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Abstract. The objective of this study is to gain a deeper
understanding of geostationary (GEO) satellite data, with a
specific emphasis on sudden increases in a storm’s lightning
activity, referred to as lightning jumps (LJs), and decreases,
known as lightning dives (LDs). To achieve this, observa-
tions from the Geostationary Lightning Mapper (GLM) and
the Advanced Baseline Imager (ABI) on the GOES satellite
are utilized to analyze the cloud characteristics of thunder-
storms. Storms are then categorized based on whether they
produced GEO LJs, GEO LDs, and/or severe weather. While
non-severe thunderstorms have a mean cloud top tempera-
ture of 236 K, cloud tops are about 20 K colder for severe
storms as well as those producing LJs and LDs. Overshoot-
ing tops (OTs) in storms producing LJs and LDs as well as in
severe storms were about 3.4, 1.9, and 2.6 K colder, respec-
tively, than the cloud cell as a consequence of structured and
intense updrafts. On the other hand, OTs are rare and shallow
in the non-severe storms and thunderstorms without LJs and
LDs. Accordingly, the convective rain rates (CRRs) of the
LJ- (23 mmh−1) and LD-producing storms (20 mmh−1) and
severe storms (20 mmh−1) are on average more than 3 times
higher than in non-severe thunderstorms and storms without
LJs or LDs. Thunderstorms experiencing multiple GEO LJs
during their lifecycle feature average cloud top temperatures
of 213 K, with an average of 0.5 OTs being 4.8 K colder than
the anvil and a mean CRR exceeding 26.4 mmh−1. There-
fore, especially those storms with multiple LJs have the high-
est potential to produce dangerous-weather events.

1 Introduction

Thunderstorms have the potential to give rise to hazardous
weather phenomena like strong winds, large hail, flash
floods, and tornadoes. A thunderstorm, as its name implies,
is defined as a cloud system that produces lightning and thun-
der. Hence, lightning observations can be used to locate these
deep convective systems (e.g., Ávila et al., 2010).

Each storm has its unique lightning characteristics with
specific maxima and minima in lightning activity during the
lifecycle of the storm (e.g., Hayden et al., 2021; Borque et al.,
2020; Goodman and MacGorman, 1986). Quantifying the
changes in the lightning activity means analyzing the time
series of the storm cell’s flash rate (FR). Rapid increases in
the FR are referred to as lightning jumps (LJs), as coined by
Williams et al. (1999), while conversely a sudden decrease
in the FR can be called a lightning dive (LD). The National
Weather Service (NWS) defines severe weather as condi-
tions involving tornadoes, significant hail (with a diameter
of at least 2.54 cm or 1 in.), or winds of at least 93 kmh−1.
LJs could be correlated to hail events (e.g., Ni et al., 2023;
Nisi et al., 2020; Wapler, 2017; Farnell et al., 2017; Mikuš
Jurković et al., 2015), tornadoes (e.g., Rudlosky and Fuel-
berg, 2013; Steiger et al., 2007a, b), severe wind events (e.g.,
Pandit et al., 2023), and also supercell development (Stough
et al., 2017). In addition, Schultz et al. (2017) found that LJs
result from an intensification of the mixed-phase updraft that
also benefits the severe weather production.

While the concept of LJs is well documented in the lit-
erature, lightning dives have rarely been the subject of in-
vestigation. The LD exhibits behavior contrary to that of a
LJ, leading to a rapid reduction in the FR, as first mentioned
by Losego et al. (2022). It is based on the idea that a de-
crease in lightning activity can precede events such as tor-
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nadoes or significant hail (e.g., Pineda et al., 2016). That is
the case since the rear flank downdraft (RFD) can be related
to tornado development (e.g., Satrio et al., 2021; Mashiko,
2016; Markowski, 2002). Within the RFD, internal momen-
tum surges can temporarily weaken the updraft or alter the
hydrometeor content. Weaker updrafts prior to tornadoes
are reported in previous studies (e.g., Steiger et al., 2007a;
Lemon et al., 1978). Such a weakening of the updraft is cor-
related with reduced lightning activity, as noted by Deierling
and Petersen (2008). Furthermore, downdrafts caused by in-
tense rainfall or hail can interact with the storm’s updraft and
charging structure. These interactions can temporarily reduce
lightning activity, as fewer ice particles collide, which is nec-
essary to sustain strong electric fields through non-inductive
charging.

The new generation of geostationary (GEO) satellites car-
ries imagers to map the total (i.e., cloud-to-ground (CG) and
inter- and intra-cloud (IC)) lightning activity from space. The
Geostationary Lightning Mapper (GLM; Goodman et al.,
2013; Mach, 2020) provides coverage over the Americas
and adjacent oceans, while the Meteosat Third Generation
Lightning Imager (MTG-LI; EUMETSAT, 2021b; Dobber
and Grandell, 2014) observes, among other places, Europe,
Africa, and the Atlantic. In addition to the GEO lightning
data, the new generation of GEO imagers such as the Amer-
ican Advanced Baseline Imager (ABI; NASA, 2022) and
the MTG Flexible Combined Imager (FCI; EUMETSAT,
2021a) has seen improvements as well, featuring higher res-
olution and additional channels, i.e., wavelengths. ABI and
GLM provide useful information for nowcasting thunder-
storms (Cintineo et al., 2022; Leinonen et al., 2022; Chin-
chay, 2023). GLM lightning observations have demonstrated
potential in the nowcasting of precipitation (with a determi-
nation coefficient of approximately 0.6), with limitations in
accurately predicting high-intensity rain rates and accumula-
tions (Bourscheidt and Ramos, 2023). Thiel et al. (2020) dis-
criminates between convective and stratiform precipitation
by analyzing GLM flash size and frequency. The findings in-
dicate that the most frequent and smallest GLM flashes are
associated with the coldest and highest ABI cloud tops (CTs),
as well as with overshooting tops (OTs), i.e., signatures of
strong convective updrafts.

Different approaches to automatically detect LJs were op-
timized through verification of the algorithm against the pres-
ence of severe weather (Gatlin and Goodman, 2010; Schultz
et al., 2009, 2011, 2016). However, in those studies LJ algo-
rithms were tuned based on ground-based lightning mapping
array (LMA) data. Curtis et al. (2018) and Murphy and Said
(2020) suggested that LJs found for GLM do not resemble
LJs identified with LMAs or low-frequency (LF) lightning
location systems as the former are less correlated to radar
observations. Erdmann and Poelman (2023) were among the
first to optimize the LJ detection specifically for GLM light-
ning records in the central and eastern contiguous United
States (CONUS) and found that GLM LJs as severe weather

predictors reach a critical success index (CSI) of about 0.5,
with lead times averaging more than half an hour.

