting structures need to be over-designed, which
is costly. Furthermore, over-designing requires that the
uncertainty can be reliably quantified, but this is not the case
for estimates from relatively short measurement records (see
Sect. S1 in the Supplement). Hence, there is ample reason to
look for ways to reduce the uncertainty in return values.

Figure 1. Locations of tidal stations (◦), SEAS5 output grid points
(4) and weather stations (�). For numbering, refer to the main text.

Besides coastal high water (HW, the peak water level
reached during a high tide; see Appendix A), we will con-
sider the wind shear stress (referred to as stress hereafter)
in the atmospheric boundary layer over the coastal waters of
the Netherlands. Stress generated by extratropical (ET) cy-
clones is the main driver of storm surge on the North Sea
(e.g. Zweers et al., 2012). Hence, the reliability of estimates
of return values of stress from simulation data is directly rel-
evant to the reliability of return water level estimates from
water level simulations forced by simulated stress data. Fur-
thermore, stress also forces the sea surface waves which com-
pound the impact of storm surge on the sea dikes, dunes and
storm surge barriers (Van Nieuwkoop et al., 2015). Hence,
it is the main link between atmospheric dynamics, surge and
waves.

As stress is not routinely measured, it is often derived
from wind speed measurements by an assumed drag rela-
tion, which is the subject of considerable disagreement and
uncertainty (e.g. Van Nieuwkoop et al., 2015; Curcic, 2020;
Richter et al., 2021). However, weather simulations provide
data of stress near the surface. These data can be used to
simulate nearshore wave spectra (e.g. Booij et al., 1999) and
subsequently estimate return values of their height and pe-
riod. Here, we focus instead on the stress itself to find out if
return values of stress can be estimated reliably from simu-
lated data. These return values can in fact be used together
with tabulated nearshore wave model outputs to approximate
return values for nearshore wave height and period (Groe-
neweg et al., 2010).

There is reason to be optimistic that simulated data for
wind stress associated with ET cyclones may be useful for
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the estimation of return values. ET cyclones are relatively
large-scale phenomena, and they are fairly well resolved by
present-day global weather prediction models (Bauer et al.,
2015). Starting from an atmosphere at rest, switching on the
sun and rotating the earth at its known speed will soon re-
sult in realistic chaotic behaviour (Lorenz, 1969; Zhang et
al., 2019): differential heating of the poles with respect to
the Equator results in a temperature gradient driving the mo-
tions of air masses which (due to rotation) form jet streams,
on which (due to barotropic and baroclinic instability) extrat-
ropical cyclones will develop. Even though these phenomena
are complex and chaotic in appearance, they are governed
by basic physics and are not particularly sensitive to poorly
known or unresolved processes. For example, condensation
and evaporation of water can have a considerable effect on
the intensity of a particular storm, but the storms will be
generated even without considering water in the atmosphere
(Wernli and Gray, 2024).

On the other hand, biases in simulated large-scale forc-
ing (e.g. the spatial distribution of solar irradiation), sea ice
extent or varying large-scale circulation patterns may result
in biases in the simulated jet stream strength and position as
well as in storm frequency and intensity. In addition, errors in
the representation of the aerodynamic drag of the sea surface
(e.g. Makin et al., 1995) may cause biases in the simulated
stress and hence in water levels simulated from that stress by
a hydrodynamic model (e.g. Zweers et al., 2012).

In this article, we make the case that such biases do not
necessarily preclude the use of simulated data for improv-
ing estimates of return values of stress and coastal HW. One
reason is that an affine bias, i.e., a systematic error in the
form of an added constant and/or multiplication by a positive
constant, can be corrected effectively using relatively small
datasets such as the measurement records of coastal water
level spanning up to 140 years, as was confirmed in an earlier
study (de Valk and van den Brink, 2023a). Stated differently:
affine biases affect the location and scale parameters but not
the shape. In contrast, estimation of the shape of the curve
relating the frequency of exceedance µ(z) to the level z is
notoriously difficult for high levels of z, and this is the main
source of error in such estimates; see, for example, Chap. 4
of de Haan and Ferreira (2006) and de Valk and Cai (2018).
This suggests that simulated data can and will be useful if
these data make it possible to estimate the shape more accu-
rately. Therefore, shape estimation is the main focus of our
assessment.

In the next section, we describe the available datasets of
measurements; reanalyses; and simulations of stress, near-
surface wind, and water level. In Sect. 3, we introduce the
concepts and methods from extreme value theory to be used
for the estimation of frequencies of exceedance µ(z) (or re-
turn periods T (z)= 1/µ(z)) of high levels of z and/or of the
inverse relation expressing the return value as a function of
its return period. In particular, we discuss different notions

of shape in extreme value theory, as well as how they are
connected.

In Sect. 4, we make the case that for stress over the North
Sea, simulated data are suitable for shape estimation, and
we argue in Sect. 5 that this extends to coastal water lev-
els simulated from simulated stress and mean sea level pres-
sure (mslp) fields. Furthermore, we propose a crude method
for assessing the size of the residual unknown model-related
bias in shape estimates and in estimates of return values,
and we use this method to evaluate the reduction in uncer-
tainty achieved by using simulated data for shape estima-
tion (Sect. 6). Finally, we evaluate strengths and weaknesses
of uncertainty reduction by shape estimation from simulated
data, and we discuss the prospects for further improvements
and generalization to other regions and/or variables (Sect. 7).

Note that labels for sections, figures, tables and equations
containing “S” refer to the Supplement.

2 Data

SEAS5 stress and mslp. The primary source of simulated
weather data for the present study is the archive of 6-hourly
SEAS5 ensemble seasonal forecasts from the IFS cycle 43r1
model of ECMWF (ECMWF, 2018a, b) with nominal 35 km
resolution. An ensemble of 25–50 seasonal forecasts over
7 months was started by ECMWF at the beginning of each
month from 1981 onward. We use data of near-surface shear
stress (vector), near-surface wind u10 (vector) and mslp, dis-
carding the first month of each run to ensure that the extremes
of stress from different ensemble members are independent;
for a verification, see Sect. S2. Stress and mslp are used to
force tide-surge predictions (see below), and stress at the six
points (shown by triangles in Fig. 1) is selected for statistical
analysis. These points are at roughly 50 km from the shore to
avoid any influence of land on surface roughness.

