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Abstract. Snow avalanches are the primary mountain haz-
ard for mechanized skiing operations. Helicopter and snow-
cat ski guides are tasked with finding safe terrain to provide
guests with enjoyable skiing in a fast-paced and highly dy-
namic and complex decision environment. Based on years of
experience, ski guides have established systematic decision-
making practices that streamline the process and limit the po-
tential negative influences of time pressure and emotional in-
vestment. While this expertise is shared within guiding teams
through mentorship, the current lack of a quantitative de-
scription of the process prevents the development of decision
aids that could strengthen the process. To address this knowl-
edge gap, we collaborated with guides at Canadian Moun-
tain Holidays (CMH) Galena Lodge to catalogue and analyze
their decision-making process for the daily run list, where
they code runs as green (open for guiding), red (closed), or
black (not considered) before heading into the field. To cap-
ture the real-world decision-making process, we first built
the structure of the decision-making process with input from
guides and then used a wide range of available relevant data
indicative of run characteristics, current conditions, and prior
run list decisions to create the features of the models. We
employed three different modeling approaches to capture the
run list decision-making process: Bayesian network, random
forest, and extreme gradient boosting. The overall accuracies

of the models are 84.6 %, 91.9 %, and 93.3 % respectively
compared to a testing dataset of roughly 20 000 observed
run codes. The insights of our analysis provide a baseline
for the development of effective decision support tools for
backcountry avalanche risk management that can offer inde-
pendent perspectives on operational terrain choices based on
historic patterns or as a training tool for newer guides.

1 Introduction

Snow avalanches are a complex and dynamic natural hazard,
responsible for an average of approximately 140 recorded
fatalities annually in North America and Europe (Colorado
Avalanche Information Center, 2024; Jamieson et al., 2010;
Techel et al., 2016). The majority of these avalanche fa-
talities are backcountry recreationists, and the avalanche
is commonly triggered by a member of the victim’s party
(Schweizer and Lütschg, 2001). Terrain selection is the pri-
mary tool for managing avalanche risk when traveling in the
backcountry. A wide range of factors need to be considered
to select appropriate terrain, including current avalanche con-
ditions, slope incline, forest density, aspect, elevation, and
potential for overhead hazards or terrain traps. The dynamic
nature of avalanche hazard conditions and sheer number of
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influences on avalanche terrain severity make choosing ap-
propriate terrain challenging.

Due to the complexity of the terrain selection process,
there is a long-standing desire to provide recreationists
with decision-making aids for making better-informed de-
cisions about when and where to travel in the backcoun-
try. Early tools such as the seminal graphical reduction
method (Munter, 1997), the stop-or-go method (Larcher,
1999), the SnowCard (Engler and Mersch, 2001), the Niv-
oTest (Bolognesi, 2000), or the Avaluator (Haegeli, 2010;
Haegeli and McCammon, 2007) provided users with rela-
tively simple, analog workflows to combine information on
conditions (mainly represented by the danger rating pub-
lished by an avalanche warning service) with terrain infor-
mation (primarily slope incline) to assess the severity of dif-
ferent routes. Current trip planning tools such as WhiteRisk
(https://whiterisk.ch/, last access: June 2024) or Skitouren-
guru (https://www.skitourenguru.ch/, last access: June 2024)
are modern incarnations of the original approaches that take
advantage of recent developments in avalanche terrain mod-
eling to describe the severity of avalanche terrain in more
detail. While these tools can be effective for general recre-
ationists, one key challenge for developing more advanced
decision-making aids is the scale mismatch when combin-
ing public avalanche danger ratings with terrain information.
It is the combination of this scale mismatch and the current
tools’ focus on the public avalanche danger rating that limits
their value for more complex decision-making contexts such
as professional guiding or advanced amateur recreation. In
the case of mechanized ski guiding in Canada, the decision-
making process includes an added layer of operational con-
siderations, which further increases complexity.

Based on decades of practical experience, the mechanized
skiing industry has developed a structured and iterative pro-
cess to select terrain that is appropriate for skiing on a daily
basis (Israelson, 2015). The decision-making process con-
sists of four major components. First, guides assess current
avalanche hazard conditions and produce an avalanche fore-
cast that is relevant for the entire guiding tenure. Second, they
create a run list based on a predefined inventory of skiable
terrain within the tenure which determines which ski runs are
available for guiding based on the current conditions. Based
on the run list and operational conditions for the day (e.g.,
weather conditions, snow quality, skills and preferences of
guests, flying logistics), the third step is selecting which ski
runs will be used for the day, which is carried out by lead
guides in collaboration with the guiding team. The selection
of ski runs is an ongoing process throughout the day which
can be altered by changing avalanche or weather conditions.
Finally, many ski runs contain multiple ski lines with differ-
ent terrain characteristics and exposure to avalanche hazard.
It is the responsibility of the guide of each group to select
an appropriate ski line based on the evaluation of slope-scale
avalanche conditions, ski quality, and operational considera-
tions.

