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Abstract. In recent decades Europe has experienced severe
droughts and heatwaves. Notably, precipitation in central Eu-
rope exhibited strong dry anomalies during the summers of
2003, 2018, and 2022. This phenomenon has significant im-
plications for agriculture, ecosystems, and human societies,
highlighting the need to understand the underlying mecha-
nisms driving these events. Despite significant advancements
in understanding land—atmosphere (LA) coupling, the tem-
poral variability in LA coupling strength and its associated
impacts remain poorly understood.

This study aims to quantify the variability in LA coupling
strength over central Europe during the summer seasons from
1991 to 2022, with a focus on the relationships between tem-
perature, soil moisture, precipitation, and large-scale weather
patterns. Our results reveal that interannual variability occurs
in different coupling relationships throughout the summer
seasons, with significant implications for climate extremes,
agriculture, and ecosystems. The increasing frequency of
warm and dry summers from 2015 onwards hints at extended
periods of reduced soil moisture available for evapotranspira-
tion and the likelihood of locally triggered convection. This
study provides new insights into the dynamics of LA cou-
pling, highlighting the importance of considering the inter-
annual variability in LA coupling strength in climate model-
ing and prediction, particularly in the context of a warming
climate.

1 Introduction

In recent decades, Europe has experienced severe droughts
and heatwaves, with 2022 being the hottest summer on
record (C3S, 2018; Markonis et al., 2021; WMO, 2022a).

Notably, precipitation in central Europe exhibited strong dry
anomalies during the summers of 2003, 2018, and 2022
(WMO, 2004, 2018; C3S, 2018; WMO, 2022b; Spens-
berger et al., 2020). Concurrently, soils experienced excep-
tional dryness in the uppermost 25 cm (Boeing et al., 2022;
Rakovec et al., 2022). This phenomenon was also observed
by Rousi et al. (2023) and Dirmeyer et al. (2021) in rela-
tion to the extreme conditions of 2018, suggesting that such
events are likely to become more frequent under climate
change. The underlying drivers of these events are complex
and multifaceted, involving changes in atmospheric circula-
tion patterns, sea surface temperatures, and land-surface con-
ditions (Barriopedro et al., 2023).

For instance, Rousi et al. (2022) identified Europe as a
heatwave hotspot, where the likelihood of heatwaves is 3 to
4 times greater than in other areas of the midlatitudes, at-
tributed to a double-jet configuration associated with atmo-
spheric blocking conditions (Kornhuber et al., 2017). One
key factor influencing the development and persistence of
heatwaves and droughts is the strength of land—atmosphere
(LA) coupling (Yuan et al., 2023). LA coupling refers to
the interaction between the land surface and the atmosphere,
wherein the terrestrial surface influences atmospheric condi-
tions and vice versa. This interaction is crucial for shaping
the climate system as it affects the partitioning of energy be-
tween the land surface and the atmosphere, as well as the
exchange of moisture and momentum. When the land sur-
face is dry, it can lead to a reduction in evapotranspiration,
which, in turn, may result in an increase in surface temper-
ature. This can create a positive feedback loop, where a dry
land surface amplifies the heatwave conditions, exacerbating
the land-surface dryness. Such feedback loops can lead to the
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rapid intensification of heatwaves and droughts, significantly
impacting agriculture, ecosystems, and human societies.

LA coupling generally describes the co-variability in at-
mospheric conditions (e.g., planetary boundary layer (PBL)
height, convective available potential energy (CAPE), lifted
condensation level (LCL)) with land-surface characteristics
(e.g., vegetation, soil moisture) (Findell and Eltahir, 2003;
Koster et al., 2004; Dirmeyer, 2011; Guo et al., 2006). In the
context of extremes, LA coupling has been identified as a
driver and intensifier of the duration and intensity of heat-
waves and droughts (van Heerwaarden and Teuling, 2014;
Ukkola et al., 2018). Miralles et al. (2019) and Schumacher
et al. (2022) identified a self-propagating mechanism of
droughts, wherein meteorological droughts intensify due to
increased water vapor deficit (VPD) within the PBL, leading
to further depletion of surface moisture reservoirs. Soil mois-
ture is essential for climate dynamics, as it influences the
partitioning between surface sensible and latent heat fluxes
of incoming solar energy (Seneviratne et al., 2010; Stephens
et al., 2023). In vegetated areas, surface latent heat flux addi-
tionally depends on vegetation characteristics such as stom-
atal resistance, the leaf area index (LAI), and rooting depth
(Miralles et al., 2019; Warrach-Sagi et al., 2022).

Due to the spatial and temporal variability in these in-
fluencing factors, LA coupling often exhibits regional and
temporal variations, especially under climate change condi-
tions (Seneviratne et al., 2006; Denissen et al., 2022; Jach
et al., 2022). According to Ossé et al. (2022), Europe has
been experiencing an increase in climate extremes since
2000 and is likely to remain a hotspot for severe droughts
(Huebener et al., 2017; van der Wiel et al., 2022), im-
pacting not only summer crop yields (Toreti et al., 2022)
but also renewable energy generation. Using water iso-
topes, precipitation, humidity, air temperature, and soil mois-
ture data from 2006 to 2009, Yuan et al. (2023) identi-
fied the central and eastern Europe region in summer as
1 of 11 global hotspots for LA coupling, exhibiting varying
pathways (e.g., soil moisture—precipitation, soil moisture—
evapotranspiration, and soil moisture—temperature) and sea-
sonality of LA coupling strength.

Several studies have examined the relationship between
soil moisture and recent European heatwaves and droughts.
Dirmeyer et al. (2021) and Orth et al. (2022) identified soil
moisture as a key driver of the European heatwave in 2018.
Garcia-Herrera et al. (2010) similarly noted that a signif-
icant soil moisture deficit was one of the primary factors
driving the 2003 European heatwave. Research by Miralles
et al. (2014) suggested that the heatwaves across Europe in
2003 and in Russia in 2010 were intensified by a persis-
tent large-scale weather pattern associated with substantial
soil moisture decay. The analysis conducted by Dirmeyer
et al. (2021) for the 2018 European heatwave revealed en-
hanced soil moisture—maximum temperature coupling under
drought conditions, where exceptionally low soil moisture
limited evapotranspiration and consequently amplified heat-
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wave conditions due to reduced evaporative cooling (San-
tanello et al., 2018). This led to one of the most severe heat-
waves recorded in Europe since 1979 (Becker et al., 2022).
Wehrli et al. (2019) found that both soil moisture and large-
scale weather patterns are equally critical for the duration and
intensity of heatwaves worldwide.

