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Abstract. Understanding how physical climate-related haz-
ards affect food production requires transforming climate
data into relevant information for regional risk assessment.
Data-driven methods can bridge this gap; however, more de-
velopment must be done to create interpretable models, em-
phasizing regions lacking data availability. The main objec-
tive of this article was to evaluate the impact of climate
risks on food security. We adopted the climatic impact driver
(CID) approach proposed by Working Group I (WGI) in
the Sixth Assessment Report (AR6) of the Intergovernmen-
tal Panel on Climate Change (IPCC). In this study, we ap-
plied the CID framework using a random forest model in a
bootstrapping experiment to identify the most influential in-
dices driving crop yield losses. We also used SHapley Addi-
tive exPlanations (SHAP) with the random forest model for
explanatory analysis, enabling us to pinpoint critical thresh-
olds for these indices–thresholds that, when exceeded, sig-
nificantly increase the probability of impact. Additionally,
we investigated the effects of two CID types (heat and cold
and wet and dry) represented by categories of climate ex-
treme indices on crop yields, with a particular focus on maize
and soybeans in key agricultural municipalities in Brazil. We

found that mean precipitation is a highly relevant CID. How-
ever, there is a window in which crops are more vulnerable
to a precipitation deficit. In many regions of Brazil, for ex-
ample, soybeans face an increased risk of yield losses when
precipitation falls below 100 mm per month in December,
January and February – marking the end of the growing sea-
son in those areas. Nevertheless, including climate means re-
mains highly relevant and recommended for studying the im-
pact of climate risk on agriculture. Our findings contribute to
a growing body of knowledge critical for informed decision-
making, policy development and adaptive strategies in re-
sponse to climate change and its impact on agriculture.

1 Introduction

Climate extremes, such as heat waves, droughts, floods and
excessive precipitation, play a critical role in determining
crop yield shortfalls (Vogel et al., 2019). Empirical evidence
from multiple studies shows that models incorporating data
from several weather variables are more accurate in explain-
ing crop production variability than those relying solely on

Published by Copernicus Publications on behalf of the European Geosciences Union.



1388 M. R. Benso et al.: Data-driven assessment of climatic impact drivers

precipitation (Proctor et al., 2022; Ray et al., 2015) or sin-
gle weather variables. Consequently, it is essential to assess
agricultural production risk through extreme climate indices,
which are key to monitoring hazards that impact food pro-
duction and food security (Das et al., 2022; Schyns et al.,
2015).

These natural hazards affecting society are often referred
to as “impact drivers”. As Ruane et al. (2022) argues, un-
derstanding impact drivers requires knowledge of the vul-
nerability and exposure of specific sectors. Sectoral infor-
mation helps determine the magnitude of a driver’s effect,
which can be either beneficial or detrimental to its activities.
This requires a co-creation process that aims to contextual-
ize climate information for decision-making. This concept
is embodied in the climatic impact driver (CID) framework,
introduced by Working Group I (WGI) of the Intergovern-
mental Panel on Climate Change (IPCC) in its Sixth As-
sessment Report (AR6). The CID framework is still in its
early development stages and aligns with the United Nations
Sendai Framework for Disaster Risk Reduction (UNISDR)
2015–2030 (UNDRR, 2025), following the UNISDR hazard
list definitions. However, the CID framework goes further by
recognizing climate change as a significant hazard, which is
not included in the UNISDR hazard list.

The formal definition of CIDs encompasses the physi-
cal conditions of the climate, including means, extremes
and events. The CID framework emphasizes two critical as-
pects of risk assessment: defining indices for climatic im-
pact drivers and identifying thresholds for climatic impact
drivers (Ruane et al., 2022). These aspects reinforce the need
to develop numerically computable indices that utilize one or
a combination of climate variables to quantify the intensity
and frequency of a CID. When these indices surpass certain
thresholds, the risk of losses and damage increases. Although
many indices have been used in the literature and summa-
rized by Ranasinghe et al. (2021) for their relevance to the
agricultural sector, it remains necessary to tailor approaches
based on regional characteristics that bridge global insights
with local solutions.

One way to understand the impact of climate change on
agricultural production is through machine learning (ML) al-
gorithms. ML algorithms can improve our understanding of
how climate affects crop yields (Sidhu et al., 2023). Draw-
ing on statistical learning theory (Vapnik, 1999), these algo-
rithms can generalize patterns and make predictions from the
available data. Several authors have applied ML algorithms
to predict crop yields (Vogel et al., 2019; Sidhu et al., 2023;
Han et al., 2019; Schierhorn et al., 2021; Silva Fuzzo et al.,
2020).

Decision tree algorithms, such as random forest (RF) mod-
els, have been particularly effective in understanding the im-
pact of weather extremes on crop yield variability (Vogel
et al., 2019; Jeong et al., 2016; Schierhorn et al., 2021). The
RF model combines tree predictors that are recursively split
and used for predictions (Breiman, 2001). It provides insights

into the importance of each feature in the model’s overall per-
formance. Studies by Vogel et al. (2019) and Schierhorn et al.
(2021) have used this approach to explore the influence of ex-
treme temperature and precipitation on predictive RF mod-
els for soybeans and maize. Both studies found that mean
climate variables during growing seasons are the most rel-
evant features for predicting crop yields. However, extreme
weather indices, particularly those related to droughts and
temperature extremes, can explain 18 %–43 % of crop yield
variability (Vogel et al., 2019).

Despite efforts to improve the performance and inter-
pretability of ML models, previous studies have relied on
a somewhat limited selection of indices. As a result, other
factors influencing crop yield variability may remain hidden
and the underlying mechanisms of crop yield losses due to
weather extremes could be overlooked. A generalized frame-
work for variable and feature selection has been developed
to enhance ML model performance, provide faster models
and improve understanding of the underlying processes that
generated the data (Guyon and Elisseeff, 2003). The back-
ward recursive feature elimination (RFE) method, presented
by Svetnik et al. (2004), leverages the RF algorithm’s abil-
ity to generate variable importance as a variable reduction
wrapper algorithm. Its applicability has been demonstrated
in various studies, including those focused on crop selection
(Wang and Li, 2023) and hyperspectral imaging for monitor-
ing pasture quality (Pullanagari et al., 2018).

