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Abstract. To better aid quick and accurate assessment of
economic loss after the occurrence of future damaging earth-
quakes, we developed a grid-level fixed-asset model for
China covering the period from 1951 to 2020. The modelling
process can be divided into two stages: (1) the compilation
of provincial-level fixed-asset data series using the perpet-
ual inventory method (PIM) and fixed-asset-related statis-
tics and (2) the disaggregation of provincial-level fixed as-
sets into grid-level assets (1km× 1km resolution) using dif-
ferent combinations of remote sensing ancillary data (i.e.
nighttime light, built-up surface area, population) for dif-
ferent periods, considering their temporal availability. As
of 2020, the total estimated value of fixed assets in China
reached CNY 589.31 trillion (at 2020 price levels). Consis-
tency checks have been performed by comparing our mod-
elled fixed assets with those from other studies and data
sources at different administrative levels, and good consis-
tency has been achieved. An application to the direct eco-
nomic loss estimation of the 2023 Ms 6.2 Jishishan Earth-
quake that occurred in Gansu Province, China, is also pre-
sented to demonstrate the potential of the developed fixed-
asset data for future damaging earthquake loss estimation in
China. In conclusion, the limitations of the developed fixed-
asset model are discussed to shed light on directions for fu-

ture improvement. The modelled grid-level fixed-asset maps
from 1951 to 2020 can be conveniently extended to more re-
cent years as new statistics on fixed assets become available.

1 Introduction

As a country frequently stricken by natural hazards, China
has experienced more than 355 damaging earthquakes over
the past 7 decades, leading to over 345 000 fatalities (Li et
al., 2021) and economic losses totalling CNY 1437.6 billion
(calculated at the price level of 2020). Meanwhile, China
is also undergoing unprecedented economic, social, and ur-
ban development, with its urban population increasing from
57.7 million in 1949 to 848.4 million in 2019 (NBSC, 2020).
This development process has also significantly increased the
national average gross domestic product (GDP) per capita,
which is around 190 times that of the early 1950s when cal-
culated at constant prices of 2020, as shown in Fig. 1. When
associating socioeconomic development with natural hazards
(such as earthquakes), it is evident that rapid urbanization
and economic growth have significantly increased the expo-
sure of people and fixed assets to earthquake threats (Hu et
al., 2010; Yang and Kohler, 2008).
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Figure 1. The changing trend of China’s national average GDP per
capita from 1951 to 2020 (calculated at constant prices of 2020).

After the occurrence of a damaging earthquake, a rapid
and accurate assessment of the severity and scale of seis-
mic fatality and economic loss is vital to assist civil pro-
tection authorities in designing post-earthquake emergency
actions and allocating the search and rescue teams to the ar-
eas most in need. Specifically for seismic loss estimation,
which is to translate the physical damage of buildings and
structures into total monetary loss using local estimates of
repair and reconstruction costs (Erdik et al., 2011), three ac-
curacy levels (Level 1, Level 2, and Level 3) are classified
in HAZUS-MH (FEMA, 2019), as differentiated by the data
sources and details of exposed buildings and infrastructures
integrated into the exposure model. Level 1 is a relatively
rough estimation since the input data mainly include demo-
graphic data and building-related statistics extracted from the
national census. Level 2 refers to a more accurate estimation,
in which more detailed information on demographic data,
buildings, and infrastructure at the local level is involved.
In contrast, Level 3 corresponds to the most accurate esti-
mation since detailed engineering inputs and specific con-
ditions of exposed elements are investigated in detail and
employed in the estimation process. For rapid assessment
of post-earthquake loss, the estimation at Level 1 is more
suitable, in which the exposure models are derived mainly
from demographic data, building-related statistics, and re-
mote sensing techniques (Erdik et al., 2010). Therefore, the
fixed-asset model developed in this paper is also based on
Level 1 data.

Besides the exposure model, empirical seismic vulnerabil-
ity functions (Jaiswal and Wald, 2013) that define the seis-
mic loss ratio as a function of macro-seismic intensity are
also needed for post-earthquake rapid loss assessment. The
development of empirical seismic vulnerability functions de-

pends on damage-related information from historical earth-
quakes, which includes (a) macro-seismic intensity maps,
(b) recorded losses due to damaging earthquakes, and (c)
the value of fixed assets (e.g. buildings and infrastructures)
exposed to each damaging earthquake that occurred in dif-
ferent years. In our previous work, a composite catalogue of
damaging earthquakes that occurred in mainland China since
1949 (hereafter referred to as MCCDE-CAT) had been com-
piled (Li et al., 2021), in which intensity maps and recorded
losses were collected for each of the damaging earthquakes.
Therefore, to aid the post-earthquake rapid loss estimation
work in China, in this paper, we construct a grid-level fixed-
asset data series from 1951 to 2020 for China considering the
availability and completeness of fixed-asset-related statistics,
from which the value of assets exposed to damaging earth-
quakes in MCCDE-CAT can be extracted. Such information
can be further used for the regression of empirical loss vul-
nerability curves following the practice in Jaiswal and Wald
(2013) and Daniell (2014). The fixed assets considered in this
paper include buildings, infrastructure, and equipment, also
known as wealth capital stock (WKS). Different from GDP
data, which are the standard economic indicator describing
the value added to a country through the production of goods
and services in that country during a specific period, the value
of the fixed asset provides the benchmark of the maximum
potential direct loss of the earthquake (Wu et al., 2014), since
natural hazards could cause economic losses that are much
larger than the annual GDP (Bilham, 2010). It is noteworthy
that the fixed-asset value of the following year is not simply
the sum of the previous year’s asset value and GDP.

A growing number of studies have been conducted in re-
cent years to estimate the fixed-asset value for disaster risk
analysis and management at regional (Sarica et al., 2020; Wu
et al., 2019), national (Kleist et al., 2006; Ma et al., 2021;
Seifert et al., 2010; Thieken et al., 2006; Wu et al., 2018; Xin
et al., 2021), and global scales (Daniell et al., 2011; De Bono
and Chatenoux, 2015; De Bono and Mora, 2014; Dell’Acqua
et al., 2013; Eberenz et al., 2020; Gamba, 2014; Gamba et
al., 2012; Gunasekera et al., 2015; Jaiswal et al., 2010). How-
ever, these studies only provide the asset value for 1 specific
year (generally the year before the publication year of these
works), which cannot meet the requirement for the develop-
ment of empirical vulnerability models since values of fixed
assets exposed to earthquakes that occurred in different peri-
ods are needed. Unfortunately, there is no officially recorded
fixed-asset accumulation data in China. As an alternative,
the perpetual inventory method (PIM) is considered, which
was first proposed by Goldsmith (1951) and is the most fre-
quently used method by economists to evaluate the spatial
and temporal change in the macro-economy of a country or
region, as summarized in the review of Wu et al. (2014) for
such studies conducted in China. To develop the fixed-asset
data series for each of the 31 provincial-level administrative
units in mainland China from 1951 to 2020, the perpetual
inventory method (PIM) is used in this paper following the
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data compilation procedure provided in Zhang (2008). No-
tably, Hong Kong SAR, Macao SAR, and Taiwan are ex-
cluded from this study due to their economic and political
status difference from other Chinese provinces and the lack
of necessary statistical data.

Although a temporal data series of fixed assets in China
can be constructed following the PIM, if their spatial reso-
lution is limited to the provincial level, the data series still
cannot meet the need for accurate seismic loss estimation
since spatial mismatches always exist between this level of
exposure data and the extent of seismic ground-shaking maps
(Thieken et al., 2006). Therefore, the provincial-level fixed-
asset data remain too coarse to support a reliable loss esti-
mation for a damaging earthquake. For example, after the
occurrence of the 2008 Ms 8.0 Wenchuan Earthquake in
Sichuan, China, most of the rescue resources (including but
not limited to emergency personnel and equipment, food and
medicine, tents, etc.) were sent to the less damaged city of
Dujiangyan. At the same time, Qingchuan County, one of
the most severely affected areas, did not receive an appro-
priate rescue response. The primary reason for this problem
was that the exposure data (population, buildings) used to
assess seismic loss were based on roughly estimated admin-
istrative units (Xu et al., 2016). To avoid such problems and
improve the spatial resolution of the exposure model in fu-
ture seismic loss estimation, the provincial-level fixed-asset
data need to be further disaggregated into a higher resolution
(e.g. 1km×1km) by using appropriate ancillary information.