Stress and mslp from climate models and reanalyses. Data
from climate model simulations used for checking of as-
sumptions include a 16-member ensemble of EC-Earth3 runs
for the present-day climate, as well as a dynamically down-
scaled version of these data produced using the RACMOv2.3
regional climate model (van Dorland et al., 2023). Further-
more, we use data from two reanalyses: ERA5, the most re-
cent global reanalysis by ECMWF covering the years 1979–
2019 (Hersbach et al., 2020), and KNW, a regional down-
scaling of ERA-Interim (Dee et al., 2011) (the predecessor
of ERA5) for the North Sea over 1979–2019, produced by
KNMI (Royal Netherlands Meteorological Institute) using
the mesoscale model HARMONIE (Bengtsson et al., 2017).
Validation of reanalysis wind against measurements is pre-
sented in Belmonte Rivas and Stoffelen (2019), Kalverla et
al. (2019) and Wijnant et al. (2019) for ERA5 and in Ste-
pek et al. (2015) and Wijnant et al. (2015, 2019) for KNW;
see also further references in these articles. In particular, the
empirical tail distributions of KNW wind speeds and of mast
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measurements are found to agree well (Stepek et al., 2015).
These studies support the use of these two reanalyses for val-
idation of statistics of stress from SEAS5.

Wind measurements. We use measurements of hourly
mean wind from seven KNMI weather stations. Going
along the coast from SW to NE, these are Cadzand (1),
LEG (Lichteiland Goeree) (2), IJmuiden (3), Texelhors (4),
Vlieland (5), West Terschelling (7) and Huibertgat (6), indi-
cated by squares in Fig. 1.

Coastal tide gauge measurements. Time series of high wa-
ter (HW) relative to the national NAP datum derived from
measurements are available from Rijkswaterstaat. Here, we
consider (from SW to NE) data from Vlissingen (1), Hoek
van Holland (2), IJmuiden (3), Den Helder (4), Harlingen
(5) and Delfzijl (6), indicated by circles in Fig. 1. Records
begin around 1880–1890 (1, 2, 3, 6) or around 1932 (4, 5).
Long-term trends were estimated by fitting smooth curves to
the records of annual mean HW, and they are subsequently
removed; see Sect. S3. The homogenized values are repre-
sentative for the year 2019.

Coastal water levels simulated from SEAS5 data. Still wa-
ter levels on the North Sea were simulated using the WAQUA
DCSMv5 shelf-sea tide and surge prediction model with
8 km resolution (Ridder et al., 2018), forced by SEAS5 stress
and mslp; see van den Brink (2020). This resulted in 10 min
time series for over 300 locations along the Dutch coast, in-
cluding the six tidal stations listed above. From these, records
of high water (HW) were derived using the astronomical tide
computed by running DCSMv5 without variation in meteo-
rological forcing. We refer to these data as SEAS5/DCSMv5
data. Furthermore, the same simulation was performed with
the stress forcing increased by 10 %.

Additional water level simulations were performed for 250
storms selected from the SEAS5 archive, downscaled using
the regional mesoscale HARMONIE model (Bengtsson et
al., 2017); see van den Brink (2020) for details. These sim-
ulations were performed with two models: DCSMv5 (see
above) and DCSM-FM 100 m, which has a much higher res-
olution.

3 Methods

3.1 Background: return values and tail approximation

For statistical analysis, extreme weather events like storms
are generally regarded as clusters of high values occurring at
random times, approximated by a Poisson process (e.g. Lead-
better, 1982; Leadbetter et al., 1983) with seasonally varying
intensity. This implies that the distribution of the maximum
of a variable X over T entire years can be represented as

P
(

max
t∈[0,T ]

Xt ≤ z

)
= e−µ(z)T , (1)

with µ(z) being the frequency of exceedance (in clusters per
year) of the level z, given by

µ(z)= (1−F(z))α/1, (2)

where F is the average distribution function of X over the
year; 1 is the time step of the data record; and α is the ex-
tremal index, which may be regarded as the reciprocal of the
mean cluster length in time steps (so1/α is the mean cluster
length in years).

To estimate low probabilities of exceedance 1−F(z) of
high levels of z, one needs to assume a certain regularity of
the upper tail of F , which allows for extrapolation of F from
a high level of z to (much) higher levels. Non-regularity may
occur, for example, in mixtures of distributions of subpop-
ulations with different tails (e.g. frontal vs. convective sub-
daily rainfall intensity) or due to a change in the physics of
a process near some threshold (e.g. the limitation of sea sur-
face wave growth by breaking on shallow water). We discuss
two alternative regularity assumptions here in the context of
smooth tails. These assumptions are conveniently expressed
in terms of the “quantile function” q defined by

1−F(q(y))= e−y, y ≥ 0; (3)

q expresses any quantile of the distribution F in terms of the
quantile of the exponential distribution for the same proba-
bility. Using Eq. (2), the return value RT for a return period
T can be written as

RT = q(log(T α/1)). (4)

We define the function γ̃ by

γ̃ (y) := q ′′(y)/q ′(y)= (logq ′(y))′, (5)

with ′ indicating the derivative. γ̃ can be regarded as a di-
mensionless curvature of the quantile function q. The most
familiar regularity assumption is

lim
y→∞

γ̃ (y)= lim
y→∞

(logq ′(y))′ = γ (6)

for some real number γ (e.g. de Haan and Ferreira, 2006,
Corollary 1.1.10). By integration, this implies

lim
y→∞

q(y+ x)− q(y)

q ′(y)
=
exγ − 1
γ

, x ∈ R (7)

(to be read as x if γ = 0). Equation (7) provides a recipe
for approximating a higher quantile q(y+ x) exceeded with
probability e−(y+x) from a lower quantile q(y) exceeded
with probability e−y . It is one of the formulations of the gen-
eralized Pareto (GP) tail limit employed in classical peak-
over-threshold analysis (Leadbetter, 1991; Coles, 2001; de
Haan and Ferreira, 2006). The number γ is the GP tail shape
parameter; by Eq. (6), we can regard the function γ̃ as a pre-
asymptotic GP shape.
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The GP tail limit (Eq. 7) is equivalent to the assump-
tion that the distribution of the appropriately scaled and
shifted maximum of a random sample X1, . . .,Xn tends to a
non-constant limit as n→∞ (de Haan and Ferreira, 2006),
known as a GEV (generalized extreme value) distribution. It
has the same shape parameter γ as the GP tail limit. Further-
more, clustering of high values only affects the scale and lo-
cation parameters of the GEV (Leadbetter, 1982; Leadbetter
et al., 1983).

There is ample evidence that the assumption γ = 0 is ap-
propriate for the square of wind speed (e.g. Cook, 1982; Har-
ris, 2005; van den Brink and Können, 2008). By extension,
the same must hold for stress and surge level: these quan-
tities are nearly proportional to the square of wind speed;
therefore, their tails must also have γ ≈ 0.