The practice of creating a daily run list helps guiding teams
to get on the same page for the day and establishes a list
of potential terrain that has been deemed appropriate for
the day’s conditions. Individual ski runs can be coded open
for guiding (green), conditionally open for guiding (yellow),
closed for guiding (red), or not considered (black). A condi-
tionally open run indicates that a specific condition must be
met prior to opening the run, which is often determined based
on field observations. Black codes essentially represent non-
decisions (i.e., default) describing the situation when guides
do not think the run is worth discussing during their run cod-
ing meeting. The reasons for not discussing a run may in-
clude insufficient snow coverage on a run, the run being too
far away given current flying conditions, the terrain being
obviously too hazardous to consider for current conditions,
or too much uncertainty for making an informed decision.
Hence, the causes of a run not being coded clearly differ
from a run being coded red versus green. In addition, guides’
personal references and biases can impact whether a run is
coded as black. The process of coding runs during the morn-
ing meeting prior to going skiing gives the opportunity for a
consensus-based decision process and helps limit emotional
and time pressures that can impact decision-making in the
field. HeliCat Canada, the association of mechanized skiing
operations in Canada, identifies daily run lists as a crucial
component and industry standard of avalanche risk manage-
ment practices (HeliCat Canada, 2024). In mechanized guid-
ing operations snow avalanches account for 77 % of the over-
all risk of death, and the avalanche fatality rate is approxi-
mately 1 fatality in 100 000 skier days (Walcher et al., 2019).

Quantitatively describing the run list coding process in a
way that provides insight and offers added value for partic-
ipating operations requires sophisticated model approaches
that can consider the wide range of relevant factors and cap-
ture the nuanced nature of these decisions. Prior research has
used regression analyses for capturing decision-making pro-
cesses (Sterchi et al., 2019; Thumlert and Haegeli, 2018),
which assumes that the decision to open or close a run can
be represented as a linear combination of factors. These ap-
proaches provided useful starting points for capturing the
complexity of guiding decisions but are limited by the model-
ing methods. Purely data-driven machine learning methods,
such as using self-organizing maps for grouping runs based
on run code patterns (Sterchi and Haegeli, 2019), have also
shown promise but are prone to detecting spurious relation-
ships, and the black-box nature of the algorithms makes them
difficult to understand and trust.

Recent advances in artificial intelligence and machine
learning have led to the development of a wide range of
different algorithms which show promise for both examin-
ing guide decisions in more sophisticated ways and develop-
ing meaningful operational decision support tools. Bayesian
networks (BNs) offer an attractive alternative to the exist-
ing methods due to their ability to use expert knowledge to
model complex decision processes (Fenton and Neil, 2019).
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Decision-tree-based methods, such as random forest (RF)
and extreme gradient boosting (XGB), are also attractive for
modeling complex decision-making tasks due to their ability
to automatically account for complex relationships within the
data and their track record of producing accurate predictions
in a variety of modeling domains (Breiman, 2001; Chen and
Guestrin, 2016). Furthermore, the improvement of methods
for interpreting the output of machine learning models has
led to a greater ability to understand what is going on un-
der the hood of black-box models, which makes them more
transparent and has the potential to improve trustworthiness
in implementing these tools in operational settings (Molnar,
2022).

The objective of this paper is to examine and describe the
run list coding process at a mechanized skiing operation us-
ing BN, RF, and XGB approaches and discuss their poten-
tial for the design of operational decision support tools for
the mechanized skiing industry. We explore the factors that
influence run list decisions and the relationships within the
decision-making process. The empirical foundation of the
decision-making models is based on seven seasons of op-
erational data (winter 2015/2016–winter 2022/2023) as well
as high-resolution avalanche terrain modeling. We test and
compare the performance of the decision-making models as
predictive tools and use interpretable machine learning meth-
ods to understand the inner workings of the black-box mod-
els. The insights from this study lay the foundation for col-
laboration with guiding operations to create real-world deci-
sion support tools that capture historic decision-making pat-
terns with the potential for integration into guide training and
daily operational decision-making practices.

2 Methods

Capturing the critical factors for the run list coding pro-
cess at an operation requires a variety of different datasets
which can be grouped into factors that characterize the ter-
rain within each ski run, current conditions, and operational
factors and constraints. This section first introduces the study
area and datasets that we used to capture the run list decision-
making process. It then discusses the three modeling meth-
ods and our approach to model evaluation in detail. A ta-
ble of all variables included in the decision support models
is in Appendix A, including a description of the variable, a
histogram of the variable distribution, and how it is applied
in each model. The code necessary to reproduce our analy-
sis is available at https://doi.org/10.17605/OSF.IO/6DHMX
(Sykes et al., 2024b), and all code is written in the R pro-
gram for statistical computing (R Core Team, 2024). Due to
the large number of data sources and variables included in
the present analysis, it is not possible to describe every pro-
cessing step in complete detail within the constraints of this
paper. However, interested readers are encouraged to reach
out to the corresponding author for more details.

Figure 1. Canadian Mountain Holidays Galena tenure, showing the
lodge location and ski runs included in the analysis. Each run is
coded using the run list during the daily morning guides’ meeting.
See Appendix A for descriptions of the terrain characteristics for
the runs included in the analysis.