To perform disaggregation analyses, previous studies have
employed a series of ancillary datasets derived from remotely
sensed images, such as land use and land type data (Aubrecht
and León Torres, 2015; Eicher and Brewer, 2001; Elvidge
et al., 2007; Hurtt et al., 2011; Liu et al., 2003), population
spatial distribution datasets (Balk and Yetman, 2004; Chen
et al., 2020; Freire et al., 2016; Gaughan et al., 2013; Klein
Goldewijk et al., 2010; Linard et al., 2012), nighttime light
data (Aubrecht and León Torres, 2016; Chen and Nordhaus,
2011; Li et al., 2020a; Ma et al., 2012; Zhao et al., 2017), and
road network data (Koks et al., 2019; Zhang et al., 2015; Zhu
et al., 2020), to name just a few. The selection of appropriate
ancillary information is considered the most challenging part
since such information should be geo-coded, readily avail-
able, and highly correlated with the exposure data to be dis-
aggregated (Wu et al., 2018). In previous studies, socioeco-
nomic data (e.g. GDP, fixed assets, electric power consump-
tion, fossil fuel CO2 emission) were spatially disaggregated
to each pixel by assuming the data were proportional to the
digital number (DN) value of nighttime light images (Doll
et al., 2006; Ghosh et al., 2010; Oda and Maksyutov, 2011;
Zhao et al., 2011, 2012). The logic behind such a practice
is that a region with brighter lights at night is considered
to have more commercial and industrial activities, produc-
ing greater GDP, consuming more electricity, and emitting
more CO2. However, the correlation between nighttime light
brightness and the amount of CO2 emission was found by

Zhao et al. (2015) to be exponential rather than linear. There-
fore, it was inferred in Zhao et al. (2017) that the correlation
between the brightness of nighttime lights and the accumu-
lation of GDP should also be exponential rather than linear.
Thus, using only nighttime light data to proportionally dis-
aggregate GDP would inevitably lead to over-distribution in
suburban areas and under-distribution in urban areas since
a certain number of saturated pixels exist in nighttime light
products. To solve this problem, Zhao et al. (2017) multi-
plied nighttime light images by LandScan population data to
produce the lit-population (hereafter referred to as “lit-pop”)
images. They used the lit-pop value as the weight indicator
to disaggregate China’s administrative-level GDP datasets.
On the one hand, this is because the correlation between the
DN value of nighttime light and the population is also expo-
nential. On the other hand, integrating population data into
the disaggregation process can help overcome the saturation
problem of nighttime light data since the range of DN values
is limited to 0–63. For suburban areas where the DN val-
ues are relatively small, the population density also increases
slowly, and saturation is not a problem; however, with pro-
gressively higher DN values, the increase in population den-
sity will also grow rapidly and finally lead to a considerable
population density in core urban areas with a DN value of
63. The rapidly increased asset value in such areas can thus
be better represented by lit-pop than by the nighttime DN
value or population alone (Zhao et al., 2017).

As emphasized by Zhao et al. (2017), the lit-pop indicator
they produced has no measurement unit. It represents nei-
ther people count nor nighttime light brightness in real life
but rather the economically weighted population. Compared
with using nighttime light or population data alone, the use
of lit-pop as the economic indicator can better reflect the spa-
tial heterogeneity of the economy. This is because when two
regions have the same population but different DN values
of nighttime light, the region with a higher DN value has a
larger lit-pop and consequently a larger distributed GDP than
the one with dimmer nighttime light. Based on the lit-pop
approach in Zhao et al. (2017), Eberenz et al. (2020) gen-
erated a globally consistent grid-level asset exposure dataset
for 224 countries, in which the unwanted artefacts (includ-
ing blooming, saturation, and lack of detail) are mitigated by
using a combination of nightlight and population data. The
GDP comparison for 14 countries by Eberenz et al. (2020)
also showed that the disaggregation effect using nighttime
lights or population data alone is not as good as using their
combination. Inspired by the work of Zhao et al. (2017) and
Eberenz et al. (2020), in this study, the provincial-level fixed-
asset data are further disaggregated into grid level based on
the combined use of nighttime light, population, and other
available supplementary data (e.g. built-up surface area data)
to generate the final grid-level fixed-asset data series for 31
provinces in mainland China during 1951–2020.

The main structure of the following sections in this pa-
per is organized as follows. Section 2 details the data and
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methods used to compile the provincial-level fixed assets
and explains how to disaggregate them into the grid level. In
Sect. 3, the modelled fixed assets at the provincial level dur-
ing 1951–2020 are presented, and the grid-level fixed-asset
map for 2020 is also demonstrated. Furthermore, the tem-
poral change and spatial distribution characteristics of grid-
level fixed assets in China’s three largest urban agglomer-
ations are demonstrated and compared. Section 4 examines
the consistency between disaggregation indexes used in dif-
ferent periods. The consistency of our modelled fixed-asset
data with those developed by other studies is also evaluated
at different administrative levels. Limitations of the current
study are discussed as well to better outline future directions
for improvement.

2 Data and methods

The data and methods are introduced separately for the two
parts of the content involved in this paper: (1) the compila-
tion of provincial-level fixed-asset data for 31 provinces in
China from 1951 to 2020 and (2) the disaggregation of the
provincial-level fixed-asset data into 1km× 1km grids us-
ing different weighting indicators for different periods. The
flowchart followed in the modelling process is shown in
Fig. 2. The datasets used are summarized in Table 1. A de-
tailed introduction of the data inputs and the modelling steps
is given in the following sections.

2.1 Construction of the provincial-level fixed-asset data
by using the perpetual inventory method (PIM)

To construct China’s provincial-level fixed-asset data during
1951–2020 using the PIM, four types of information need to
be determined, namely (1) the value of the accumulated fixed
asset in the base year, (2) the annual fixed-asset investment in
each province, (3) the implicit deflator of the fixed asset, and
(4) the depreciation rate or service life of the fixed asset. As-
suming the efficiency of the fixed asset follows a geometric
diminishing model (Wu et al., 2014; Zhang, 2008), for each
province, the accumulated fixed-asset value at year t (namely
Kt ) is defined as follows:

Kt =Kt−1 (1− δt )+ It , t ∈ [1952 2020] , (1)

where δt is the depreciation rate of the fixed asset, and It is
the total investment in fixed assets (TIFAs) at year t .

2.1.1 Determination of the accumulated fixed-asset
value of the base year 1951

Since the founding of the People’s Republic of China in
1949, the currency was uniformly switched to the Chinese
yuan (CNY), and 1949 could thus be set as the base year.
However, due to the lack of large-scale surveys or census
on TIFAs in 1949 and 1950 for many of the 31 provinces,

1951 is selected as the base year in this paper. As adopted
by previous studies, one method to estimate the accumulated
fixed-asset value in the base year is by referring to the capital-
output ratio method (e.g. Zhang, 1991; Chow, 1993; Perkins,
1988; He et al., 2003), in which the value of the accumu-
lated fixed asset is set to be around 3 times the GDP in the
base year. Another way to roughly approximate the accumu-
lated fixed-asset value is by dividing the fixed-capital for-
mation (FCF) of the base year by the sum of the long-run
growth rate of investment (e.g. the constant-price FCF) and
the depreciation rate (Hall and Jones, 1999; Wu et al., 2014;
Zhang, 2008). In this paper, following the practice in sev-
eral previous studies (e.g. Zhang, 1991; Chow, 1993; He et
al., 2003), each province’s accumulated fixed-asset value in
1951 is determined by multiplying its TIFA in 1951 by 50.
The estimated overall value of the accumulated fixed asset
of the base year in China is around CNY 94.9 billion (at the
price level of 1951), which corresponds to CNY 2343.5 bil-
lion when adjusted to the 2020 price level. The determina-
tion process of the initially accumulated fixed-asset value for
the base year has inevitable uncertainty. Fortunately, previ-
ous studies (Shan, 2008; Wu et al., 2014; Zhang et al., 2004)
have demonstrated that the effect of the initially determined
fixed-asset value of the base year on the asset estimation for
the following years will decline given sufficiently long time
series. For example, the sensitivity test performed by Wu et
al. (2014) indicated that a doubling of the initial asset value
in 1978 only resulted in a less than 0.6 % change in the stock
estimation in 2012.

