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Please note that references to numbered sections, figures, tables and equations without "S" refer to the main text.

S1 Uncertainty of return value estimates from measurements

As an illustration of the uncertainty of return value estimates from measurement data, Fig. S1 shows estimates of return values

of water level at Hoek van Holland (tidal station 2 in Fig. 1) derived from the 1% highest trend-corrected high water values

measured since 1887 (black curve) with their 95% confidence intervals (vertical bars). The top panels show estimates using a5

Generalized Pareto (GP) tail and the bottom panels show estimates using Generalized Weibull (GW) tail. The methods are as

described in Sect. 4 with one exception: the estimated return values are considered to be log-normally distributed rather than

normally distributed, as this produces more plausible intervals in the case of very high uncertainty (in the limit, both are valid

approximations).

For the longest return periods, the confidence intervals are very wide: about 2 m for a return period of 10,000 years and 610

m for a return period of 107 years for the GP tail. In fact, the estimates in the landmark study Dillingh et al (1993) have even

wider confidence intervals. Also shown in Fig. S1 (left) are the estimates from the measurements up to 1955 (blue) and after

1955 (red) along with the corresponding data points. These estimates are very different, spanning almost the entire widths of

the confidence intervals of the estimates from the complete dataset. Further, splitting the data of odd and even years (Jul to

Jun), similarly large differences are found; see Fig. S1 (right). This underscores that the large uncertainty implied by these15

confidence intervals is realistic.

In fact, high uncertainty of return value estimates makes it impossible to properly account for this uncertainty in the flood

risk analysis (e.g. Ditlevsen and Madsen, 1996, Sect. 3.4): in order to account for uncertainty, the uncertainty should be reliably

quantified, but that need not be the case. For example, in Fig. S1 (left), the estimates from the complete dataset (presumably

the most reliable) lie far outside the confidence intervals derived from the data after 1955. If only the latter were available, the20

uncertainty would be seriously underestimated. This is a fundamental problem, not related to the method used to estimate the

uncertainty: the uncertainty of an estimate generally depends on the true value (e.g. de Haan and Ferreira, 2006, Sect. 3.4.2),

but the true value is not known.

For estimates based on the GW tail Fig. S1 (bottom), the confidence intervals are clearly less wide than for estimates based

on the GP tail (top). However, the uncertainties are still of similar order of magnitude, so using a GW tail for estimating return25

periods would not solve the problems signaled above.
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Figure S1. Estimates of return values of sea level at Hoek van Holland from trend-corrected measurement data (black curve) with 95%

confidence intervals (thick black lines). Left: data and estimates from measurements made up to (blue) and after (red) 1955. Right: data and

estimates from even (red) and odd (blue) years. Top: Generalized Pareto (GP) tail; bottom: Generalized Weibull (GW) tail.

S2 Tail dependence of stress from different ensemble members

To check for dependence between the extremes from two time-series, a sensitive metric is the coefficient of tail dependence

η from (Ledford and Tawn, 1996, 1997, 1998); see Subsection 7.4. We consider estimates of ρ := 2η− 1, which can be inter-30

preted similarly as an ordinary Pearson correlation coefficient for two Gaussian random variables (although it is estimated in

a very different way!). In particular, 0 means that conditional on one of the two variables exceeding a high threshold, they are

effectively independent.
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To check the dependence between extremes of stress from different ensemble members of the SEAS5 forecast data for ranges

in excess of one month used in de present study, we estimated ρ from all pairs of simultaneous values from different ensemble35

members. Estimates are made from different fractions p of the "most extreme" pairs. Because the estimates may be biased by

seasonality in the data, we made estimates from all data, but also for the long storm season ONDJFM and a shorter season

DJF; see Fig. S2.

For both the long and the short storm season, the tail correlation coefficient tends to practically 0 for small sample fractions,

showing that the dependence between extremes of stress from different members is negligible. This supports the treatment of40

data from different SEAS5 ensemble members as independent in the statistical analysis.
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Figure S2. Estimates of tail correlation coefficient ρ := 2η− 1 from all pairs of ensemble members of SEAS5 forecasts of stress for ranges

exceeding 1 month from grid point b (see Fig. 2) for months DJF (drawn), ONDJFM (dotted) and all year (dashed), derived from different

sample fractions.
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Figure S3. Time-series of annual mean HW (dots) with trend line (full) relative to the trend line value in 2019, and trend line of annual mean

sea level relative to its value in 2019 (dashed).