Another regularity assumption, particularly useful as a re-
finement of Eq. (6) if γ = 0, replaces the derivatives to y in
Eq. (6) by derivatives to logy:

lim
y→∞

y
(
log(yq ′(y))

)′
= lim
y→∞

yγ̃ (y)+ 1= β ∈ R. (8)

This leads to the generalized Weibull (GW) limit (de Valk,
2016):

lim
y→∞

q(yλ)− q(y)

yq ′(y)
=
λβ − 1
β

, λ > 0, (9)

providing an alternative recipe for estimating high quantiles.
In the case of β > 0, tail approximations based on Eq. (9)
take the form of a three-parameter (translated) Weibull distri-
bution: logP(X > x)=−((x−b)/a)1/β for some b ∈ R and
a > 0. This helps with interpreting the GW tail shape param-
eter β (e.g. β = 1 gives a shifted exponential tail, β = 0.5 a
shifted Rayleigh tail). Unlike Eq. (7), Eq. (9) approximates
q over a probability range which increases rapidly with y.
For estimating return values with very large return periods,
this makes the GW tail preferable over the GP tail if both tail
limits hold.

The simple relation between the pre-asymptotic GP shape
γ̃ (y) and the pre-asymptotic GW shape yγ̃ (y)+ 1 shows
that for comparing shapes (e.g. of tails of data from differ-
ent sources), we can use either.

3.2 Estimation

Estimates of tails and tail statistics like the extremal index
are derived from the values in the data record above a chosen
threshold. We choose and report the fraction p of the sam-
ple above the threshold, which is more informative than the
threshold itself.

Given the sample fraction p and corresponding y =

log(1/p), the location parameter q(y) of the GP and GW
tails (Eqs. 7 and 9) are estimated by the dpneth largest value
in the sample, with d·e indicating rounding upwards. The
scale parameter q ′(y) and shape parameter γ of the GP tail
(Eq. 7) are estimated from the dpneth largest values by the

maximum likelihood estimator (de Haan and Ferreira, 2006).
For the GW tail Eq. (9), the scale parameter yq ′(y) and shape
parameter β are estimated from the dpneth largest values by
an adaptation of the method of de Valk and Cai (2018); see
Sect. S6 for details. These estimators can be applied with
fixed values of the shape parameter; this makes it easy to
combine the shape estimate from one dataset with scale and
location estimation from another dataset.

When combining scale and location estimation from one
dataset with a shape estimate from another dataset, the same
method and the same sample fraction p are used.

Plots of the GW shape estimates against the sample frac-
tion p (the latter on a logarithmic scale) provide information
about the pre-asymptotic shape yγ̃ (y)+1 at y near log(1/p)
(see Eq. 8). In fact, the estimator has been constructed to es-
timate this pre-asymptotic shape (see de Valk and Cai, 2018).
Such a plot is usually made to check a regularity assumption
(in this case, convergence of yγ̃ (y)+1 to a limiting value β).
However, whether or not regularity assumptions apply, it is
very useful for comparing the shapes of tails of data from dif-
ferent sources. For this purpose, the pre-asymptotic GW tail
shape yγ̃ (y)+1 is more informative than the pre-asymptotic
GP shape γ (y): with increasing y (decreasing sample frac-
tion p), shape variations are magnified.

For the comparison of shape estimates from very large
datasets of thousands of years of model-generated weather
data at many grid points, these methods are not practical,
as the data from all time steps are required for the esti-
mates. Instead, we fit for each grid point a GEV distribution
to the annual maxima by the maximum likelihood method
(e.g. Dombry, 2015), which provides an estimate of γ̃ (y) at
y ≈ log(α/1) corresponding to a 1 yr−1 event. In practice,
this tends to result in somewhat higher estimates of γ than a
GP tail estimate from all data above a threshold, but that is
no problem for comparing estimates from different datasets.

The extremal index α (see Eq. 2) is chosen based on esti-
mates of α from data for the months December, January and
February (DJF) only, in order to minimize bias due to sea-
sonality. We apply the method of Ferro and Segers (2003)
using various thresholds in order to check the dependence on
the fraction p of the sample above the threshold.

3.3 Estimation error

Different methods are used to estimate the sampling error
(Appendix A) of estimates of return values and tail parame-
ters.

For GW and GP tail parameter and return value esti-
mates, a bootstrap method (e.g. Litvinova and Silvapulle,
2018, 2020; de Haan and Zhou, 2022) is used. More specifi-
cally, we use the block bootstrap (Künsch, 1989) to estimate
variances, which is applicable to serially dependent time se-
ries. In the block bootstrap, the analysed time series are di-
vided into blocks longer than the typical decorrelation time,
and new synthetic time series of the same length as the orig-
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inal series are constructed by randomly drawing blocks with
replacement and placing one after the other. The entire data
analysis is performed on 100 synthetic time series, and the
variance of the statistic of interest is estimated by the empir-
ical variance of its values calculated from these series.

For the measurement data, blocks of 1 year are used to
preserve the seasonality in the data. For SEAS5 seasonal
forecasts of stress and for HW simulated from SEAS5 data
(see Sect. 2), blocks consisting of 6-month-long forecast runs
were used. In principle, the selection of 6-month blocks in-
troduces a spurious inflation of the variance due to the sea-
sonality (e.g., there may be too many or too few winter
months in the resampled dataset), but this effect was shown
to be negligible, due to the large size of the dataset.

For estimates derived from seasonal forecasts, this boot-
strap method requires independence of the members of a
forecast ensemble. For stress, this has been verified; see
Sect. S2.

For estimates of γ from GEV fits to annual maxima (see
Sect. 3.2), independence of annual maxima is assumed, and
the asymptotic approximation of the variance is used (e.g.
Dombry, 2015).

Confidence intervals are derived from estimated variances
using the normal approximation.

4 Can we trust the tail shape of stress over the North
Sea derived from simulated data?

4.1 Overview

In this section, we argue that (a) large-scale metrics of storm
intensity such as mslp have regular tails; (b) climate models
of sufficient resolution show high skill at simulating extrat-
ropical cyclones and agree about the tail shapes of mslp dis-
tributions; (c) stress in the boundary layer is closely linked
with overall storm intensity; and (d) the tail of the stress dis-
tribution is also regular, and its shape can be estimated reli-
ably from climate model simulations. We will use the term
climate model for any model run for a considerable time
without data assimilation, which includes the selected SEAS
data used in this study (Sect. 2).

4.2 Large-scale metrics of storm intensity are expected
to have regular tails

Coastal flood risk in the Netherlands is determined by extrat-
ropical cyclones in the winter storm season. Extratropical cy-
clones are a well-defined phenomenon; variations in their de-
velopment constitute a continuum (Graf et al., 2017; Seiler,
2019). Therefore, tail anomalies due to mixing subpopula-
tions with distinctly different tails are not an issue. Further-
more, the growth of extratropical cyclones does not appear to
involve sharp transitions or limits at a certain intensity level
which could give rise to a tail anomaly.

