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S1 Introduction

This supplemental document contains details of data pre-processing and provides additional visual aids for the main manuscripts.
Readers might benefit from further details on how crop yield data were obtained and processed and further evaluation of the
different crop yield datasets used.

S2 Crop yield data5

Data from Brazilian Institute of Geography and Statistics
Crop yield data is a crucial component in understanding the impacts of climate on food production. Crop yields are generally

made available at the municipality level. In Brazil, the Brazilian Institute of Geography and Statistics (IBGE) and state agencies
collect agricultural data using surveys, interviews, and expert elicitation to create an annual database for more than 40 crops
at the municipal level (de Geografia e Estatística, 2022). The raw data from IBGE can be assessed in the Multidimensional10
Statistics Database (BME). One of the main challenges of this dataset is that data represents annual statistics and does not
represent different cycles. The double cropping system is widely adopted in the study area, therefore representing a potential
bottleneck. However, IBGE has started to collect maize in the first and second cycles since 2003. This matches the period when
maize’s second cycle is intensified in Brazil.

Data from Parana state statistical yearbooks15
The Department of Rural Economy (Deral) of the Paraná state, Brazil, is also responsible for collecting crop data at the

municipal level. The method of collecting and processing data is similar to what is done by IBGE; therefore, a high level of
redundancy is expected from these two datasets. This redundancy is important to validate data and remove outliers that might
reduce the quality of a model. The same number of municipalities selected using IBGE data was used in data from Deral. This
dataset is derived from the Gross Value of Production, derived from the price and the quantity of production of 30 crops.20

Global dataset of historical yields (GDHY)
The Global Dataset of Historical Yields is a global annual time series of 0.5 º grid-cell estimates for maize, rice, wheat, and

soybean from 1981 to 2016. For each grid cell, crop yields are estimated in ton/ha based on Food and Agriculture Organization
(FAO) country-level yield statistics and then corrected using the remote-sensed leaf area index (LAI), the fraction of photo-
synthetically active radiation (FPAR) and crop-specific radiation use efficiency derived from reanalysis. Crop areas and crop25
calendars were derived from Monfreda et al. (2008) and Sacks et al. (2010). More details on the dataset are described in Iizumi
and Sakai (2020) and Iizumi et al. (2014).

The dataset was aggregated to the municipal level using zonal statistics in the terra package (Hijmans, 2023) in R Studio.
In the literature, three major problems have been reported regarding the quality of crop yield data for risk analysis, namely

the presence of outliers, technological trends, and heteroskedasticity. Removal of outliers is a complex problem, as we are30
dealing with extreme events. The definition of an outlier must be carefully taken to remove valuable data.

According to Ozaki et al. (2008), soybean and maize crop yield data tend to correlate, considering drought years, present
correlation within approximately 150 km, and, within this range, the normality assumption can be supported. Therefore, for
simplification, we assumed that crop yields within the immediate IBGE region are highly correlated, that is, R2 > 0.6 and
p-value < 0.05.35

Changes in technology in seed production, fertilizers, and land management impact crop yields (Liu and Ker, 2020). This
effect is well documented in the agronomic literature and increases the averages and leads to changes in non-constant variance,
i.e., heteroskedasticity (Tolhurst and Ker, 2015; Harri et al., 2011). The effect of timely technological adoption and improve-
ments on crop yields was treated in a two-step process as proposed by Zhu et al. (2011), first by removing trends and then
testing and adjusting the heteroskedasticity of the residuals.40

In the first step, we tested the presence of monotonic trends using the Mann-Kendall test (Mann, 1945) with the Kendall R
Package (McLeod, 2022). If the Mann-Kendall indicates a p-value lower than 0.05, the null hypothesis is accepted, and the crop
yield series is considered to have a monotonic trend that must be corrected. We choose the Local Polynomial Regression Fitting
(LOESS) (Cleveland et al., 2017) to model crop yields yt at the year t. The residuals ϵt are considered to be the detrended crop
yields.45
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We tested heteroskedasticity in the data using the Pagan-Breusch test (Breusch and Pagan, 1979). If the p-value of the test
is lower than 0.05, then the null hypothesis is rejected, and the yield series is considered heteroskedastic. We compute the
normalized residuals ynt for two cases in this case. The first case is when the errors are proportional to the yield level. Then, we
obtain the ynt considering the proportional error εt, calculated by dividing the error term from the LOESS prediction function
ϵt by the yield predicted by the function. Lastly, the proportional errors are multiplied by the yields observed in 2021. With50
this procedure, the past yields are expressed in terms of 2010 technology. Otherwise, when the residuals are not proportional
to the yield levels, ynt is calculated by adding 2010 yields to the residuals of the LOESS prediction function.