Guo and Dirmeyer (2013) reported interannual variabil-
ity in soil moisture—precipitation coupling, resulting from
differing soil moisture availability. The critical soil mois-
ture threshold defines the boundary between energy-limited
and water-limited regimes for evapotranspiration. Shifts from
energy-limited to soil-moisture-limited conditions due to
droughts and heatwaves (Dirmeyer et al., 2021; Duan et al.,
2020) or vice versa in the case of severe flooding (Lo et al.,
2021) imply temporal variability in LA coupling over sub-
seasonal to interannual timescales. Below these critical soil
moisture thresholds, intensification of heat and drought con-
ditions occurs through LA coupling over Europe, alongside
a strengthening of the coupling itself. Jach et al. (2022) iden-
tified central Europe as a transition zone where the devel-
opment of convection appears to be primarily influenced by
temperature increases.

Despite significant advancements in understanding land—
atmosphere (LA) coupling, a crucial aspect of this com-
plex phenomenon remains poorly understood: the temporal
variability in LA coupling strength and its associated im-
pacts. Specifically, the investigation of LA coupling across
timescales beyond climate periods has been largely neglected
in central Europe, and shifts between coupling regimes
driven by variability in climatic conditions remain an on-
going research topic (Barriopedro et al., 2023). To address
this knowledge gap, the current study aims to quantify the
variability in LA coupling strength over central Europe dur-
ing the summer seasons from 1991 to 2022, focusing on the
relationships between temperature, soil moisture, precipita-
tion, and large-scale weather patterns. By leveraging high-
resolution data from the fifth generation of the European
Centre for Medium-Range Weather Forecasts (ECMWF) at-
mospheric reanalysis (ERAS5; Hersbach et al., 2020), this
study seeks to provide new insights into the dynamics of LA
coupling and its implications for climate extremes, agricul-
ture, and ecosystems in the region. This research aims to
enhance our understanding of the complex interactions be-
tween the land surface and the atmosphere and to inform
the development of more effective strategies for mitigating
the impacts of climate change in central Europe. The paper
is structured as follows: Sect. 2 describes the data sets and
coupling indices utilized in the study. Section 3 covers the
interannual variability in meteorological variables and eval-
uates the meteorological conditions of the summer seasons
chosen, followed by the analysis of LA coupling. Section 4
discusses the results, while Sect. 5 summarizes the findings
and provides an outlook for potential future research.
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2 Materials and methods
2.1 Data sets

For the analysis of the LA coupling, ERAS was used.
ERAS is produced by the Copernicus Climate Change Ser-
vice (C3S, http://climate.copernicus.eu/, last access: 9 April
2025) at ECMWE. This data set provides hourly estimates of
atmospheric, surface, and oceanic variables on a horizontal
resolution of 0.25°. ERAS clearly outperforms its predeces-
sor ERA-Interim (Dee et al., 2011; Martens et al., 2020) and
makes use of sophisticated atmospheric data assimilation in-
cluding satellite-derived soil moisture data (Albergel et al.,
2012) in its land-surface model (LSM) HTESSEL (Balsamo
et al., 2009).

ERAS has been successfully applied in LA feedback stud-
ies over Europe (Rousi et al., 2023, 2022) and other re-
gions (Sun et al., 2021; Qi et al., 2023). Other reanalysis
data sets like the Uncertainties in Ensembles of Regional Re-
Analyses (UERRA), only available until 2019, are not rec-
ommended for use if surface fluxes are required for analy-
sis (https://confluence.ecmwf.int/display/UER/Issues+with+
data, last access: 9 April 2025). The Consortium for Small-
scale Modeling (COSMO) REA6 (Bollmeyer et al., 2015)
data set is only available between 1995-2019 and makes use
of neither a sophisticated data assimilation scheme nor an
ensemble approach. The Climate Forecast System Reanal-
ysis (CFSR; Schneider et al., 2013) is only available un-
til 2010 and thus does not cover the recent climate change
period. Although a study of Beck et al. (2021) revealed
that ERAS-Land (Mufioz-Sabater et al., 2021) outperformed
ERAS with respect to in situ soil moisture measurements
in the Carpathians and southeastern France during 2015-
2019, data sets developed solely for land-surface studies like
ERAS5-Land and the Global Land Evaporation Amsterdam
Model (GLEAM; Miralles et al., 2011) lack the atmospheric
boundary layer variables required for studying LA coupling.
Therefore, ERA5-Land and GLEAM were not considered in
this study to avoid mixing different models for the investiga-
tion of the coupling chain.

While ERAS is a robust data set, it has some limitations.
On average, latent heat (LH) in ERAS tends to be over-
estimated by about 9W m~2 (Mufioz-Sabater et al., 2021).
ERAS soil moisture shows reasonable correlations of up to
0.7 with in situ measurements from the International Soil
Moisture Network (Dorigo et al., 2021) over Europe but may
be overestimated on wet days and underestimated when sub-
daily precipitation is present. Despite its limitations, ERAS is
areliable data set for studying LA coupling and has been suc-
cessfully applied in previous works. Its hourly estimates and
high horizontal resolution make it a valuable tool for under-
standing the complex interactions between the atmosphere
and land surface.
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2.2 LA coupling indices

In our study we apply a subset of the statistical LA coupling
metrics, namely the terrestrial coupling index (TCI) and at-
mospheric coupling index (ACI) (Guo et al., 2006; Dirmeyer,
2011; Santanello et al., 2018). Additionally, the correlation
(CORRsH LH) between surface sensible heat flux (SH) and
surface latent heat flux (LH) is calculated. To derive the dif-
ferent indices, we used a combination of the NCAR Com-
mand Language (NCL; Brown et al., 2012) and the Fortran
programs provided by Tawfik (2015).