2.1.2 Collection of annual investment data in fixed
assets

To get a complete data series of the annual total investment
in fixed assets (TIFAs) for each province during 1951–2020
(namely It in Eq. 1), we first refer to the book China Com-
pendium of Statistics 1949–2008 compiled by the Depart-
ment of Comprehensive Statistics of the National Bureau of
Statistics (DCSNBS, 2009), in which the annual investment
data on fixed assets at both national level and provincial level
were given at the price level of each year up to 2008. The
TIFA data in 1951 for Hainan and Tibet are not available in
the reference mentioned above. Instead, we assign the TIFAs
to be CNY 0.01 billion and 0.0002 billion (at the 1951 price
level), around 50 % of the TIFAs in 1952 for Hainan and Ti-
bet, respectively. To complement this data series for years af-
ter 2008, we further refer to the use of the TIFA data records
in the yearly statistical books of China from 2009 to 2020.

2.1.3 Compilation of the implicit deflator of the fixed
asset

To calibrate the deflation of TIFAs with time, we convert
the TIFA values given at the price level of each year to
the constant price of the reference year by using the “price
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Figure 2. The flowchart followed to develop the fixed-asset model in this paper. Boxes are marked by different colours to differentiate
between the two main parts in the workflow. The boxes marked in yellow refer to the steps required to develop the provincial-level fixed-
asset data, and the boxes marked in white are components used to construct the disaggregation indices (see Sect. 2 for more details). The
indices “lit-pop”, “area-pop”, and “pop-pop” refer to the disaggregation index generated using nighttime light and population, built-up area
and population, and population data alone, respectively. The abbreviation “DMSP/OLS” refers to nighttime light observations acquired by
the US Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), “VIIRS” refers to nighttime light
observations from the Visible Infrared Imaging Radiometer Suite instrument, “GHS-BUILT-S” refers to the built-up surface data provided
by the Global Human Settlement Layer project, and “GHS-POP” refers to the population density data provided by the same project.

Table 1. A summary of datasets used in this paper.

Usage Data type Year range Spatial resolution Description

Accumulated fixed-asset
1951

value in the base year Sect. 2.1.1

For provincial-level fixed- Annual investment in fixed asset 1952–2020 Provincial level Sect. 2.1.2

asset modelling in China Implicit deflator 1952–2020 Sect. 2.1.3

Depreciation rate (fixed as 5 %) 1951–2020 Sect. 2.1.4

Harmonized nighttime light data
1992–2020

1km× 1km
from DMSP/OLS and VIIRS Sect. 2.2.1

For grid-level fixed-asset Built-up surface data 1975–2020 (in 5-year intervals) Sect. 2.2.2

modelling in China Population density data 1975–2020 (in 5-year intervals) Sect. 2.2.2

Population growth rate data 1951–2020 Provincial level Sect. 2.2.3

index of the fixed asset”, which is also called the implicit
deflator of the fixed asset. Theoretically, the calculation of
the implicit deflator should be based on the weighted aver-
age of the price indexes for each of the three components
of fixed-asset investment (namely investment in construction
and installation, purchases of equipment and instruments,
and others), with their weight determined by the asset per-
centage of each component for each province during 1951–
2020. However, due to the lack of related statistics, we use
the provincial-level investment data to derive the price index
of each province. According to Wu et al. (2014) and Zhang
(2008), the formula to derive the implicit deflator (namely
Idet ) can be expressed as follows:

Idet =
FCFt

FCFt−1×FCF_indext
, t ∈ [1952 2004] . (2)

A detailed derivation process of this formula was given in
Zhang (2008). Ideally, FCFt and FCFt−1 should be the fixed-
capital formation (FCF) in year t and t − 1, respectively.
However, at the provincial level, the FCF data before 1978
are not publicly accessible. Therefore, we use TIFA to re-
place FCF when calculating Idet . On the one hand, TIFA is
more often used and investigated in China; on the other hand,
FCF and TIFA have similar dynamically changing trends
(Qin et al., 2006). FCF_indext refers to the gross fixed-
capital formation growth rate in year t calculated in constant
price (previous year= 1). The FCF_indext data for the years
1952–2004 can be found in the book Data of Gross Domestic
Product of China 1952–2004, compiled by the Department
of National Accounts of the National Bureau of Statistics of
China (DNANBSC, 2007). For the years after 2004, the im-
plicit deflator (Idet ) can be replaced by the price index of the

https://doi.org/10.5194/nhess-25-1597-2025 Nat. Hazards Earth Syst. Sci., 25, 1597–1620, 2025



1602 D. Xin et al.: A grid-level fixed-asset model developed for China from 1951 to 2020

fixed asset comprehensively compiled from the book China
Compendium of Statistics 1949–2008 (DCSNBS, 2009) for
the years 2005–2008, from the official website of the Na-
tional Bureau of Statistics (https://data.stats.gov.cn, last ac-
cess: 24 April 2025) for the years 2009–2019, and from Ta-
bles 5–7 of China Statistical Yearbook 2021 for the year
2020. Notably, in some provinces the FCF_indext data are
incomplete. In this case, FCF_indext data from neighbour-
ing provinces are used to compensate for the missing infor-
mation. For example, the FCF growth rate data of Chongqing
for the years 1952–1997 are taken from the data of Sichuan
Province since Chongqing belonged to Sichuan before 1997
and was set as a municipality directly under the reign of the
central government of China afterward. The missing growth
rates of FCF during 1952–1977 of Guangdong Province are
taken from the data of Guangxi Province since they are ge-
ographically close. For the same reason, the missing data of
Tibet from 1952 to 1992 are supplemented by the average of
the FCF growth rate data of Qinghai and Xinjiang provinces.
Since Hainan was not a province until 1997, the FCF_indext
data during 1952–1996 of Hainan are taken from its neigh-
bouring Guangdong Province.

2.1.4 Determination of the depreciation rate of the
fixed asset

The consideration of depreciation of the fixed asset is nec-
essary when estimating the asset value of accumulated capi-
tal stock in previous years, which will diminish over time. In
earlier studies, the depreciation rate was usually set as a fixed
value within the range of 5 %–10 % (e.g. Perkins, 1988; Hall
and Jones, 1999; Wang and Yao, 1999). In Zhang (2008), the
depreciation rate of fixed assets was determined by consider-
ing the service life (T ) of different fixed-asset types (includ-
ing but not limited to construction and installation and equip-
ment and instruments) and their residual value (dT ) when the
capital goods are retired. The calculation formula of the de-
preciation rate (κ) is defined as follows:

dT = (1− κ)T . (3)

In Zhang (2008), the service life (T ) of construction and
installation, equipment and instruments, and other types of
fixed assets in China was set as 45, 20, and 25 years, respec-
tively. Their residual value (dT ) was uniformly set as 4 %.
The depreciation rates of these three fixed-asset types were
calculated to be 6.9 %, 14.9 %, and 12.1 %, respectively. Ide-
ally, the relative weights of each of the three fixed-asset types
should also be considered to determine a comprehensive de-
preciation rate of the fixed asset. However, due to a lack of
such data at the provincial level, the weight at the national
level was used in Zhang (2008), which is 63 % for com-
pletion of construction and formation, 29 % for purchase of
equipment and instruments, and 8 % for other investments.
Finally, under the assumption of geometric diminishing of
the relative efficiency, the comprehensive depreciation rate

of the fixed asset was determined to be 9.6 % for the whole
nation. Following the method in Zhang (2008), Wu et al.
(2014) calculated the depreciation rate range for each of the
31 provinces in mainland China based on newly released
composition data of TIFA for each province and by setting
the residual value of the fixed asset to be 3 %–5 % of their
original value. Their provincial-level depreciation rate of the
fixed asset is within the range of 7.95 %–10.05 %. The com-
parison analysis of Li (2011) indicates that the change of 1 %
in depreciation rate will lead to a 10 % change in accumu-
lated fixed asset 25 years later. Li (2011) also suggested that
the depreciation rate should be within the range of 5 %–10 %.
In this paper, since the development of provincial-level fixed-
asset data is to be used for rapid emergency response after the
occurrence of damaging earthquakes in China, the replace-
ment values of different types of fixed assets in earthquake-
affected areas are generally higher than their residual values,
even if they have lasted for a much longer time than their ser-
vice lives; therefore, a conservative depreciation rate of 5 %
is chosen for all provinces to get the final accumulated fixed-
asset data series from 1951 to 2020. Currently, all the data
inputs required for estimating accumulated fixed-asset values
are ready. The provincial-level fixed-asset data from 1951 to
2020 can be constructed following Eq. (1). This dataset is
demonstrated and evaluated in the “Results and discussion”
section. Next, we introduce the disaggregation method used
in this paper to distribute the provincial-level fixed assets
onto the grid level.