Erdmann and Poelman (2023) focused on the automatic
detection of LJs from space for the purpose of nowcast-
ing severe weather. In contrast, this study aims to conduct a
comprehensive statistical analysis of thunderstorms, includ-
ing their electrical activity and associated cloud characteris-
tics as observed from GEO satellites. Specifically, it exam-
ines how optical GLM LJs and LDs relate to cloud charac-
teristics commonly associated with severe storms while ac-
counting for detection challenges from space, such as view-
ing angle, cloud optical thickness, and light scattering. Thun-
derstorms are then categorized by the presence of LJs, LDs,
and/or severe weather reports. Hence, thunderstorms with
and without LJs (LDs and severe weather, respectively) can
be compared to identify similarities and differences in the
satellite-based cloud characteristics. Some previous studies
conducted a similar kind of analysis for the LMA-based LJs.
Chronis et al. (2015) found that storms with LJs are more
organized and more intense, last longer, and exhibit more
consistent lightning activity than storms without LJs. This
finding was confirmed by Rigo and Farnell (2022) in particu-
lar for storms with multiple LJs. LJs could also be related to
heavy-precipitation events (e.g., Farnell and Rigo, 2020; Wu
et al., 2018). The present study aims to determine whether
comparable findings and conclusions emerge when utilizing
GLM-based LJs and LDs. The key questions to be answered
are as follows. (i) What do GLM LJs tell us about the storm’s
structure from a satellite point of view? (ii) Are GLM LJs
useful to assess thunderstorm severity? (iii) Do GLM LDs
provide additional information about the thunderstorms?

Section 2 provides information on the datasets and out-
lines the data processing steps undertaken to derive the re-
sults. This encompasses thunderstorm identification, cloud
cell tracking, and the detection of LJs and LDs. The subse-
quent sections, Sects. 3 and 4, delve into the description and
discussion of the obtained results.

2 Data and methods

The EUMETSAT Satellite Application Facility (SAF) for
nowcasting (NWC) has developed the central software pack-
age for this study (Sect. 2.1). The main source of data is the
Geostationary Operational Environmental Satellites R-Series
(GOES-R) 16 (former GOES-East) with its ABI and GLM
instruments (Sect. 2.4). Figure 1 introduces the tools and data
sources and their relations to each other. Dark-gray data are
ingested into the NWC SAF software, which identifies cloud
cells (red) and their satellite-based characteristics (green).
Every cloud cell maintains a record of the FR history, allow-
ing the implementation of the LJ and LD detection algorithm
(Sect. 2.6, yellow). LJs and LDs, in combination with the se-
vere weather reports (Sect. 2.3, blue), are used to categorize
the cloud cells (purple). The results reveal the characteristics
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Figure 1. Data and product types used in this study. The dependen-
cies of the products are depicted from top to bottom, with arrows
also indicating these relationships. At the top, the input is shown
in gray. Boxes with colored frames indicate the intermediate prod-
ucts, and the features in colored boxes are analyzed in the Results
section.

of the different cloud cell categories. Since this study ana-
lyzes only the thunderstorm cells, these are termed thunder-
storm (TS) categories.

2.1 NWC SAF nowcasting software and the RDT
package for cell tracking

This work uses identical datasets and the same software
package as in Erdmann and Poelman (2023). Hence, the soft-
ware package and study periods are briefly introduced below,
with more comprehensive details available in Erdmann and
Poelman (2023).

The NWC SAF nowcasting software (EUMETSAT, 2022)
is a comprehensive nowcasting tool based on satellite data as
the prime source of information. This study used a version of
NWC SAF based on v2018.1 (García-Pereda and coauthors,
2019), but including some updates and technical changes re-
leased in v2021. This was necessary to be able to use light-
ning observations from geostationary satellites. This study
ingests a GOES ABI data (Sect. 2.4) standard scan with a
10 min update cycle as necessary input. To enhance the qual-
ity of specific products, especially in cloud cell detection and
tracking, data from the European Centre for Medium-Range
Weather Forecasts (ECMWF) numerical weather prediction
(NWP) and GLM lightning are provided as optional input.

The NWC SAF software is equipped with various mod-
ules. The Rapid Developing Thunderstorm Convective Warn-
ing (RDT-CW) module (Autones et al., 2020) provides con-
vective cell detection, tracking, and characterization. The
object-oriented approach can effectively differentiate be-
tween convective and non-convective cloud cells and track
the convective cells through image recognition, identification
of known patterns, and statistical models. The RDT-CW pro-
vides outputs for each cell, including the cell contour, various
physical cloud characteristics (as detailed in Sect. 2.5), infor-
mation about brightness temperatures (BTs) and reflectances,

OTs, convective rain rates (CRRs), and the GLM flash rate
(FR). Additionally, RDT also corrects for satellite parallax
effects.

OTs define a region of the cloud top that exceeds the sur-
rounding cloud shield, often seen as a dome above an anvil
(e.g., Bedka and Khlopenkov, 2016). OT development needs
a strong force manifested as a strong, persistent updraft in
thunderstorms. Hence, OTs are indicative of dynamical thun-
derstorm cells with strong updrafts that are usually well or-
ganized. Given that strong updrafts frequently play a crucial
role in the formation of tornadoes and large hail, storms with
these characteristics are especially significant for nowcast-
ing. Since OTs are usual transient features, this study ana-
lyzes the maximum OT activity of each thunderstorm. OTs
are detected in the NWC SAF RDT package through the ap-
plication of several temperature and brightness temperature
difference (BTD) criteria. The software identifies extremely
cold cloud pixels (colder than 223 K in the mid-latitudes) and
compares them to the surrounding pixels to identify the depth
(as the temperature difference, DT) and horizontal extent of
the OT. The BTDs take the WV6.2, WV7.3, and IR10.8 chan-
nels into account. Satellite pixels can also be identified as OT
if they are at least 5 K colder than the tropopause. A detailed
description of the OT detection algorithm can be found in
Autones et al. (2020, pp. 49–50).

The NWC SAF software also includes a dedicated pack-
age to estimate CRRs. This estimation uses analytic func-
tions calibrated to radar data as ground truth and also takes
lightning observations into account. The complex algorithm
to estimate CRRs is detailed in Lahuerta et al. (2020, pp. 22–
41).

2.2 Study days

Study days are selected based on the following aspects.
(i) There is a spinup for each NWC SAF software run of
3 h as a trade-off between included data and a negative ef-
fect on RDT during the beginning of the run. Hence, selected
periods of more than 24 consecutive hours are preferred for
efficiency. (ii) Each period should contain storms with dif-
ferent severe weather types, ensuring a minimum of two
among wind, hail, and tornado reports during the period’s
duration. (iii) The overall dataset should cover different sea-
sons. (iv) GOES ABI and GLM data must be available. It is
worth noting that there was one relevant period of GOES-
16 downtime from 17:00 UTC on 3 June to 01:30 UTC on
4 June (Table 1).

An RDT cloud cell with matched GLM flashes defines
a thunderstorm. This study aims to understand the mean-
ing of LJs and LDs for thunderstorm characteristics. RDT
cloud cells without lightning activity are excluded from fur-
ther study, as they are typically stratiform phenomena, shal-
low convection, or cells in their early development or dissi-
pation phase.
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Table 1. Study periods and the number of analyzed thunderstorms
(full trajectories) in the CONUS per period (excluding the spinup
time of 3 h and instrument downtime).

Period Number of storms

10–11 Jan 2020 844
4–6 Feb 2020 852
2–10 Jun 2020 11 256
14–16 Aug 2020 5414
24–25 Nov 2020 564
25–16 Jan 2021 815
13–15 Feb 2021 352
8–10 Apr 2021 1313
30–31 Aug 2021 3563

Overall 24 973

2.3 Severe weather reports

The National Centers for Environmental Information (NCEI)
weather database collects reports of human observers to
archive the frequency and impact of significant weather
events in the US that may cause loss of life, injuries, sig-
nificant property damage, and/or disruption to commerce
(NCEI-NOAA, 2020). The reports are validated by experts;
hence, there is a quality control for the reports within the
database. The reported events encompass a variety of types,
ranging from severe weather events such as tornadoes, large
hail, and thunderstorm winds to extreme temperatures and
rare, unusual weather phenomena. This study uses the severe
weather reports indicated as tornados, large hail, and thun-
derstorm winds for the study periods introduced in Sect. 2.2.