Although eliminating redundant features and variables can
enhance our understanding of data structure, the challenge
of interpretability remains. We propose using the model-
agnostic explanation method introduced by Lundberg and
Lee (2017), known as SHAP (SHapley Additive exPlana-
tions). There are promising studies applying SHAP to envi-
ronmental data (Wikle et al., 2023; Viana et al., 2021), with
implications for soil moisture and evapotranspiration deter-
mination. The use of post hoc explanation algorithms for
crop yields has been explored by Mariadass et al. (2022).
However, to our knowledge, this method has not been specif-
ically applied to predicting the impacts of extreme weather
on food production.

In this context, we introduce a comprehensive modeling
framework to enhance the interpretability of tree-based mod-
els that utilize climate data to predict crop yield losses. With
the goal of assessing the impact of climate extremes on food
production, this research employs the CID framework devel-
oped by IPCC Working Group I (IPCC WGI). The frame-
work allows us to characterize climate extremes by creat-
ing numerically computable indices and determining relevant
thresholds. The significance of this framework lies in its abil-
ity to provide a basis for incorporating climate information
into studies, decision-making processes and policy develop-
ment. By applying this framework to our research, we aim to
provide valuable insights that can inform critical decisions,
policies and strategies related to food production in the face
of climate extremes.
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Figure 1. Flowchart illustrating the methodology proposed for analyzing the impact of climate indices on crop yield.

2 Methodology

2.1 Modeling framework

We present a framework for investigating the impacts of
weather and climate extremes on crop yields using ML, fo-
cusing on building a reproducible workflow, selecting fea-
tures and producing explainable ML model outputs. A good
feature of an ML algorithm is its relevant nature in explain-
ing the target variable (in this study, crop yields) based on
input variables. However, it should not be redundant regard-
ing any other relevant predictor (Yu and Liu, 2003). In ad-
dition to these concepts widely applied in ML methods, we
add the concepts of explainable and operational features. In
ML, a feature is any variable that is used as an input variable
for prediction. Therefore, this work will use the terms feature
and variable interchangeably.

This framework (Fig. 1) consists of three steps. The first
is data filtering; in this step, we removed highly correlated
features (Pearson correlation greater than 0.9). Feature se-
lection is a preprocessing step in ML models. The filtering
process removes redundant features. In this study, the con-
cepts of explainable and operational features are the moti-
vation for our proposed methodology. We aim to achieve
a balance between model performance, interpretability and
practical applications. By focusing on explainable features,
our objective is to create models that offer clear insights into

decision-making processes, thereby promoting transparency
and reliability. This interpretability is essential for stakehold-
ers who must comprehend and validate the model’s results.

The second step aims to select the most important vari-
ables. We use the abilities of the RF to generate the impor-
tance of variables to rank the most important variables. The
third step is to define variable thresholds. To do that, we must
apply another machine learning model to explain the first
one.

The SHapley Additive exPlanations (SHAP) explanatory
analysis is an explanation algorithm proposed by Štrumbelj
and Kononenko (2014) and uses game theory to provide an
efficient explanation of the predictions made by a ML algo-
rithm. The SHAP method is used to explain how each vari-
able was used to make each prediction.

In the second step, we focus on identifying the most im-
portant CIDs to assess their impact on food production. Dif-
ferent models are independently trained for each state being
analyzed; a separate and unique machine learning model is
developed and trained using data specific to that state. This
implies that the analysis of CIDs on food production is cus-
tomized to account for the unique characteristics, data and
conditions present in each state, rather than being applied a
single model uniformly across all states. The feature impor-
tance determined based on entropy is determined by calculat-
ing the reduction in entropy (information gain) each feature
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provides when used to split the data at each node in the deci-
sion tree. Features that result in greater reductions in entropy
across the tree are considered more important.

The creation of training, validation and testing subsets is
crucial to avoiding overfitting and achieving reasonable es-
timates of model performance. The dataset was divided ac-
cording to the chronological order of the data. The first 80 %
of the data, according to the timeline, were used to train the
model, allowing it to learn and adjust its parameters. The re-
maining 20 % were used for validation, meaning this portion
was reserved for testing the model’s predictions on data it
had not seen during training. This approach, which incorpo-
rates a temporal aspect, is intended to simulate a real-world
scenario where future data should be predicted. This method
helps prevent overfitting by ensuring that the performance of
the model is evaluated on new unseen data that come after the
training period used, thus providing a realistic assessment of
how the model will perform in practice.

To avoid temporal dependencies between data points from
neighboring municipalities from being correlated within the
same year, the best-fit model was selected using a leave-
one-year-out cross-validation (LOYOCV) method and hy-
perparameters were chosen according to the mean CV per-
formance in folds, following the recommendations of von
Bloh et al. (2023). A fixed 10-year window was used for
training, followed by 1 year as a test set. This process was
repeated iteratively, leaving each year as the test set, while
using the preceding 10 years for training. Performance met-
rics were calculated for each iteration, and scores were av-
eraged to obtain an overall assessment of the performance
of the model. The models were trained and optimized on the
training dataset, and their performance was evaluated on the
validation data to test the robustness of the models.

In the second step, we identify the most critical CIDs to
assess their impact on food production. To achieve this, we
used the RF model. Models were trained with three different
crop yield datasets and different combinations of features,
including precipitation means, temperature means, and com-
binations of means and extreme climate indices. The goal of
this experiment was to identify the most important climate
indices.