After obtaining a consistent time series corrected for trends, heteroskedasticity, and outliers, the next step is adjusting for a
distribution function. Statistical modeling of crop yields is relevant for risk management because we do not have a time series
long enough to empirically evaluate risk (Liu and Ker, 2020) empirically. Several parametric and nonparametric distribution55
functions have been proposed to model crop yields (Ozaki et al., 2008). We selected the gamma distribution because it allows
one to simulate positive and negative skewness. The flexibility to assume different shapes according to the parameters c(α,β),
the shape and rate parameters, respectively. For the gamma distribution, when α is greater than 1, the distribution is skewed to
the right, that is, skewed towards higher crop yields. Otherwise, the distribution is skewed towards lower yields.

To eliminate potential outliers, we excluded values considering each year and immediate region within the state. This was60
done because he hypothesizes that within the immediate region, the crop yields should be similar. The hypothesis of high
correlation of crop yields within studied regions was confirmed for the soybean (Fig. S1) and maize (Fig S2) data, indicating
that this strategy is adequate. Since soybeans have a longer record, the correlations were more stable in the immediate regions
and tended to have higher values.

Figure S1. Spatial correlation of municipal soybean crop yields for each dataset, IBGE, Deral and GDHY
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Figure S2. Spatial correlation of municipal maize crop yields for each dataset, IBGE, Deral and GDHY

The comparison of the datasets used in this study is vital to evaluate the reliability of the data. High-quality crop yield65
data improves calibration of crop growth models (Rosenzweig et al., 2014). However, they have a broader application in
geosciences. Crop yield data is used to parameterize watershed hydrological models, especially in agricultural catchments, and
improves the simulation of soil moisture (Sinnathamby et al., 2017). For water resources management, using higher quality
crop yield data has improved global knowledge on the water-food-energy nexus (Ai and Hanasaki, 2023; Wang et al., 2023).

We compared crop yields at the municipal level in Brazil. As observed in Figures S3 and S4, IBGE and Parná Deral data70
for soybeans and maize are highly correlated; however, outliers were detected in both datasets. The outlier removal process
improved the agreement between the two datasets, suggesting that eliminating data improved the dataset’s quality. Since Deral
is only available in Paraná, for the other states of Brazil, only GDHY and IBGE were compared. The global dataset of historical
yields aggregated at the municipal level has a weak association with the other datasets. This result confirms what was reported
by Iizumi et al. (2014). The GDHY is based on satellite data collected from a fixed cropland map. In many regions of Brazil75
there is a noticeable increase in croplands, which can influence the estimation of GHDY. Also, the exact location of the planted
area within each municipality can vary from year to year.
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Figure S3. Correlation analysis of three different datasets for soybean crop yields: (Global dataset of historical yields (yieldgdhy), Brazilian
Institute for Geography and Statistics (yieldIBGE), and Paraná Department of Rural Economy (yieldPR)

4



R2 = 0.17
n = 2814

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
IBGE Crop yield (ton/ha)

G
D

H
Y

 C
ro

p 
yi

el
d 

(t
on

/h
a)

Maize with outliera
R2 = 0.22
n = 2673

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
IBGE Crop yield (ton/ha)

G
D

H
Y

 C
ro

p 
yi

el
d 

(t
on

/h
a)

Maize no outlierb

R2 = 0.3
n = 2521

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
Deral Crop yield (ton/ha)

G
D

H
Y

 C
ro

p 
yi

el
d 

(t
on

/h
a)

Maize with outlierc
R2 = 0.35
n = 2440

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
Deral Crop yield (ton/ha)

G
D

H
Y

 C
ro

p 
yi

el
d 

(t
on

/h
a)

Maize no outlierd

R2 = 0.78
n = 2432

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
IBGE Crop yield (ton/ha)

D
er

al
 C

ro
p 

yi
el

d 
(t

on
/h

a)

Maize with outliere
R2 = 0.83
n = 2345

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
IBGE Crop yield (ton/ha)

D
er

al
 C

ro
p 

yi
el

d 
(t

on
/h

a)

Maize no outlierf

Figure S4. Correlation analysis of three different datasets for maize second cycle crop yields: (Global dataset of historical yields (yieldgdhy),
Brazilian Institute for Geography and Statistics (yieldIBGE), and Paraná Department of Rural Economy (yieldPR)

In order to evaluate risk, testing and removing trends is a fundamental step to remove the effects of technology advances
on the data (Harri et al., 2011). The Mann-Kendall trend analysis of soybean and maize yields for Brazilian municipalities
considering three datasets unveiled a consistent pattern of trends. Data for all municipalities in our study presented significant80
positive monotonic trends considering p values less than 0.05. For maize, on the other hand, significant positive monotonic
trends were observed in the majority of municipalities. However, they were not universally present in the states of MS, GO,
SP, and MG in the IBGE dataset. The lack of trends can be attributed to a limitation of the dataset, particularly related to not
having long-term data for the second maize cycle.