For our analysis, we used volumetric root zone soil mois-
ture 7, defined as the weighted sum of the soil moisture in
the top three soil layers of ERAS (i.e., the top 1 m), LH
and SH, CAPE, and PBL height (PBLH). In addition, we
used the height of the lifted condensation level (HLCL) and
the lifted-condensation-level deficit (LCL deficit). The LCL
deficit (m) is defined as the height difference between HLCL
and PBLH. Since HLCL was not directly available from
ERAS, we applied the approach proposed by Georgakakos
and Bras (1984) and Bolton (1980), which derives the HLCL
based on the surface pressure, 2 m temperature, and 2 m dew
point, a method also employed by Dirmeyer et al. (2014):

R4 T, Psrc
x log .
PrcL

Rq is the gas constant for dry air, 7y is the virtual tempera-
ture at 2m above ground level, g is the acceleration due to
gravity, Pspc is the surface pressure (hPa), and P cr denotes
the pressure of the LCL (hPa).

The strength of soil moisture—latent heat flux coupling
(TCI,—Ln) between n and LH is defined as

dLH
TCI,]_LH =o(m)——, 2)
dn

HLCL =

ey

where dLH/dn is the slope of the linear regression as de-
scribed in Santanello et al. (2018) and o (n) corresponds
to the standard deviation of root zone soil moisture. Equa-
tion (2) describes the sensitivity of LH with respect to
changes in the root zone soil moisture.

To derive the strength of the coupling between the land
surface and the atmosphere (ACI), the standard deviation of
n can, for example, be substituted by surface fluxes in Eq. (2)
while LH in Eq. (2) can be substituted by PBLH or CAPE
(Dirmeyer et al., 2014). ACIs are computed (1) between LH
and CAPE (ACIig_capge) and (2) between LH and HLCL
(ACILH-pLCL):

ACI = o (LH) dCAPE (3a)
LH-CAPE = O dLH 5

dHLCL
dLH

o (LH) denotes the standard deviation of LH. The daily mean
values, required for the indices, are calculated between 06:00
and 18:00 UTC (Yin et al., 2023). Water grid cells are not
considered in our evaluation.

ACILg-HLcL =0 (LH)

(3b)
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2.3 Interannual variability in anomalies

Seasonal mean anomalies of 2 m temperatures and precipita-
tion from ERAS5 as well as precipitation from the ENSEM-
BLES daily gridded observational data set for precipitation
(E-OBS; Cornes et al., 2018) version V26.0e were calculated
to categorize the summer seasons in central Europe between
1991 and 2022 into dry to wet and warm to cold or moderate
years.

The investigation of interannual variability in anomalies
in various variables and metrics, including their spatial dis-
tribution, involved the calculation of time series of the spa-
tial variability in anomalies as follows. For each land grid
cell, the average anomaly for the months of June to August
was computed for each year. Box—whisker plots were then
utilized to represent data from all land grid cells, facilitating
a comparison of the spatial variability in summer anomalies
across different years.

3 Results

3.1 Interannual variability in summer seasons
1991-2022

From 2015, apart from in 2016 and 2021, more than 75 % of
the grid cells in the study area show negative soil moisture
anomalies (Fig. la); in 2021, the proportion is more than
50 %. Before 2015, there was stronger interannual variabil-
ity, where often more than 50 % of the grid cells had posi-
tive soil moisture anomalies. Since 2015, positive tempera-
ture anomalies have been observed over more than 75 % of
the grid cells. Before 2015, only the years of 1994, 2003,
2006, and 2012 were characterized by having more than 50 %
of the grid cells covered by positive temperature anomalies.
There has also been a change in the dew point depression
since 2015 (Fig. 1c). Except for in 2016, the proportion of
grid cells with positive dew point depression anomalies is
larger than 50 %, as indicated by the median line inside the
boxes. Before 2015, apart from in 1994 and the hot and dry
summers of 2003, 2006, and 2012, at least 50 % of the grid
cells showed negative dew point depression anomalies. It is
also noticeable that the anomalies have spanned the same or
a larger range of values since 2015, as indicated by the upper
quartile. This implies that the spatial variability in and the
magnitude of the anomalies are increasing. Dew point de-
pression anomalies (Fig. 1c) can be used as an indicator for
the inhibition of cloud formation. The evaporative demand
of the atmosphere increases with higher temperatures, result-
ing in a further reduction in soil moisture and an enhanced
dew point depression. This relation pattern has been observed
in the recent summer seasons, particularly after 2015. The
anomaly ranges of n and 2m temperatures did not increase
during these years, pointing towards a general warming and
drying over our region of interest.

Nat. Hazards Earth Syst. Sci., 25, 1405-1424, 2025

Figure 2 shows box—whisker plots of the summer mean
values of LA coupling indices from 1991 to 2022 of all land
grid cells in the study area between 40 and 60°N and be-
tween 5° W and 25° E. They represent the value range across
Europe for each index and summer. Variations between the
years denote both interannual variability in the number of
grid cells (i.e., spatial extent) with potential for physical cou-
pling and differences in the strength of the coupling (higher
or lower values for the index).

The distribution of TCI,_ g (Fig. 2a) displays strong in-
terannual variability in the fraction of all grid cells with po-
tential for physical coupling (see number above each box).
The fraction of land cells with positive TCI,,_y fluctuates
between 0.54 in 2011 and 0.92 in 2022, indicating a variabil-
ity of up to 38 % in the land area with potential for coupling.
At the same time, the median of TCI, 1y (Fig. 2a) shows
higher values for the warm summer seasons (see Fig. 1b).
Consequently, the strength of the coupling also increases dur-
ing these years.

In contrast, CORRgsy_1 g is mostly positive across Europe
(Fig. 2b), which means that LH and SH co-vary. Negative
correlations, where the limitation of LH causes an exagger-
ation of SH, mostly occur in the Mediterranean. However,
there are a few exceptions during the very warm and dry sum-
mer seasons of 2003, 2018, 2019, and 2022, where the me-
dian of CORRgy-_ry drops below 0.2 due to reduced positive
correlation coefficients and a larger land area with negative
correlations.

The interannual variability in ACILg_prcL (Fig. 2¢) is less
pronounced than that in TCI,_; y and CORRgy_y. The land
area with potential for physical coupling ranges between 5 %
in the early 1990s and 33 % in 2003. However, except for
2003, all summers with the largest spatial extent of the po-
tential coupling region and the lowest median ACI g _prcL
occur in the warm and dry years of the last decade (bold num-
bers in Fig. 2c).

In contrast, ACIpg_cape (Fig. 2d) exhibits weak interan-
nual variability, with medians showing small variation over
time. However, the land area with potential for coupling (pos-
itive ACILg_cape) varies between 0.48 and 0.8, showing
variability in the spatial extent of the coupling region for this
relationship. Unlike the other indices, the greatest coupling
strength (represented by the median index) and the largest
extent of the coupling region do not occur in the warm and
dry years.