A density-based clustering algorithm (DBSCAN scikit-
learn developers, 2007–2022) groups all reports of the same
type (i.e., tornado, hail, wind) that occurred within 10 km and
6 min (Erdmann and Poelman, 2023; Schultz et al., 2016).
The cluster of reports that is created is referred to as a severe
weather event, whereby the time and location of the event
correspond to its first report. To allocate the severe weather
events to RDT cloud cells, cloud cells are considered at the
exact time of a weather event. Therefore, the RDT cells are
shifted using their motion vectors. An NCEI event belongs
to a cloud cell if it is found within the cloud cell contour at
the time of the event. For NCEI events that do not fall inside
any cloud cell contour, a distance of 50 km around the event
is also considered to assign it to the closest RDT cloud cell
within that radius. As a result, RDT cloud cells receive an ad-
ditional attribute indicating whether they produced a tornado,
hail, and/or wind report.

2.4 ABI and GLM data

ABI on GOES-R satellites observes the western hemi-
sphere’s weather, oceans, and environment. The passive mul-
tichannel radiometer has 16 different spectral bands, in-

cluding 2 visible channels (at 0.5 and 1.0 km resolution),
4 near-infrared channels (at 1.0 km resolution), and 10 in-
frared channels (at 2 km resolution) with on-orbit calibra-
tion. Each channel views specific aspects of the atmosphere
or surface such as trees, water, clouds, moisture, or smoke
(NASA, 2022), providing unique information. Several prod-
ucts can be deduced, including cloud top details such as
height and phase, storm motion vectors, radiation products,
land and sea temperatures, surface type, albedo, aerosol in-
formation, and fire and volcanic ash characterization. Appli-
cations include the monitoring of cloud formation; tracking
severe weather; assessing fire, smoke, and air quality; and
understanding ocean dynamics.

Only GOES-16’s ABI is used here. Although this study
analyses the western and central CONUS, where the ABI
rapid scan is available, the ABI standard scan with updated
images every 10 min is used, with the region limited to the
CONUS. This aids in efficiently running the NWC SAF soft-
ware and reducing the data volume.

GLM features optical detection of the light emitted by
lightning, which is visible on the cloud top or edges. It
monitors the total lightning activity from GEO orbit with
narrow-band sensitivity of 1 nm within the 777.4 nm oxy-
gen band. The variable pitch pixel charge-coupled device
(CCD) reduces the effect of increasing pixel size towards the
edge of the field of view (FoV). Hence, pixels measure 8 km
nadir and 14 km at the edge of the FoV (Goodman et al.,
2013). The GLM’s wide angle lens covers nearly the full disk
(1372×1300 pixels). The primary detected elements are sin-
gle illuminated pixels, referred to as events. Adjacent events
of the same 2 ms time frame form a group. Groups are clus-
tered to flashes by a weighted Euclidean distance (WED) ap-
proach with 16.5 km latitude and longitude and 0.33 s tempo-
ral constraints (Mach, 2020). The impact of the GLM perfor-
mance and variations in it over the CONUS are discussed in
Appendix A. GLM flashes are ingested into the NWC SAF
software. RDT then assigns the GLM flashes to the cloud
cells, whose position relative to the flash radiance-weighted
centroid is checked at the exact time the GLM flash occurred.
The software outputs the 1 min time series of the flash rate
(FR) for each cloud cell.

2.5 Thunderstorm characteristics and the
normalization

In total, this study analyzes 14 thunderstorm characteristics
(Table 2) that are deduced from ABI channels directly (i.e.,
BT and BTD) or provided by the RDT software based on ABI
observations (e.g., rain rates and OTs). These characteristics
are expected to identify a thunderstorm, and a comparison
should be made across different TS categories. To facilitate
the comparison and illustration of the results (see Fig. 3), the
characteristics are normalized following Eq. (1). The mini-
mum and maximum values for each characteristic are taken
from all analyzed thunderstorms and do not depend on the TS
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category. Hence, normalized characteristics can still be com-
pared between different categories. The range of 0 to 1 in-
dicates whether a certain characteristic received low or high
values for the analyzed category relative to all other thunder-
storms.

xn =
x−min(X)

max(X)−min(X)
, (1)

where xn represents the normalized value of a characteristic,
ranging from 0 to 1; x is the specific value of the characteris-
tic for the TS category being analyzed; X denotes the entire
set of values for the characteristic from all TS categories,
encompassing all analyzed thunderstorms; and min(X) and
max(X) are the minimum and maximum values of this char-
acteristic across the entire set of values, respectively.

2.6 Lightning jumps and lightning dives

The LJ algorithm used in this study is the FRarea LJ algo-
rithm, optimized for GLM lightning records as detailed by
Erdmann and Poelman (2023). With a FR threshold of 15
flashes per minute and a sigma level of 1.0, the algorithm
first checks if the current FR exceeds the given threshold of
15 flashes per minute and only then proceeds with the sub-
sequent steps. The FR time series is smoothened and nor-
malized to obtain a 2 min average. It then divides the FR
by the RDT cloud cell area at that specific time to obtain
an area-normalized FR. The discrete time derivative of this
normalized 2 min FR, referred to as DFRDT, is calculated.
The σ value is obtained from the standard deviation of the
DFRDT of the previous five (i.e., not including the most re-
cent DFRDT) 2 min time steps. The ratio of the most recent
DFRDT to σ is called the σ level and serves as the LJ detec-
tion threshold. If the σ level exceeds the given threshold of
1.0, a LJ is detected. LJs that occurred within 6 min and also
newly detected LJs at the time of ongoing LJs are merged to
one long-lived LJ (compare to Schultz et al., 2009).

LDs are obtained by the same algorithm when using neg-
ative σ levels. The CSIs of the LD algorithms are initially
calculated when verifying NCEI weather events for all an-
alyzed thunderstorms, with the same verification method as
for the LJs in Erdmann and Poelman (2023). The applied LD
algorithm with the highest CSI makes use of the FRarea al-
gorithm with a FR threshold of 10 and σ level of −1.0.

Figure 2 illustrates the application of the LJ and LD detec-
tion algorithms for one thunderstorm trajectory starting on
6 February 2020 at 05:20 UTC and lasting almost 90 min.
The thunderstorm reached a maximum FR of 48 flashes per
minute about 75 min after the cell had been identified, with
a second FR peak observed 54 min after the start. In total,
two LJs and three LDs were detected, as indicated by the red
markers. The detection algorithm thresholds are also shown
as horizontal lines, in blue for the FR threshold and in gray
for the σ -level threshold. The flash rate must be greater than
the FR threshold to detect a LJ or LD. At the same time, the σ

Figure 2. Flash rate (blue shading), σ level (black), and detected
LJs and LDs (red triangles) for one thunderstorm trajectory start-
ing 6 February 2020 at 05:20 UTC. The FR thresholds (blue) and
σ -level thresholds (gray) of the LJ (solid) and LD (dashed) detec-
tion algorithms are shown as horizontal lines (superimposed dashed
lines).

level should exceed the threshold for the LJ algorithm and be
more negative than the threshold for the LD algorithm. The
σ level peaked during the first LJ. Although the raw FR in-
creased more rapidly during the second than during the first
LJ, the simultaneous growth of the cell led to a smaller σ
level than in the first LJ, as the LJ algorithm accounts for cell
area by dividing FR by the cloud cell area.