The third step builds on the results of the second step
and uses the 10 most relevant climate indices employing
RF explainability with the SHapley Additive exPlanations
(SHAP) explanatory analysis. This approach aimed to pro-
vide a detailed understanding of how the model used these
crucial indices and attempted to identify significant thresh-
olds for these influential climate variables. The RF models
were implemented using the R package ranger (Wright
and Ziegler, 2017), and the SHAP results were implemented
using the R package shapviz (Mayer, 2023).

The SHAP approach is based on explaining how each fea-
ture of the model was used to make a single prediction. The
first step is to define a base prediction, which in this case is
the expected value of the set X, which is the value of the ad-

justed and detrended crop yields E[f (X)]. Then, the RF al-
gorithm is used to make a prediction f (x) for a single value
of crop yield in a specific municipality and a particular year.
The difference between the expected value and the predic-
tion is called the SHAP value and preserves the unit of crop
yields; therefore, here, it will be in metric tons per hectare.

In order to identify how each feature was used to gener-
ate the SHAP value, the algorithm recursively adds each fea-
ture and tests the importance of the feature for that predic-
tion. However, the order in which the feature is added to the
model is essential; that is why the principles of game the-
ory introduced by Lloyd Stowell Shapley were used to solve
the problem of allocating each feature’s order and extracting
its importance for the prediction. More details of the game
theory used in SHAP results can be found in Strumbelj and
Kononenko (2010).

The SHAP result was performed for each prediction us-
ing the R package treeshap (Komisarczyk et al., 2024).
The package allows for generating a partial dependence plot,
which is the relationship between the feature value and the
contribution to the SHAP value. From this approach, we can
find out which feature values are critical for crop yield losses,
establish thresholds and contribute to the CID framework.
Since the order of each feature is also evaluated, a second
analysis is performed, which is used to evaluate the interac-
tion between different features. In treeshap, the interac-
tion between variables is determined by assessing the shared
contribution of a pair of features to a model’s prediction, be-
yond their separate effects. Initially, the SHAP values for
each feature are computed to represent their individual im-
pact on the model’s output. For example, the interaction of
features i and j is determined by subtracting the sum of
their individual SHAP values from their combined contribu-
tion, i.e., interaction= SHAPi,j − (SHAPi +SHAPj ). This
method captures how the joint presence of two features af-
fects the prediction compared to their independent contribu-
tions, uncovering synergistic or antagonistic interactions be-
tween the features.

2.2 Study area

Brazil is a significant producer of agricultural goods, as
reported by the Food and Agriculture Organization (FAO)
(FAO, 2025). The country is responsible for more than 10 %
of the world’s maize and more than 30 % of the global soy-
bean production. Brazil is one of the four leading agricul-
tural producers in the world, along with China, India and the
United States, with a cultivated area of soybeans and maize
of 58× 106 ha. In Fig. 2, we show the delimitation of the
study area. The map shows 452 selected municipalities that
encompass the states of Rio Grande do Sul (RS), Santa Cata-
rina (SC), Paraná (PR), São Paulo (SP), Mato Grosso do Sul
(MS) and Minas Gerais (MG). The selection criteria will
be explained in the subsection “Crop yield data”. The map
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Figure 2. Location of selected study municipalities with respect to
observed cropland extent between from 2003 to 2019.

shows the percentage of cropland derived from the work of
Potapov et al. (2022).

The growing season in the study area was defined using a
global crop calendar for the second season of soybeans and
maize determined by data from Sacks et al. (2010). We con-
sider the planting dates to follow a normal distribution, with
the mean date being the most probable date for farmers and
the maximum and minimum dates being considered to be
twice the standard deviation. For soybeans, sowing dates start
in the middle of austral spring in October, peak in November
and end in December. The harvest begins in late summer and
extends to fall, from February to March. Since the second
season of maize peaks in February, we consider the end of
soybeans to be in February. For the second season of maize,
planting begins at the end of January, after soybean harvest;
peaks in February; and ends in the beginning of April. The
harvest starts in June, peaks in August and ends in October.

2.3 Data collection and processing

In this section, we present the description of datasets used
to analyze the impact of climate variables on soybean and
maize crops in the state of Paraná. We used two criteria to se-
lect a dataset: (i) the data must comply with FAIR principles
(i.e., data must be findable, accessible, interoperable, and
reusable), and (ii) climate data must be updated frequently
(ideally, with a minimum of daily update frequency).

We used three different datasets: (i) the statistical year-
books of the state of Paraná (Parana, 2021), (ii) the Mu-
nicipal Agricultural Production Survey by the Brazilian In-
stitute of Geography and Statistics (IBGE) (de Geografia e
Estatística, 2022) and (iii) the Global Dataset of Historical
Yields (GDHY) (Iizumi and Sakai, 2020). For climate anal-
ysis, we used data from the fifth-generation European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) ERA5-
Land reanalysis dataset (Muñoz-Sabater et al., 2021). We

summarized the main characteristics of each dataset used in
Fig. 1.

2.3.1 Crop yield data

Crop yield data are a vital component in understanding the
impacts of climate on food production. Crop yields are gen-
erally made available at the municipal level. We used three
datasets to analyze crop yields in Brazil. We collected crop
yield data from the Brazilian Institute of Geography and
Statistics (IBGE) at the municipal level (de Geografia e Es-
tatística, 2022). In the study area, the double-cropping sys-
tem is widely adopted. It, therefore, represents a potential
bottleneck because the IBGE data from 1974 to 2022 are an
annual aggregation of the total production of that crop within
the municipality.

However, the Brazilian Institute of Geography and Statis-
tics has been collecting maize in the first and second season
since 2003. This matches the period during which the sec-
ond maize season intensifies in Brazil. Data at the munici-
pal level were filtered based on data availability. The missing
years were removed from the dataset, and the municipalities
with more than 2 years of missing data were disregarded.
The selection resulted in 452 municipalities for soybeans that
comprise the states of Rio Grande do Sul (RS), Santa Cata-
rina (SC), Paraná (PR), São Paulo (SP), Mato Grosso do Sul
(MS), Minas Gerais (MG) and Goiás (GO) and 216 munici-
palities for maize in the second season for Paraná (PR), São
Paulo (SP), Mato Grosso do Sul (MS), Minas Gerais (MG)
and Goiás (GO).