S3 Detrending of HW measurements

Figure S3 shows the annual mean HW and its trend line relative to the trend value in 2019 (estimated using a loess filter with

span equal to 84/n with n the record length) for the six tidal stations. Additionally, the estimated trend line for the annual

mean sea level (relative to its value in 2019) is plotted. The trends are increasing and, except for Den Helder, larger than the45

sea level rise. The plots for most stations show an accelerated rise in annual mean HW between roughly 1940 and 1980 which

is not seen in the sea level rise. These deviations are largely attributed to hydraulic engineering interventions (Dillingh, 2013)

but natural processes may also play a role. The records of HW were de-trended assuming that a change in the average HW has

the same effect on the extreme HW values.

The considerable differences between the trends of annual mean HW and of annual mean sea level observed in Fig. S350

indicate that extrapolated trends of annual mean sea level may not be suitable for normalizing reconstructed peak values of

HW or skew surge of historical flood events as in (Van Gelder, 1996; Baart, 2011). Using these reconstructions in the estimation

of return levels to increase the accuracy (see Sect. 2) may bias the estimates.

To check the de-trending of the measured HW, several checks have been performed on the time evolution of the more

extreme HWs after the correction: the annual 99% quantiles and the annual maxima; see Fig. S4. Clear residual trends cannot55

be discerned in these; apparent deviations are limited to short periods at the beginning or end of a record, where the trend

estimation may be less accurate.
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Figure S4. Annual means and 99% quantiles of trend-corrected HW (left), and year as function of the rank of the annual maximum of HW

(highest = 1) (right) for Hoek van Holland (top) and Delfzijl (bottom).

In the 99% quantiles, a very small fluctuation can be observed with a minimum around 1960 and maximum around 1920 and

1990, which resembles the pattern of the winter North Atlantic Oscillation (NAO). However, this is of little practical relevance.
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S4 Saturation of the drag coefficient60

Measurements in the laboratory and at sea (e.g. Curcic (2020); Richter et al (2021) and their references) indicate that the drag

coefficient over sea saturates to a value of about 0.003 for wind speeds in the range of 25-35 m s-1. Various empirical and

physics-based models have been proposed, but the issue is far from settled. In fact, the ECMWS IFS model, which employs

a dynamic wind-wave coupling to compute stress and near-surface wind speed, exhibits saturation even though this is not

explicitly incorporated in the model (Pineau-Guillou et al, 2018). This is also seen in the SEAS5 data (generated using the IFS65

model); see Fig. S5 for an example (this drag relation from SEAS5 should not be trusted quantitatively, because empirical return

values of wind speed from SEAS5 along the Dutch coast are considerably lower than those from wind measurements at nearby

stations (not shown)). Both measurements (Fig. 3 of Curcic (2020)) and these simulated data suggest that drag saturation, if

real, should be rather smooth, hence would not lead to an anomaly in the tail distribution of stress and/or near-surface wind

speed. Furthermore, if drag saturation would not affect the geostrophic wind, then it would affect near-surface wind speed more70

than it affects stress, as can be assessed using the simple expression of Blackadar and Tennekes (1968) of wind and stress in a

neutrally stable boundary layer as functions of the geostrophic wind; see also Zweers et al (2012). Finally, two-way interaction

between stress and cyclone strength (Sect. 5.3) may further reduce the influence of drag saturation on the tail of stress.
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Figure S5. Empirical drag coefficient Cd from SEAS5 data for grid point b in Fig. 2 (thick). The thin lines are determined from Charnock

relations with various constants (see legend)
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S5 Return value estimates for stress

d e f

a b c

1e+00 1e+02 1e+04 1e+06 1e+00 1e+02 1e+04 1e+06 1e+00 1e+02 1e+04 1e+06

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

return period [year]

st
re

ss
 [P

a]

Figure S6. Return value estimates for stress derived from the corrected SEAS5 stress data with sampling error (95% confidence intervals;

dark gray) and assessment of total uncertainty (idem, light gray). Grid point labels in headers refer to the triangles in Fig. 2.
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S6 Generalized Weibull tail estimation75

For fitting Generalized Weibull (GW) tails, we employ an adaptation of the estimator from de Valk and Cai (2018). The latter

is introduced there as an estimator for the log-GW tail de Valk (2016a); to estimate the GW tail from a data sample, one simply

skips the step of taking logarithms of the data values.