Since most data presented positive trends, we applied a LOESS model for all the municipalities. The residuals of the LOESS85
models were then tested for heteroscedasticity. Other studies evaluated the presence of heteroscedasticity in crop yield data,
Vicente (2004) was tested using the Brazilian agricultural census 1995/1996, Ozaki et al. (2008) for soybean, maize, and wheat
in Paraná, and Rodrigues et al. (2013) at farm-level studies in São Paulo.
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The presence of heteroscedasticity represents systematic changes in crop yield data Yang et al. (1992) and to the best of our
knowledge, this is the first study that considers and evaluates spatial characteristics of heteroscedasticity of municipal level in90
the long term.

Figure S5. Heteroskedasticity Test Results for soybean crop yields in Brazilian Municipalities

Figure S6. Heteroskedasticity Test Results for maize crop yields in Brazilian Municipalities

S3 Crop yield risk monitoring

To illustrate the relationship between extreme climate impacts on food production and climate indices, we highlight the main
loss events from 1997 to 2021 in the study area in Figure S7. Several distinct periods of crop yield losses emerged during the
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study period, which required further analysis. The notable events among these were 2010 for soybeans, with an average of 16%95
of crop yield losses, and 2021 for maize, with an average of 40%, which impacted agricultural productivity in the region.

The patterns of crop yield losses observed in the region raise two main concerns. The first is that the severe crop yield losses
presented in the previous examples have happened only once in the entire time series, representing an imbalance in the values
of the data set. One implication of this situation is that models might not have sufficient cases of severe failure to be trained
adequately and might underestimate losses. The second concern is related to the decision of what to do with these anomalous100
events. Possible solutions are to use it for training, testing, or removing it from the dataset. We opted to maintain these events
in the analysis with the warning that this might interfere with model performance. However, we wanted to evaluate the ability
of the model to predict unprecedented loss events. As our aim was to assess the effects of extreme climate events, we opted to
retain all of these extreme events within the dataset.

Figure S7. Temporal Variation of Soybean Crop Yields Across Risk Classes for IBGE, Deral and GDHY Datasets. The year-to-year distri-
bution of crop yields is categorized into four risk classes: ’Normal,’ ’Moderate,’ ’Severe,’ and ’Extreme.’
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Figure S8. Temporal Variation of Maize Crop Yields Across Risk Classes for IBGE, Deral and GDHY Datasets. The year-to-year distribution
of crop yields is categorized into four risk classes: ’Normal,’ ’Moderate,’ ’Severe,’ and ’Extreme.’

S4 SHAP Algorithm105

In Fig. S9, we provide a graphical illustration of the black box approach in which the XGBoost algorithm uses three fea-
tures, Temperature (Temp), Precipitation (Prec), and Standardised Precipitation Evapotranspiration Index (SPEI) to make a
prediction. The difference between base prediction and the model output, also called SHAP Value, is explained with SHAP
explanations.
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Figure S9. Demonstration of SHAP Explanations. Adapted from Lundberg (2023)

S5 Indentifying key climatic impact-drivers110

The analysis presented in Table SS1 reveals that variables such as tnx (indicative of extreme heat), spei_3month (a drought
index), and prcptot (precipitation totals) are consistently identified as the most significant variables in various regions. These
indices are crucial for predicting the target variable, most likely crop yield losses, as they represent key climate impact drivers.
In particular, extreme heat and drought appear to have a profound effect on agricultural results.

The significance of climate variables varies across geographic regions. For instance, in Paraná (PR), factors like tnx_Feb115
(extreme heat in February) and spei_3month_Feb (February drought) are particularly critical, highlighting heat stress and
drought as major concerns for this area during this time. Conversely, in Minas Gerais (MG), variables such as temp_Jan (mean
air temperature in January) and tnn_Jan (extreme cold in January) are more significant, indicating that both heat and cold
extremes must be taken into account in this region.

Certain months, particularly February and January, prominently appear in multiple significant variables, emphasizing the120
seasonal effects of climate impacts. For example, February is notably a crucial month for extreme heat and drought events in
various areas. This time-related aspect is vital for comprehending when climate factors most significantly influence agricultural
systems, providing insights into seasonal patterns that can guide agricultural planning decisions.

The table offers valuable insights into the climate hazards that significantly impact the model’s predictions. Variables related
to extreme heat, like tnx, txn, and txx, consistently rank highest across different regions, demonstrating that heat stress is a125
key factor influencing the target variable. Additionally, drought indicators, such as spei_3month, and total precipitation (e.g.,
prcptot) also hold high importance, underscoring the role of water availability in outcomes such as crop yields. This underscores
the urgent need to manage both heat and water stress in agricultural systems.