Based on the interannual variabilities shown in Figs. 1 and
2, we decided to focus on summer seasons which had a me-
dian 2 m temperature anomaly of more than 0.5 °C.

As seen from Fig. 1 and Table 1, the warm and dry sum-
mer seasons have become predominant since 2015. This has
been associated with a strong reduction in annual and sea-
sonal precipitation, combined with reduced near-surface wa-
ter availability as shown by an increased dew point depres-
sion (Fig. 1c) that has led to a constant decline in the root
zone soil moisture (Fig. 1a). Although the median 2 m tem-
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Figure 1. Interannual variability in anomalies of root zone soil moisture n (a), 2 m temperature (b), and dew point depression (c) for the
summer seasons between 1991 and 2022. For each land grid cell, the average anomaly for the months of June to August was computed.
Box—whisker plots were then utilized to represent the data from all land grid cells in the region between 40—-60° N and 5° W-25°E.

Table 1. Selected summer seasons based on a positive summer temperature anomaly larger than 0.5 °C with respect to the climatological
summer mean of 1991-2020. The first row below the header shows the median precipitation anomaly from E-OBS, and the bottom row

denotes the median precipitation anomaly from ERAS.

Year 2003 2006 2015 2017 2018 2019 2020 2021 2022
E-OBS precipitation anomaly [mm] —-604 —-04 —-343 -93 378 —-34.7 7.8 =37 —63.0
ERAS precipitation anomaly [mm] —-594 87 389 02 -36.1 -324 170 151 =379

perature anomaly for summer 2020 was only 0.4 °C, it was
included in our analysis considering that this was the only
summer since 2015 that has witnessed a moderate observed
positive precipitation anomaly according to both the ERAS
and the E-OBS data sets (Table 1).

3.2 Meteorological characterization of the selected
warm and dry summers

3.2.1 Near-surface temperature

The highest 2 m temperature anomalies were observed dur-
ing the summers of 2003, 2018, 2019, and 2022 (Fig. 3b,
f, g, j) and were spatially associated with strong positive
geopotential anomalies over central Europe (Fig. S1 in the
Supplement). During the summer of 2006, the 2 m temper-
ature anomalies were highest north of 51°N, while during
the summer seasons of 2015 and 2017, the highest temper-
ature anomalies were observed south of 50°N. This coin-

https://doi.org/10.5194/nhess-25-1405-2025

cides with the fact that the maximum positive geopotential
anomaly is observed south of 51°N (Fig. S1d, e). Summer
2020 shows positive temperature anomalies over a wide area
of our study domain. However, the 500 hPa anomalies were
very moderate (Fig. S1h), indicating a constant flow of cooler
and moist air masses from western to central Europe. Sum-
mer 2021 showed a west—east anomaly gradient with temper-
atures slightly below the climatology over the western part of
our investigation domain.

3.2.2 Precipitation

Precipitation (Fig. 4 and Table 1) is often well below the cli-
matological average of 1991-2020. The summer seasons of
2003, 2015, 2018, 2019, and 2022 were exceptionally dry
(Rousi et al., 2023, 2022), with a spatial median precipita-
tion anomaly between —32.4 and —59.4 mm. ERAS reason-
ably catches these dry periods (Lavers et al., 2022), which are

Nat. Hazards Earth Syst. Sci., 25, 1405-1424, 2025
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Figure 2. Interannual variability in the coupling indices TCI,_ g (a), CORRsy_H (b), ACIL g_HrCL (¢), and ACI y_capg (d) for the
summer seasons of 1991-2022. The numbers indicate the fraction of land cells in the value range of the index potentially showing a physical
relationship; i.e., TCI;_ g > 0, CORRgy_ g and ACI y_prcL <0, and ACI g_capg > 0. Boldfaced numbers mark the eight years (i.e.,
25 % of the examined years) with the highest share of the period. Solid colors denote the sign at which the first variable of the index (e.g., )
drives the second variable (e.g., LH). For each land grid cell, the average anomaly for the months of June to August was computed from all

land grid cells in the region between 40—-60° N and 5° W-25°E.

also evident in E-OBS (see Fig. S2). The summer of 2006
can be seen as an average summer with moderate precipi-
tation anomalies over central Europe. The summer season
of 2015 shows a strong dry anomaly associated with warm
temperatures and positive 500 hPa geopotential anomalies
(Fig. S1d). The summer season of 2017 shows a strong wet

Nat. Hazards Earth Syst. Sci., 25, 1405-1424, 2025

bias over northern Germany, which is related to strong con-
vective activity (e.g., Caldas-Alvarez et al., 2022). Summer
2020 shows strong to moderate precipitation anomalies over
Germany, France, Poland, and Benelux, while precipitation
over southeastern Europe is above the climatological aver-
age, resulting in an overall positive precipitation anomaly

https://doi.org/10.5194/nhess-25-1405-2025
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Figure 3. ERAS5 2 m temperature anomalies [°C]. Panel (a) shows the mean summer 2 m temperatures computed for the period between 1991

and 2020.

in both data sets. During summer 2021, precipitation over
France, Benelux, and Germany was above average due to a
small-scale, low-pressure system which caused the Ahr flood
event (Mohr et al., 2023), as indicated by the dark-teal colors
in Fig. 4j.

3.2.3 Soil moisture

Figure 5 displays the ERAS5-derived root zone soil moisture
anomalies. The summer seasons of 2003, 2018, and 2022
show the lowest root zone soil moisture availability over Ger-
many, Benelux, and France. This relates to the strong positive
temperature bias and the precipitation dry bias. An evalua-
tion of the median of the soil moisture anomalies over cen-
tral Europe revealed that summer 2006 was an average sum-
mer with moderate positive anomalies over eastern Europe.
The negative soil moisture anomaly during summer 2015 is
related to missing precipitation over large parts of central
Europe. Summer 2017 shows a strong positive soil mois-
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ture anomaly over northern Germany and northern Poland
related to the higher-than-average rainfall (see Fig. 4). In-
terestingly, although summer 2019 was among the warmest
and driest summers, the soil moisture dry anomaly is less
pronounced than in the other three hot and dry summer sea-
sons of 2003, 2018, and 2022. The reason for the less pro-
nounced dry anomaly is the higher soil moisture availability
during spring 2019 (Fig. S3f). The summer of 2020 shows
drier-than-average soils over France and Germany, while soil
moisture in the other regions is around or even above the cli-
matological average. The summer season 2021 shows strong
positive soil moisture anomalies over Benelux and Germany,
which is related the fact that April and May 2021 were colder
than average (C3S, 2022) as well as due to the Ahr flood
event (Mohr et al., 2023).