In de Valk and Cai (2018), the large-sample behaviour of this estimator was analysed in a configuration using different

thresholds for shape and scale estimation. In practice, however, it proves to be more effective to use the same thresholds;80

see also Albert et al (2015). A slight modification of the asymptotic analysis in de Valk and Cai (2018) shows that with that

approach, errors in return value estimates are dominated by the error in the shape estimate.

Furthermore, in the notation of de Valk and Cai (2018), the estimator θ̂kn,n of the shape parameter θ in their Eq. (19) is

modified by replacing γ̂H
i,n with the asymptotically equivalent expressionϑi+1,n

1
i

i∑
j=1

hθ̂kn,n
(ϑj,n/ϑi+1,n)

−1

γ̂H
i,n. (S1)85

This modification is motivated by replacing the first approximation of g(ϑi+1,n) in Eq. (17) of de Valk and Cai (2018)

with the second, more accurate, approximation. It leads to an implicit equation for the shape parameter, which can be solved

approximately by searching over a discrete set of values.

The code used is the R function FitGW_iHilli.R.available at https://github.com/ceesfdevalk/EVTools.

In practice, the outcomes of this estimator resemble those of the maximum likelihood (ML) method, but the computation90

takes much less time. An alternative estimator is presented in Albert et al (2015).
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S7 Error in skew surge predictions on the Waddenzee

For the high-resolution shallow-water surge-tide model DCSM-FM 100m (Zijl et al, 2022), the bias in the predictions of skew

surge at Harlingen (5) and Delfzijl (6) is shown in Fig. S7, reproduced from Zijl and Laan (2021). The predicted skew surge

has a negative bias above a threshold close to the 99% quantile; the magnitude of the bias increases approximately linearly in95

the excess of surge above this threshold.

Figure S7. Error in predictions of skew surge at Harlingen (5) (top) and Delfzijl (6) (bottom) by the DCSM-FM 100m tide-surge model

forced by HIRLAM output for the period 2013-2017. From Zijl and Laan (2021) (with permission).

This finding can be used to correct water level simulations by the DCSMv5 surge-tide model forced by SEAS5 stress and

mslp fields (Sect. 3). For this purpose, we use the affine relations between surge predictions from DCSM-FM 100m and

from DCSMv5 in Fig. 7 together with the bias in DCSM-FM 100m (red lines in Fig. S7) to correct the full datasets of skew

surge from DCSMv5 forced by SEAS5 (see Sect. 3). These are subsequently combined with astronomical tide to compute100

bias-corrected HW.

GW-shape estimates from the original and the bias-corrected HW data for Harlingen and Delfzijl are shown in Fig. S8,

complementing Fig. 7. We observe a substantial increase in shape parameter estimates at low thresholds (exceeded by high

fractions of the sample). The large effect of bias correction is probably somewhat exaggerated: it is assumed that the bias in

the skew surge in Fig. S7 has a kink at a certain surge level and is affine above and below this level. In reality, the bias will105

likely transition smoothly as a function of the skew surge. This is consistent with the shape estimates from measurement data:

these fall nicely between the estimates from the bias-corrected and from the original DCSMv5 data. For thresholds above the
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kink, the latter two estimates are almost identical, as claimed. The chosen thresholds (at a sample fraction of 1.2%) appear to

be representative for the estimates at these higher thresholds (or are slightly higher than these).

Figure S8. Estimates of the shape parameter of the GW tail of HW for Harlingen and Delfzijl from measurements (blue), simulated data

from the DCSMv5 model forced by SEAS5 (black), and bias-corrected simulated data (green) with 95% confidence intervals, against the

fraction of the sample used for estimation. Bias correction is based on the fitted relations displayed in Figs. S7 and 7.
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