The results from this Random Forest model uncover several significant trends. Firstly, it emphasizes the importance of
temperature extremes and drought indices, indicating that fluctuations in temperature and water stress are key determinants130
of the target outcome. Furthermore, the model accounts for spatial and temporal variations, which is essential for enhancing
predictive precision across various regions and time frames.
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Overall Variables rank UF dataset month hazards
1 100.00000 tnx_Feb 1 PR Deral Feb extreme_heat
2 60.99664 spei_3month_Feb 2 PR Deral Feb drought
3 45.89551 prcptot_Dec 3 PR Deral Dec mean_precipitation
4 34.99172 su_Feb 4 PR Deral Feb extreme_heat
5 31.89870 txn_Oct 5 PR Deral Oct extreme_heat
6 26.03781 dtr_Oct 6 PR Deral Oct mean_air_temp
7 16.10180 spei_3month_Dec 7 PR Deral Dec drought
8 15.23229 dtr_Nov 8 PR Deral Nov mean_air_temp
9 15.15879 dtr_Dec 9 PR Deral Dec mean_air_temp
10 13.13012 dtr_Feb 10 PR Deral Feb mean_air_temp
69 100.00000 temp_Jan 1 MG GDHY Jan mean_air_temp
70 90.78860 tnn_Jan 2 MG GDHY Jan extreme_heat
71 78.32961 tnx_Feb 3 MG GDHY Feb extreme_heat
72 55.61309 txn_Jan 4 MG GDHY Jan extreme_heat
73 50.20335 spei_3month_Dec 5 MG GDHY Dec drought
74 46.13138 dtr_Dec 6 MG GDHY Dec mean_air_temp
75 44.31361 temp_Dec 7 MG GDHY Dec mean_air_temp
76 39.82485 tnx_Jan 8 MG GDHY Jan extreme_heat
77 37.49046 dtr_Nov 9 MG GDHY Nov mean_air_temp
78 34.23006 txn_Oct 10 MG GDHY Oct extreme_heat
137 100.00000 temp_Jan 1 MS GDHY Jan mean_air_temp
138 68.94557 spei_3month_Feb 3 MS GDHY Feb drought
139 66.48501 dtr_Oct 4 MS GDHY Oct mean_air_temp
140 64.68782 tnx_Feb 5 MS GDHY Feb extreme_heat
141 63.31379 tx10p_Jan 6 MS GDHY Jan cold_spell
142 63.07101 su_Jan 7 MS GDHY Jan extreme_heat
143 61.21219 tnx_Jan 8 MS GDHY Jan extreme_heat
144 55.96900 prcptot_Feb 9 MS GDHY Feb mean_precipitation
145 54.61341 txx_Feb 10 MS GDHY Feb extreme_heat
210 100.00000 temp_Nov 1 PR GDHY Nov mean_air_temp
211 94.07476 temp_Oct 2 PR GDHY Oct mean_air_temp
212 91.89831 txn_Oct 3 PR GDHY Oct extreme_heat
213 65.60651 tnn_Oct 4 PR GDHY Oct extreme_heat
214 53.73975 tr_Oct 5 PR GDHY Oct extreme_heat
215 49.21974 dtr_Oct 6 PR GDHY Oct mean_air_temp
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216 47.51726 tnx_Nov 7 PR GDHY Nov extreme_heat
217 46.70260 temp_Dec 8 PR GDHY Dec mean_air_temp
218 45.26252 tnx_Feb 9 PR GDHY Feb extreme_heat
219 44.67547 txx_Feb 10 PR GDHY Feb extreme_heat
275 100.00000 tnx_Jan 1 RS GDHY Jan extreme_heat
276 86.92816 prcptot_Dec 2 RS GDHY Dec mean_precipitation
277 72.28343 r10mm_Dec 3 RS GDHY Dec heavy_precipitation
278 68.07999 txx_Jan 4 RS GDHY Jan extreme_heat
279 52.90353 dtr_Nov 5 RS GDHY Nov mean_air_temp
280 49.35403 spei_3month_Feb 6 RS GDHY Feb drought
281 45.35339 prcptot_Feb 7 RS GDHY Feb mean_precipitation
282 42.93565 tnx_Nov 8 RS GDHY Nov extreme_heat
283 38.94912 prcptot_Nov 9 RS GDHY Nov mean_precipitation
284 38.70593 prcptot_Jan 10 RS GDHY Jan mean_precipitation
348 100.00000 tnx_Jan 1 SC GDHY Jan extreme_heat
349 25.86169 tx90p_Oct 2 SC GDHY Oct extreme_heat
350 25.42701 dtr_Feb 3 SC GDHY Feb mean_air_temp
351 22.95067 spei_3month_Feb 4 SC GDHY Feb drought
352 22.75066 txn_Dec 5 SC GDHY Dec extreme_heat
353 20.97155 prcptot_Feb 6 SC GDHY Feb mean_precipitation
354 18.95401 tnn_Dec 7 SC GDHY Dec extreme_heat
355 15.68545 txx_Feb 8 SC GDHY Feb extreme_heat
356 14.64066 spei_6month_Oct 9 SC GDHY Oct drought
357 13.28630 spei_3month_Jan 10 SC GDHY Jan drought
417 100.00000 txn_Dec 1 SP GDHY Dec extreme_heat