2.7 Thunderstorm (TS) categories

Thunderstorms are categorized based on the presence and ab-
sence of LJs, LDs, and NCEI severe weather events. Table 3
presents the analyzed TS categories that emerge from this
process with the associated number of thunderstorm trajec-
tories in each category.

3 Results

From Table 3 it follows that the vast majority of thunder-
storms do not produce a LJ (95.9 %), a LD (91.4 %), and/or
severe weather (96.1 %). The categories labeled “withTor-
nado”, “withHail”, and “withWind” include the thunder-
storms that produced tornadoes, hail, or wind, respectively.
The total count of these categories (79+ 438+ 645= 1162)
exceeds the number of severe thunderstorms (970), indicat-
ing that several thunderstorms produced more than one type
of severe weather. It is noted that twice as many thunder-
storms had LDs than the number of storms with LJs.

The ABI-based cloud characteristics (Table 2) are ana-
lyzed to comprehend the significance of GLM LJs and LDs.
The results for the LJ storms are discussed first and fore-
most, and the LD storms are discussed in the case of addi-
tional results. It should be emphasized again that this paper
investigates GEO-based LJs and LDs from optical lightning
detection, in contrast to former studies that analyzed ground-
detected LMA or LF LJs.

https://doi.org/10.5194/nhess-25-1751-2025 Nat. Hazards Earth Syst. Sci., 25, 1751–1768, 2025



1756 F. Erdmann and D. R. Poelman: Thunderstorm characteristics from LJ and LD observations

Table 2. Thunderstorm (TS) characteristics.

Characteristic Description [unit]

Cell area Maximum area of a cell in the trajectory [km2]
IR12.3 (min_BT) avg Average over minimum BTs in IR12.3 channel for the cells of the trajectory [K]
Min T avg Minimum of the cell-averaged BTs for the trajectory [K]
Min pressure (top) Minimum pressure of any CT pixel for trajectory [hPa]
Vertical grad (T ) Average vertical temperature gradient (absolute) of cells in the trajectory [K km−1]
Cloud ice fraction Fraction of pure-ice ABI pixels to mixed-phase and liquid water pixels [–]
IR3.9 (min_BT) avg Average over minimum BTs in IR3.9 channel for the cells of the trajectory [K]
Overshoot count max Maximum number of OTs for one cell of the trajectory [–]
Overshoot DT max Maximum IR11.2 BTD between pixels of the OT and the surrounding pixels for cells of the trajectory [K]
Max CRR Maximum convective rain rate for cells of the trajectory [mm h−1]
WV6.2 (min_BT) avg Average over minimum BTs in WV6.2 channel for the cells of the trajectory (upper-level water vapor) [K]
WV7.3 (min_BT) avg Average over minimum BTs in WV7.3 channel for the cells of the trajectory (mid-level water vapor) [K]
WV6.2–WV7.3 (p90) max Maximum of the 90th percentiles of WV6.2–WV7.3 BTDs for the cloud cells of the trajectory [K]
WV6.2–IR11.2 (p90) max Maximum of the 90th percentiles of WV6.2–IR11.2 BTDs for the cloud cells of the trajectory [K]

Table 3. Thunderstorm (TS) categories and the number (n) of full
trajectories in each category.

TS category (short name) Number (n)

All 24 973
With LJ (withLJ) 1031
With one LJ (singleLJ) 519
With multiple LJs (multiLJ) 512
Without LJs (noLJ) 23 942
With LD (withLD) 2136
With one LD (singleLD) 1464
With multiple LDs (multiLD) 672
Without LDs (noLD) 22 837
Without LJ and with LD (noLJ and LD) 1105
With NCEI report, severe (withNCEI) 970
With tornado report (withTornado) 79
With severe hail report (withHail) 438
With severe wind report (withWind) 645
Without NCEI report, non-severe (noNCEI) 24 003

3.1 Characteristics of the TS categories

This section presents key findings on the characteristics of
thunderstorms, based on the results in Fig. 3 and Table 4. Fig-
ure 3 compares normalized characteristics (Sect. 2.5) among
thunderstorms with and without LJs, while Table 4 provides
the mean values for each characteristic across selected TS
categories. Finally, Fig. 4 also shows the distributions of
three selected characteristics to compare all TS categories in
more detail: (a) cloud ice fraction, (b) maximum CRR, and
(c) WV6.2–IR11.2 BTD.

3.1.1 Thunderstorm cell area

First, the normalized distributions of the observed cell areas
for storms without (Fig. 3a) and with LJs (Fig. 3b) are com-

pared. Both the mean (red cross) and even the median (red
line) cell area for storms with LJs are higher than the 75th
percentile (box) for the noLJ storms. Hence, LJ-producing
thunderstorms have significantly larger footprint areas than
those without LJs. The latter category still contains a few
very large storm cells, indicated by the outliers in Fig. 3a. In
general, those are found in each TS category, which suggests
that satellite-based cell detection cannot always separate sin-
gle cells under a continuous cloud shield.

The mean cell areas in Table 4 confirm the previous find-
ing. On average, severe thunderstorm cells covered an area
of 12 812 km2 (median 4089 km2). Storms with LJs had
an average area of 15 780 km2 (median 6995 km2), while
non-severe thunderstorms and those without LJs typically
covered about 2000 km2 on average, with medians around
550 km2. The multiLJ and tornadic storm cells were the
largest and covered on average over 20 000 km2 (medians
over 9000 km2). Thunderstorms with LJs cover a larger area
than the storms with LDs, and cells of both these categories
are larger than the thunderstorms without GLM LJs. This
could be related to the formation of large anvils for CTs near
the tropopause, which acts as a natural ceiling. If a thunder-
storm grows up to the tropopause, vertical development is
hampered, and moist air is forced horizontally. The satellite-
based cell detection sees the resulting anvil, and those cells
appear larger than thunderstorms that grow mainly vertically.
The fact that thunderstorms with LJs and LDs and the se-
vere storms covered larger areas than the average area of
all thunderstorms may indicate an above-average fraction of
well-organized thunderstorm types like supercells, multi-cell
storms, or mesoscale convective systems (MCSs) that are
known for larger footprint areas than the ordinary single-cell
thunderstorms.
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Figure 3. Normalized characteristics for (a) the thunderstorms (TSs) without LJs and (b) the storms with LJs (singleLJ+multiLJ). The red
cross shows the mean and the red line the median of each characteristic.

Table 4. Mean values of the characteristics for selected (TS) categories. The category withLJ (withLD) combines singleLJ and multiLJ
(singleLD and multiLD), and withNCEI combines withTornado, withHail, and withWind.