Figure 2. Empirical return values from annual maxima of daily-
mean mslp near 8.2° E, 56.7° N from SEAS5 (black), RACMOv2.3
(blue) and EC-Earth3bis (red) as well as from measurements at Thy-
boron (Denmark) over 1874–2020 (magenta).

Common metrics of overall storm intensity are, for exam-
ple, the spatio-temporal minimum of mslp or maximum of
relative vorticity at 850 hPa. Because the density of storm
tracks varies smoothly, we may expect that the values at a
fixed location also have smooth tails. This is illustrated by
Fig. 2 in Sterl et al. (2009) or Fig. 2 here, showing the em-
pirical return values of daily-averaged mslp from 147 years
of measurements at Thyboron (8.2° E, 56.7° N) on the west
coast of Denmark, from the RACMOv2.3 and EC-Earth3bis
climate model simulations (see Sect. 2), as well as from
SEAS5. A low mslp at this site indicates the presence of a
low-pressure area nearby, resulting in a north-westerly wind
over the North Sea and a positive surge at the Dutch coast.
The modelled tails are indeed smooth (very long series); the
measurement record is much shorter; hence, the empirical
distribution of the annual minima is more noisy but agrees
reasonably well with the modelled tails.

4.3 Climate models of sufficient resolution show high
skill at simulating extratropical cyclones and agree
about the tail shapes of mslp distributions

More than a decade ago, climate models already produced
skilful simulations of extratropical cyclones when compar-
ing the intensity, tracks and storm structure to reanalysis data
(Catto et al., 2010; Bengtsson et al., 2009; Jung et al., 2012).
Then and now, a sufficiently high resolution (25–50 km) is
a requirement (Priestley and Catto, 2022), but a further in-
crease in resolution offers limited benefit (Jung et al., 2012).
Remaining limitations appear to mainly concern the flow in
the upper atmosphere (250 hPa). The resolution of SEAS5 of
about of 0.25° should thus be sufficient for the simulation
of coastal surges and waves requiring a long fetch and dura-
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tion to develop. Indeed, van den Brink (2020) shows that the
limited resolution of SEAS5 only gives a 1.5 % reduction in
surge and a further 3.5 % reduction due to 6-hourly sampling
of the SEAS5 output, in comparison with the hourly sampled
2.5 km resolution HARMONIE model output (Sect. 2).

The high skill is particularly evident in the tail shapes
of storm intensity metrics. In Fig. 2, the shapes and scales
of distributions of annual minima of daily-mean mslp from
RACMOv2.3, EC-Earth3bis and SEAS5 show remarkable
agreement: the main differences are small (but significant)
shifts in pressure and even smaller differences in scale. All
agree closely with the empirical tail from the observations
and are capable of generating deeper depressions than ob-
served at this location. Figure 3 displays estimates of the
GEV parameters from the annual maxima of daily-averaged
mslp over the North Sea from effectively 1040 years of
EC-Earth3bis and its downscaling with the regional RAC-
MOv2.3, as well as their difference. It shows excellent spa-
tial agreement between these models. The standard error of
the estimates of the shape parameter γ is about 0.02, imply-
ing that the cluttered difference in shape is insignificant at all
grid points. This confirms that the considerable differences
in resolution and boundary layer parameterization of these
models leave the shape of the mslp tail virtually unaffected.
This is remarkable, as these simulated storms and their cli-
matologies are generated completely by the models, unlike
numerical weather forecasts.

4.4 Stress in the boundary layer is closely linked with
overall storm intensity

Stress in the boundary layer over sea depends on the wind
aloft, stability, and the interaction with the sea surface, which
are all different in different sectors of the storm. In turn, the
stress affects the evolution of the storm by barotropic (e.g.
Ekman pumping) and baroclinic potential vorticity genera-
tion in the boundary layer. In a modelling study of dry ex-
tratropical cyclone formation, Beare (2007) found that the
spatial maximum of surface stress at every instant scales in
a simple way with the initial strength of the jet stream. Fur-
thermore, if the boundary layer parameterization is changed,
changes in the minimum pressure correspond closely to
changes in the surface stress averaged over the cyclone.
Beare (2007) concludes that this demonstrates the important
role of the synoptic-scale flow in organizing the boundary
layer structure. Boutle et al. (2015) complete this picture
by detailing how barotropic and baroclinic potential vortic-
ity generation act together to reduce cyclone growth. Fur-
thermore, Boutle et al. (2010) discuss the roles of moisture
transport and convection; they show that the spin-down due
to surface friction is of similar magnitude in a moist cyclone
as in a dry cyclone.

4.5 The tail of the stress distribution is also regular,
and its shape can be estimated reliably from
climate model simulations

Section 4.2 and 4.4 imply that the tail of the distribution
function of stress is also highly regular; possible saturation
of the drag coefficient over sea at high wind speeds (Cur-
cic, 2020; Richter et al., 2021) is not likely to change this;
see Sect. S4. Climate model simulations indicate that this is
indeed so: Fig. 4 shows the distributions of annual maxima
of stress from 3-hourly RACMOv2.3 and 6-hourly SEAS5
data. These two tails clearly differ in scale (likely as a re-
sult of differences in boundary layer parameterization, as
the scale is lower for stress from the high-resolution RAC-
MOv2.3 model). However, the shapes agree closely; both are
nearly exponential.

Both models have different resolutions and output fre-
quencies, and the boundary layer parameterizations are quite
different, but this appears to have little impact on the shape
of the stress tail. This is also evident from Fig. 5, showing
estimates of the GEV shape γ from annual stress maxima
over the North Sea. On average, the estimates from SEAS5
are slightly lower than the estimates from RACMOv2.3, dif-
fering on average over the central and southern North Sea
by 0.026, which is not much. The close agreement in the tail
shape of stress from these models indicates that the shape is
determined by other factors than resolution, output frequency
or boundary layer parameterization, such as jet stream clima-
tology (Sect. 4.4).

Another relevant check is to compare estimates of the
shape of the tail of stress from SEAS5 with those from the
reanalyses ERA5 and KNW for the same position of 3° E,
55° N in the central North Sea, far from the influence of land;
see Sect. 2. Plotted as functions of sample fraction p = k/n,
estimates of the GW shape parameter β (see Eqs. 8, 9) can
be regarded as estimates of the dimensionless shape func-
tion y(log(yq ′(y)))′, with y =− logp. Figure 6 shows for
SEAS5 only a slight increase in these estimates with decreas-
ing p from about 1.2 to 1.35, which indicates a regular tail
which is slightly heavier than the exponential tail. Further-
more, the estimates match the much-less-precise estimates
from the two reanalysis datasets which, unlike the SEAS5
forecasts (with lead times exceeding 1 month), are con-
strained by weather observations and employ significantly
different resolutions and different approaches to boundary
layer momentum exchange. This provides further confirma-
tion that current climate models are capable of simulating the
shape of the stress tail.