2.2 Disaggregation of the provincial-level fixed asset
into 1km × 1km grids

Given the exponential relation between population/nighttime
light and socioeconomic data (as explained in detail in the In-
troduction section), to disaggregate the provincial-level fixed
assets onto 1km×1km grids, nighttime light (available since
1992) and population density data (available since 1975) are
combined to generate the lit-pop index. For the years before
1990, the lack of nighttime light data is compensated for by
built-up surface area data (available since 1975) to create the
area-pop index. For the years before 1975, the spatial distri-
bution of population density data is derived from the popu-
lation density map in 1975 and the annual growth rate data
for each province dating back to 1951. Then, the population
density data alone are used to create the pop-pop index dur-
ing 1951–1970. More information on these datasets and the
creation process of the disaggregation indexes is introduced
in the following sections.

2.2.1 The nighttime light data

The nighttime light data from 1992 to 2020 with a spa-
tial resolution of 30 arcsec (around 1000 m at the Equator)
and DN values ranging from 0 to 63 are compiled by Li et
al. (2020a). In Li et al. (2020a), an integrated and consis-
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tent nighttime light dataset at the global scale was compiled
by harmonizing the intercalibrated nighttime light observa-
tions acquired by the US Air Force Defense Meteorolog-
ical Satellite Program (DMSP) Operational Linescan Sys-
tem (OLS) (hereafter referred to as the DMSP/OLS data)
during 1992–2013 and the simulated DMSP/OLS-like night-
time light observations from the Visible Infrared Imaging Ra-
diometer Suite instrument (hereafter referred to as the VI-
IRS data) during 2014–2020. The original DMSP/OLS data
were recorded by six different satellites during 1992–2013
with a spatial resolution of 30 arcsec and a near-global cov-
erage of 180° W–180° E in longitude and 65° S–75° N in lat-
itude (Zhao et al., 2019). Inconsistency exists between these
original DMSP/OLS data due to the lack of onboard cali-
bration, satellite shifts, varied atmospheric conditions, sen-
sor degradation, etc. Therefore, a stepwise calibration ap-
proach was performed by Li et al. (2020a) before harmoniz-
ing the DMSP/OLS data with VIIRS data. Unlike the annual
DMSP/OLS data, the VIIRS data have been available since
2013. They are recorded monthly with an improved radio-
metric resolution and a spatial resolution of 15 arcsec across
the latitudinal zone of 65° S–75° N (Miller et al., 2012).
In the monthly recorded VIIRS data, errors due to biogeo-
physical processes (e.g. seasonal dynamics of vegetation and
snow) were corrected, and observations affected by stray
light were excluded. These monthly records were further pre-
processed and combined into annual time series data using
the weighting average approach and finally converted into
DMSP/OLS-like nighttime light observations using a sig-
moid function initially proposed by Zhao et al. (2020) in
Southeast Asia. The DMSP/OLS-like nighttime light con-
verted from the original VIIRS data has been available and
updated since 2014 by Li et al. (2020a).

2.2.2 The population density and built-up surface data

The population datasets used in this paper are provided by the
Global Human Settlement Layer (GHSL) project of the Joint
Research Centre, European Commission (Freire et al., 2016;
Schiavina et al., 2022a), which have been available in 5-year
intervals since 1975 (hereafter referred to as GHS-POP). The
number of people per grid (with resolutions ranging from
2 m to 1 km) is given in each GHS-POP raster file, which
was disaggregated from the raw global census data harmo-
nized for the Gridded Population of the World (GPW) by
CIESIN (Freire et al., 2015), and the proxy used in this dis-
aggregation process was the built-up density mapped onto
the GHSL global layers per corresponding epoch (Maffenini
et al., 2023). Compared with its previous version, major im-
provements of the datasets are the following: use of built-
up volume maps (abbreviated as GHS-BUILT-V R2022A);
use of more recent and detailed population estimates derived
from GPWv4.11, integrating both the UN World Population
Prospects 2022 country population data (Gaigbe-Togbe et
al., 2022) and the UN World Urbanization Prospects 2018

data (UNDESA, 2018) on cities; revision of GPWv4.11 pop-
ulation growth rates by convergence to upper administrative-
level growth rates; systematic improvement of census coast-
lines; systematic revision of census units declared as unpop-
ulated; integration of non-residential built-up volume infor-
mation (abbreviated as GHS-BUILT-V_NRES R2023A); use
of a spatial resolution of 100 m Mollweide and 3 arcsec in the
WGS84 projection system; and projections to 2030.

The built-up surface data used to allocate the GHSL pop-
ulation information are also provided in 5-year intervals be-
tween 1975 and 2030 (hereafter referred to as GHS-BUILT-
S). They are generated by spatial–temporal interpolation
of five observed collections of multiple-sensor, multiple-
platform satellite imageries, namely the Landsat compos-
ite (MSS, TM, ETM sensor), supporting the 1975, 1990,
2000, and 2014 epochs, and the Sentinel-2 (S2) composite
(GHS-composite-S2 R2020A), supporting the 2018 epoch
(Pesaresi and Politis, 2022; Schiavina et al., 2022b). In ad-
dition, the research findings of the world settlement footprint
suite, launched by the German Aerospace Center (DLR) in
collaboration with the European Space Agency (ESA) and
the Google Earth Engine team (Marconcini et al., 2021), are
also integrated into the development process of the GHS-
BUILT-S dataset.

2.2.3 The lit-pop, area-pop, and pop-pop index series

Following the practice in Eberenz et al. (2020), the lit-pop
index is created from the combination of nighttime light and
population data, with its definition given in the following
(Eq. 4):

LitnPopmgrid = (NLgrid+ δ)
n
·Popmgrid. (4)

In each grid, the value of the disaggregation index
(LitnPopmgrid) is the product between the DN value of the
nighttime light image (NLgrid) ranging from 0 to 63 and the
population number (Popgrid). When Popgrid > 0, the value of
δ is set as 1 to ensure that the lit-pop value of non-illuminated
but populated grids will not be zero (Eberenz et al., 2020).
In cases when Popgrid = 0, δ is set as 0, and nighttime light
data alone are used to represent the fixed-asset share. To
evaluate the performance of this disaggregation methodol-
ogy, Eberenz et al. (2020) conducted performance evaluation
tests by applying 10 different combinations ofm and n. Their
tests showed that the disaggregation performance would be
the best when m and n were set as 1. Therefore, in this paper
the values of m and n in Eq. (4) are also set as 1.

The nighttime light data are only available from 1992. We
assume the nighttime light did not change too much between
1991 and 1992, while for the years before 1991, new ancil-
lary information needs to be employed to create the quasi-lit-
pop index. The built-up surface data developed by the GHSL
project of the Joint Research Centre of the European Com-
mission (hereafter referred to as the GHS-BUILT-S data) are
chosen for this purpose. The GHS-BUILT-S data are com-
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bined with the GHS-POP data to generate the area-pop index,
which is defined in the following (Eq. 5):

AreanPopmgrid = (Areagrid+ δ)
n
·Popmgrid , (5)

where Areagrid represents the built-up area in each grid, and
the definitions of Popgrid, δ, m, and n are the same as those
in Eq. (4).

Unfortunately, the GHS-BUILT-S and GHS-POP data are
available only after 1975 in 5-year intervals. It is further as-
sumed that the built-up surface area in China remained un-
changed from 1971 to 1975 since economic activities almost
ceased during this period due to the Cultural Revolution. For
the years before 1971, the GHS-POP data in 1975 and the
provincial-level population growth rates compiled from sta-
tistical yearbooks are used to derive the grid-level population
dataset from 1951 to 1970. Then, the derived grid-level pop-
ulation data alone are used to generate the pop-pop index,
with its definition being given in the following (Eq. 6):

PopnPopmgrid = (Popgrid+ δ)
n
·Popmgrid , (6)

where the definitions of Popgrid, δ, m, and n are the same as
those in Eq. (4).

It is worth noting that since the grid-level population den-
sity data provided by GHSL from 1975 are also given in
5-year intervals, the population density maps for the inter-
vening years are derived from the compiled growth rate data
and the reference year population density map. For example,
the 1km× 1km population maps for 1971–1974 are derived
from the GHSL-issued population density map in 1975 and
the compiled provincial-level population growth rate data for
1971–1974.