2.1 Study area

Canadian Mountain Holidays (CMH) Galena Lodge is a
mechanized skiing operation located in the Selkirk Moun-
tains near Trout Lake, BC, Canada (Fig. 1). The Selkirk
Mountains have a transitional snow climate prone to persis-
tent weak layers of surface hoar and faceted layers associated
with icy crusts (Haegeli and McClung, 2007). Most of the
terrain in the CMH Galena tenure is forested, but there are
also high alpine zones with glaciated ski runs. Within their
roughly 1200 km2 tenure are 295 predefined ski runs (Fig. 1),
which are individually coded each morning. For this research
we only included ski runs that are completely within the op-
erating boundaries of CMH Galena’s tenure, where we have
collected at least 10 GPS tracks over the study period (see
Sect. 2.2.2) and where information about operational con-
siderations was available (see Sect. 2.2.3). This results in an
analysis dataset for 192 ski runs, which are highlighted in
yellow in Fig. 1.

2.2 Run characteristics

To characterize the terrain in the CMH Galena tenure,
we modeled avalanche start zones and runout zones using
state-of-the-art avalanche terrain modeling methods includ-
ing high-resolution satellite stereo photogrammetry, poten-
tial avalanche release area (PRA) modeling, and RAMMS
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dynamic avalanche simulations (Sykes et al., 2022). The out-
put of these models describes the terrain across the entire
tenure, but to better understand the characteristics of the
terrain where guides commonly travel, we focused on the
characteristics of raster pixels within a 20 m buffer of GPS
tracks that have been collected by the research team to record
guides’ terrain choices since the 2015/2016 winter season.
Based on discussions with guides, we learned that guides
only consider the “most conservative line” within the run
during the run list coding process. Therefore on runs that are
heavily used, we applied a clustering approach to identify
the most conservative ski line from the collected GPS tracks
and only extracted terrain characteristics from GPS tracks be-
longing to the most conservative cluster. To include the ter-
rain characteristics in our analysis, we calculated summary
statistics to represent the terrain on each ski run. In addi-
tion to the physical terrain characteristics, we also included
operational factors for each ski run that play a role in the
decision-making process. The following paragraphs explain
each of these steps in more detail.

2.2.1 Avalanche terrain modeling

The data we used to characterize avalanche terrain at CMH
Galena include elevation, forest cover, exposure to potential
avalanche release areas (PRAs), and avalanche runout zones.
Elevation data came from a SPOT 6 satellite stereopho-
togrammetry 5 m DEM, and forest cover was estimated us-
ing land cover classification of RapidEye 5 m satellite im-
agery (Sykes et al., 2022). We used a PRA model to estimate
the extent and size of avalanche start zones based on slope
angle, aspect, curvature, roughness, and forest density (Büh-
ler et al., 2013, 2018, 2022; Sykes et al., 2022). To quan-
tify exposure to overhead hazard, we used the large-scale
hazard indication modeling approach described by Bühler et
al. (2022) including the avalanche dynamics model RAMMS
(Christen et al., 2010) to simulate the runout distance, veloc-
ity, impact pressure, and flow height for avalanches originat-
ing from all 111 937 identified PRA polygons. The runout
impact pressure was used to estimate the potential size of
avalanches, and flow height was used to estimate areas where
skiers could potentially be buried deeply, commonly known
as terrain traps.

We simulated PRAs and overhead hazard for two differ-
ent avalanche scenarios (Fig. 2): a frequent scenario target-
ing smaller storm snow slab avalanches that are commonly
encountered (Sykes et al., 2022) and a large scenario that is
intended to capture deeper and more connected avalanches
that are more typical of periods with active persistent weak
layers. For the frequent scenario we use the 10-year return
period parameters to identify potential release area polygons,
and we used the 30-year parameters from prior research con-
ducted by Bühler et al. (2022) to increase the size for the
large scenario. The size of PRAs is typically larger for the
large avalanche scenario, but the extent to which the release

area polygons differ between the two scenarios depends on
the local terrain characteristics. For the RAMMS simula-
tions, we used release depths of 0.5 and 1 m for the frequent
and large scenarios respectively. These release depth values
are based on discussions with local guides and are targeted
at the type of avalanche activity we aim to capture with the
simulations.

2.2.2 GPS tracking

Starting in the winter of 2015/2016, the Simon Fraser Univer-
sity Avalanche Research Program has collaborated with sev-
eral mechanized ski guiding operations in western Canada to
collect high-resolution information on the terrain skied. The
location information was collected with custom-designed
GPS trackers which recorded participating guides’ positions
every 4 s over the course of a week (Thumlert and Haegeli,
2018). At CMH Galena, the research team has collected
15 111 GPS tracks over seven winter seasons (2020/2021
season is missing due to COVID-19 restrictions).

We leverage the GPS tracking data in our run list decision-
making model by using the GPS track coordinates to extract
terrain characteristics for each run. This method is more ac-
curate than using the predefined run polygons (Fig. 3) be-
cause it focuses the spatial extent of the terrain characteriza-
tion on only the portion of the run polygon that is actually
skied. Since the most conservative ski line matters the most
for opening or closing a run, we used a clustering approach
to further refine the portion of the run that we use to charac-
terize the terrain on heavily used runs, which we defined as
having 50 or more GPS tracks over the data collection period
(n= 65).