Characteristic (mean) withLJ singleLJ multiLJ noLJ withLD withNCEI noNCEI

Cell area [km2] 15 780 10 373 21 262 1911 10 460 12 812 2066
IR12.3 (min_BT) avg [K] 213 215 211 235 217 218 234
Min T avg [K] 215 217 213 237 218 219 236
Min pressure (top) [hPa] 128.5 136.9 120.1 221.9 138.6 152.7 220.8
Vertical grad (T ) [K km−1] 11.8 13.9 9.6 21.8 14.4 13.2 21.7
Cloud ice fraction [–] 0.94 0.92 0.97 0.79 0.92 0.93 0.79
IR3.9 (min_BT) avg [K] 234 236 232 252 237 241 252
Overshoot count max [–] 0.34 0.21 0.47 0.0 0.20 0.27 0.01
Overshoot DT max [K] 3.4 2.1 4.8 0.0 1.9 2.6 0.1
Max CRR [mm h−1] 23.2 20.1 26.4 5.8 19.5 19.5 6.0
WV6.2 (min_BT) avg [K] 211 213 210 225 214 215 225
WV7.3 (min_BT) avg [K] 212 214 211 230 215 216 230
WV6.2–WV7.3 (p90) max [K] 0.1 −0.2 0.3 −3.3 0.3 −0.5 −3.2
WV6.2–IR11.2 (p90) max [K] −1.2 −1.8 −0.6 −8.0 −2.0 −2.3 −8.0

3.1.2 Cloud top characteristics and overshooting tops

In general, the storm cells with LJs and/or LDs have colder
CTs compared to storms without LJs and LDs. The 75th
percentile of CTs in storms with LJs and/or LDs remains
colder than the 25th percentile of CTs in storms without
these events, as shown by the interquartile ranges (IQRs)
highlighted in blue in Fig. 3. The coldest CT temperature

is found for the multiLJ TSs, with a mean value of 213 K.
That is colder than typical BT thresholds for the detection
of overshooting tops in the range of 215 K and high anvils
with 225 K (Autones et al., 2020; Bedka and Khlopenkov,
2016). The categories noLJ, noLD, and noNCEI have CTs
warmer than 235 K, warmer than any other TS category. The
CT temperatures of withLJ storms match those of severe

https://doi.org/10.5194/nhess-25-1751-2025 Nat. Hazards Earth Syst. Sci., 25, 1751–1768, 2025



1758 F. Erdmann and D. R. Poelman: Thunderstorm characteristics from LJ and LD observations

storms, and storms without LJs have warmer CTs similar to
non-severe storms (Table 4). In agreement with these results,
the TS categories with the coldest CTs have the lowest CT
pressure (average about 110–120 hPa). The strongest verti-
cal temperature gradients occurred within the TS categories
noLJ, noLD, and noNCEI and also featured the lowest CTs
(Table 4) since the vertical temperature gradient decreases
towards the tropopause and eventually inverts to increasing
temperature with height in the stratosphere.

The analysis of the CT phase confirms the previous find-
ings and shows that the cloud physics are in accordance with
the BT measurements. Cloud ice fraction averages above
0.95 for the TS category multiLJ and 0.94 for LJ storms; thus,
most of those cells consist of ice-phase ABI pixels only. The
mean cloud ice fraction is below 0.8 for the thunderstorms
without LJs, LDs, and/or NCEI events (Table 4). However,
the majority of the cloud is glaciated for all thunderstorms as
the median cloud ice fraction equals 1 for all categories. Fig-
ure 4a also demonstrates that severe TSs feature high cloud
ice fraction similar to the LJ storms and LD storms. The
3.9 µm channel is useful to gain some insight into the ice
crystal contents. Small ice crystals reflect more of the solar
radiation of 3.9 µm than large crystals. Hence, colder BTs
in the IR3.9 channel indicate larger ice crystals within the
storms with LJs and those with LDs than for the noLJ storms
(Table 4). Large ice crystals, graupel, and hail can particu-
larly form in strong convective updrafts where they have time
to grow.

If graupel forms within the updraft region, it can then col-
lide with small ice crystals and lead to non-inductive charg-
ing, the major cloud electrification process in extratropical
thunderstorms (e.g., MacGorman and Rust, 1998). Hence,
updraft strengths are well correlated with storm FRs (see also
Deierling and Petersen, 2008). An updraft intensification can
cause a LJ and is favorable for severe weather, and strong
convective updrafts can also cause OTs. The most and the
strongest OTs occurred in thunderstorms of the multiLJ cat-
egory, with a mean count of 0.47 and a mean OT DT max of
4.8 K (Table 4). Among the severe thunderstorms with an OT
count of 0.27 and a mean OT DT max of 2.6 K, the withTor-
nado (0.62, 5.3 K) and withHail (0.42, 3.8 K) storms stand
out (not shown). Hence, those and the multiLJ storms feature
the most persistent and strongest updrafts. The counts of OTs
are higher in thunderstorms with LJs and/or LDs compared to
the storms without LJs and LDs (Fig. 3, Table 4). The mean
and even the 75th percentile of the OT count max equal 0.0
for thunderstorms without LJs, making OTs rare exceptions
for the non-LJ storms (Fig. 3a). Hardly any OTs are seen for
the thunderstorms without LDs and the non-severe storms,
too. The behavior matches the expectation to see more and
stronger OTs, i.e., higher OT DT max, in the severe than the
non-severe storms (e.g., Bedka, 2011). Moreover, the LJ and
LD storms have OT counts (mean of 0.34 and 0.20, respec-
tively) and an OT DT max (mean of 3.4 and 1.9 K) that re-

semble the patterns observed in severe storms (means of 0.27
and 2.6 K).

3.1.3 Rain rates and water vapor

The max CRR reveals that thunderstorms with LJs expe-
rience higher rain rates than storms with LDs, as is also
seen from Fig. 4b, while CRRs of the latter are still signif-
icantly higher compared to the noLJ storms (Table 4). Fur-
thermore, the thunderstorms with LJs and those with LDs
have lower BTs for both WV6.2 and WV7.3 channels com-
pared to storms without LJs (Fig. 3). High water vapor con-
tent means high amounts of water being stored in the atmo-
sphere that could be released as precipitation, resulting in
high CRRs. Both the WV6.2 and the WV7.3 channels ex-
hibit the lowest BTs for the multiLJ thunderstorms. In ad-
dition, thunderstorms that produced tornadoes and/or severe
hail contain more water vapor in the mid and upper levels
than the severe wind storms (not shown).

Detailed statistics on the maximum CRR are presented in
Fig. 4b. The TS categories noLJ, noLD, and noNCEI consis-
tently show the lowest maximum CRRs, with mean values
below approximately 6 mmh−1 and a median of less than
1.5 mmh−1. Additionally, the 75th percentile for these cat-
egories remains below the 25th percentile (IQRs, shown in
blue boxes) of the other TS categories. The highest aver-
ages of thunderstorm max CRR are observed for the category
multiLJ (26.4 mmh−1). Thunderstorms with LDs have aver-
age max CRRs of 19.5 mmh−1, which is somewhat lower
than the storms with LJs (23.2 mmh−1) but similar com-
pared to all severe storms (19.5 mmh−1). Among the severe
storms, the category withTornado (mean: 27.6 mmh−1) has
a higher max CRR than severe hail (21.0 mmh−1) and wind
storms (18.9 mmh−1). However, one needs to consider the
high variability in CRRs in each TS category expressed as
IQRs of about 20 mmh−1. These satellite-based CRRs agree
well with the results of Feldmann et al. (2023), who found
radar-derived rain rates in the range of 20 to 30 mmh−1 for
hailstorms and supercells (thus organized convection) and
rain rates below 10 mmh−1 for ordinary thunderstorms. The
results for the mean and median CRR during thunderstorm
lifecycles lead to similar conclusions to those presented for
the maximum CRR. Hence, the storms in the stated cate-
gories with high CRR produce significant amounts of rain-
fall throughout their entire lifecycle. Overall, the results for
water vapor content align with those for CRR. However, tor-
nadic storms with the highest CRRs across all categories are
notable, even though they may not have the highest single
water vapor content.