3 Results

In the “Data and methods” section, the data inputs and the
methods used to construct the provincial-level fixed-asset
data during 1951–2020 and the disaggregation process of the
provincial-level fixed-asset data onto grid level are described
in detail using different ancillary information with varying
temporal availability. To summarize, the nighttime light data
and GHS-POP data are used to generate the lit-pop disaggre-
gation indexes from 1991 to 2020, the GHS-BUILT-S data
and GHS-POP data are used to construct area-pop disaggre-
gation indexes from 1971 to 1990, and the population den-
sity data are used to derive the pop-pop disaggregation in-
dexes from 1951 to 1970. In this section, we first demonstrate
the modelled fixed-asset data for 31 provinces from 1951 to
2020. Then, the spatial–temporal characteristics of the grid-
level fixed-asset model in 2020 and for China’s three largest
urban agglomerations are demonstrated and analysed.

3.1 Modelled provincial-level fixed assets from 1951 to
2020

Based on the estimation of the accumulated value of fixed
assets in the base year of 1951, the compilation of the an-
nual total investment in fixed-asset (TIFA) data, the depre-
ciation rate, and the derivation of implicit deflator data se-
ries in Sect. 2.1, the accumulated fixed-asset model can
be obtained for all 31 provincial-level administrative units
in mainland China from 1951 to 2020 (Fig. 3). By 2020,
the total estimated value of fixed assets in China reached
CNY 589.31 trillion (at the 2020 price level). Shandong
and Jiangsu have the highest accumulation of fixed assets,
amounting to CNY 50.12 trillion and CNY 49.36 trillion, re-
spectively. Tibet and Ningxia have the lowest accumulated
fixed assets, with CNY 1.51 trillion and CNY 3.01 trillion,
respectively. In comparison, the provincial GDP ranking in
2020 issued by the Chinese government shows that Guang-
dong and Jiangsu have the highest GDP of CNY 11.12 tril-
lion and CNY 10.28 trillion, respectively. The GDPs of Ti-
bet and Qinghai are the lowest, at CNY 0.19 trillion and
CNY 0.30 trillion, respectively. When further calculating the
ratios between the accumulated fixed assets and GDP, as il-
lustrated in Fig. 4, their ratios differ among provinces and
change across temporal periods. Therefore, it may intro-
duce significant uncertainties in seismic loss estimation if
the accumulated fixed assets are derived by multiplying the
GDP by a stationary exposure correction factor, as done in
some previous studies (Chen et al., 1997; Jaiswal and Wald,
2013; Sarica and Pan, 2022; Wang et al., 2009), although this
method is quite convenient.

It is also noteworthy that in Fig. 4, there are two abnor-
mally high fixed-asset /GDP ratios in the 1960s, which are
26 for Anhui Province in 1962 and 120 for Ningxia Province
in 1963. For Anhui Province, this is related to its excep-
tionally high fixed assets in 1962, as indicated in Fig. 3.
For Ningxia Province, this is related to its abnormally low
GDP in 1963, which is only CNY 0.01 billion (at the price
level of 1963) and around 1/40th of its neighbouring years,
as recorded in Table 31-4 of DCSNBS (2009). For some
provinces (Tibet, Guizhou, etc.), as shown in Fig. 4, fixed
asset/GDP ratios are lower than 1 before the 1980s. This can
be explained by the rough estimation made in the determina-
tion process of the initially accumulated fixed assets, as well
as the lack of an official and standard method in the compi-
lation of economic indicators in the early periods after 1949,
which also leads to the irregularly intertwined asset-changing
trends modelled for different provinces in Fig. 3.

By using different ancillary datasets to generate the disag-
gregation indexes, the provincial-level fixed-asset data shown
in Fig. 3 can be further downscaled onto 1km× 1km asset
maps. The spatial distribution map of the grid-level fixed as-
sets in 2020 is shown in Fig. 5. The locations of the capi-
tal cities of China’s 31 provincial-level administrative units
considered in this paper are also shown. In Fig. 5, it is not
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Figure 3. The accumulated fixed-asset data modelled for 31 provincial-level administrative units in mainland China during 1951–2020. It is
worth noting that the asset value is calculated at the constant price level of 2020. The bottom line marks the accumulated fixed asset in the
year 1951, and the top line marks the accumulated fixed asset in the year 2020.

surprising to observe that all 31 capital cities are in clusters
of highly accumulated fixed assets, which indicates their at-
tractiveness to personnel and capital from their neighbouring
regions. As divided by the Hu Huanyong line (Hu, 1935),
China is divided into East China and West China according
to their differences in population, geography, social devel-
opment, and ecological environment. As expected, fixed as-
sets are highly agglomerated in East China, accounting for
86 % of the total asset value, which further indicates signif-
icant disparity and spatial heterogeneity in economic devel-
opment within China. Compared with exposure models given
by administrative units, the grid-level fixed-asset model can
better help improve the accuracy of seismic loss assessment
when further combined with hazard maps at varying resolu-
tions, thus better serving the allocation needs of emergency
response and risk mitigation resources.

3.2 Spatial–temporal characteristics of fixed assets in
China’s three largest urban agglomerations

As shown in Fig. 5, most fixed assets are clustered in
East China, especially within the three largest national ur-
ban agglomerations of China (with their locations out-
lined in Fig. 6), namely the Beijing–Tianjin–Hebei urban
agglomeration (BTH-UA), the Yangtze River Delta urban
agglomeration (YRD-UA), and the Pearl River Delta ur-
ban agglomeration (PRD-UA). The BTH-UA is composed
of 13 cities, including Beijing, Tianjin, and 11 cities in
Hebei Province (Baoding, Cangzhou, Chengde, Handan,
Hengshui, Langfang, Qinhuangdao, Shijiazhuang, Tang-
shan, Xingtai, and Zhangjiakou). The YRD-UA is com-
posed of 27 cities, including Shanghai, 8 cities in Anhui
Province (Anqing, Chizhou, Chuzhou, Hefei, Ma’anshan,
Tongling, Wuhu, and Xuancheng), 9 cities in Jiangsu
Province (Changzhou, Nanjing, Nantong, Suzhou, Taizhou,
Wuxi, Yancheng, Yangzhou, and Zhenjiang), and 9 cities
in Zhejiang Province (Hangzhou, Huzhou, Jiaxing, Jinhua,
Ningbo, Shaoxing, Taizhou, Wenzhou, and Zhoushan). In
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Figure 4. The ratio between accumulated fixed assets and GDP for each province and China as a whole from 1952 to 2020.

Figure 5. The spatial distribution of our modelled grid-level fixed-asset map for mainland China in 2020. The unit of the asset value is
Chinese yuan. The locations of the capital cities of 31 provincial-level administrative units are also shown. The Hu Huanyong line divides
China into East China and West China.

contrast, the PRD-UA comprises only 9 cities in Guangdong
Province, including Guangzhou, Shenzhen, Dongguan, Fos-
han, Huizhou, Jiangmen, Zhaoqing, Zhongshan, and Zhuhai.
In terms of land area, the BTH-UA, YRD-UA, and PRD-UA
are 218 000, 211 700, and 42 200 km2, accounting for 2.27 %,

2.21 %, and 0.44 % of the total land area of China, respec-
tively.

As summarized in Table 2, the accumulated fixed assets in
each agglomeration have increased over the years. Still, their
changing trends in fixed-asset share relative to the whole
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Figure 6. The spatial locations of China’s three largest urban agglomerations.

country are quite different. The fixed-asset share of the BTH-
UA has remained almost unchanged over the past 7 decades,
ranging from 9.05 % in 1951 to 8.7 % in 2020. Meanwhile,
the fixed-asset share of the YRD-UA has increased from
7.64 % in 1951 to 15.33 % in 2020. The increase in the fixed-
asset share of the PRD-UA is the largest, rising from 0.98 %
in 1951 to 4.01 % in 2020, reflecting this region’s strong eco-
nomic vitality.