To identify the most conservative line within the available
GPS tracks associated with a ski run polygon, we grouped the
tracks using fuzzy analysis clustering, a probabilistic variant
of the k-medoids clustering approach described in Chap. 4
of Kaufman and Rousseeuw (2005) and implemented in the
fanny function of the cluster package in R (Maechler et
al., 2022). In comparison to hard or deterministic cluster-
ing, fuzzy clustering calculates membership probabilities for
each data point to describe how likely they belong to a par-
ticular cluster. This allows the method to provide better in-
sight into datasets where the differences between clusters are
more gradual (Kaufman and Rousseeuw, 2005). The distance
matrix used for the clustering was a combination of two nor-
malized distance matrices: one for the geographic location
represented by the start and end point of the GPS tracks
(i.e., coordinates of landing and pickup locations) and one
for the terrain characteristics of the tracks, which included
the 95th percentiles of slope incline, PRA polygon area for
the frequent and large scenarios, runout pressure for the fre-
quent and large scenarios, and the proportion of the track
in forested terrain. Terrain characteristics that likely did not
exhibit a multimodal distribution (as tested with Hartigan’s
dip test from the diptest R package by Maechler, 2021) were
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Figure 2. Comparison of PRA polygons (a, b) and runout impact pressure (c, d) for frequent (a, c) and large (b, d) runout simulations.
The frequent PRA and impact pressure simulations represent smaller, storm slab avalanches, whereas the large PRA and impact simulations
represent deeper, more connected persistent weak layer avalanches.

eliminated from the terrain characteristics distance matrix.
Based on our initial explorations, the default values for the
weight of the terrain characteristics in the overall distance
matrix and the fuzzy parameter that determines the crisp-
ness of the cluster solutions were 0.15 and 1.7 respectively.
For each ski run, we calculated solutions for 2 to 10 clusters
and selected the best solution based on the average silhou-
ette width, one of the commonly used measures for assessing
how well the data points are represented by their clusters.
Subsequently, the most conservative line within the selected
cluster solution was identified by examining the distributions
of the terrain characteristics of DEM raster cells touched by
the GPS tracks associated with the different clusters. To min-
imize the influence of outliers, only GPS tracks with a clus-
ter membership probability higher than 0.75 were included
in these assessments. The selected cluster solutions and most
conservative lines were verified by CMH Galena guides, and
if necessary, the algorithm was rerun with slightly modified
parameter values to produce a more realistic solution. Fig-

ure 3 presents the identified ski lines for several runs to illus-
trate the output of the clustering algorithm.

2.2.3 Summarizing terrain characteristics

Since the unit of decision-making for the run list coding is
an individual ski run, we needed to simplify the terrain in-
formation for each run into a single number summary for
each terrain characteristic. We carried this out by extract-
ing the mean, median, 95th percentile, and maximum val-
ues for PRA polygon area, runout depth, runout impact pres-
sure, runout velocity, and slope incline based on the values
of all raster cells within a 20 m buffer of the relevant GPS
tracks. For the PRA and runout terrain layers we calculated
these summaries for the output of both the frequent and large
avalanche scenarios. In addition, we calculated the percent-
age of each run that was covered by PRA polygons, covered
by forest, and the proportion of each run within each car-
dinal aspect. To further characterize the aspect of the runs
we calculated the average northness of each run, which uses
a cosine transformation to determine the degree of north-
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Figure 3. Example of GPS clustering approach, with the most conservative clusters of GPS tracks shown with black lines and other GPS
track clusters shown by color-coded lines.

ern exposure of a run ranging from −1 (south) to 1 (north)
(Olaya, 2009). Since separate avalanche hazard assessments
are produced for alpine, treeline, and below-treeline areas,
we also calculated the percentage of each run in the dif-
ferent elevation bands using elevation thresholds from local
guides (alpine > 2250 m, treeline 2250–1850 m, below tree-
line < 1850 m). Finally, we extracted the maximum and min-
imum elevation of each run.

2.2.4 Operational considerations

The final component of run characterization aims to cap-
ture the operational perspective of each run. One key source
of this information was the work of Wakefield (2019), who
developed a ski run characterization survey to capture the
guides’ personal perception and operational knowledge of
their skiing terrain. The majority of the survey data is cat-
egorical, and the guide characterizations are based on “typi-
cal” conditions for each run. The collected information con-
tains a wealth of knowledge from CMH guides, but the
present study only incorporates a limited subset including
(a) whether weak layers are intentionally managed by de-
stroying them on the surface using skier traffic, (b) whether
a run fills a specific operational role (e.g., lunch run or des-
tination run), (c) the approximate flight distance required to
access a ski run, (d) the overall ski quality of the run, and
(e) the overall accessibility of the run and the landing zone
for each run.