The Department of Rural Economy (Departamento de
Economia Rural, Deral) of the state of Paraná, Brazil, is also
responsible for collecting crop data at the municipal level.
The method of collecting and processing data is similar to
what is done by the Brazilian Institute of Geography and
Statistics; therefore, a high level of redundancy is expected
from these two datasets. This redundancy is necessary to val-
idate data and remove outliers that might reduce the quality
of a model. The same number of municipalities selected us-
ing IBGE data was used in data from Deral.

The Global Dataset of Historical Yields is a global annual
time series of 0.5° grid-cell estimates for maize, rice, wheat
and soybeans from 1981 to 2016. For each grid cell, crop
yields are estimated in tha−1 based on Food and Agriculture
Organization (FAO) country-level yield statistics and then
corrected using the remotely sensed leaf area index (LAI),
the fraction of photosynthetically active radiation (FPAR)
and crop-specific radiation use efficiency derived from re-
analysis. Crop areas and crop calendars were derived from
Sacks et al. (2010). More details about the dataset are de-
scribed in Iizumi and Sakai (2020). The dataset was ag-
gregated to the municipal level using zonal statistics in the
terra package (Hijmans, 2023) in R Studio.

For statistical analysis, we removed the outliers of all crop
yield datasets considering, for each year, neighboring munic-

https://doi.org/10.5194/nhess-25-1387-2025 Nat. Hazards Earth Syst. Sci., 25, 1387–1404, 2025



1392 M. R. Benso et al.: Data-driven assessment of climatic impact drivers

Table 1. Description of the datasets used in the case study.

Dataset Variable Spatial resolution Temporal resolution Time frame

Crop yields – IBGE (IBGE, 2023) Soybeans Municipal level Annual 1974–2022
Crop yields – IBGE (IBGE, 2023) Maize Municipal level Crop season 2003–2022
Crop yields – Paraná (Parana, 2021) Soybeans, maize Municipal level Crop season 1997–2021
Crop yields – GDHY (Iizumi and Sakai, 2020) Soybeans, maize 0.5° cell Crop season 1981–2016
ERA5-Land (Muñoz-Sabater et al., 2021) Precipitation, temperature 0.1° cell Daily 1950–present

ipalities using the interquartile range (IQR). For the outlier
removal process, we defined “immediate regions” as clusters
of municipalities geographically proximate to one another, as
classified by the Brazilian Institute of Geography and Statis-
tics. Crop yields within these regions exhibited a high degree
of correlation, which was verified using the correlation in-
dex. To identify outliers, we applied the interquartile range
(IQR) method for each year. Specifically, if the yield of a
municipality in a given year deviated significantly from the
yields of other municipalities in the same immediate region,
it was classified as an outlier and excluded from the dataset.
This approach ensured that only extreme and anomalous data
points, not reflective of regional trends, were removed.

Changes in technology in seed production, fertilizers and
land management, also known as technological trends (Liu
and Ker, 2020), and other sources of trends such as climate
change were removed by local polynomial regression fit-
ting (LOESS) (Cleveland et al., 2017). Moreover, systematic
changes in crop yields have also been associated with het-
eroskedasticity (Yang et al., 1992; Zhu et al., 2011; Ozaki
et al., 2008). The residuals of the LOESS model were tested
for heteroskedasticity. If heteroskedasticity was proved, it
was removed using the method proposed by Ozaki et al.
(2008). For further information on the preprocessing of crop
yield data, please consult the Supplement.

2.3.2 ERA5-Land reanalysis dataset

Weather data were sourced from the fifth-generation
European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5-Land reanalysis dataset (Muñoz-Sabater
et al., 2021; Hersbach et al., 2020). The dataset has a
0.1°× 0.1° latitude–longitude grid and was aggregated to the
municipal area to match the spatial discretization of soybean
crop yield (SBY). The data collection spanned 1980 to 2023,
with daily observations. Weather variables included precipi-
tation, maximum temperature and minimum temperature. We
used different climate indices to evaluate multi-hazard risks.
Since mean climate conditions of precipitation and tempera-
ture are the most relevant (Moriondo et al., 2011), we consid-
ered monthly precipitation, maximum and minimum temper-
atures, total precipitation, and mean temperature over grow-
ing seasons.

2.3.3 Indices for climatic impact drivers

The IPCC WGI has presented CIDs as a new approach
to assessing climate data to analyze their effects on soci-
ety. CIDs are represented by numerically computable in-
dices and categorized into several types. In this paper, we
considered wet and dry and hot and cold CIDs. To calcu-
late the indices, we first considered the indices indicated by
the Expert Team on Climate Change Detection and Indices
(ETCCDI), which is supported by the World Meteorologi-
cal Organization (WMO) Commission for Climatology, the
Joint Commission for Oceanography and Marine Meteorol-
ogy (JCOMM), and the research program on Climate Vari-
ability and Predictability (CLIVAR) Frich et al. (2002). A
summary of the indices used according to the type of CID is
shown in Table 2.

We also considered two drought-related indices, the Stan-
dardized Precipitation Index (SPI) (McKee et al., 1995) and
the Standardized Precipitation and Evapotranspiration Index
(SPEI) (Vicente-Serrano et al., 2010). The SPI is based on the
probability of monthly precipitation on different timescales,
and it is recommended to be calculated with a time series
of at least 30 years. The monthly time series must be fitted
to a cumulative distribution function (CDF). We adopted the
gamma distribution.