To better visualize the spatial changes in fixed assets, grid-
level fixed-asset maps for the years 1951, 1960, 1970, 1980,
1990, 2000, 2010, and 2020 are shown in Figs. 7–9 for BTH-
UA, YRD-UA, and PRD-UA, respectively. It is noteworthy
that the fixed assets shown in Figs. 7–9 have been adjusted
to the 2020 constant price level using the implicit deflator se-
ries at the national level compiled in Sect. 2.1.3, thus avoid-
ing the effect of price changes on the evolution of the spatial
distribution characteristics of fixed assets. To better reveal
the increase in fixed assets in space over time, the legends
within each panel of Figs. 7–9 are the same, as separately
determined by the value ranges of accumulated fixed assets
in 1980 for these three agglomerations. For a better visual-
ization effect, the upper and lower thresholds in each legend
refer to the 98 % quantile and 2 % quantile of the asset values
in the corresponding maps.

The spatial distribution characteristics of fixed assets over
the past 7 decades can be divided into two periods: before
the 1980s and after the 1980s. Before the 1980s, fixed assets
were mainly clustered in the big cities of each agglomera-
tion, namely Beijing and Tianjin in the BTH-UA (Fig. 7),
Shanghai in the YRD-UA (Fig. 8), and Guangzhou in the
PRD-UA (Fig. 9). The increase in clustered fixed assets be-
fore the 1980s can also be observed in other cities, but it is
sparse in space and slow in speed. In contrast, fixed assets
experienced a rapid and extensive increase after the 1980s,

closely related to the national reform and opening-up policy
issued in 1978, after which the focus of the Communist Party
and the state shifted to economic development. When calcu-
lated at the 2020 constant price level, the values of accumu-
lated fixed assets in 2020 are 76, 119, and 192 times the 1980
fixed-asset values in the BTH-UA, YRD-UA, and PRD-UA,
respectively. Compared with the situation in 1951, the values
of fixed assets in 2020 are 243, 506, and 1035 times the 1951
fixed-asset values in the BTH-UA, YRD-UA, and PRD-UA,
respectively. This not only indicates the overall rapid accu-
mulation speed of fixed assets in these three agglomerations
after the 1980s, but also reflects the even faster growth rate
in the PRB-UA compared to the BTH-UA and the YRD-UA.
This comparison further reveals the extraordinarily high eco-
nomic dynamism in the PRD-UA.

4 Discussion

4.1 The consistency check of disaggregation indexes

As introduced in Sect. 2.2, different combinations of night-
time light, population, and built-up surface area data are em-
ployed to generate corresponding disaggregation indexes (lit-
pop, area-pop, and pop-pop), considering the difference in
temporal availability of these ancillary data. To evaluate the
consistency of disaggregated grid-level fixed assets for three
periods (namely 1991–2020, 1971–1990, and 1951–1970)
by using different disaggregation indexes, it is necessary to
test the correlation between these disaggregation index pairs.
Therefore, by taking 2010 as the test year, three types of
disaggregation index images are generated, and correlation
analyses for every two indexes of lit-pop, area-pop, and pop-
pop are performed for 344 prefectures in China, as plotted in
Fig. 10. In this figure, the ratio between the prefectural sum
and the provincial sum of each disaggregation index value is
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Table 2. The fixed assets in China’s three largest urban agglomerations. BTH-UA, YRD-UA, and PRD-UA are abbreviations for the Beijing–
Tianjin–Hebei urban agglomeration, the Yangtze River Delta urban agglomeration, and the Pearl River Delta urban agglomeration, respec-
tively. Note that the fixed assets are calculated at the price level of each corresponding year.

Year Fixed assets Fixed-asset ratio relative
(in billion Chinese yuan) to the whole country

BTH-UA YRD-UA PRD-UA The whole China BTH-UA YRD-UA PRD-UA

2020 51 273.59 90 348.19 23 659.06 589 314.93 8.70 % 15.33 % 4.01 %
2010 13 099.28 24 146.34 6432.49 132 783.60 9.87 % 18.18 % 4.84 %
2000 2507.67 4277.89 1421.02 21 793.97 11.51 % 19.63 % 6.52 %
1990 327.31 497.83 103.42 3592.58 9.11 % 13.86 % 2.88 %
1980 76.00 85.55 13.94 772.63 9.84 % 11.07 % 1.80 %
1970 27.52 26.47 3.27 309.69 8.89 % 8.55 % 1.06 %
1960 34.44 39.64 5.56 345.83 9.96 % 11.46 % 1.61 %
1951 8.55 7.22 0.93 94.42 9.05 % 7.64 % 0.98 %

calculated for each prefecture. The high correlation between
area-pop and lit-pop (with R2

= 0.98, as shown in panel (a)
of Fig. 10) indicates that it is reasonable to use the combi-
nation of built-up surface area and population data to disag-
gregate the province-level fixed assets for the years before
1990 when nighttime light data are not available. The cor-
relation between area-pop and pop-pop is the same as that
between lit-pop and pop-pop (with R2

= 0.92 for both), in-
dicating the acceptability of using the squared population to
disaggregate the province-level fixed assets for the years be-
fore 1970 when both nighttime light and built-up surface data
are unavailable.

4.2 Performance evaluation of modelled fixed assets at
different scales

Due to the lack of officially issued statistics on annually ac-
cumulated fixed assets, it is important to compare our mod-
elled fixed-asset data with those of other studies. Wu et al.
(2014) conducted a benchmark estimation of wealth capi-
tal stock in 344 prefectures of China from 1978 to 2012 us-
ing the PIM, providing both prefecture-level and provincial-
level fixed-asset values for 2012. Therefore, we first compare
our modelled asset values with those provided by Wu et al.
(2014) for 2012 at the provincial level, as listed in Table 3.
The ratio between our modelled fixed assets and those in Wu
et al. (2014) is from 0.95 to 1.93, with the largest deviation
occurring in the estimation for Anhui Province. According
to the comparison analysis by Li (2011), a 1 % change in the
depreciation rate will lead to a 10 % change in accumulated
fixed asset 25 years later. Therefore, the deviation in esti-
mated fixed assets for Anhui Province might be partly due
to the difference in the depreciation rate used, which is 5 %
in this paper and 9.75 % in Wu et al. (2014). Additionally,
differences in the compiled implicit deflator series used to
calibrate the deflation of TIFA over time may also contribute
to the deviation. We also compare our modelled fixed assets
for 344 prefectures in China with those by Wu et al. (2014)

for 2012. As shown in Fig. 11, the correlation coefficient of
these two datasets at the prefecture level is relatively high
(with R2

= 0.95), indicating their good consistency. Simi-
lar to the reason explained for the discrepancy in Table 3,
the consistently high fixed assets at the prefecture level es-
timated in this paper are probably due to the relatively low
depreciation rate used, which is uniformly set at 5 %, while
in Wu et al. (2014), the depreciation ratio ranges from 7.95 %
to 10.05 % for different provinces.

In our previous work, a grid-level residential building
stock model for mainland China was developed based on
urbanity-level (urban, township, and rural) population and
building-related statistics in each province extracted from the
records in the tabulation of the 2010 population census of
China (Xin et al., 2021). Therefore, we also conduct a cor-
relation analysis between the modelled residential building
replacement values in Xin et al. (2021) (without considering
depreciation) and the fixed assets modelled in this paper (in-
cluding residential and non-residential buildings, infrastruc-
tures, instruments, etc., with depreciation over time consid-
ered) for all 344 prefectures. Figure 12 shows their correla-
tion is also relatively high (withR2

= 0.91). The two obvious
deviation points in Fig. 12 correspond to Shanghai and Bei-
jing. The reasons for such deviations are complex and related
to multiple factors, including whether depreciation is consid-
ered and discrepancies in the unit construction prices chosen
for different residential buildings in Xin et al. (2021) com-
pared with the price levels used for fixed assets in this paper,
as they are determined through quite different price compila-
tion channels.