2.3 Current conditions

There is a multitude of condition factors that can impact run
list coding at CMH Galena, but in this paper we present
a relatively sparse model that focuses on the major deci-
sion drivers. We selected the variables based on the opera-
tional experience of Roger Atkins, a long-time guide at CMH
Galena, and looked for relationships within the data. In the
absence of high-quality weather station data in our study
area, we relied on field observations, lodge weather obser-
vations, and daily avalanche hazard assessments to capture
the current conditions. We also included the following daily-
changing operational factors relevant to the daily run list cod-
ing: (a) the percent of the tenure that was observed on the
prior day and (b) how long it had been since the run had been
skied last. In addition, we included (c) whether the guid-
ing program was on a weekly exchange day. When guests
change, guide teams are swapped out, and operational logis-
tics such as transporting food and equipment to the lodge
are handled, which impact daily operations. These factors,
which are independent from the terrain hazard or avalanche
hazard conditions, help to incorporate real-world operational
considerations that have an impact on the decision-making
process. The following sections describe how the condition
variables were derived in detail.

2.3.1 Weather conditions

Snowfall loading rates are some of the most critical factors
to determine the size and likelihood of avalanches. There-
fore, we included three variables related to snow loading in

Nat. Hazards Earth Syst. Sci., 25, 1255–1292, 2025 https://doi.org/10.5194/nhess-25-1255-2025



J. Sykes et al.: Development of operational decision support tools for mechanized ski guiding 1261

our decision-making models: the height of new snow over the
past 72 h (hn72), 24 h (hn24), and 12 h (h2d) as recorded in
the daily field observations and morning lodge observations
from the guiding team. We also included the daily average
height of snow (hs) observed in the field as a proxy for the
overall snow coverage in the tenure. Additional weather fac-
tors captured from guides’ field observations include wind
speed, sky cover, and current precipitation rate. As an indica-
tor of seasonal changes to operational practices and general
mountain conditions, we also included the time of season as
an ordinal variable (early winter, mid-winter, early spring,
and spring).

2.3.2 Avalanche conditions

To capture the guiding team’s understanding of the avalanche
hazard conditions, we extracted daily avalanche hazard rat-
ings for each elevation band, avalanche likelihood and
avalanche size information of the identified avalanche prob-
lems, and the strategic mindset from their morning assess-
ments (Atkins, 2014; Statham et al., 2010, 2018). Since re-
cent avalanche observations play a large role in avalanche
hazard assessment, we also included the total number and
maximum size of the avalanches observed within the CMH
Galena tenure from the past 72 h and the past week. We
elected to separate avalanche likelihood and size information
for persistent and non-persistent avalanche problems to cap-
ture the effect of different types of avalanche problems on the
decision-making process more precisely.

2.3.3 Run coding

The daily run list codes are the output variable for our
decision-making models. At CMH Galena the conditionally
open (yellow) run code is rarely used; therefore we elected
not to include that run code in our analysis. While work-
ing with Roger Atkins to understand the CMH Galena run
list coding process, we realized that transition periods are
the most interesting and useful target for a decision-making
model as they indicate a change in operational conditions
from the status quo. However, these transition periods are
relatively infrequent, only accounting for roughly 11 % of the
run list codes in our dataset, while runs remain red in roughly
18 %, remain green in roughly 59 %, and remain black in
roughly 12 % of run list codes. To maximize the utility of the
decision support tools we constructed our target variable to
explicitly highlight transitions from the prior day’s run code.
The run list target variable in our models includes five cate-
gories: “closing”, “status black”, “status red”, “status green”,
and “opening”. We consider runs transitioning from “green”
to either “red” or “black” as the run “closing”. Conversely,
anytime a run transitions from “red” or “black” to “green”,
we consider it “opening”.

We also included the run list coding from the prior day as
a variable in our decision-making models. This captures the

iterative nature of the run coding, where codes are updated
daily based on prior observations and new information. In-
cluding the prior run list code as an anchor for the daily run
list coding is realistic to the real-world decision-making pro-
cess and allows us to explicitly identify periods of transition
within the run coding.

2.4 Model development and evaluation

We tested three different statistical models to develop
decision-support tools for the run list coding process: a
Bayesian network (BN), random forest (RF), and extreme
gradient boosting (XGB). The BN approach has the advan-
tage of being explicitly grounded in expert understanding of
the decision-making process. We selected the random for-
est (RF) model because it is a commonly used model across
a variety of domains, including other applications in the
avalanche field (Mayer et al., 2022; Richter et al., 2023),
and extreme gradient boosting (XGB) because it is a well-
known state-of-the-art model with high predictive perfor-
mance (Chen and Guestrin, 2016).

2.4.1 Bayesian network

Bayesian networks (BNs), also known as belief networks or
probabilistic graphical models, are a type of statistical model
that are used to represent and analyze uncertain complex re-
lationships among multiple variables that include both inputs
and outputs (Scutari and Denis, 2021). The foundation of a
BN is a directed acyclic graph (DAG), which illustrates vari-
ables as nodes and relationships between them as arcs. The
graphical structure of a BN cannot contain any cycles, and
nodes that are not connected by an arc are assumed to be con-
ditionally independent given their parents (Fenton and Neil,
2019; Scutari and Denis, 2021). One major advantage of BNs
over other types of modern machine learning algorithms is
that the structure of the network can be constructed based on
input from domain experts, which allows the network to take
on a form which is authentic to real-world decision-making
thought processes.