Then, the data are transformed to the standard normal dis-
tribution to calculate the SPI, a standardized value subtract-
ing the transformed precipitation from the mean value and
dividing by the standard deviation. The SPI can be calculated
using different timescales representing previous meteorolog-
ical conditions, typically 1 to 48 months. For agricultural ap-
plications, the 3-month SPI is most frequently used Kim et al.
(2019).

The SPEI is a more recent index that incorporates temper-
ature in the calculation of the SPI. A new step was added
to the procedure, calculating the monthly potential evap-
otranspiration (PET) and the SPI using the same proce-
dure described previously with the value of monthly pre-
cipitation minus monthly PET. PET was calculated using
the Hargreaves method, which is calculated using maximum
and minimum temperature and extraterrestrial radiation (RA)
(Droogers and Allen, 2002).

The primary motivation for using distinct indices derived
from the same fundamental data is to identify which features
of the extremes are the most significant. Is it the magnitude of
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Table 2. Description of the climatic impact drivers (CIDs) considered in this study and their respective indices.

CID type CID category CID index CID index description
abbreviation

Hot and
cold

Mean air
temperature

temp Monthly temperature mean

dtr Daily temperature range: monthly mean difference between
maximum and minimum daily temperature

Extreme heat tx90p Monthly percentage of days when maximum
daily temperature is higher than the 90th percentile

tn90p Monthly percentage of days when
minimum daily temperature is higher than the 90th percentile

su Number of summer days: monthly number of days
when maximum daily temperature is higher than 25 °C

tr Number of tropical nights: monthly number of days
when minimum daily temperature is higher than 20 °C

txx Monthly maximum value of daily maximum temperature

tnx Monthly maximum value of daily minimum temperature

Cold spell tx10p Monthly percentage of days when
maximum daily temperature is lower than the 10th percentile

tn10p Monthly percentage of days when
minimum daily temperature is lower than the 10th percentile

tnn Monthly minimum value of daily minimum temperature

txn Monthly minimum value of daily maximum temperature

Wet and
dry

Mean precipitation prcptot Monthly precipitation sum

Heavy
precipitation

r10mm, r20mm Monthly count of days when
daily precipitation is higher than 10 and 20 mm

rx1day, rx5day Monthly maximum 1 and 5 d precipitation

Agricultural and
ecological drought

spei_3month, spei_6month Standardized precipitation and
evapotranspiration index for 3- and 6-month accumulations

spi_3month, spi_6month Standardized precipitation index for 3- and 6-month accumulations

an extreme, the length of time it lasts, or values that are either
above or below a certain threshold? Research such as that by
Vogel et al. (2019) has demonstrated the importance of ex-
treme events in understanding the variability in crop yields.
We summarize all the indices according to CID type and cat-
egory in Table 2.

3 Results and discussion

The comparison of the datasets used in this study is impor-
tant for evaluating the reliability of the data. High-quality
crop yield data improve the calibration of crop growth mod-
els (Rosenzweig et al., 2014). However, they have a broader
application in geosciences. Crop yield data are used to pa-
rameterize hydrological models in watersheds, especially in

agricultural catchments, and improve soil moisture simula-
tion (Sinnathamby et al., 2017).

We compared crop yields at the municipal level in Brazil.
We observed that the IBGE and Paraná Deral data for soy-
beans and maize are highly correlated; however, outliers
were detected in both datasets. The outlier removal pro-
cess improved the agreement between the two datasets, sug-
gesting that eliminating data improved the dataset’s quality.
Since Deral is only available in Paraná, for the other states
of Brazil, the GDHY and IBGE data were compared. The
Global Dataset of Historical Yields aggregated at the mu-
nicipal level has a weak association with the other datasets.
This result confirms what was reported by Iizumi and Sakai
(2020). The GDHY data are based on satellite data collected
from a fixed cropland map. In many regions of Brazil, there
is a noticeable increase in croplands, which can influence the
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Table 3. Correlation coefficients of three different crop yield
datasets: (a) IBGE (n= 3845), Deral (n= 3120) and GDHY
(n= 15 411) for maize and (b) IBGE (n= 20629), Deral (n= 3432)
and GDHY (n= 15 406) for soybeans. Values represent the strength
and direction of the relationships, with an asterisk (∗) indicating sta-
tistically significant correlations of p < 0.001.

(a) Maize – IBGE Maize – Deral Maize – GDHY

Maize – IBGE 1.000 0.910∗ 0.474∗

Maize – Deral 0.910∗ 1.000 0.596∗

Maize – GDHY 0.474∗ 0.596∗ 1.000

(b) Soy – IBGE Soy – Deral Soy – GDHY

Soy – IBGE 1.000 0.968∗ 0.434∗

Soy – Deral 0.968∗ 1.000 0.403∗

Soy – GDHY 0.434∗ 0.403∗ 1.000

estimation of GDHY data. In addition, the exact location of
the planted area within each municipality can vary from year
to year.

3.1 Identifying key climate impact drivers

We tested a variety of indices that measure mean precipita-
tion, mean temperature and extremes. We initially tested the
ML technique using various inputs to demonstrate its abil-
ity to illustrate crop yield variability in the states examined.
In Fig. 3, we demonstrate the model performance of the RF
model considering different datasets. Taking the coefficient
of determination, the climate variables explained the variabil-
ity in soybean crop yields, on average, from 30 % to 40 % for
IBGE, 25 % to 45 % for GDHY and 30 % to 50 % for Deral.
The climate was explained for maize from 12 % to 15 % for
IBGE and Deral and from 10 % to 45 % for GDHY.

The coefficient of determination quantified the proportion
of the variance in the crop yield data (dependent or target
variable) that the RF model can explain. The results are con-
sistent with the values found in other similar studies; Ray
et al. (2015) used municipal-level data to quantify the impact
of climate variability on yields using regression models and
determined that, in Brazil, climate variability explains 26 %–
34 % of soybean yields and 41 % of maize yields. Vogel et al.
(2019) used the same dataset as Ray et al. (2015) considering
South America and applied an RF model defining the values
of 28 % for soybeans and 25 % for maize. It is important to
note that none of these studies separated maize in the first
and second season.