4.3 Application of the fixed-asset data to seismic loss
estimation of damaging earthquakes

Since the development of the fixed-asset data is targeted at
seismic loss estimation after the occurrence of a damaging
earthquake in China, which is of vital reference importance
for government officials to reasonably allocate emergency
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Figure 7. The spatial distribution maps of grid-level fixed assets (adjusted to 2020 constant price level) modelled for the Beijing–Tianjin–
Hebei urban agglomeration (BTH-UA) in 1951, 1960, 1970, 1980, 1990, 2000, 2010, and 2020. The legend is generated based on the value
range of fixed assets in 1980 and is uniformly applied to the asset maps of other years for better visualization effect.
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Figure 8. The spatial distribution maps of grid-level fixed assets (adjusted to 2020 constant price level) modelled for the Yangtze River Delta
urban agglomeration (YRD-UA) in 1951, 1960, 1970, 1980, 1990, 2000, 2010, and 2020. The legend is generated based on the value range
of fixed assets in 1980 and is uniformly applied to the asset maps of other years for better visualization effect.
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Figure 9. The spatial distribution maps of grid-level fixed assets (adjusted to 2020 constant price level) for the Pearl River Delta urban
agglomeration (PRD-UA) in 1951, 1960, 1970, 1980, 1990, 2000, 2010, and 2020. The legend is generated based on the value range of fixed
assets in 1980 and is uniformly applied to the asset maps of other years for better visualization effect.

response personnel and goods as well as for insurance and
reinsurance companies to quickly estimate the potential com-
pensation amount, it is necessary to check the application
potential of the developed dataset. Taking the seismic loss
estimation for the Ms 6.2 Jishishan Earthquake that occurred
on 18 December 2023 in Gansu Province, China, as an ex-
ample, we overlap the modelled grid-level fixed-asset data
of the year 2020 in the earthquake-stricken area with the
officially issued macro-seismic intensity map by the China
Earthquake Administration, as shown in Fig. 13. The sum
of the exposed fixed-asset value within each intensity extent
can be calculated by using the open-source software QGIS.

Then, the mean loss ratio within each intensity to be used for
loss calculation is determined from the empirically regressed
loss estimation model for the Qinghai–Tibet region of China
(a broader region that covers the study area in Fig. 13) in
our previous work (Li et al., 2023), in which the provincial-
level fixed-asset data developed in this paper, the digitalized
macro-seismic intensity maps and loss records of damaging
earthquakes that occurred in the past 7 decades in China com-
piled by Li et al. (2021), and the LandScan population den-
sity data (Bhaduri et al., 2007) are comprehensively used
to regress the empirical economic loss models for differ-
ent sub-regions in China. By multiplying the mean loss ra-
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Figure 10. The correlation between ratios of (a) area-pop and lit-
pop, (b) area-pop and pop-pop, and (c) lit-pop and pop-pop for
344 prefectures in China. Note that for prefectures within each
provincial-level administrative unit, the index (lit-pop, area-pop,
pop-pop) ratio is derived by dividing the sum of the index value of
each prefecture by the sum of the index value of the corresponding
province.

tio for each intensity by its accumulated fixed-asset value,
the direct economic loss of the Jishishan Earthquake is es-
timated to be CNY 10.69 billion. Such a rough estimation
(since no building or infrastructure attribute information is
used and the newly added investment in fixed assets during
2021–2023 is not considered) is relatively comparable to the
officially issued total loss of CNY 14.6 billion, which is cal-
culated based on a detailed post-earthquake investigation of
damaged buildings and infrastructures due to the earthquake
(ONDP-MRC, 2024). The difference between these two loss
numbers is within 2 times, which indicates that our estimated
loss can be considered a reasonable loss estimation result.
This application to seismic loss estimation also verifies that
the fixed-asset data developed in this paper are promising to
be used for rapid economic loss estimation for future damag-
ing earthquakes in China.

Figure 11. The correlation analysis between the estimated fixed as-
sets for 344 prefectures of mainland China in this paper and those
given in Wu et al. (2014) for 2012.

Figure 12. The correlation analysis between the estimated fixed as-
sets for 344 prefectures of China in this paper and the estimated res-
idential building replacement values in Xin et al. (2021) for 2015.

Like seismic risk analysis, different risk assessment scales
require different methods and data inputs. It is also worth-
while to discuss the applicability of the developed fixed-
asset data to risk analysis of other natural hazards (e.g. floods
and high/extreme wind). In this paper, the fixed-asset model
is developed based on Level 1 data, which mainly include
demographic data and fixed-asset-investment-related statis-
tics extracted from the national census and yearbooks but no
structure characteristics. Therefore, the disaggregated fixed-
asset model based on this level of information is relatively
rough. Previous studies (Röthlisberger et al., 2018; Wouters
et al., 2021; Wu et al., 2019) suggest that to get reason-
able flood risk assessment results, detailed building attributes
(floor area, height) should be gained to better assess building
vulnerability to floods. As further verified by the comparison
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Figure 13. Overlap the modelled fixed-asset data for the year 2020 at grid level in the earthquake-stricken area with the seismic intensity
map of the 18 December 2023 Ms 6.2 earthquake that occurred in Gansu Province, China (with its location given in the inset map). The text
“k, m, b” in the legend of the fixed asset refers to thousand, million, and billion, respectively. The active fault traces are from Wu et al. (2024)
and the basemap is from the “USGC Topo Mohit” map provided by the plug-in of “QuickMapServices” in QGIS.

of different exposure models for flood risk analysis in Röth-
lisberger et al. (2018), the estimation of exposed-building
values should be based on individual buildings rather than on
areas of land use types. However, from the fixed-asset data
developed in this paper, we cannot directly derive the floor
area or height information, even at the administrative scale,
due to the lack of more details, let alone for individual build-
ings. Even at the grid level, flood loss estimation results are
more sensitive to changes in exposure resolution than seis-
mic loss estimation results. For example, the test by Dabbeek
et al. (2021) revealed that when changing the resolution of
the exposure model from 1–8 km, the change in final seismic
loss is less than 5 %. In contrast, Bouwer et al. (2009) found
that using a 100 m instead of a 25 m exposure grid in loss
estimation would result in increased flood damage estimates
of up to 50 % higher. In the case of high-/extreme-wind risk
analysis, studies published in recent years also tend to use
building-level or even component-level exposure data to as-
sess wind risk (Pandolfi et al., 2022). Such component-level
building attributes cannot be derived from our current fixed-
asset model either. Therefore, we regard the fixed-asset data
developed in this paper as more suitable for rapid seismic
loss estimation after the occurrence of damaging earthquakes
in China, and the data should be used with caution when ap-
plying them to risk analysis of other types of natural hazards.

4.4 Limitations of the modelled fixed-asset data

Inevitable assumptions and simplifications have been made
during the modelling process of the fixed-asset data. For
example, a fixed depreciation rate of 5 % is uniformly ap-
plied to all provinces and periods regardless of their poten-
tial temporal and spatial differences in the depreciation rates
of fixed-asset types. This simplified approach may lead to
skewed asset values, particularly in provinces with unique
economic trajectories or asset compositions. For instance, in
industrialized regions (such as the old industrial canters of
Heilongjiang, Liaoning, and Jilin provinces in China), as-
sets may have a shorter service life than in less industrialized
provinces, affecting the accuracy of economic loss projec-
tions. Therefore, it is quite necessary to integrate the tempo-
ral and spatial changes in depreciation rates when modelling
the net value of depreciated fixed assets, should the statistic
data required to differentiate such rates be accessible for the
period 1951–2020 considered in this paper.

As a matter of fact, in the prefecture-level fixed-asset mod-
elling work of Wu et al. (2014) for China during 1978–
2012, they did develop varying depreciation rates for dif-
ferent provinces (see their Table 2). To get these deprecia-
tion rates, the residual value of the capital stock was uni-
formly set to be 4 % of its original value, and the service
lives of three different fixed-asset types (construction and
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Table 3. Comparison of the estimated values of accumulated fixed
assets (in billion Chinese yuan) in 2012 for 31 provinces of main-
land China in this paper and Wu et al. (2014).

Province This study Wu et al. (2014) Ratio

Beijing 4649.23 3849.16 1.21
Tianjin 3946.97 3883.61 1.02
Hebei 10 092.73 6822.05 1.48
Shanxi 4380.54 3269.85 1.34
Inner Mongolia 5871.68 5387.49 1.09
Liaoning 10 633.95 6820.13 1.56
Jilin 4841.46 4516.33 1.07
Heilongjiang 4776.97 3194.81 1.50
Shanghai 5124.19 4568.20 1.12
Jiangsu 16 962.45 12 728.77 1.33
Zhejiang 10 902.16 7797.98 1.40
Anhui 7436.09 3856.29 1.93
Fujian 5813.26 4730.33 1.23
Jiangxi 5444.77 2931.79 1.86
Shandong 17 724.37 13 174.73 1.35
Henan 10 954.13 9302.42 1.18
Hubei 7482.44 5440.21 1.38
Hunan 6971.73 5221.56 1.34
Guangdong 12 272.68 10 655.79 1.15
Guangxi 4479.82 4738.49 0.95
Hainan 998.95 785.94 1.27
Chongqing 4546.95 2981.25 1.53
Sichuan 8854.82 5767.49 1.54
Guizhou 2475.02 2078.73 1.19
Yunnan 3963.58 3272.57 1.21
Xizang 383.77 337.04 1.14
Shaanxi 5563.17 4253.29 1.31
Gansu 2268.29 1560.18 1.45
Qinghai 849.86 626.12 1.36
Ningxia 1028.43 853.45 1.21
Xinjiang 2955.60 2189.56 1.35

Sum 164 749.28 147 595.58 1.12

installation, equipment and instruments, and others) in all
provinces were uniformly set to 45, 20, and 25 years, respec-
tively. Then, following an expression such as Eq. (3) in this
paper, the national average depreciation rate for each asset
type was determined accordingly by Wu et al. (2014), which
was 6.9 %, 14.9 %, and 12.1 %, respectively. Considering the
composition of fixed assets may vary across provinces, to
better reflect their impact on spatial differences in depreci-
ation rates among provinces, Wu et al. (2014) further mul-
tiplied the relative share of each fixed-asset type in each
province (such data are available from 1983) by its depre-
ciation rate derived above. Then, the average depreciation
rate can be determined for each province. For convenience in
cross-checking, these provincial-level depreciation rates de-
veloped by Wu et al. (2014) are also provided in Table 4 of
this paper.