3.1.4 Brightness temperature difference

BTDs are commonly used in satellite science since they
combine information from different channels. For example,
IR11.2 alone gives information about the CT temperature;
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Figure 4. Distributions of (a) the fraction of pure-ice pixels to mixed-phase and liquid water pixels (cloud ice fraction), (b) maximum
estimated CRR during the cell lifecycle, and (c) BTDs of WV6.2–IR11.2 as the maximum of the 90th-percentile BTD for each time step
during the cloud cell lifecycle for the thunderstorm cell categories. The mean is shown by x, and m shows the median for each category.

however, it does not tell anything about the clouds below.
Combining IR11.2 and WV6.2 (Fig. 4c) provides informa-
tion about the CT and upper-level water vapor content. BTDs
as defined in this study (Table 2) generally have negative val-
ues for cloud cells. The BTD gets closer to 0 or becomes
slightly positive for the deep convective clouds. Hence, the
higher the BTD is, the more organized the convection and the
cloud cell are. Mean BTDs are significantly higher for the TS
categories with LJs, LDs, and/or NCEI reports. Storms with
GLM LJs and LDs typically form in regions characterized by
high levels of upper-level moisture and evolve through the
intensification of deep convection. For example, the WV6.2–
IR11.2(p90) max averages between−2 and−1 K for the cat-
egories withLJ, withLD, and withNCEI and even above−1 K
for the multiLJ thunderstorms (Fig. 4c). The means for TS
categories without LJs, LDs, and NCEI reports are in the

range of −9 to −8 K. Figure 4c illustrates that highly neg-
ative BTDs below −20 K of WV6.2–IR11.2 (p90) max are
mainly found for the thunderstorms without LJs, LDs, and
NCEI reports. These low BTDs indicate shallow convection.
Overall, the BTDs exhibit similar statistical distributions for
storms with GLM LJ and/or LD and for the severe thunder-
storms.

3.2 LDs

LJ storms generally have slightly colder CT temperatures
(215 vs. 218 K) and lower CT pressures (129 vs. 139 hPa)
compared to the LD storms. They also cover a larger area
(15 780 vs. 10 460 km2) and exhibit higher average CRRs
(23.2 vs. 19.5 mmh−1). Additionally, LJ storms produce, on
average, more (0.34 vs. 0.20) and stronger OTs (maximum
DT of 3.4 vs. 1.9 K) compared to thunderstorms with LDs
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(see Table 4). In consequence, the LJ detection has a stronger
correlation to the most organized convection with strong up-
drafts than the LD detection. LDs also occurred in storms
with weaker updrafts and lower CTs. However, there are also
severe weather events that occur in shallow convection and
storms with weaker updrafts (i.e., no OTs). There were 188
severe thunderstorms with a LD but no LJ. A total of 38.0 %
and 31.6 % of severe and tornadic thunderstorms, respec-
tively, had no LD, compared to 57.4 % and 51.9 %, respec-
tively, for LJs. The relatively high probability of detecting
tornadic storms with LDs agrees well with the idea of the
RFD interacting with the updraft to cause a temporary drop
in the FR and also playing an important role in tornado gen-
esis. It should be noted that the thunderstorms with LDs con-
tain, among other things, all the thunderstorms with LJs, but
about half of the LD storms had no LJ.

3.3 Single-LJ versus multiple-LJ storms

The previous sections compare storms with LJs to storms
without LJs and to storms with LDs. This section puts em-
phasis on the differences that are found for characteristics
of thunderstorms with multiple and single LJs. The average
values (see Table 4) are used since the distributions of the
characteristics feature similar shapes for single- and multi-
LJ storms, as seen for the three examples in Fig. 4. Multiple-
LJ storms have slightly colder and higher CTs than single-
LJ storms, with average CT temperatures of 213 and 217 K,
respectively. Thunderstorms with multiple LJs during their
lifetime manifest the deepest convection. OTs are twice as
frequent (0.47 versus 0.21) and significantly stronger (DT
max of 4.8 versus 2.1 K) in storms with multiple LJs com-
pared to those with only a single LJ. The 75th percentile
of both the OT count and the OT DT max distribution for
storms with only one LJ remains zero. In contrast, the 75th
percentiles of these characteristics reach 1.0 and 9.8 K, re-
spectively, for the TS category multiLJ. Strong, organized
updrafts occur mostly within the multiLJ storms. However,
the water vapor channels and BTDs yield similar values for
the multiLJ and singleLJ storms (see Table 4). Both TS cat-
egories contain deep convective cells that form in similar
environments. Hence, the updraft strength remains a major
difference between multiLJ and singleLJ storms. The max
CRR of multiLJ storms (26.4 mmh−1) clearly exceeds that of
singleLJ storms (20.1 mmh−1). This implies that the storms
with multiple LJs are more prone to experiencing the highest
rain rates, posing an elevated risk of flash floods compared to
storms with only one LJ (see also Fig. 4b for max CRR dis-
tributions). All these findings for GLM-based LJs are consis-
tent with the results for LJs on the flash level data reported by
Rigo and Farnell (2022), who analyzed ground-based multi-
LJ storms using a different cell tracking method. Specifically,
Rigo and Farnell (2022) suggest that convection in multi-LJ
storms is more organized compared to other cases, as these

storms sustain high radar-variable intensity over extended pe-
riods.

3.4 Summary

For the first time, thunderstorms with GEO LJs and/or LDs
detected from optical lightning observations are character-
ized in detail. The presented figures and Table 4 show that
these storms align closely with severe thunderstorms with re-
spect to most mean values and also the distribution extremes
of various thermal, moisture, and dynamical storm character-
istics. Specifically, these storms exhibit statistically more or-
ganized convection with stronger updrafts, indicated by mean
OT counts of 0.2 or higher, BTD of the OT to the cloud shield
of 2 K or more, and cold CT temperatures (below 220 K).
This contrasts with thunderstorms lacking LJs and LDs, as
well as non-severe storms, which typically show no OTs and
have CT temperatures above 235 K. In addition, the latter are
less likely to produce high amounts of rain and, thus, less
likely to cause dangerous flash floods. Findings of this study
align well with previous studies, which also reported highly
organized convection and higher intensity of convection-
related radar variables for thunderstorms with ground-based
LJs (e.g., Chronis et al., 2015; Wapler, 2017; Nisi et al.,
2020; Rigo and Farnell, 2022). The GLM multiLJ storms are
found as the most organized ones (BTD for an average OT
of 4.8 K), with the highest CRR (mean of 26.4 mmh−1) and
potentially the most dangerous thunderstorms. The storms
that produce a LD but no LJ have statistically lower CTs
(222 K) and produce lower CRRs (16.0 mmh−1) and weaker
OTs (BTD of 0.5 K). However, even these storms signifi-
cantly surpass the thunderstorms without LDs in all these
characteristics (CTs of 237 K, CRRs of 5.3 mmh−1, mostly
no OTs), meaning the convection is more stable. Some se-
vere thunderstorms, mostly with severe wind reports, did not
produce GLM LJs and LDs. These severe thunderstorms are
characterized by less organized convection (CT temperatures
of 225 vs. 214 K, OT depth of about 0.5 vs. 4.6 K), and
the maximum CRRs (12.5 mmh−1) were also lower than for
the severe storms with LJs and/or LDs (24.7 mmh−1). Fur-
thermore, it is possible that these storms did produce severe
weather that was not reported since severe weather databases
have documented limitations (e.g., Hulton and Schultz, 2024;
Schroeter et al., 2021)