The model performance was generally higher for GDHY
than for the other datasets for soybeans in the southern states
(RS, SC and PR). The models based on precipitation means
and the combination with temperature and extremes explain
the variability in crop yield more than only the temperature
means, which was observed in all three datasets. For maize
in the second season, for MS, MG and GO, the models that
combine mean temperature to mean precipitation and ex-

tremes explained the variability in crop yields more than only
temperature, which was observed in GDHY and IBGE. The
IBGE database showed that the maize model was much more
effective in São Paulo than in any other state.

The RF models used in this study helped obtain the most
relevant variables, and these variables were classified into
CID types, i.e., wet and dry and hot and cold, and subcat-
egories, as described in Table 2. The model demonstrates the
importance of climate variables in explaining the variability
in crop yields and allowed us to determine the critical CIDs
considering each state and dataset. The following sections
summarize the key CID categories for soybeans and maize.

Feature importance was summarized spatially and tem-
porally. Figure 4 highlights similarities and dissimilari-
ties regarding feature importance considering the different
datasets.

In the Supplement, we show tables with the results of vari-
able importance for all models. The analysis of variable im-
portance for soybean datasets is shown in Table S1 in the
Supplement. The analysis identifies extreme heat (tnx), the
drought index (SPEI) and precipitation totals (prcptot) as key
variables that affect crop yields in different regions. These
climate factors are crucial for predicting agricultural out-
comes, with extreme heat and drought having a great impact
on the results. The significance of these variables varies by
region; for example, extreme heat and drought are critical in
Paraná during February, while mean air temperature and ex-
treme cold in January matter more in Minas Gerais. February
and January are highlighted as pivotal months due to their as-
sociation with significant climate events. In general, the re-
sults highlight the importance of addressing both heat and
water stress in agricultural systems while taking into account
spatial and temporal differences to enhance predictive accu-
racy.

For maize in the second season, the results are shown in
Table S2. For Paraná (PR), key variables are April precipi-
tation and May heat, which influence agricultural outcomes.
Goiás (GO) is significantly affected by the April diurnal tem-
perature range and the heat and precipitation of May. In
Minas Gerais (MG), May precipitation is crucial, with the
March temperatures and August heat also significant.

Mato Grosso do Sul (MS) deals with February tempera-
tures and June heat and drought. Rio Grande do Sul (RS) sees
the diurnal temperature range of May as vital, along with the
March drought and the July–August precipitation. São Paulo
(SP) contends with the heat of August and the rainfall of July,
emphasizing the importance of temperature and precipitation
on environmental and agricultural concerns.

3.1.1 Wet and dry

Changes in mean precipitation pose a threat to agricultural
production. A precipitation deficit leads to the reduced avail-
ability of soil moisture, affecting plant development and re-
ducing crop yields, and it is considered the most critical en-
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Figure 3. Performance evaluation of regression models for (a) soybeans and (b) maize. Data from the Department of Rural Economy (Deral)
with data only for Paraná, Global Dataset of Historical Yields (GDHY), and Brazilian Institute of Geography and Statistics (IBGE) for major
historically agricultural municipalities. MAE: mean absolute error, RMSE: root mean square error.

vironmental factor that reduces crop yields (Bray, 2007). In
our analysis, mean precipitation was one of the most impor-
tant climatic impact drivers of soybean crop yields during
January and February for RS, SC, PR and MS and also in
December for PR.

The state of Rio Grande do Sul has historically been af-
fected by El Niño–Southern Oscillation (ENSO), with a more
substantial influence from November to May (Gelcer et al.,
2013), which is responsible for droughts and the impact on
soybean crop yields during La Niña. The model did not in-
dicate that mean precipitation was the most important factor
for the state of SP. For maize production, mean precipita-
tions during April and May were considered important for
PR, MS, MG and GO and not for SP.

Agricultural systems require minimum rainfall, or they
rely on irrigation. In Brazil, the states of SP, MS, MG and GO
have a well-defined difference between wet and dry seasons.
Usually, the wet season starts in October and ends in May,
and the soybean–maize double-cropping system depends on
the length of the wet season in the states mentioned above.

Agricultural and ecological drought indices are directly
related to a precipitation deficit and excessive temperature
(Sarhadi et al., 2018; Lesk et al., 2021), which affect the

ability of plants to grow and reduce plant transpiration. The
duration and timing of droughts play a significant role. We
observed that droughts occurring in January and February
during the rainy season were the most important for soy-
beans. The droughts in February and March also affected the
second-season crop yields of maize. Droughts that occurred
at the end of the maize growing season also affected crop
yields.

In this study, we considered climate extreme indices on
different timescales. As we added the temporal dimension to
the analysis, we revealed that a 3-month SPEI in October in
the state of RS was selected for the list of the most relevant
variables. This indicates that pre-sowing meteorological fac-
tors that can reduce soil moisture conditions also influence
crop yields. This result corroborates the findings of Santini
et al. (2022), which revealed that a drought analysis should
not neglect antecedent conditions since it influences factors
such as soil workability and crop development.

3.1.2 Hot and cold

The mean air temperature influences many aspects of crop
cultivation. In RS and SC, the soybean growing season starts
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Figure 4. Importance of key CID categories in predicting soybean and maize crop yields. The figure displays the most significant features
identified by the random forest model for soybeans and maize.

when the mean temperatures exceed the minimum tempera-
ture thresholds for soybeans (Battisti and Sentelhas, 2014).
As the temperature increases, the development (phenology)
of the plant is affected and increased thermal stress is ex-
pected Lesk et al. (2021). Except for RS, mean tempera-
tures during all soybean growing seasons were considered
important variables. The same behavior was observed for
maize; mean temperatures were considered significant dur-
ing all growing seasons.