418 64.72215 temp_Dec 2 SP GDHY Dec mean_air_temp
419 63.21173 tnn_Dec 3 SP GDHY Dec extreme_heat
420 53.35772 tnx_Dec 4 SP GDHY Dec extreme_heat
421 46.85076 dtr_Dec 5 SP GDHY Dec mean_air_temp
422 38.25983 tx90p_Oct 7 SP GDHY Oct extreme_heat
423 37.62061 txx_Dec 8 SP GDHY Dec extreme_heat
424 36.21886 tnn_Jan 9 SP GDHY Jan extreme_heat
425 34.00213 su_Dec 10 SP GDHY Dec extreme_heat
489 100.00000 dtr_Feb 1 MG IBGE Feb mean_air_temp
490 90.38603 dtr_Jan 2 MG IBGE Jan mean_air_temp
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491 59.19799 tnx_Jan 3 MG IBGE Jan extreme_heat
492 58.55139 tnn_Feb 4 MG IBGE Feb extreme_heat
493 56.02843 prcptot_Feb 5 MG IBGE Feb mean_precipitation
494 55.44643 txn_Feb 6 MG IBGE Feb extreme_heat
495 48.38260 spei_3month_Feb 7 MG IBGE Feb drought
496 48.15441 prcptot_Nov 8 MG IBGE Nov mean_precipitation
497 47.54246 dtr_Oct 9 MG IBGE Oct mean_air_temp
498 47.39682 temp_Feb 10 MG IBGE Feb mean_air_temp
555 100.00000 spei_3month_Feb 1 MS IBGE Feb drought
556 62.18494 prcptot_Feb 2 MS IBGE Feb mean_precipitation
557 27.14332 spi_6month_Feb 3 MS IBGE Feb drought
558 25.20665 spei_6month_Feb 4 MS IBGE Feb drought
559 17.57680 tnx_Feb 5 MS IBGE Feb extreme_heat
560 15.85621 txx_Feb 6 MS IBGE Feb extreme_heat
561 14.87482 spei_3month_Jan 7 MS IBGE Jan drought
562 13.31633 dtr_Jan 8 MS IBGE Jan mean_air_temp
563 12.22819 dtr_Dec 9 MS IBGE Dec mean_air_temp
564 11.46425 temp_Jan 10 MS IBGE Jan mean_air_temp
628 100.00000 spei_3month_Feb 1 PR IBGE Feb drought
629 58.20304 prcptot_Dec 2 PR IBGE Dec mean_precipitation
630 55.22292 tnx_Feb 3 PR IBGE Feb extreme_heat
631 27.02189 tnx_Nov 4 PR IBGE Nov extreme_heat
632 24.09338 dtr_Feb 5 PR IBGE Feb mean_air_temp
633 23.54219 prcptot_Feb 6 PR IBGE Feb mean_precipitation
634 21.53629 dtr_Nov 7 PR IBGE Nov mean_air_temp
635 16.68468 spei_6month_Feb 8 PR IBGE Feb drought
636 16.61503 tnn_Oct 9 PR IBGE Oct extreme_heat
637 16.27090 txx_Feb 10 PR IBGE Feb extreme_heat
695 100.00000 spei_3month_Feb 1 RS IBGE Feb drought
696 78.11165 prcptot_Feb 2 RS IBGE Feb mean_precipitation
697 42.98244 prcptot_Jan 3 RS IBGE Jan mean_precipitation
698 36.42602 prcptot_Dec 4 RS IBGE Dec mean_precipitation
699 31.35147 r10mm_Dec 5 RS IBGE Dec heavy_precipitation
700 29.18250 dtr_Oct 6 RS IBGE Oct mean_air_temp
701 19.06189 spei_3month_Jan 7 RS IBGE Jan drought
702 18.24222 r10mm_Jan 8 RS IBGE Jan heavy_precipitation
703 14.84210 prcptot_Oct 9 RS IBGE Oct mean_precipitation
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704 14.39600 tnx_Jan 10 RS IBGE Jan extreme_heat
770 100.00000 tnx_Jan 1 SC IBGE Jan extreme_heat
771 56.02377 temp_Jan 2 SC IBGE Jan mean_air_temp
772 48.16173 spei_3month_Feb 3 SC IBGE Feb drought
773 46.39182 prcptot_Feb 4 SC IBGE Feb mean_precipitation
774 31.39655 tnx_Feb 5 SC IBGE Feb extreme_heat
775 25.19294 tnn_Feb 6 SC IBGE Feb extreme_heat
776 23.85294 tnn_Jan 7 SC IBGE Jan extreme_heat
777 22.63478 temp_Nov 8 SC IBGE Nov mean_air_temp
778 16.09298 r10mm_Feb 9 SC IBGE Feb heavy_precipitation
779 15.54663 txn_Nov 10 SC IBGE Nov extreme_heat
838 100.00000 txn_Dec 1 SP IBGE Dec extreme_heat
839 96.21386 tnn_Dec 2 SP IBGE Dec extreme_heat
840 96.17796 temp_Nov 3 SP IBGE Nov mean_air_temp
841 91.15508 tnn_Oct 4 SP IBGE Oct extreme_heat
842 89.22131 temp_Oct 5 SP IBGE Oct mean_air_temp
843 85.13383 temp_Jan 6 SP IBGE Jan mean_air_temp
844 77.75324 temp_Dec 7 SP IBGE Dec mean_air_temp
845 76.73861 txn_Nov 8 SP IBGE Nov extreme_heat
846 76.36698 txn_Oct 9 SP IBGE Oct extreme_heat
847 75.43840 tnn_Jan 10 SP IBGE Jan extreme_heat