Nat. Hazards Earth Syst. Sci., 25, 1405-1424, 2025
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Figure 4. ERAS precipitation anomalies [mm] for the selected summer seasons. Panel (a) denotes the mean summer precipitation from 1991

to 2020.

3.2.4 Categorization of evaluated warm summer
seasons

While all years indicated that most of the cells experienced a
significant warm anomaly, the spatial patterns and the extent
of warm or cool, as well as moist or dry, anomalies varied
between the years. By visual examination, it is possible to
identify three groups within the hot years. Firstly, the years
that stand out the most are 2003, 2015, 2018, 2019, and 2022.
They are characterized by warm temperature anomalies and
dry anomalies in soil moisture and precipitation across most
of the land areas in our study domain. Secondly, 2017 and
2021 were warm, but also comparatively wet, years. Finally,
2006 and 2020 both exhibited moderate anomalies in all the
meteorological fields shown before. In the following sec-
tions, the groups will be referred to as “warm and dry”,
“warm and humid”, and “moderate”.

Nat. Hazards Earth Syst. Sci., 25, 1405-1424, 2025

3.3 Terrestrial coupling
3.3.1 Soil moisture-latent heat flux coupling

In this section, we present the n—LH coupling based on the
terrestrial coupling index (TCI,_n) for the selected summer
seasons. TCI,_ g describes how changes in soil moisture co-
incide with variations in LH. A positive TCI,,_Ly indicates
that LH is limited by the root zone soil moisture and that
the soil moisture variation results in LH variation. A nega-
tive TCI,,_Ly indicates that the development of LH is energy-
limited; i.e., the incoming energy determines the LH devel-
opment. In cases where the absolute TCI,_y is low, either
there is too little soil moisture available for evaporation, close
to the wilting point, or the soil is too wet and a further in-
crease does not lead to considerable changes in evaporation
(Miiller et al., 2021). Since the land-surface influence on the
convective and nocturnal boundary layer differs considerably
due to the presence or absence of incoming shortwave radi-
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Figure 5. ERAS soil moisture anomalies [m3 m_3] for the selected summer seasons. Panel (a) denotes the summer mean root zone soil

moisture from 1991 to 2020.

ation, the analysis was based on daytime means computed
for the period 06:00 and 18:00 UTC of each day (Yin et al.,
2023).

Figure 6 shows the mean spatial pattern of TCI,_y ob-
served for the previously selected warm and dry summer sea-
sons. The very warm and dry seasons show a strong positive
TCI,_Lu over the regions affected by low soil moisture (Ger-
many, France, and Benelux; Fig. 5a, e, f, i). In summer 2015,
which was overall very dry with respect to soil moisture and
precipitation, TCL,_1 g shows neutral values over northern
Germany, while the rest of the investigation domain shows
positive values. The warm and wet summers show the lowest
values for the TCI,_y of all warm years. In the wettest re-
gions during the years 2017 and 2021, the index changes its
sign. The now neutral-to-negative values indicate that there
is enough soil moisture available (see Fig. 5). This implies
that in these areas and during these years, the variations in

https://doi.org/10.5194/nhess-25-1405-2025

latent heat (LH) flux are not directly linked to changes in soil
moisture (refer to Figs. 5 and 6).

During 2021, when a positive n anomaly is observed over
Germany, Benelux, and eastern France (Fig. 5h), the TCI,,_ gy
becomes moderately negative in these regions, with values
of about —20 Wm™? (Fig. 6h). This can be explained by a
moist spring season (Fig. S3i) and the heavy-precipitation
event that occurred in June 2021 (Mohr et al., 2023), leading
to soil moisture content close to field capacity (Fig. S4). A
similar behavior of TCI,_ y is observed during the two cold
and wet summer seasons (1997 and 2002, not shown).

During the moderate summers of 2006 and 2020, TCI,,_ g
shows a heterogenous pattern with neutral to slightly positive
values of up to 20 W m~2 over most parts of central Europe.
The only exception is the Alpine area and in 2006 the east-
ern part of our study domain, where the TCI,, g is slightly
negative.

Nat. Hazards Earth Syst. Sci., 25, 1405-1424, 2025
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Figure 6. ERA5-based terrestrial coupling index TCI,)_ g between root zone soil moisture 7 and latent heat flux LH for the selected summer

seasons.

3.3.2 Correlation SH-LH

The majority of correlation coefficients CORRgy_1y are
negative over the Iberian Peninsula and the Mediterranean,
which is related to very low absolute evapotranspiration
(Seneviratne et al., 2006). Over the British Isles, Scandi-
navia, and the Atlantic coasts, the heat fluxes usually demon-
strate a positive correlation.

During the warm and dry summers of 2003, 2018, 2019,
and 2022, CORRsy-1y (Fig. 7) became negative over Ger-
many, France, and Benelux. This is related to the anoma-
lously warm and dry conditions in the atmosphere and a soil
moisture deficit during these years. The soil moisture deficit
limits LH, and due to the resulting reduction in evaporative
cooling, SH is further increased. Consequently, the tempera-
ture gradient between land surface and atmosphere increases.
During the warm and wet as well as the moderate years,
the SH-LH correlations remain positive over central Europe
and the patterns of CORRsy_y largely resemble those of
TCI,—Lu (see Fig. 6).

In 2017, the spring season showed a positive soil mois-
ture anomaly over Germany, eastern Europe, and the British
Isles (Fig. S3), which is reflected in the strong positive
CORRgy-1 g during the summer over these regions (Fig. 7d).

Nat. Hazards Earth Syst. Sci., 25, 1405-1424, 2025

The correlation pattern for summer 2021 is similar to the pat-
terns during the cold and wet seasons of 1997 or 2002 (not
shown), when enough soil moisture was available for evapo-
transpiration.