As a consequence, systematic errors in extreme stress from
these models should take the form of scale/location errors.
This agrees broadly with the analysis in Larsén (2012) of
the effect of limited resolution on extreme wind speeds over
Danish and German coastal waters from mesoscale models;
for a Gaussian process as approximation of wind fluctua-
tions, they argue that the correction should have the form
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Figure 3. Spatial patterns of estimates of location, scale and shape (γ ) (see Sect. 3.1) of the GEV distribution fitted to the annual minimum
mslp. (a, c, e) From RACMOv2.3 (colours) and from EC-Earth3bis (contours). (b, d, f) Differences (RACMOv2.3 minus EC-Earth3bis); the
green dot indicates Thyboron.

of a scale adjustment. Although Larsén (2012) do not con-
sider the effects of differences in boundary layer parame-
terization of the mesoscale models used for downscaling of
global low-resolution analyses, their corrected estimates of
mean annual maximum wind speed from these models are
mutually compatible and in line with wind measurements. In
climate model simulations and in SEAS5 (for forecast ranges
exceeding 1 month), storms are generated by the model with-
out assimilation of measurements, which offers much addi-
tional freedom to deviate from observed climatology. Our
findings indicate that even in this case the shape of the stress

tail generated by such models is reliable over a wide range of
return periods.

5 How reliable are the shapes of the tails of HW along
the Dutch coast derived from simulated data?

Since stress provides the main forcing of a storm surge, it
can be expected that the tails of the surge and HW along the
Dutch coast are also regular. They should in fact be similar
to the tail of stress, as storm surge is roughly proportional to
the stress if we ignore the effects of wind directionality, fetch
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Figure 4. Empirical return values of stress from annual maxima
at 3.5° E, 54° N from 3-hourly RACMOv2.3 (blue) and 6-hourly
SEAS5 (black) data, with return values from GEV fits (dotted) and
from Gumbel fits (dashed).

and duration limitations, and along-shore flow. Whether their
shapes can be reliably estimated from hydrodynamic model
simulations forced by model-generated stress depends on the
size and nature of the bias in these models.

Systematic differences between skew surge from different
models appear to be affine (“linear plus constant”; see Ap-
pendix A). As an example, Fig. 7 shows for two sites the
relationship between skew surge predictions from the low-
resolution DCSMv5 model and the high-resolution DCSM-
FM 100 m model. These were determined from water level
simulations for 250 downscaled severe storms from the
SEAS5 archive (Sect. 2). Affine relations are also found at
all other sites (not shown). This indicates that the resolution
of the surge-tide model does not affect the shape parameter
of the tail of skew surge (and therefore does not affect the
shape of the HW tail either).

Validation of the DCSM-FM 100 m model against mea-
surements in Zijl et al. (2022) and Zijl and Laan (2021)
shows that predicted skew surge at tidal stations on the Wad-
den Sea (with labels 4–6 in Fig. 1) has a negative bias for
surge above a threshold close to the 99 % quantile; the mag-
nitude of this bias increases approximately linearly in the ex-
cess of surge above this threshold; see Fig. S7 (Sect. S7).
A similar bias pattern was already reported in Ridder et al.
(2018) for the DCSMv5 model. This suggests either an is-
sue with the representation of hydrodynamic processes in the
shallow Wadden Sea estuary under severe storm conditions
(e.g. wave–current interaction or changes of the seabed and
its roughness) or insufficient resolution of mesoscale varia-
tions of stress, which would affect the shallow Wadden Sea
more than the adjacent North Sea. Modelling experiments
with varying forcing and resolution seem to point to the for-

mer explanation (van den Brink, 2020), but the issue has not
been resolved yet.

The apparently linear bias in the excess of skew surge
(Appendix A) above a threshold suggests that the shapes of
surge and HW tails estimated from the model simulations
may still be accurate above this threshold. To check this,
GW tail shape estimates from tide gauge data and simu-
lations are compared in Fig. 8. Indeed, the estimates from
the SEAS5/DCSMv5 data are compatible with the estimates
from tide gauge data for five of the six tide gauge stations.
The exception is Delfzijl (6) on the small Eems-Dollard es-
tuary (Fig. 1). The poor match at high sample fractions above
say 0.01 for Delfzijl may be related to the change in bias in
model predictions of skew surge from negligible to negative
at roughly the 99 % quantile found in Zijl and Laan (2021)
(see Fig. S7 in Sect. S7), which will distort shape estimates
at mentioned sample fractions. This is confirmed by Fig. S8
(Sect. S7), showing the effect of such a bias on shape esti-
mates.

Note that the shape estimates from the measurements at
Harlingen (5) and Delfzijl (6) are highly irregular at sample
fractions below 0.005, which is not plausible in view of the
regularity of the estimates at other stations nearby and the
considerable spatial coherence in storm surge on the North
Sea. The wide confidence intervals of these estimates in-
dicate that they are not reliable. This suggests that the use
of SEAS5/DCSMv5 data for shape estimation has the addi-
tional benefit of ensuring that spatial variations in tail shape
are plausible.

6 Estimation of return values of stress and coastal
water level using simulated data and measurements

6.1 Introduction

The previous sections presented evidence in support of es-
timation of the shapes of the tails of stress and HW from
simulated data. Here, we discuss how this can be put into
practice and assess the uncertainty of the resulting estimates,
which includes the sampling error (see Appendix A) and the
unknown residual model-related bias in estimates from sim-
ulated data.

The procedures applied for stress and for HW are some-
what different, as we have water level measurements but no
measurements of stress. A diagram summarizing the data and
processing steps is shown in Fig. 9.

For tail estimation, we use the GW tail approximation
Eq. (9). This choice is based on the results of an earlier
study (de Valk and van den Brink, 2023a), employing Monte
Carlo simulation based on estimates of distribution functions
for wind speed, skew surge and HW from the long archive
of SEAS5/DCSMv5 data (Sect. 2) using a refined method,
which allows for the estimation of deviations from limiting
GP and GW tail shapes. This study found that if the tail shape
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Figure 5. Estimates of the tail shape γ (see Sect. 3.1) from annual stress maxima from SEAS5 (a) and from RACMOv2.3 downscaling of
EC-Earth3bis runs (b), as well as their differences (c).