The quantitative foundation of BNs is conditional prob-
ability tables (CPTs), which can be estimated manually or
based on observed data for each node. BNs have been ap-
plied in a variety of fields, including medical diagnosis and
operational risk analysis (Fenton and Neil, 2019). Once a BN
has been estimated, it can be used for a variety of tasks re-
lated to probabilistic inference, prediction, and decision sup-
port, which make BNs well-suited to our task. In this analysis
we used the R packages bnlearn (Scutari, 2010) and gRain
(Højsgaard, 2012) to fit and apply the BN.

The main driver for deciding what nodes to include in the
BN and how to set arcs between nodes was the expert opin-
ion of Roger Atkins. The primary objective of this step was to
capture realistic patterns of decision-making in the arc path-
ways within the DAG of the BN. We then used the data de-
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scribed in the previous section to calculate the conditional
probability distributions of the BN based on the structure
provided by the domain expert.

We constructed the DAG based on the thought process of
using three different types of relationships to set arcs (Fig. 4).
First are arcs between run characteristic nodes, which repre-
sent the natural physical relationships in avalanche terrain
and operational relationships in the guide survey nodes. Sec-
ond are arcs between condition variables, which represent the
relationships between observations and guides’ assessments,
which are roughly modeled after the theoretical foundation
of the conceptual model of avalanche hazard (Statham et al.,
2018). Third are decision arcs that connect nodes that could
have a direct impact on how a run is coded.

To reduce the complexity of building the BN and make
it easier to understand, we used categorical variables for all
the nodes in the network. This required converting the nu-
meric variables into categorical variables, which we under-
took manually, aiming to minimize the number of categories
with very small proportions of the data to reduce the overall
size of the conditional probability table for the run list out-
put node. Reducing the number of categories in each variable
significantly reduces the computer processing time to apply
the BN in a predictive capacity and leads to more accurate
predictions. See Appendix A for a list of all variables and to
compare the original numeric distribution to the categorized
version of the variables.

2.4.2 Machine learning approaches

Both machine learning approaches are based on decision
trees but differ in their specific implementation. A decision
tree is a common statistical approach to classification where a
simple tree structure is built to split data into leaves or nodes
based on a training dataset that includes both feature values
and the desired classification. The internal nodes of a deci-
sion tree represent a test on an individual feature in the data,
with the branches descending from each internal node rep-
resenting the outcome of the test (Breiman, 2001). The ter-
minal nodes, or leaves of the tree, represent the classification
prediction. One of the main advantages of decision trees is
that they automatically detect relationships within the data
and naturally handle interactions among features without the
analyst needing to a priory specify them (Kuhn and Johnson,
2013). However, when applied to predictive problems, indi-
vidual decision trees tend to overfit the sample observations,
which means they do not tend to generalize well to observa-
tions outside of the training dataset.

Random forest (RF) is an ensemble-based machine learn-
ing approach which uses hundreds of independent decision
trees to produce more accurate and generalizable predictions.
Independent decision trees are fit by using a random subsam-
ple of the training data, using a process called “bagging”, and
the feature used at each node within the tree is selected from
a random subset of all the features available. These practices

allow the individual trees within the RF to be substantially
different from one another, which improves overall perfor-
mance of the ensemble (Breiman, 2001). A majority voting
scheme is used to determine the prediction of the RF, which
means that whichever classification level gets the most votes
of all the trees becomes the overall prediction.

While RF uses bagging and random sampling to create a
forest of independent trees, extreme gradient boosting (XGB)
uses a technique called “gradient boosting” to sequentially
build decision trees that correct the errors made by previ-
ous trees (Chen and Guestrin, 2016). Gradient boosting cre-
ates an ensemble of simple weak learners, defined as a sim-
ple classifier with performance slightly better than random
chance, to form a strong learner, defined as a classifier that
achieves arbitrarily good accuracy, by optimizing a loss func-
tion when each new tree is fit. Essentially each subsequent
weak learner in the ensemble focuses on the misclassified
cases from prior weak learners to focus training on cases
the model previously got wrong. This method allows XGB
to produce classification models with reduced bias and vari-
ance, which leads to better predictive performance. Com-
pared to RF, XGB tends to build more complex models that
capture more nuanced patterns in the data. Fitting XGB mod-
els typically requires more computer processing time and
tuning of several model parameters to achieve optimal re-
sults.

To fit the machine learning models to our dataset we in-
cluded all variables from the BN and added additional vari-
ables related to the run list decision-making process as deter-
mined by conversations with an expert guide, and we eval-
uated whether they were improving predictive performance.
While the RF model easily adopted the categorical variables
that we developed for the BN approach, we manually con-
verted the categorical variables into a series of binary vari-
ables (also known as one-hot or dummy encoding) before
including them in the XGB method using the R package
fastDummies (Kaplan, 2020). To ease interpretation of the
XGB model we elected to use the native numeric representa-
tions of the run characteristic and condition variables where
possible. In addition, we tested treating ordered factors as
both dummy-encoded variables and as ordered integers in the
XGB model.