Table S1. Variable Importance Analysis in Random Forest for Soybean Yield Prediction Across Brazilian States. The figure illustrates the
variable importance scores obtained from Random Forest models applied to three distinct datasets: Deral, IBGE, and GDHY, encompassing
seven Brazilian states - RS, SC, PR, SP, MS, MG, and GO

Table SS2 offers a ranking of climate variables impacting Maize second cycle various regions across Brazil, sorted by state,
month, and type of hazard. It emphasizes extreme climate conditions such as severe heat, droughts, cold snaps, and average air
temperature. The data is divided based on the overall influence of these variables in different months, illustrating how different135
regions (denoted by their state abbreviations) are affected.

In the state of Paraná (PR), April precipitation (prcptot_Apr) held the top rank, followed by extreme heat conditions in
May (tnn_May), and these variables markedly impacted the agricultural outcomes in both months. Furthermore, mean air
temperatures in April and May (temp_Apr, temp_May), along with July precipitation (prcptot_Jul), were also key factors,
indicating the significant role of both rainfall and temperature.140

Conversely, in Goiás (GO), the highest-ranking variable was the diurnal temperature range in April (dtr_Apr). Significant
factors also included extreme heat in May (tnn_May) and high precipitation levels in February (prcptot_Feb) and May (prcp-
tot_May). This suggests that variations in both precipitation and temperature significantly influence agricultural and climate
vulnerability in Goiás during these periods.

In Minas Gerais (MG), the total precipitation for May (prcptot_May) was identified as the most critical variable, followed by145
the average temperature in March (temp_Mar) and the extreme maximum temperature in August (tnx_Ago). Additionally, the
drought conditions in June (spei_3month_Jun) and April’s diurnal temperature range (dtr_Apr) were significant in influencing
the state’s climate impact.

Mato Grosso do Sul (MS) is significantly impacted by February’s average temperature (temp_Feb), with severe heat (su_Feb)
and drought conditions in June (spei_6month_Jun) being key factors. The diurnal temperature range in August (dtr_Ago) and150
precipitation levels in April (prcptot_Apr) highlight that both heat and variations in precipitation shape the climate patterns in
the state.

For Rio Grande do Sul (RS), the diurnal temperature range in May (dtr_May) emerges as the most crucial variable, with
drought conditions in March (spi_6month_Mar) and elevated precipitation in August (prcptot_Ago) and July (prcptot_Jul) also
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playing significant roles. This highlights the critical impact of the interplay between temperature and precipitation extremes in155
RS.

Lastly, São Paulo (SP) exhibits a significant trend where extreme temperatures in August (tnx_Ago) and heavy rainfall in
July (prcptot_Jul) are the primary climate hazards, accompanied by other temperature indicators such as diurnal temperature
range and extreme heat events. This focus on these factors underscores the vital impact of heat and precipitation patterns on
the environmental and agricultural issues faced by São Paulo.160