Figure 6. Estimates of the GW shape parameter β (see Sect. 3.1) of
stress from SEAS5 with 95 % confidence intervals (black) and from
the KNW reanalysis (blue) and the ERA5 reanalysis (red), along
with their confidence intervals at 3° E, 55° N (central North Sea).
The horizontal axis indicates the sample fraction k/n used for the
estimation (see text).

of HW is estimated from a record similar in size to a mea-
surement record, the GW tail produces considerably more
accurate estimates than the GP tail. However, this difference
largely disappears if a record of the size of the local SEAS5
data is used for shape estimation. For wind speed, the GW
tail was found to perform considerably better than the GP
tail, also when very long records are used for shape estima-
tion (de Valk and van den Brink, 2023a, Appendix C).

For the estimation (see Sect. 3.2), thresholds exceeded by a
sample fraction p = 0.012 are used, based on the same simu-
lation study. This choice is verified using threshold plots like
Figs. 6 and 8.

Return values are estimated using Eq. (2) with values of
the extremal index α to be discussed below.

6.2 Stress

GW tails of stress are estimated from 6-hourly SEAS5 stress
data at the grid points marked by triangles in Fig. 1. Note that
1−F in Eq. (2) represents a fraction of time, which has the

same meaning regardless of sampling interval. Therefore, the
sparse temporal sampling of the SEAS5 data is not expected
to affect the estimation of F or its quantile function q. How-
ever, it is a problem for estimation of the extremal index α.

Figure 10 (left) shows estimates of the ratio of α to
the sampling interval derived from SEAS5 stress and from
hourly measurements of wind speed u10 at all sites (see
Fig. 1); this ratio is the quantity that matters for the com-
putation of return values by Eq. (4). The extremal indices for
stress and for wind speed u10 should be the same, since the
extremal index is not affected by a monotonic transforma-
tion. The estimates from the SEAS5 data tend to the maxi-
mum possible value of 1/6 h−1 with decreasing sample frac-
tion, but the estimates from the wind speed measurements
keep increasing. Such a continued increase is typical for a
Gaussian process (e.g. Leadbetter et al., 1983), which has
been used as a model for wind speed fluctuations before
(Larsén, 2012). In this case, all one can do is choose a value
which is consistent with the estimates and is suitable for the
application. Since for flood risk assessment (a) wind stress is
only used to determine hydraulic loads on the coastal struc-
ture and since (b) these tend to vary more slowly than the
hourly wind speed or wind stress, we somewhat arbitrarily
adopt 0.5 h−1, corresponding to a mean cluster length of 2 h.
This choice is close to the highest estimates in Fig. 10 (left).

Finally, the scale and location parameters are increased by
a factor of 1.1 (giving a uniform increase of all return values
by the same factor), based on an earlier analysis of the ef-
fects of atmospheric model resolution on skew surge in van
den Brink (2020). We refer to the diagram of Fig. 9 for an
overview.

The estimates of the tails of stress (see Sect. S5) cannot
be validated directly. As a sanity check, we compare the tail
distributions of wind speed u10 at a height of 10 m obtained
from stress using an approximation formula to empirical dis-
tributions from measurement data. For the approximation, we
use a logarithmic wind profile with roughness length z0 de-
termined from the Charnock relationship with a constant of
0.025, which agrees well with the corrected estimates from
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Figure 7. Sorted peak values of skew surge [m] of 250 storms from DSCMv5 versus DCSM-FM-100 m (Q-Q plot) for Hoek van Holland (a),
Harlingen (b) and Delfzijl (c) with fitted affine relation (full line).

Figure 8. Estimates of the GW shape parameter β (see Sect. 3.1) of HW vs. sample fraction with 95 % confidence interval from measurements
(blue) and from SEAS5/DCSMv5 simulations (black) for 6 tide gauge stations (see Fig. 1).

laboratory and field measurements in Curcic (2020) over the
relevant wind speed range. The return values of wind speed
associated with wind directions in the sector from W to N
(which are not disturbed much by land) are compared with
the empirical return values determined from hourly wind ob-
servations at nearby measurement stations; see Fig. 11. Here,

the return period of the kth highest observation (circle) is de-
termined as L/(kα), with L being the record length in years
and α = 1/2 as above (this makes the comparison indepen-
dent of the choice of the extremal index).

With the chosen Charnock constant, the overall agreement
is surprisingly good. Had we chosen a lower Charnock con-
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Figure 9. Overview of the proposed method for estimating return values of stress and coastal high water (HW). Cylinder: archive (see
Sect. 2). Rectangle: processing. Parallelogram: data. Blue arrow: data flow with propagation of uncertainty. Dotted blue arrow: propagation
of uncertainty only.

Figure 10. (a) Estimates of the extremal index divided by time step for SEAS5 stress (black lines) and measured wind speed (blue dots) in
the months DJF. (b) Estimates of the extremal index for HW in DJF from SEAS5/DCSMv5 data (black lines) and measurements (blue dots).
Blue lines are smoothed estimates from measurements. Each line corresponds to a grid point or station.

stant, then we would have obtained return values for u10 that
markedly exceed the empirical values. For context, the value
of 0.0185 as in Wu (1982) is commonly used in sea surface
wave prediction models such as SWAN (Booij et al., 1999)
to derive nearshore wave conditions from u10. This indicates
that the correction factor of 1.1 applied to the SEAS5 stress is

not too low for simulating nearshore wave height and period
for the purpose of estimating their return values (see Sect. 1).

The return values of wind speed u10 for return periods
above 100 years in Fig. 11 are not reliable, because they
depend sensitively on the assumed Charnock relation; they
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Figure 11. Empirical return values of wind speed u10 restricted to wind directions from W to N from measurements at seven stations
(dots; see headers) and corresponding provisional estimates derived from the corrected SEAS5 stress by the Charnock (0.025) relation, with
sampling error (95 % confidence intervals, dark grey) and assessment of total uncertainty (95 % confidence intervals, light grey). Numbers
and letters in the headers refer to the sites marked by squares and triangles in Fig. 1.

are only shown to indicate the uncertainties in terms of wind
speed.

The estimates of stress tails (Sect. S5) and of westerly
to northerly wind speed tails in Fig. 11 show little varia-
tion along the coast, yet they appear to be consistent with
measurement data. In fact, the most outlying observations in
Fig. 11 are not particularly extreme and are each limited to a
single site. Therefore, the large spatial variation in return val-
ues found in earlier analyses of wind measurements (Caires,
2009; Wieringa and Rijkoord, 1983) is likely due to sampling
variability and possibly site-specific conditions such as spa-
tial differences in roughness and topography.