3.4 Atmospheric coupling
34.1 Coupling LH-HLCL

This section explores the relationship between LH and HLCL
and is complemented by an evaluation of the LCL deficit.
For ACIpyg_micL, negative values are associated with a
potentially physical relationship. An increase in LH means
stronger PBL moistening by the land surface. Stronger moist-
ening in turn suggests that saturation is reached faster and
at a lower altitude, meaning a lower HLCL. The LCL
deficit compares the heights of the PBL and the LCL
(PBLH — HLCL). It can be employed as a proxy for the evo-
lution of locally triggered deep convective processes. A pos-
itive LCL deficit means that the PBL top is above the LCL,
with both heights given in units of meters above ground level.
Hence, saturation occurs within the PBL, which is a prereq-
uisite for locally triggered convective processes and cloud
formation. Contrarily, a negative LCL deficit denotes an inhi-
bition of convection developments (Santanello et al., 2011).

https://doi.org/10.5194/nhess-25-1405-2025
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Figure 7. Pearson correlation coefficient between SH and LH (CORRgy_1 ) for the selected summer seasons. Dark-grey areas denote water

grid cells.

Please note that Santanello et al. (2011) depict LCL and PBL
on pressure levels, which leads to a switch in the sign in their
interpretation.

The average pattern of the ACILg_grcL in the reference
period indicates a physical influence of the LH on HLCL
(negative values) over the south of the domain (Fig. 8).
The negative values are limited to the Iberian Peninsula and
the Mediterranean, where summers are typically strongly
moisture-limited. Simultaneously, the LCL deficit is nega-
tive (Fig. 9), leading to a strong inhibition of the local forma-
tion of clouds and deep moist convection. Over France, Ger-
many, and the Balkans, the ACI} g_pi cL patterns are patchy,
with negative or slightly positive values at lower elevations
and positive values over mountain ranges. The LCL deficit
over these regions is comparatively low, with values of up to
—300m. This is the area in the study domain facing con-
siderable interannual variability, which is reflected by the
sign changes of the ACI_y_prcL. Over the other regions, the
ACIy-_pLcL is mostly positive, which suggests no consider-
able influence of the LH on HLCL, although the LCL deficit
has negative values throughout all summer seasons. Over the
northern regions of our investigation domain, the LCL deficit
is often neutral or positive, indicating favorable conditions
for the evolution of convection.

https://doi.org/10.5194/nhess-25-1405-2025

During the warm and dry summers of 2003, 2015, 2018,
2019, and 2022, central Europe experiences a switch in the
sign from averagely positive to slightly negative values of
ACILg-pgrcL (Fig. 8a, e, f, i). These areas mostly overlap
with those where CORRgp_1 g also switches its sign (Fig. 7).
At the same time, the negative LCL deficit increases up to
—600m over central Europe and to over —900 m over the
Iberian Peninsula (Fig. 9). This indicates that the very dry
soil during these summers (Fig. 7) caused low LH, which in
turn initiated a considerable increase in the HLCL (Fig. S5)
and thus a stronger negative LCL deficit, as shown in Fig. 9.

During the warm and humid as well as the moderate sum-
mers, ACIpg_grcL is positive over large parts of central Eu-
rope, indicating that LH variations are not the primary driver
of HLCL evolution. Further, SH does not influence HLCL
(not shown), which suggests a stronger atmospheric influ-
ence in the LA system during moderate to humid periods.

Over Germany, France, and Benelux, ACI y_pr.cL shows
low or negative values during the extreme warm and dry sum-
mer seasons of 2003, 2018, and 2022 (Fig. 8a, e, i). This in-
dicates that the very dry soil during these summers (Fig. 5)
caused low LH, which in turn initiated a considerable in-
crease in HLCL (Fig. S5) and thus a higher LCL deficit, as
shown in Fig. 9.

Nat. Hazards Earth Syst. Sci., 25, 1405-1424, 2025
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Figure 8. Atmospheric coupling index between LH and HLCL (ACIy y_g cr.) for the selected summer seasons.

In the summers of 2006, 2015, and 2017, ACI g_ur.cL is
positive over large parts of central Europe, indicating that
LH variations do not drive the evolution of HLCL. During
summer 2021, the positive soil moisture anomaly (Fig. 5) is
connected to weak or negative coupling between n and LH
(Fig. 6). This implies that LH either has few variations or
is high compared to other summer seasons. This leads to a
lowering of HLCL (Fig. S5; e.g., Wei et al., 2021), which
is also reflected in a mostly neutral LCL deficit over central
Europe, as shown in Fig. 9. This leads to an HLCL decrease
(not shown; e.g., Wei et al., 2021) and, ultimately, to a resid-
ual LCL deficit over central Europe, as shown in Fig. 9.

As the TCI,_ g is mostly positive over these regions
during these summers, while the ACILg_capg is neutral to
slightly positive, it can be inferred that soil moisture vari-
ation impacts LH variations but with weak feedback to the
atmosphere.

34.2 Coupling LH-CAPE

This section explores the results of ACIpy_capg for the warm
summer seasons. This index aims to assess the relationship
between surface moistening of the PBL represented by LH
and the energy in the atmosphere, which is potentially avail-
able for the development of deep moist convection (CAPE).

Nat. Hazards Earth Syst. Sci., 25, 1405-1424, 2025

CAPE represents the deviation of the atmospheric virtual
temperature profile from the moist adiabat between the level
of free convection and the equilibrium level. This buoyant
energy is typically stored a couple of hundred meters above
the ground. It depends on both atmospheric humidity and the
temperature gradient, which in turn are subject to surface in-
fluences through the surface heat fluxes. Through PBL moist-
ening, an increase in LH can lead to an increase in CAPE,
which indicates the potential for convective developments
and thus precipitation.

A common feature is the negative ACI g_capg along the
coast of the Mediterranean. As the sea surface temperatures
in this region can reach up to 26 °C (Garcia-Monteiro et al.,
2022), this leads to high evaporation over the sea and thus
high precipitable-water values. Together with a temperature
gradient of up to 30 °C or more in the Mediterranean between
850 and 500 hPa (not shown), this can lead to a strong atmo-
spheric instability in ERAS and thus to an overestimation of
CAPE in the Mediterranean (Taszarek et al., 2018).