4 Discussion and final remarks

This work had the objective to understand lightning jumps
(LJs) and lightning dives (LDs) identified from GLM light-
ning records. This analysis examines thunderstorm charac-
teristics for storms with and without LJs and LDs, as well
as for severe and non-severe thunderstorms. The NWC SAF
nowcasting software provides GOES-16 ABI characteristics
for tracked thunderstorm cells. Based on the storm flash rate
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(FR), the FRarea LJ and LD algorithms (Erdmann and Poel-
man, 2023) were applied to automatically detect LJs and
LDs for each thunderstorm trajectory. LJs, LDs, and NCEI
severe weather reports then allow the categorization of the
thunderstorm trajectories so that TS categories are obtained
for LJ and non-LJ, LD and non-LD, and severe and non-
severe thunderstorms. All ABI characteristics can be com-
pared across different categories. To summarize the findings,
the questions posed in the Introduction are addressed.

What do GLM LJs tell us about the storms’ structure from
a satellite point of view? Thunderstorms with GLM
LJs have larger footprint areas compared to those with-
out GLM LJs. Additionally, these LJ storms feature
very high cloud tops composed of ice crystals. Thun-
derstorms with GLM LJs also exhibit above-average
overshooting top (OT) counts and depths, whereas OTs
are scarcely present in thunderstorms without GLM
LJs. OTs result from strong convective updrafts, and in
agreement with the OTs, there is evidence in the data
that the ice crystals in thunderstorms with GLM LJs are
larger than in thunderstorms without GLM LJs. Another
import result is the high convective rain rates (CRRs)
in the storms with GLM LJs, which are almost 4 times
higher than in storms without GLM LJs (summary of
values in Table 4). Overall, GLM LJs indicate well-
organized convective cells that often feature stable con-
vective updrafts.

Are GLM LJs useful to assess thunderstorm severity? The
thermal, cloud top (CT), moisture, and precipitation
characteristics of thunderstorms with GLM LJs were re-
markably similar to the severe thunderstorms (Table 4).
In addition, storms without GLM LJs and non-severe
thunderstorms agree in the analyzed characteristics. Es-
pecially thunderstorms with multiple LJs showed max-
ima in the OT characteristics and CRRs that were even
higher than for the hailstorms and just slightly lower
than for the thunderstorms with reported tornadoes.
Hence, multiple GLM LJs during the lifecycle of a thun-
derstorm cell are an important indicator of a dangerous
storm cell.

It should be mentioned that severe weather is observed
in storms without LJs and that there are non-severe
storms that had GLM LJs. Users of the algorithm are ad-
vised to be aware of its limitations, especially when us-
ing it for operational purposes. The algorithm can indi-
cate the occurrence of severe weather in a thunderstorm,
but as with all real-time tools, the user must take into ac-
count many other elements, such as signatures observed
in radar images, satellite data, or terrestrial lightning
detection networks. Erdmann and Poelman (2023) ana-
lyzed the critical success index (CSI), probability of de-
tection (POD), and false alarm ratio (FAR) for GLM LJs
as severe weather predictors. They found a CSI of 0.4

(POD of 0.58, FAR of 0.44) for LJs and severe weather
within one storm cell and a CSI of 0.48 (POD of 0.65,
FAR of 0.37) for matching LJs and severe weather re-
ports that are close in space and time. Studies that used
ground-based LJs report a CSI of about 0.1 with a FAR
greater than 0.8 (Murphy, 2017; Miller et al., 2015), a
POD of 0.69 and a FAR of 0.63 (Schultz et al., 2016), a
CSI of 0.58 (Farnell et al., 2017), a POD of 0.45 and
a FAR of 0.3 (Nisi et al., 2020), and a CSI of 0.41
(Tian et al., 2022). The latter two used hail events as
a reference. Although the concept of GLM LJs is still
relatively new, the skill obtained for nowcasting severe
weather is similar to that in these studies using ground-
based lightning observations.

Do GLM LDs provide additional information about the
thunderstorms? A total of 70 % of the thunderstorms
with a tornado also had a GLM LD. In comparison, only
48 % of the tornadic storms also featured a GLM LJ. In
total, there were 188 severe thunderstorms with a LD
but no LJ. In contrast, thunderstorms with LDs exhib-
ited deep convection, but LJ storms and severe thunder-
storms were statistically more organized (with higher
CTs, OT characteristics, and higher CRRs). The num-
ber of GLM LDs was twice that of GLM LJs. The ap-
plied LD detection algorithm finds LDs for almost 80 %
of storms with a FR above the FR activation criterion
(i.e., 10 GLM flashes per minute). Hence, the category
of LD storms comprises the majority of storms with suf-
ficiently high FR. A modified LD algorithm could be
tested in the future to filter out LDs that occur in dissi-
pating storms.

For the first time, these findings are based on the use of
optical LJs detected from GEO orbit. All previous studies
used LJs that were identified from ground-based lightning-
locating systems (LLSs) that detect electromagnetic signals
(LF or VHF) rather than optical pulses. It should be men-
tioned that the results were similar with the use of other LJ
and LD algorithms from Erdmann and Poelman (2023), such
as the RIL algorithm. LDs could occur when the storms dis-
sipate, and the flash rate (FR) drops naturally due to the dis-
sipation of the storm.

The most important finding of this study remains the be-
havior of thunderstorms that produced multiple GLM LJs
during their lifecycle. These storms feature the strongest
updrafts and highest cloud tops and have all the ingredi-
ents to produce severe weather and very high rain rates.
These storms in particular (though not exclusively) should be
closely monitored for weather advisories and weather warn-
ings. GLM-based LJs have been observed to precede severe
weather events by tens of minutes (Erdmann and Poelman,
2023) and may mean the first noticeable signature of devel-
oping weather hazards.
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Appendix A: GLM flash detection efficiency impact

GLM performance depends on the nature of lightning itself
and also on cloud characteristics and thunderstorm develop-
ment. The instrument performance can be assessed through
comparison to other lightning-locating systems (LLSs) via a
relative detection efficiency (DE) that expresses the ratio of
lightning processes that are detected by the reference LLS
and could also be detected by the evaluated LLS. GLM DE
varies with the region within the field of view (Cummins,
2021; Blakeslee et al., 2020; Murphy and Said, 2020; Marc-
hand et al., 2019). Technical aspects like the viewing angle
and parallax play a role (Bruning et al., 2019). Furthermore,
thunderstorm evolution and cloud characteristics influence
GLM performance (Borque et al., 2020; Lang et al., 2020),
and GLM DE seems to degrade during periods of overshoot-
ing tops (OTs). In agreement with most of the previously
cited studies, Zhang and Cummins (2020) reported that GLM
performs optimally for large, long-lasting flashes. The GLM
DE decreases during periods of very high flash rates or small
flash sizes. As an optical instrument, GLM shows day–night
DE differences: overall, Cummins (2021), Zhang and Cum-
mins (2020), Murphy and Said (2020), and Marchand et al.
(2019) suggest 10 %–15 % higher DE at night than during
daytime over the CONUS. Bateman et al. (2021) and Erd-
mann (2020) found small differences in GLM day- and night-
time DE due to the use of coarse criteria and a limited region,
respectively. Nevertheless, the influence of GLM flash DE on
LJ and LD detection and the results of this study are antici-
pated to be minimal, as demonstrated in Appendix A1.