6.3 High water

For high water (HW) at the six tide gauge stations (see
Fig. 1), almost the same method is used as for stress, with
one important difference: the scale yq ′(y) and location q(y)
parameters of the GW tail Eq. (9) are estimated from the de-
trended measurement records, using a fixed shape parame-
ter estimated from simulated HW data from the DCSMv5
model forced by SEAS5 stress and pressure gradient fields
(see Sect. 2). This choice is based on the simulation study of
de Valk and van den Brink (2023a), showing that scale and
location can be estimated from relatively short records sim-

ilar in size to the HW measurement records, if the shape is
estimated from a record of the size of the local SEAS5 data.

Based on the estimates in Fig. 10 (right), the value of 1
was chosen for the extremal index: clustering of consecutive
values of HW effectively vanishes with increasing thresh-
old (decreasing sample fraction). We refer to Fig. 9 for an
overview.

The estimated return values of HW are shown in Fig. 12
together with the empirical return values. The high values
in Vlissingen (1), Hoek van Holland (2) and IJmuiden (3)
reached during the severe 1953 flood stand out. For Hoek
van Holland, this value has an estimated frequency of ex-
ceedance µ of 0.0011 yr−1, so the probability that an an-
nual maximum exceeds it in 132 years (the record length) is
1− exp(−132µ)= 0.14. Therefore, the 1953 water level is
no outlier. Earlier estimates of the frequencies of exceedance
from only measurements as in Dillingh et al. (1993) were
higher, as the shape estimates were influenced by the high
HW observed during the 1953 storm. By estimating the shape
from simulated data, the present analysis avoids an overly
large influence of single events.

As a further check, we compute for every station the
ratio of the scale parameter estimated from tide gauge
measurements and the scale parameter estimated from
SEAS5/DCSMv5 data; see Table 1. If a bias in the tail of
HW from SEAS5/DCSMv5 is only due to bias in the SEAS5
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Figure 12. Estimated return values of water level at six tide gauge stations (see Fig. 1) with sampling error (95 % confidence intervals, dark
grey) and assessment of total uncertainty (95 % confidence intervals, light grey), with empirical return values from tide gauge data (dots).

stress, then this ratio indicates the factor by which the SEAS5
stress should be corrected. The outlying value for Vlissingen
can be explained by spatial mismatch: the DCSMv5 model
has only a few output points in the small Western Scheldt
(Westerschelde) estuary. The scale ratios for Hoek van Hol-
land and IJmuiden along the west coast are close to the cor-
rection factor of 1.1 applied to the return values of stress,
indicating that the ratios for these sites are to a large extent
explained by bias in the SEAS5 stress. In fact, running the
DCSMv5 model with SEAS5 stress fields inflated by a fac-
tor of 1.1 and repeating the analysis gives scale ratios which
are 0.09 lower, which shows that the increase of the scale pa-
rameter of the tail of HW from the DCSMv5 model is almost
proportional to the stress increase.

For the stations Den Helder (4), Harlingen (5) and Delfz-
ijl (6) on the Wadden Sea estuary (Fig. 1), larger ratios are
found. This could be due to errors in the stress forcing of the
DCSMv5 model in this area (e.g. due to the limited resolu-
tion of SEAS5) or due to a bias in the DCSMv5 model when
it is applied to this shallow estuary with complex bathymetry.
A study of the effects of dynamic downscaling of the atmo-

Table 1. Scale ratios (ratios of scale parameters of the tails of HW
estimated with and without using measurement data for location
and scale) for HW data simulated from SEAS5 stress and simulated
from SEAS5 stress inflated by a factor of 1.1.

Tidal station SEAS5 Inflated
stress stress

Vlissingen (1) 0.91 0.85
Hoek van Holland (2) 1.14 1.05
IJmuiden (3) 1.15 1.06
Den Helder (4) 1.24 1.15
Harlingen (5) 1.22 1.14
Delfzijl (6) 1.28 1.19

spheric forcing and of hydrodynamic model resolution (van
den Brink, 2020) found no large systematic impact of res-
olution (see also Sect. 5). The current working hypothesis
is therefore that under severe storm conditions certain pro-
cess(es) in the shallow Wadden Sea are not adequately rep-
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resented in current shallow-water flow models; investigating
this further is beyond the scope of the present study.

6.4 Uncertainty of the estimates

We distinguish several sources of uncertainty. The sampling
uncertainty, which is determined by the choice of the sta-
tistical model and the length of the dataset, is very small
for stress and derived wind speed, as the stress tails are es-
timated from more than 8000 years of SEAS5 data. These
uncertainties are shown in Fig. S6 (Sect. S5) for stress and
in Fig. 11 for the speed of westerly to northerly wind u10.
For HW (Fig. 12), the uncertainties are larger than for stress
and wind, as scale and location are estimated from relatively
short records of tide gauge measurements, which widens the
uncertainty ranges.

In addition, the error analysis should address model-
related uncertainty: unknown systematic errors in the esti-
mated tail distributions of wind shear stress and HW from
simulated data resulting from limitations of the models such
as limited resolution and parameterizations of processes
which cannot be modelled based on first principles. We rep-
resent the model-related uncertainty in the GW tail distri-
bution as a normally distributed error in the shape param-
eter. The reason for this choice is that errors in estimates
of return values for large return periods are primarily de-
termined by errors in the shape parameter. Furthermore, for
HW, scale and location parameters are estimated from mea-
surement data.

For shear stress from SEAS5, we assume that the model-
related error in the shape parameter of the GW tail is nor-
mally distributed with mean of 0 and standard deviation
of 0.1 (likely within ±0.1, very likely within ±0.2). The
standard deviation is a crude estimate based on a compar-
ison of estimates of the shape parameter γ (see Sect. 3.1)
from annual maxima of SEAS5 stress and of the RAC-
MOv2.3 downscaling of EC-Earth3 runs for the same area
around the Netherlands (see Sect. 2), which differ con-
siderably in resolution and drag relation; see Fig. 5. The
mean difference over the southern and central North Sea
is 0.026, from which we estimate the standard deviation
by
√
(n− 1)−1

∑n
i=1(Xi − µ̂)

2 with n= 2 as
√

0.0132
× 2=

0.018. Using Eq. (8), this results in 0.12 (rounded to 0.1) for
the standard deviation of the GW shape parameter of stress.

For HW, we employ the simplification that HW is roughly
an affine function of stress (for small sample fractions, both
in the hydrodynamic model and in reality; see Sect. 5), so
the errors in the GW shape parameter of stress and HW are
roughly equal. The model-related uncertainty is included as
a random disturbance to the shape parameter estimates in the
bootstrap procedure.