Table 4. The provincial-level depreciation rates modified from Ta-
ble 2 of Wu et al. (2014).

Province Depreciation rate (%)

Beijing 9.76
Tianjin 9.56
Hebei 9.83
Shanxi 9.53
Inner Mongolia 9.22
Liaoning 9.49
Jilin 9.43
Heilongjiang 9.28
Shanghai 10.05
Jiangsu 9.62
Zhejiang 9.53
Anhui 9.75
Fujian 9.44
Jiangxi 9.68
Shandong 9.49
Henan 9.45
Hubei 9.58
Hunan 9.20
Guangdong 9.35
Guangxi 9.44
Hainan 9.35
Chongqing 9.21
Sichuan 9.27
Guizhou 9.35
Yunnan 9.03
Tibet 7.95
Shaanxi 9.87
Gansu 9.30
Qinghai 8.74
Ningxia 9.32
Xinjiang 9.08

Average rate 9.39

Note: the “average rate” of 9.39 % in the last row of this
table is simply the averaged value of all these 31
provincial-level depreciation rates.

However, although the regional difference in fixed-asset
composition is considered when developing the averaged de-
preciation rate for each province, the depreciation rates listed
in Table 4 for most provinces are around 9 %, ranging from
7.95 % to 10.05 %. This means the spatial difference in the
depreciation rate among provinces is basically within ±1%,
which is smaller than one might expect. Moreover, a 1 %
change in depreciation rate would lead to no more than a
10 % change in accumulated fixed assets 25 years later, as
revealed by Li (2011). They also suggested that the depreci-
ation rate should be within the range of 5 %–10 %. When we
further apply the depreciation rates in Table 4 to model the
fixed assets at the provincial level following the process in
Sect. 2.1, the ratios between these newly modelled fixed as-
sets and those modelled by using a uniform depreciation rate
of 5 % are plotted in Fig. 14.
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Figure 14. The ratio between fixed assets modelled by using varying depreciation rates in Table 4 and the fixed depreciation rate of 5 % for
31 provinces and mainland China as a whole.

Figure 14 indicates that the changing trend in the fixed-
asset ratio with time varies across provinces. But a general
trend for most provinces is that the fixed-asset ratio keeps
decreasing before 1970 and starts to increase after 1970. The
decreasing trend before 1970 is mainly attributed to the use
of larger depreciation rates than the fixed rate of 5 %. The
increasing trend in the fixed-asset ratio after 1970 is related
to the increase in annual investment in fixed-capital stock,
which overturns the decreasing trend caused by using larger
depreciation rates. The changing trends in fixed-asset ratios
in Fig. 14 also imply that the modelling of accumulated
fixed assets is affected by a combination of multiple factors
with varying significance in different periods. Considering
the fixed-asset data modelled in this paper are mainly used
for seismic loss estimation and rapid emergency response
after the occurrence of damaging earthquakes in China and
the values of different types of fixed assets in earthquake-
affected areas are generally higher than their residual values,
even if they have lasted for a much longer time than their
service lives, a conservative depreciation rate of 5 % is there-
fore preferred for all provinces to get the final accumulated
fixed-asset data series from 1951 to 2020.

For evaluation of the grid-level fixed-asset model disag-
gregated from provincial-level data in the early periods, a
direct comparative analysis with related statistical records

would be quite valuable. However, such a comparison is un-
fortunately hindered by the lack of prefecture-/county-level
statistical records of GDP or industrial output data in the
early periods, as can be seen on the official website of the Na-
tional Bureau of Statistics (https://data.stats.gov.cn/english/,
last access: 24 April 2025). Therefore, considering the rough
estimation made in the determination process of the initially
accumulated fixed assets, as well as the lack of an official
and standard method in the compilation of economic indica-
tors in the early periods after 1949, special attention should
be paid when applying the developed grid-level fixed-asset
data to studies like long-term economic trend analyses for
specific regions.

It is also noteworthy that in the fixed-asset data mod-
elled in this paper, there is no further differentiation of struc-
tural specificity, which limits the model’s utility for applica-
tions that require asset type differentiation, such as insurance
underwriting or infrastructure resilience planning. It could
lead to misaligned resource allocations during emergency
responses under certain circumstances. For studies devoted
to modelling fixed-asset values for specific years (e.g. Gu-
nasekera et al., 2015; Wu et al., 2018; Xin et al., 2021), it
is possible to use more detailed census records or even on-
site investigation data to estimate the value of different as-
set types. However, when accumulated fixed-asset data series
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for an extended period dating back to 1951 are needed, as in
this paper, detailed statistics to differentiate between building
types (residential/industrial/commercial) or even the quota of
different fixed-asset types (buildings, infrastructures, instru-
ments) exposed to past years are typically missing. In this
case, the fixed-asset model can only be developed from the
Level 1 data (as explained in the Introduction section). Con-
sidering the completeness and availability of statistical data
during 1951–2020, the perpetual inventory method (PIM)
is a more appropriate choice for the development of the
provincial-level fixed-asset data series. Although there is no
differentiation of building types in the fixed-asset data devel-
oped in this paper, when comparing the modelled asset value
with the estimated replacement value of residential build-
ings (including 17 building sub-types) in our previous work
for China (Xin et al., 2021), as shown in Fig. 12, we find
the correlation at prefecture level between these two mod-
els remains relatively high (with R2

= 0.91). In the future, to
better aid seismic risk assessment and emergency response
needs, more efforts should be made to employ more detailed
building- and infrastructure-related statistics to refine the lat-
est fixed-asset model. For example, land use data can be inte-
grated into the modelling process to better discriminate land
types and exposed elements, detailed building-related census
records can be adopted to better quantify the asset share of
different building types, and road density data can be used to
significantly improve the asset evaluation and disaggregation
accuracy of infrastructures.

5 Conclusions

This paper develops grid-level fixed-asset data for China
from 1951 to 2020 based on the perpetual inventory method
(PIM) and disaggregation techniques, aiming to improve
the accuracy of seismic loss estimation for damaging earth-
quakes in China. Consistency checks have demonstrated
the model’s reasonableness and reliability. However, the
fixed-asset values are derived from investment-related data
recorded in statistical yearbooks, and detailed information on
building structures and infrastructures is not included in the
modelling process. Therefore, the datasets are primarily in-
tended to facilitate rapid estimation of seismic losses, serv-
ing as a crucial reference for the government in formulat-
ing emergency response plans and allocating rescue person-
nel and resources shortly after the occurrence of damaging
earthquakes. To demonstrate the application of the developed
fixed-asset data in seismic loss estimation, the estimated loss
in this paper for the 2023 Ms 6.2 Jishishan Earthquake is
compared with the officially issued loss. Their consistency
further verifies the applicability potential of the developed
fixed-asset data to seismic loss estimation for future damag-
ing earthquakes in China. The modelled fixed-asset data from
1951 to 2020 can be conveniently extended to more recent
years as new fixed-asset-related statistics become available.

Code and data availability. The modelled provincial-level
fixed-asset data for 31 provincial administrative units in
China from 1951 to 2020 have been uploaded to Zenodo
(https://doi.org/10.5281/zenodo.12706096, Xin et al., 2024). The
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of 30 arcsec compiled by Li et al. (2020b) are available from
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