A1 Impact of GLM flash DE on the detection of LJs

The dependency of GLM flash DE on the region is a sys-
tematic problem. Therefore, it is possible to analyze GLM
observations in regions exhibiting different DE to assess the
impact of GLM DE on the outcomes of this study. Based on
Cummins (2021), a detection threshold of 3 fJ is used to sepa-
rate US states with lower (central and northern CONUS) and
higher (southeastern CONUS) GLM DE. Then, LJs have au-
tomatically been detected (Sect. 2.6) and verified using NCEI
severe weather reports. Figure A1 displays the counts of LJs
and NCEI severe weather reports for the region of higher
(a, c) and lower GLM DE (b, d), respectively. The pixels
of maximum LJ counts agree with the occurrence of severe
weather. In some regions, LJ activity is highest where tor-
nadoes occurred (e.g., southern Mississippi or Minnesota).
In other regions (e.g., Louisiana) high LJ counts correlate
with the local maximum in hail events. The high count of
NCEI weather events around the Great Lakes and northeast-
ern CONUS mainly comes from wind reports that are less
spatially correlated to the LJs compared to hail and torna-
does.

Overall, the critical success index (CSI) yields similar skill
in both regions when verifying the LJs with NCEI severe

weather events (not shown). The correlation of LJs to NCEI
reports does not depend on the different GLM flash DE.
However, it was found that the number of false alarms, i.e.,
LJs that occurred independently of a severe weather event,
could be reduced in the region of higher GLM DE if the LJ
detection algorithm uses a higher FR threshold than for the
full CONUS (see Sect. 2.6). It should be mentioned that this
study considers the occurrences of LJs, not their strengths. LJ
strengths and maximum flash rates may well be higher in the
region of higher GLM flash DE; however, the number of LJs
and their correlation to NCEI reports were hardly affected by
the GLM flash DE.

A2 Thunderstorm cloud characteristics

There were, in total, 16 155 and 8818 thunderstorms in the
region of higher and lower GLM DE, respectively. Both
regions contain a statistically relevant number of cases to
analyze and compare the thunderstorm cloud characteris-
tics. In particular, this section examines the characteristics
of thunderstorms and investigates whether storms with LJ
and/or LD exhibit distinct characteristics in the two regions.
The main differences in the cloud characteristics occur due
to the climatology (e.g., average temperatures in regions,
the tropopause height) and for geographical reasons (e.g.,
moisture from the Gulf of Mexico). For example, Fig. A2
presents the BTs of the ABI IR12.3 channel for (a) the re-
gion of higher GLM DE and (b) the region of lower GLM
DE. Brightness temperatures (BTs) are on average about 2 K
colder in Fig. A2a than in Fig. A2b, meaning the CTs reach
higher altitudes. Figure A3 compares the WV6.2 channel
for the region of (a) higher and (b) lower GLM DE. Again,
the BTs in the region of higher GLM DE are about 2 K
colder than in the region of lower GLM DE. The water va-
por channel becomes saturated at higher altitudes in the re-
gion of higher GLM DE as the atmosphere contains in gen-
eral more moisture than in the region of lower GLM DE.
The WV7.3 channel results confirm the presented finding
for the mid-level water vapor as well. These differences can
be observed throughout all the TS categories (Table 3), and,
thus, they are independent of the LJ and LD detection. A de-
tailed analysis of the TS categories withLJ and withLD in the
two regions confirmed that the thunderstorms with LJs and
those with LDs, respectively, feature similar characteristics
when the climatology bias is corrected. The thunderstorms
in the region of higher GLM DE are on average smaller than
in the region of lower GLM DE, indicating that the storm
types differ, and there are likely more single-cell, thermally
driven thunderstorms in the southeast than further north in
the CONUS. It is also known that large, long-lived thunder-
storms or mesoscale convective systems can form along air
mass boundaries in the Great Plains, and this region is mainly
contained in the region of lower GLM DE. OT counts (0.31
and 0.25 in the region of higher and lower GLM DE, respec-
tively) and OT DT max (2.8 and 2.6 K, respectively) show
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Figure A1. Number of (a, b) LJs and (c, d) NCEI weather events (tornadoes, hail, wind) per 1°× 1° pixel in the region of (a, c) higher and
(b, d) lower GLM DE.

Figure A2. Trajectory minimum over cell-averaged BTs of the IR12.3 ABI channel for the region with (a) higher and (b) lower GLM DE.
The mean is shown by x̄, and m shows the median for each TS category.
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Figure A3. As Fig. A2 but for BTs of the WV6.2 ABI channel.

little variation in the two regions for severe thunderstorms.
On the other hand, OTs occurred almost twice as often in the
region of higher GLM DE than in the region of lower GLM
DE for the LJ (mean counts of 0.48 and 0.28) and LD storms
(0.28 and 0.16). OTs were also deeper in both LJ (DT max
of 4.3 K) and LD storms (DT max 2.5 K) in the region of
higher GLM DE than in the region of lower GLM DE (3.0
and 1.7 K for LJ and LD storms, respectively). The region of
higher GLM DE is prone to see thunderstorms that develop
rapidly and have high flash rates and strong updrafts. These
features are typical for supercells that are more frequent in
the region of higher than in the region of lower GLM DE
(e.g., Ashley et al., 2023; Thompson, 2023).

A3 Appendix conclusion

LJ and LD detection algorithms could apply higher FR
thresholds to reduce the number of false alarms in the re-
gion of higher GLM DE. Nevertheless, even then the overall
CSI skill for LJs/LDs as severe weather predictors remains
similar to that in the region of lower GLM DE, as fewer hits
are generated when applying higher FR thresholds. Hence,
LJs and LDs can be detected using the same algorithm type
over the entire central and eastern CONUS without a sig-

nificant impact on the algorithm performance. In addition, a
given thunderstorm characteristic changes from the higher to
the lower GLM DE region for all TS categories to the same
extent as for the thunderstorms with LJs and/or LDs. Hence,
observed differences in the thunderstorm characteristics are
mainly attributed to the different climate and weather condi-
tions in the southeastern and the remaining CONUS.

Code availability. Python 3.8 coding was used, with standard li-
braries and Matplotlib for the figures. The code was mainly devel-
oped during Felix Erdmann’s EUMETSAT fellowship and as such
is the property of the funders EUMETSAT and RMIB. Python code
that is subject to active research and further studies cannot be made
available. Parts of the code (Python scripts) are available from the
corresponding author upon request.

Data availability. The software is open-source and can
be used by anyone to regenerate data from this study.
ABI data are available online via NASA EARTHDATA
(https://search.earthdata.nasa.gov/portal/idn/search?fi=ABI,
NASA, 2025). GLM data are available online via NOAA CLASS
(https://www.avl.class.noaa.gov/saa/products/search?sub_id=0&
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