Coupling hotspots are observed over eastern and south-
eastern Europe with ACILg_capg values of more than
2507 kg’1 in the summers of 2006, 2019, 2020, and 2021
(Fig. 10). They are related to higher values of LH over these
regions (not shown) due to neutral or positive root zone
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Figure 9. Mean ERAS5 LCL deficit. Orange and reddish colors denote less favorable conditions for convection.

soil moisture anomalies (Fig. 5). These coupling hotspots
were also observed in a climate sensitivity study of Jach et
al. (2022). Over Germany and France, coupling is weak, al-
though stronger signals were observed in 2003 and 2019. The
low values of ACIy_capg over the British Isles and southern
Scandinavia suggest that these regions are more frequently
impacted by large-scale synoptic systems with a more sta-
ble atmosphere rather than by localized precipitation events
(Jach et al., 2020). This is also reflected by the positive LCL
deficit shown in Fig. 9.

4 Discussion

Our objectives were to evaluate interannual variability in
coupling strength between soil moisture, surface fluxes,
HLCL, and CAPE over central Europe (summers of 1991—
2022) and to further investigate the coupling during the nine
warmest summer seasons in the context of the prevailing
temperature and humidity anomalies.

The results reveal that interannual variability occurs in
different coupling relationships throughout the summer sea-
sons from 1991 to 2022. This variability is particularly evi-
dent in indices associated with the hydrological cycle, such
as the terrestrial coupling index (TCI,_Ln), the correlation

https://doi.org/10.5194/nhess-25-1405-2025

between surface sensible heat flux and surface latent heat
flux (CORRsy_1 1), and the atmospheric coupling index be-
tween LH and the lifted condensation level (ACI g_grcL).
These indices show a connection with temperature and mois-
ture anomalies on the interannual scale, which is consistent
with previous studies of Jach et al. (2022) and Guo and
Dirmeyer (2013).

TCI,—Lu shows interannual variability during the full pe-
riod of summer seasons from 1991 to 2022, with the last
decade exhibiting the largest spatial extent and highest cou-
pling strengths (Fig. 2a). This indicates that variations in soil
moisture () drive LH as there is not enough soil moisture
available for evapotranspiration. The average CORRsy_Lu
stays mainly positive but becomes negative in the warm and
dry summer seasons (Fig. 2b), suggesting a moisture-limited
coupling regime. The interannual variability in ACIyy_grcL
shows zero or even negative values during the warm and dry
summer seasons (Fig. 2c¢), namely in the last decade. This
indicates less moistening of the planetary boundary layer
(PBL) due to insufficient evaporation from the land surface
and thus an increase in HLCL.

CAPE results from a complex interplay of atmospheric
stratification, synoptic circulation, and moistening and heat-
ing by the land surface. In agreement with findings of

Nat. Hazards Earth Syst. Sci., 25, 1405-1424, 2025
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Figure 10. ERAS atmospheric coupling index between LH and CAPE (ACIy g_capg). Grey areas denote water grid points.

Jach et al. (2022), southeastern and eastern Europe and the
Baltic states were found to be regions marked by strong
ACILg-cape coupling. However, when analyzing the inter-
annual variability in ACILg_capg, a weak connection is ob-
served between these coupling mechanisms and tempera-
ture and humidity conditions, suggesting that such variability
might be driven by other atmospheric processes.

From the interannual variability in the different variables
shown in Figs. 1 and 2, it can be concluded that warm and
dry summer seasons are associated with a differing behav-
ior of LA coupling strength across Europe. During summer
seasons with enough moisture, despite higher temperatures,
strong LA coupling is largely limited to southern Europe, as
seen in the summer of 2021. This agrees with the results
of Guo and Dirmeyer (2013), who showed that areas with
a normally wet climate can experience a shift in coupling
regimes under dry conditions. On a seasonal timescale, Lo et
al. (2021) also found regime shifts due to an extreme flood
in a semi-arid region. According to Rousi et al. (2022), the
frequency of occurrence of heatwaves has been accelerating
across Europe in the last 30—40 years, and the large-scale cir-
culation pattern often features mid- and upper-troposphere
blocking situations, leading to a split in the jet stream to-
wards the Arctic and towards the Mediterranean. As the po-
sition of the jet stream has a decisive effect on European

Nat. Hazards Earth Syst. Sci., 25, 1405-1424, 2025

weather, it can also alter the near-surface flow conditions
in western and central Europe (Laurila et al., 2021), while
in other regions like the Mediterranean and eastern Europe,
soil moisture preconditioning is more important as the im-
pact of the jet stream becomes weaker (Prodhomme et al.,
2022). Dirmeyer et al. (2021) showed the causal connection
between the hot and dry conditions during the extreme sum-
mer of 2018. The spring of 2018 showed a warm temperature
anomaly and slightly drier soil moisture conditions over Ger-
many (Xoplaki et al., 2025), turning into a severe drought due
to strong soil moisture depletion during summer (Rousi et al.,
2023). Dirmeyer et al. (2021) also showed that the drought
conditions further intensified the 2018 heatwave. The rea-
son for this is that when the volumetric soil moisture content
fell below a critical value, surface fluxes and temperatures
became highly sensitive to the further declining soil mois-
ture. Evidence of this concept of drought-induced warming
through evaporative controls was also found by Koster et
al. (2009).

The coupling signals remain stable throughout the evalu-
ated summer seasons over northern Europe and the Mediter-
ranean region (Seneviratne et al., 2006; Knist et al., 2017;
Jach et al., 2020, 2022). It is worth noting that the correla-
tion between SH and LH is mainly positive over the British
Isles, indicating that evapotranspiration is limited by the in-
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coming energy (Knist et al., 2017). This is also the case over
France, Benelux, and Germany for summer 2021, where a
positive soil moisture anomaly is present during the preced-
ing spring. Over central and eastern Europe, changes in the
coupling regimes occur between the individual summers, as
indicated by switches in the sign of different indices. This
area coincides with the transition zones observed in the stud-
ies of Knist et al. (2017) and Jach et al. (2022).

The available net radiation is partitioned between LH and
SH according to the energy required for evapotranspiration.
LH and SH are correlated as long as evapotranspiration is not
limited by the available soil moisture. Our study revealed that
LH is often water-limited (reddish colors in Fig. 6), which is
associated with an anticorrelation of LH and SH. As enough
incoming solar energy is present, this further enhances SH
and thus could further intensify drought periods (positive
coupling). Together with the positive TCI,_n, the anticor-
relation of SH-LH points to a strong limitation of evapotran-
spiration by insufficient root zone soil moisture (Fig. 5).