Overall Variables rank UF dataset month hazards
1 100.00000 prcptot_Apr 1 PR Deral Apr mean_precipitation
2 82.46489 tnn_May 2 PR Deral May extreme_heat
3 75.13381 temp_May 3 PR Deral May mean_air_temp
4 71.49528 prcptot_Jul 4 PR Deral Jul mean_precipitation
5 70.02075 txn_May 5 PR Deral May extreme_heat
6 67.53607 temp_Apr 6 PR Deral Apr mean_air_temp
7 64.57218 tnx_Ago 7 PR Deral Ago extreme_heat
8 63.82222 dtr_Ago 8 PR Deral Ago mean_air_temp
9 61.67738 tnn_Feb 9 PR Deral Feb extreme_heat
10 61.62358 temp_Ago 10 PR Deral Ago mean_air_temp
98 100.00000 dtr_Apr 1 GO GDHY Apr mean_air_temp
99 97.50680 tnn_May 2 GO GDHY May extreme_heat
100 65.78049 txn_May 3 GO GDHY May extreme_heat
101 64.64102 tnn_Jun 4 GO GDHY Jun extreme_heat
102 59.29969 prcptot_Feb 5 GO GDHY Feb mean_precipitation
103 38.93645 tnx_Jun 6 GO GDHY Jun extreme_heat
104 36.49084 prcptot_May 7 GO GDHY May mean_precipitation
105 27.97299 txn_Jun 8 GO GDHY Jun extreme_heat
106 21.80135 temp_Jun 9 GO GDHY Jun mean_air_temp
107 19.81397 tnx_Ago 10 GO GDHY Ago extreme_heat
192 100.00000 prcptot_May 1 MG GDHY May mean_precipitation
193 78.72920 temp_Mar 2 MG GDHY Mar mean_air_temp
194 75.93930 dtr_May 3 MG GDHY May mean_air_temp
195 53.84657 tnx_Ago 5 MG GDHY Ago extreme_heat
196 50.52855 dtr_Apr 6 MG GDHY Apr mean_air_temp
197 45.21166 txn_Mar 7 MG GDHY Mar extreme_heat
198 44.15792 dtr_Mar 8 MG GDHY Mar mean_air_temp
199 41.63691 txx_Ago 10 MG GDHY Ago extreme_heat
284 100.00000 temp_Feb 1 MS GDHY Feb mean_air_temp
285 65.96125 su_Feb 2 MS GDHY Feb extreme_heat
286 55.30782 tnx_Feb 3 MS GDHY Feb extreme_heat
287 40.40994 spei_6month_Jun 4 MS GDHY Jun drought
288 39.67969 txn_May 5 MS GDHY May extreme_heat
289 31.04435 tx90p_May 7 MS GDHY May extreme_heat
290 26.72179 dtr_Ago 8 MS GDHY Ago mean_air_temp
291 24.86532 prcptot_Apr 9 MS GDHY Apr mean_precipitation
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292 24.72938 tnn_May 10 MS GDHY May extreme_heat
389 100.00000 tnx_Ago 1 PR GDHY Ago extreme_heat
390 61.89264 temp_Ago 2 PR GDHY Ago mean_air_temp
391 43.43037 txn_May 3 PR GDHY May extreme_heat
392 42.71941 temp_May 4 PR GDHY May mean_air_temp
393 29.23238 tnn_May 5 PR GDHY May extreme_heat
394 21.88527 tnx_May 6 PR GDHY May extreme_heat
395 21.65946 dtr_Apr 7 PR GDHY Apr mean_air_temp
396 15.10926 dtr_May 8 PR GDHY May mean_air_temp
397 13.37548 dtr_Ago 9 PR GDHY Ago mean_air_temp
398 13.15006 tnn_Mar 10 PR GDHY Mar extreme_heat
487 100.00000 dtr_May 1 RS GDHY May mean_air_temp
488 82.31632 spi_6month_Mar 2 RS GDHY Mar drought
489 68.54319 prcptot_Ago 3 RS GDHY Ago mean_precipitation
490 64.07012 dtr_Ago 4 RS GDHY Ago mean_air_temp
491 59.57734 tnn_Jun 5 RS GDHY Jun extreme_heat
492 53.79602 spei_3month_Jul 6 RS GDHY Jul drought
493 49.04170 prcptot_Jul 8 RS GDHY Jul mean_precipitation
494 46.64403 tx10p_May 9 RS GDHY May cold_spell
495 45.34317 tx10p_Apr 10 RS GDHY Apr cold_spell
588 100.00000 dtr_Apr 1 SC GDHY Apr mean_air_temp
589 96.40534 dtr_Ago 2 SC GDHY Ago mean_air_temp
590 96.37887 dtr_May 3 SC GDHY May mean_air_temp
591 87.34563 r10mm_Ago 5 SC GDHY Ago heavy_precipitation
592 84.21535 txx_May 6 SC GDHY May extreme_heat
593 77.93737 tnn_Jun 7 SC GDHY Jun extreme_heat
594 77.68189 prcptot_Ago 8 SC GDHY Ago mean_precipitation
595 77.21550 spi_6month_Mar 9 SC GDHY Mar drought
596 75.58487 spei_3month_Ago 10 SC GDHY Ago drought