To tune the RF model parameters, we performed a grid
search on the “mtry” parameter, which determines how many
variables are randomly sampled at each split in the decision
trees using the R packages caret (Kuhn, 2008) and Random-
Forest (Liaw and Wiener, 2002). For the XGB model we
used the “gbtree” booster and carried out a more extensive
process of tuning the “nrounds”, “eta”, “gamma”, “max_
depth”, “subsample”, “colsample_bytree”, and “min_child_
weight” model parameters using the R packages caret (Kuhn,
2008) and XGBoost (Chen and Guestrin, 2016). We aimed
to optimize overall accuracy and used the default “soft-
max” objective function from the summary function “mul-
tiClassSummary”. Our process for tuning the XGB model
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Figure 4. Directed acyclic graph (DAG) for run list BN at CMH Galena. Arcs are defined based on the expert opinion of our collaborat-
ing guide as well as natural physical relationships of avalanche terrain characteristics. Node abbreviations and variable characteristics are
described in detail in Appendix A.

parameters required five steps: (1) roughly tune “nrounds”,
“eta”, and “max_depth” while limiting the max value of
“nrounds” to 1000 to limit processing time of the tun-
ing procedure and using default values for other parame-
ters; (2) tune “max_depth” and “min_child_weight” using
“nrounds” values from 50 to 1000 using tuned “eta” values
from round 1 and defaults for other parameters; (3) tune “col-
sample_bytree” and “subsample” using tuned parameters for
“eta”, “max_depth”, and “min_child_weight” while using
a default parameter for “gamma”; (4) tune “gamma” using
“nrounds” values from 50 to 1000 and tuned parameters for
all other values; and finally (5) tune “eta” and “nrounds” a
second time using tuned parameters for all other inputs and
testing a larger range of “nrounds” values from 100 to 5000.
This process is intended to sequentially tune parameters in
batches to limit computer processing time while still testing
a wide range of potential parameter combinations.

We tested both the RF and XGB models with and with-
out class weights, which are intended to improve accuracy
for imbalanced classification tasks. We used a class weight
scheme based on the inverse proportion of the sample size so
that errors in classes with lower sample sizes are penalized
more heavily than classes with larger sample sizes.

2.4.3 Model evaluation

To assess how well our decision-making models match real-
world decisions, we used each model as a predictive tool to
classify whether runs would be coded as “closing”, “status
black”, “status red”, “status green”, or “opening” based on
run characteristics and current conditions. We used 70 % of
our run list dataset to train the models and 30 % to test the
prediction accuracy. To compare the models, we used a mul-
ticlass confusion matrix. Specifically, we examined the over-
all accuracy and Cohen’s kappa, which are metrics for the
overall performance of the classifier, and the sensitivity of
individual classes to evaluate performance in greater detail.
The overall accuracy is the proportion of cases where the
model predicts the same run list code as the CMH guides.
Cohen’s kappa measures how well the classifier performs
compared to a model that simply predicted the most frequent
class, also known as the “no information rate”. In addition to
the confusion matrix approach, we calculated the area under
the receiver operating curve (AUROC) for each model using
the R package pROC (Robin et al., 2011). AUROC consid-
ers the sensitivity and specificity of the model and evaluates
the overall performance of the classifier, with an AUROC
of 0.5 indicating random chance and 1.0 indicating a per-
fect classifier. Since our output variable has multiple classes,
the AUROC is calculated using a one-versus-one approach,
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with each class considered as the positive case and com-
pared against every possible pairwise combination of classes.
The model AUROC is then calculated as the average of the
pairwise AUROC values (Hand and Till, 2001; Robin et al.,
2011).

To better understand the patterns captured in the RF and
XGB models, we also looked at the feature importance for
these models. Feature importance provides an assessment
of which variables contribute to the classification task most
strongly, which is determined by the mean decrease in the
Gini coefficient (Breiman, 2001). This measures how much
each feature contributes to the homogeneity of the nodes in
the decision trees, which leads to more accurate classifica-
tion. To dig deeper into understanding the relative contri-
bution of different features, we created Shapley additive ex-
planation (SHAP) plots, which are a more advanced method
for interpreting black-box machine learning models (Lund-
berg and Lee, 2017; Molnar, 2022). In addition to measur-
ing which features strongly contribute to the classification
task, SHAP plots also show how the range of values for each
feature contributes to the classification (Flora et al., 2024).
SHAP plots can be calculated for both the overall model and
the individual levels of the classification. These methods help
to visualize how the machine learning models create their
classifications and provide some insight into the patterns that
drive these black-box models.

3 Results

3.1 Bayesian network

Our decision-making network aimed at capturing the daily
run list coding at CMH Galena contains 24 nodes and 44
arcs (Fig. 4). To fit the BN, we used 63 581 cases to train
the network and kept 27 254 cases to test the accuracy of the
BN. Overall, the network structure represents the complexity
of the decision-making process by containing many potential
pathways to the run list node. This realistically represents
the real-world decision-making process, where the driving
factor for the coding of runs depends on a multitude of factors
related to current conditions and run-specific characteristics.