Moisture limitation of the LH in the warm and dry sum-
mers leads to a shift in the energy flux partitioning towards
reduced PBL moistening and amplified PBL heating because
of increased SH. This shift causes a drying throughout the
PBL, which is shown by an increased HLCL (Fig. S5) and an
intensified negative LCL deficit (Fig. 9). Thus, the warm and
dry conditions at the land surface propagate through the at-
mosphere, leading to less favorable conditions for local con-
vection.

During warm and humid or moderate summer seasons,
the local LA system is characterized by sufficient moisture,
which leads to a decoupling in several links along the local
coupling (LoCo; Santanello et al., 2018) chain. Specifically,
the terrestrial coupling index TCI,_1 u is negative, indicating
that variations in n do not drive LH. Additionally, LH and SH
co-vary, suggesting that evapotranspiration is not limited by
soil moisture availability. Furthermore, the atmospheric cou-
pling index between LH and HLCL (ACIpg-grcL) is pos-
itive, indicating that LH variations drive the evolution of
HLCL. However, during these humid or moderate summers,
the LCL deficit becomes positive, which can lead to the de-
velopment of locally triggered deep convection.

As an example, in the warm and humid summer of 2021,
a strong SW-NE temperature anomaly gradient associated
with a strong 500 hPa geopotential anomaly gradient around
55°N was evident. This led to a stronger westerly airflow
which allowed for more humid air masses from the Atlantic.
A major event during this summer was the flood event in
mid-July, which affected large areas of western and cen-
tral Europe and led to extreme precipitation of more than
150 mmd~! (Ludwig et al., 2023; Mohr et al., 2023). This
heavy-precipitation event, which was also captured by ERAS
(Fig. 4i), was caused by a slow-moving, small-scale, low-
pressure system over France and Benelux and led to a longer-
lasting positive soil moisture anomaly from mid-July on-
wards. The anomaly is directly reflected in negative TCI,_ g
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values and a strong positive CORRsy_1yg as enough sur-
face moisture was available for evaporation. The pattern of
CORRsy-LH and the pattern of ACI g_prcL largely resem-
ble each other, which is also observed in the cold and wet
summer seasons (not shown). The LCL deficit shown in
Fig. 9 is mainly positive over central and southern Europe,
which is associated with a negative precipitation anomaly
over the respective areas. On the other hand, the negative
LCL deficit over the British Isles is directly connected with
a positive precipitation anomaly (especially during the sum-
mers of 2019 and 2020), indicating that LA feedback pro-
cesses were driven by low-pressure systems.

5 Summary

This study provides an assessment of interannual variabil-
ity in four coupling relationships during the summer seasons
between 1991 and 2022 for central Europe. The relationships
under investigation are soil moisture—LH coupling at the ter-
restrial leg of the local coupling chain, the correlation LH-
SH, and the coupling LH-CAPE and LH-HLCL. The latter
two relationships comprise the atmospheric leg of the cou-
pling chain. The analysis of the LA coupling strength was
performed by means of different coupling indices like TCI
and ACI (Dirmeyer, 2011; Santanello et al., 2018) as well
as CORRgy-_ry (Knist et al., 2017) by applying the coupling
metrics framework provided by Tawfik (2015). Firstly, the
interannual variability in these relationships was examined
across all summers of the period considering the prevailing
temperature and moisture anomalies. The second part of the
analyses focused on the coupling during the nine warmest
summers of the period to address the context of a warm-
ing climate and a projected increase in hot and dry periods
until 2100 (Huebener et al., 2017). All indices were calcu-
lated from ERAS data using daytime values from between
06:00 and 18:00 UTC each day (Yin et al., 2023). To enhance
our analysis, anomalies of the 500 hPa geopotential, volu-
metric root zone soil moisture, and precipitation anomalies
derived from ERAS and E-OBS (Cornes et al., 2018) were
considered for the interpretation of the results. Reanalyses
can be used as a reference for further analysis and evalua-
tion of climate simulations. However, these investigations re-
quire high-frequency and high-spatial-resolution model out-
put from numerical weather prediction (NWP) models (Find-
ell et al., 2024), which still is a challenging task.

Soil moisture availability during the summer seasons of
1991 to 2022 shows a decreasing trend, while average 2 m
temperatures show an increase of about 0.5 °C since 2015.
At the same time, the dew point depression anomalies show
strong positive signals during the very warm and dry summer
seasons of 2003, 2015, 2018, 2019, and 2022. These summer
seasons are characterized by positive 500hPa geopotential
anomalies throughout Europe, which are linked to consider-
able positive 2 m temperature anomalies, strong soil moisture
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decline, and larger dew point depressions. The warm and dry
conditions led to an intensification or even the onset of sta-
tistically measurable coupling in the various processes along
the LoCo process chain. In central Europe, they caused a
shift from energy limitation to moisture limitation for evapo-
transpiration. This ultimately contributes to a drier PBL, po-
tentially leading to a suppression of deep convection. In wet
years, LH is not soil-moisture-limited; i.e., HLCL is primar-
ily controlled not by the lack of moisture at the surface but
by the available energy from radiation.

The interannual variability in CORRgg_rg as well as in
TCI,_Lu also reflected the exceptionally warm and dry sum-
mer seasons. Therefore, it was decided to further investi-
gate the summer seasons exceeding a median temperature
anomaly of +0.5 °C based on the ERAS summer mean value
of 1991-2020 (WMO, 2017).

The increasing frequency of warm and dry summers from
2015 onwards hints towards a trend of extended periods of
reduced soil moisture available for evapotranspiration and
the likelihood of locally triggered convection. This leads to
a growing influence of soil moisture variability on the me-
teorological conditions which was not as pronounced be-
fore 2003 due to cooler and moister conditions. Markonis et
al. (2021) found a considerable increase in drought events
over central Europe since 2010, which they related to in-
creasing temperature and a lack of rainfall together causing
soil moisture depletion due to excessive evapotranspiration.

The switches in the sign of the coupling indices imply that,
on a seasonal timescale, local soil moisture and temperature
anomalies can cause an exceedance of thresholds along the
LoCo process chain. This has the potential to change the role
of the land surface as the driver of the local LA system on
an interannual timescale and thus needs to be considered in
sub-seasonal to seasonal (S2S) forecasts, which are used, for
example, in risk assessment of natural hazards.

Code availability. The code used in this study to calculate the
coupling indices can be obtained from https://github.com/abtawfik/
coupling-metrics/tree/master/terrestrial_coupling_index (Tawfik,
2015). The NCL software package can be downloaded from
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