Confidence intervals of the resulting total error are shown
as light grey bands in Fig. S6 (Sect. S5) for stress, in Fig. 11
for the speed of W to N wind u10 provisionally derived from
stress and in Fig. 12 for HW. The dark grey bands are the in-

Table 2. Reduction factors in total uncertainty (standard deviation,
including mode-related uncertainty) achieved by using the new 107-
year return value estimates for HW instead of GW tail fits to mea-
surement data only (left) or GP tail fits to measurement data only
(right).

Relative to GW fit Relative to GP fit
Tidal station to measurements to measurements

Vlissingen (1) 2.6 5.1
Hoek van Holland (2) 2.6 4.5
IJmuiden (3) 3.1 6.8
Den Helder (4) 2.6 5.4
Harlingen (5) 2.2 4.7
Delfzijl (6) 1.6 4.3

tervals based on sampling errors only. In particular for stress
and derived wind, the model-related error broadens the inter-
vals considerably.

For HW, we can evaluate the effect of the use of simulated
data on the total uncertainty of return value estimates for a
return period of 107 years. Table 2 (first column) shows for
each station the ratio of the standard deviation of the estimate
from measurements to the standard deviation of the estimate
partially based on simulated data. The estimates are both
based on GW tail fits (Sect. 3) using thresholds exceeded
by the same sample fraction of 0.012, so the factors repre-
sent only the reduction in total uncertainty due to the use of
simulated data for shape estimation. The average reduction
is by a factor of 2.4. The second column shows the reduction
factor relative to the standard deviation of GP tail fits to mea-
surements only. These numbers are considerably higher: on
average 5.1. This shows that both the use of simulated data
to estimate shape and the choice for a GW tail instead of the
more conventional GP tail can contribute substantially to the
reduction of the uncertainty in return value estimates. This
is qualitatively in line with simulation results in de Valk and
van den Brink (2023a).

The reduction factors in Table 2 are not accurate: it is dif-
ficult to assess the uncertainty of return value estimates from
measurements reliably (see Sect. S1), and our assessment of
the model-related error in shape estimates from simulated
data is crude.

7 Conclusions and outlook

Even a measurement record of about 140 years (considered
long in meteorology) is not enough to reasonably constrain
return values for large return periods of 10 000 years or
higher. This case study demonstrates that the uncertainty in
the statistical modelling of extreme coastal water level can be
reduced considerably by the cautious use of large archives of
weather data simulated by state-of-the-art models and water
levels simulated from these data (Sects. 4–6).
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The uncertainty in the 107-year water level is reduced by
a factor of 2.4 on average (Table 2). This is achieved by es-
timating the tail shapes from about 8000 years of simulated
data. We substantiate that these shape estimates are reliable
(Sects. 4–5); for stress, they show very little dependence on
model resolution and drag formulation, and shape estimates
are generally compatible with estimates from measurements
or reanalysis data. Our uncertainty assessment includes the
model-related error (Sect. 6.4).

The reduction in uncertainty is modest compared to the
potential reduction of typically

√
8000/140= 7.6 for a mea-

surement record of 140 years. Further reduction toward this
limit is possible if it can be shown that the model-related er-
ror in tail shape is smaller than our current estimate and/or if
models improve so much that the scale and location param-
eters can be reliably estimated from simulated data. Further-
more, if the biases in location and scale estimates derived
from simulated data are spatially smooth, this smoothness
may be exploited to reduce the estimation error further (e.g.
Wood et al., 2016; Wood, 2020; Calafat and Marcos, 2020).
Table 1 indicates that this is a reasonable assumption, ex-
cept for Vlissingen on the narrow Western Scheldt (Wester-
schelde) estuary where model resolution is insufficient.

The choice of the type of tail distribution to be fitted to the
data also matters. We use the generalized Weibull (GW) tail
(Sect. 3). When we compare the uncertainty of our estimates
of the 107-year water level to the uncertainty of estimates
obtained by the conventional method of fitting a generalized
Pareto (GP) tail to measurements only, we find an average
reduction by a factor of 5.1 (Table 2). This shows that both
the use of simulated data to estimate shape and the choice
for a GW tail instead of the more conventional GP tail can
contribute substantially to the reduction of the uncertainty in
return value estimates.

Furthermore, the use of simulated weather data makes it
possible to estimate return values of stress, which is not mea-
sured. This is important for flood risk assessment, as stress
constitutes the main link between atmospheric dynamics,
storm surge and sea surface waves. Return values of stress
from the simulated data are corrected by a factor of 1.1, in
reasonable agreement with the HW scale parameter correc-
tions for tidal stations on the west coast in Table 1, as well
as with wind measurements when assuming a Charnock con-
stant of 0.025 (see Fig. 11).

A side effect of the use of very large simulated datasets
in this study is that return value estimates are spatially
smooth and insensitive to individual events such as the
1953 storm. Dependencies between variables in the extreme
ranges of stress and HW such as wind-direction-dependent
return values and dependence between stress and HW are
not discussed here. Elsewhere in de Valk and van den Brink
(2023b), it is shown how simulated data can be used to im-
prove the estimation of dependencies.

The present method, developed for the Dutch coast, may
be applicable to other coastlines along the North Sea and pos-

sibly to other regions with similar climates and to other vari-
ables. However, careful review and checking of the assump-
tions and their consequences for the application is essential.
A potential advantage of very large archives of simulated
weather is good coverage of the phase space, but this will
only materialize if all relevant phenomena (e.g. storm types)
are faithfully represented in the simulated data.

In the present study, estimates of return values of HW from
simulated data are corrected based on a tail fit from measure-
ment data which uses the shape estimate from the simulated
data. As only the scale and location parameters are adjusted,
this correction is affine. If the tail shape remains the same
in a changing climate, then the same affine correction may
be applied to correct the bias in return values from simu-
lations based on different scenarios of future climate forc-
ing. However, the assumption of a constant shape may not
be valid, e.g. under scenarios in which new extreme popu-
lations emerge such as post-tropical cyclones (e.g. Baatsen,
2015; Sainsbury et al., 2020). This requires that (changes in)
the shapes of tails associated with relevant populations are
examined separately, which is a topic for future research.
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Appendix A: Glossary

High water
(abbrev. HW)

the maximum height reached during a rising tide (including the meteorologically forced contri-
bution) relative to a fixed datum (Hicks, 1989) (also hoogwaterstand (Dutch), Hochwasserstand
(German))

Skew surge the difference between the high water and the astronomical high water predicted for the same
cycle

Return value the value exceeded with a given frequency µ= 1/T , with T being the return period in years
Sampling error the uncertainty in an estimate from a data sample due to unexplained variation in the values

within the sample
Affine an affine transformation is a transformation consisting of a linear transformation and a translation
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