687 100.00000 tnx_Ago 1 SP GDHY Ago extreme_heat
688 32.19566 prcptot_Jul 2 SP GDHY Jul mean_precipitation
689 23.34099 prcptot_Feb 3 SP GDHY Feb mean_precipitation
690 20.77636 dtr_Jul 4 SP GDHY Jul mean_air_temp
691 20.63356 txx_Ago 5 SP GDHY Ago extreme_heat
692 19.63010 txn_Mar 6 SP GDHY Mar extreme_heat
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693 17.00114 dtr_Apr 7 SP GDHY Apr mean_air_temp
694 16.21477 tnn_Feb 8 SP GDHY Feb extreme_heat
695 12.99909 tnn_Mar 10 SP GDHY Mar extreme_heat
787 100.00000 tnn_Feb 1 GO IBGE Feb extreme_heat
788 97.29698 txx_Jul 2 GO IBGE Jul extreme_heat
789 95.93036 txx_May 3 GO IBGE May extreme_heat
790 85.09398 tnx_May 4 GO IBGE May extreme_heat
791 82.40128 temp_May 5 GO IBGE May mean_air_temp
792 77.77108 dtr_Apr 6 GO IBGE Apr mean_air_temp
793 77.47015 prcptot_Apr 7 GO IBGE Apr mean_precipitation
794 76.32820 tnx_Apr 8 GO IBGE Apr extreme_heat
795 74.88640 temp_Jul 9 GO IBGE Jul mean_air_temp
887 100.00000 tx90p_Apr 1 MG IBGE Apr extreme_heat
888 79.61648 temp_Apr 2 MG IBGE Apr mean_air_temp
889 62.98098 spei_3month_Jun 3 MG IBGE Jun drought
890 62.76512 tx90p_May 4 MG IBGE May extreme_heat
891 61.25962 spei_3month_Jul 5 MG IBGE Jul drought
892 60.48007 tnx_Apr 6 MG IBGE Apr extreme_heat
893 58.55813 dtr_Ago 7 MG IBGE Ago mean_air_temp
894 58.21883 dtr_Jul 8 MG IBGE Jul mean_air_temp
895 57.59278 dtr_Apr 9 MG IBGE Apr mean_air_temp
896 57.09095 prcptot_May 10 MG IBGE May mean_precipitation
982 100.00000 temp_Apr 1 MS IBGE Apr mean_air_temp
983 93.00263 tnn_Jun 2 MS IBGE Jun extreme_heat
984 54.44418 su_Apr 3 MS IBGE Apr extreme_heat
985 52.53396 tnx_Jun 4 MS IBGE Jun extreme_heat
986 49.29613 prcptot_Feb 5 MS IBGE Feb mean_precipitation
987 46.85822 tx90p_Apr 6 MS IBGE Apr extreme_heat
988 36.94694 temp_Jun 7 MS IBGE Jun mean_air_temp
989 35.53650 prcptot_Apr 8 MS IBGE Apr mean_precipitation
990 28.44460 txx_May 9 MS IBGE May extreme_heat
991 27.73175 dtr_Feb 10 MS IBGE Feb mean_air_temp
1088 100.00000 txn_Feb 1 PR IBGE Feb extreme_heat
1089 98.37288 temp_Apr 2 PR IBGE Apr mean_air_temp
1090 96.48529 txn_Apr 3 PR IBGE Apr extreme_heat
1091 92.21233 temp_Mar 4 PR IBGE Mar mean_air_temp
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1092 90.94547 txx_Apr 5 PR IBGE Apr extreme_heat
1093 88.86999 temp_May 6 PR IBGE May mean_air_temp
1094 88.01913 tnx_Mar 7 PR IBGE Mar extreme_heat
1095 87.86547 tnx_Ago 8 PR IBGE Ago extreme_heat
1096 85.80402 txn_Mar 9 PR IBGE Mar extreme_heat
1097 84.62325 temp_Feb 10 PR IBGE Feb mean_air_temp
1186 100.00000 txx_Ago 1 SP IBGE Ago extreme_heat
1187 64.92772 tr_Ago 2 SP IBGE Ago extreme_heat
1188 62.51299 temp_Jul 3 SP IBGE Jul mean_air_temp
1189 43.94459 tnx_Ago 4 SP IBGE Ago extreme_heat
1190 27.14802 txn_Apr 5 SP IBGE Apr extreme_heat
1191 26.54685 temp_Ago 6 SP IBGE Ago mean_air_temp
1192 23.82096 txx_Jul 7 SP IBGE Jul extreme_heat
1193 23.60973 spei_3month_May 8 SP IBGE May drought
1194 22.30100 dtr_Feb 9 SP IBGE Feb mean_air_temp

Table S2. Variable Importance Analysis in Random Forest Models for Maize Yield Prediction Across Brazilian States. The figure illustrates
the variable importance scores obtained from Random Forest models applied to three distinct datasets: Deral, IBGE, and GDHY, encompass-
ing seven Brazilian states - PR, SP, MS, MG, and GO
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