Exposure to temperatures above a specific limit or thresh-
old can lead to lower yields. The value of these thresh-
olds depends on the crop species and farm management. For
soybeans, extreme temperature indices affected crop yields
throughout the growing season, especially in January and
February.
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Figure 5. SHAP waterfall plot visualizing the key CID contributions to crop yield losses for the state of Paraná (PR) in 2019, a drought
year, with metrics for monthly maximum value of daily minimum temperature (tnx), minimum value of daily maximum temperature (txn),
minimum value of daily minimum temperature (tnn), maximum value of daily maximum temperature (txx), percentage of days when
tx > 90th percentile, standardized precipitation evapotranspiration index (SPEI), total precipitation (prcptot) and daily temperature range
(dtr).

3.2 Determining thresholds and their significance

With the results of the selection of critical CIDs, we im-
proved the understanding of the impacts on climate variables
that significantly influence crop yield losses, considering dif-
ferent types of indices and critical periods. The insights ob-
tained from the combination of random forest models ap-
plied to different datasets facilitate a robust understanding
of climate–crop interactions and make it possible to compare
what results the datasets have in common, increasing the re-
sults’ reliability. However, the random forest model did not
provide information on the values of each variable that are
important and can help us define the threshold values of these
indicators that are associated with an increased risk of crop
yield losses.

To improve our understanding of how each climate ex-
treme indicator was used for prediction, we used SHAP. This
technique allowed us to extract insights from the results of a
random forest model, thus providing a comprehensive per-
spective of the drivers of crop yield fluctuations. The re-
sults of SHAP-derived explanations revealed a clear pattern
concerning the most influential variable that affects soybean

yields. We highlight critical loss events by evaluating the
model prediction for a particular city in a given year.

In 2019, an important widespread drought event was ob-
served in Brazil and was considered a mega-drought that af-
fected many regions of Brazil, especially the Paraná River
basin Marengo et al. (2021). This drought extended into 2022
and occurred during a La Niña year. We highlight the model
explanation for the state of Paraná considering two important
agricultural municipalities, namely Marechal Cândido Ron-
don and Uniflor, as shown in Fig. 5.

The two datasets presented an agreement regarding crop
yields below the expected value E[X]. However, they var-
ied in terms of the magnitude of these losses. For the mu-
nicipality of Marechal Cândido Rondon, the Deral yields are
similar to the IBGE yields, 1.72 and 1.77 (Fig. 5), respec-
tively. The predictions made by the two models were similar,
and the main variables also performed similarly. High tem-
peratures, represented by the maximum value of the daily
minimum temperature in February, and low precipitation in
December were the main drivers of losses combined with the
3-month SPEI in February.

For Deral, accumulated precipitation in December was
also a significant driver of losses, and for IBGE, the 3-month
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Figure 6. SHAP waterfall plot visualizing the key CID contributions to crop yield losses for the state of São Paulo (SP) in 2015, a drought
year, with metrics for monthly maximum value of daily minimum temperature (tnx), minimum value of daily maximum temperature (txn),
minimum value of daily minimum temperature (tnn), maximum value of daily maximum temperature (txx), percentage of days when
tx > 90th percentile, standardized precipitation evapotranspiration index (SPEI), total precipitation (prcptot) and daily temperature range
(dtr).

SPEI was one in January. The other variables represented
a negligible influence on crop yield losses. For the city of
Uniflor, the actual Deral and IBGE yields were similar, 2.44
and 2.48 (Fig. 5), respectively. The main influences on crop
yield losses were precipitation in December (prcptot_Dec)
and high temperatures (tnx_Feb). The 3-month SPEI values
in January and February can be considered redundant. Stan-
dardized indices refer to previous conditions; therefore, the
values overlap in 2 months (December and January).

In 2014/15, a severe drought occurred in southeastern
Brazil, causing an unprecedented water supply shortage in
the Cantareira Water Supply System and affecting many
cities in São Paulo (Deusdará-Leal et al., 2019). The drought
had repercussions in many regions of the state of São Paulo.
Therefore, we compared the IBGE and GDHY results for
two municipalities in the state of São Paulo, Araçatuba and
Sandovalina. The expected values of GDHY were lower than
those of IBGE, and the two datasets diverged in yields below
the expected value, i.e., IBGE indicated losses, and GDHY
did not. According to a report by the Brazilian Ministry of
Agriculture, Livestock and Food Supply (MAPA), the state
of São Paulo was one of the most affected by losses in the
agricultural year 2014/15 (MAPA, 2022). This result sug-

gests that, although it has been suggested that GDHY is rec-
ommended in data-scarce regions (Iizumi and Sakai, 2020),
using this dataset requires caution.

The SHAP methodology analyzes each prediction and
shows how each variable was used in the model. This helps
us create a partial dependence plot, which relates the vari-
able’s value with the impact in terms of crop yield losses
represented by the SHAP value. This analysis is illustrated
in Fig. 7, which shows partial dependence plots for the state
of Rio Grande do Sul.

The comparison of the two datasets can be found in Fig. 7.
The IBGE dataset shows that the 3-month SPEI in February
can influence crop yield losses and has an upper and lower
threshold. The lower threshold is−1.0. Values below this can
represent losses of up to 0.2 t ha−1. Generally, 3-month SPEI
values below −1.0 are considered critical and are used as a
reference for the severity of the drought (Chiang et al., 2021).
Extreme wet conditions, with a threshold of 1, also affect
crop yields in the RS state.

Excess rainfall can have the same impact as droughts (Li
et al., 2019). However, little attention has been paid to this
analysis. Our results suggest excessive precipitation can be
responsible for up to 0.2 tha−1 of losses. More studies on
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Figure 7. A comparison of the key CIDs derived from the Brazilian Institute of Geography and Statistics (IBGE) from 2013 to 2021 and
the Global Dataset of Historical Yields (GDHY) from 2009 to 2016. Annual data aggregated at the municipal level were used to create
a dependence plot for the soybean explanation model for validation data in RS. The data spanned 2013 to 2021 for IBGE and 2008 to
2016 for GDHY. The 3-month SPEI in February (spei_3month_Feb) for (a) IBGE and (b) GDHY, precipitation accumulated in February
(prcptot_Feb) for (c) IBGE and (d) GDHY, and precipitation accumulated in December (prcptot_Dec) for (e) IBGE and (f) GDHY.

this type of hazard are recommended. The cumulative precip-
itation in February presented a threshold of around 100 mm
and a potential to cause losses of approximately 0.4 tha−1.
The cumulative precipitation in December was the only indi-
cator with a similar result in the IBGE and GDHY datasets.
Regarding potential losses, both agree on a value of up to
0.6 tha−1; however, the threshold for IBGE is 150 mm, and
for GDHY, it is 120 mm.

The patterns of crop yield losses observed in the region
raise two main concerns. The first is that the severe crop

yield losses presented in the previous examples have hap-
pened only once in the entire time series, representing an
imbalance in the values of the dataset. One implication of
this situation is that models may not have sufficient cases of
severe failure to be trained adequately and may underesti-
mate losses. The second concern is related to the decision to
use these anomalous events. Possible solutions include using
it for training, testing or removing it from the dataset. We
opted to keep these events in the analysis with the warning
that this might interfere with model performance. However,
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Figure 8. The 2D partial dependence derived from the Deral and IBGE data for the state of Paraná from 2016 to 2021 of the key climatic im-
pact driver total precipitation in December (prcptot_Dec) with the most correlated CIDs and their combined impact on SHAP values (t ha−1):
considering the 3-month SPEI in February (spei_3month_Feb) and total precipitation in December (prcptot_Dec) and total precipitation in
December (prcptot_Dec) and the maximum value of daily minimum temperature (tnn_Feb).

we wanted to evaluate the ability of the model to predict un-
precedented loss events.

3.3 Evaluating combined hazards

The SHAP algorithm also allowed us to investigate the com-
pound effect of climate indicators. In Fig. 8, we present the
detection of compound event effects, considering the most
important variable in the state of PR (prcptot_Dec) with four
other considered important variables. We observed hot and
dry compound events, characterized by high temperatures
and a precipitation deficit, which have been cited as an in-
creasing threat to food production (Zscheischler et al., 2018;
Hamed et al., 2021).

This analysis also showed that precipitation in December
was closely related to a 3-month SPEI in February. As dis-

cussed previously, this is expected since the SPEI considers
previous conditions. However, it is essential to note that De-
cember is a critical month for droughts in PR and other states,
such as Rio Grande do Sul (RS), Santa Catarina (SC) and
Mato Grosso do Sul (MS).

Interestingly, indices based on the minimum daily tem-
perature best reflected the impact of hot days. The maxi-
mum value of the daily minimum temperature in February
(tnx_Feb) presented critical values of 27 °C. When minimum
daily temperatures are high, it is likely that maximum tem-
peratures are also high, and the difference between minimum
and maximum daily temperatures is small; this is a possible
explanation for why the daily temperature range (dtr_Oct)
has a negative impact on crop yields when its values are close
to zero. Since minimum daily temperature is associated with
night temperature (Frich et al., 2002), our results corroborate
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the finding that warm nights pose a great threat to crop yields
(Sadok and Jagadish, 2020).

Our use of RF with SHAP provides an advance by en-
abling quantification of the combined effect of multi-hazards
on food production. In the realm of risk for food production,
this method could be applied to explain the seasonal impact
forecast made with composite indicators such as the inte-
grated information system (IIS) (Cunha et al., 2018; Marengo
et al., 2017). This approach is also readily applicable to other
natural hazards, including landslides, floods and wildfires
when utilizing with other datasets.

4 Conclusions

This study aimed to assess the impacts of climate ex-
tremes on food production using explainable ML algo-
rithms. To achieve this goal, we extensively examined vari-
ous datasets, focusing on soybeans and second-season maize
in Brazil. Our data sources included the Department of Rural
Economy, the Brazilian Institute of Geography and Statis-
tics (IBGE), and the Global Dataset of Historical Yields
(GDHY). Through an ML analysis, we examined the effects
of climate extremes on crop yield production, ultimately pro-
viding critical insights for the agricultural sector. Our analy-
sis incorporated data from several Brazilian states, including
RS, SC, PR, SP, MS, MG and GO for soybeans and PR, SP,
MS, MG and GO for the second season of maize.

We employed two machine models to achieve our research
objectives. In the first model, we explored different combina-
tions of input data, encompassing precipitation and tempera-
ture means, and more complex combinations, including pre-
cipitation, temperature means and extremes. This approach
allowed us to determine the most relevant climate indices for
the investigated regions. In particular, this experiment vali-
dated the robustness of our methodology, as it successfully
identified climate indices of particular significance for re-
gional studies.

We took the most relevant indices from the first exper-
iment in the second model and then applied SHapley Ad-
ditive exPlanations (SHAP) explanatory analysis to explore
how the random forest model utilized the important indices
to predict the impact of climate extremes on food produc-
tion. This analysis revealed the impact of these indices and
provided insights that may be crucial in establishing signif-
icant thresholds and guidelines for effective climate-driven
decision-making.

In conclusion, our research exemplifies the potential of
ML to understand and harness the influence of climate vari-
ables on food production. By determining the most pertinent
CIDs and exploring their significance in a regional context,
our findings contribute to a growing body of knowledge crit-
ical for informed decision-making, policy development and
adaptive strategies in the face of climate change and its im-
pact on agriculture. As demonstrated in our study, the combi-

nation of data-driven insights and advanced modeling tech-
niques offers a valuable pathway toward ensuring food secu-
rity under a climate change.
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