3.1.1 Input nodes – terrain characteristics and
operational factors

We included seven nodes in the BN that represent terrain
characteristics from the avalanche terrain model output (light
blue nodes). Potential avalanche release area size (pra) rep-
resents the 95th percentile start zone polygon size for the
frequent scenario within each ski run, which is categorized
into four classes (0–10 000, 10 000–15 000, 15 000–20 000,
> 20 000 m2). PRA size is aimed at capturing the high end
of the distribution of avalanche release areas that could be
triggered on the run. The percentage of the ski run that
is within potential avalanche release areas (pra_perc) in-

tends to capture the overall amount of exposure to areas
where avalanches could be triggered along the run (0 %–
25 %, 25 %–40 %, 40 %–55 %, 55 %–100 %). Runout size
(runout_size) represents the 95th percentile impact pressure
from the large avalanche simulation, which was included to
represent the high-end potential avalanche runout size, or
overhead hazard, during periods when large avalanches are
possible (0–50, 50–100, 100–150, > 150 kPa). Runout depth
(runout_depth) is determined by taking the 95th percentile of
the runout height for the frequent avalanche scenario, which
captures the potential of terrain traps to cause deep burial in
the case of a relatively small human-triggered avalanche (0–
1, 1–1.5, 1.5–2, > 2 m). The node for run steepness (slope)
represents the steepest portion of each run by using the 95th
percentile of its slope angle distribution, which is then cat-
egorized into four classes (0–35, 35–40, 40–45, > 45°). We
chose to use the 95th percentile value to capture the upper
end of the distribution for PRA size, slope angle, runout size,
and runout depth instead of the maximum value to minimize
the potential for local DEM artifacts to give unrealistically
high maximum values. To represent the elevation (elev) of a
run we used all the elevation bands a run includes, so runs
that cover multiple elevation bands include multiple eleva-
tion bands (alpine–treeline, alpine–treeline–below-treeline,
treeline–below-treeline, below treeline). Forest cover (for-
est) was summarized based on the percentage of raster cells
within 20 m of GPS tracks that are forested and split into
categories of 0 %–25 %, 25 %–50 %, 50 %–75 %, or 75 %–
100 %.

There are several inherent correlations among the run char-
acteristics that need to be accounted for in the model with
arcs. PRA size is connected by arcs to runout size and runout
depth because the surface area of the start zone has a strong
impact on potential avalanche size and burial depth. PRA
percent is connected by an arc to forest cover percent (for-
est) because avalanche start zones tend to inhibit the growth
of forests. Elevation band (elev) and runout size also have an
arc connected to forest because both large avalanche paths
and higher elevations inhibit the growth of forests.

The operational factors included in the BN (dark blue
nodes) are whether skier traffic is used to mitigate weak layer
development (skitraf), the flight distance from the lodge to
the run (flight), and whether the run serves a specific oper-
ational role (oprole). The nodes oprole and flight both have
arcs connecting to skier traffic because runs that are main-
tained with skier traffic tend to be in closer proximity to the
lodge and serve a specific operational role because they can
typically be used during periods of elevated avalanche haz-
ard. The skier traffic node also has input arcs from forest
and runout_size because forest cover can break up potential
avalanche start zones into multiple smaller start zones, which
are more suitable for this type of mitigation, and runs with
exposure to large overhead avalanche paths are typically not
suitable for skier mitigation.
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3.1.2 Input nodes – current conditions

Twelve nodes are included in the BN model to represent cur-
rent avalanche conditions (orange nodes). These nodes in-
clude both direct observations and guide assessments of the
conditions. The relationships among these condition vari-
ables are driven by physical principles and the avalanche haz-
ard assessment process described by the conceptual model
of avalanche hazard (Statham et al., 2018). The primary
weather condition variables in the BN are the height of new
snow within 72 h (hn72) and the height of new snow within
12 h (h2d). These nodes are included in the model to rep-
resent the amount of new snow loading within the current
storm and overnight respectively and naturally have arcs con-
nected to non-persistent avalanche size (axsz), non-persistent
avalanche likelihood (axlk), size of persistent avalanches
(axszp), and likelihood of persistent avalanches (axlkp). In
addition, hn72 has arcs connected to the status of persis-
tent (p) and deep persistent (dps) avalanche problems, which
have values of 0 when the avalanche problem is not ac-
tive and 1 when active. Time of season (season) is a sec-
ondary condition variable that is oriented towards the devel-
opment of snowpack characteristics over the course of a win-
ter season. Season is connected to the status of deep persis-
tent avalanche problems, which tends to be less likely in the
early winter and more likely in the mid-winter, early spring,
and spring. The number of avalanche observations (axob-
num) and maximum size of avalanche observations (axob-
size) within 72 h from the guides’ field observations repre-
sent their direct evidence of current avalanche activity. There
are arcs connecting observed avalanche size to expected
avalanche size for persistent and non-persistent avalanche
problems, as well as from the number of observed avalanches
to expected avalanche likelihood for both persistent and non-
persistent avalanche problems. The statuses of persistent and
deep persistent avalanche problems are each connected with
arcs to persistent avalanche likelihood and size. As described
in the conceptual model of avalanche hazard (Statham et al.,
2018), avalanche size and likelihood nodes for both persis-
tent and non-persistent avalanche problems have arcs to daily
maximum avalanche danger rating (axhzd), as they are the
key determining factors of avalanche hazard. Since the daily
maximum avalanche danger rating is specific to the elevation
bands included in each run, an arc connects elevation band to
avalanche hazard.

3.1.3 Output node

The target output node is run list, which captures the change
in the run list status from the prior day. This node has in-
put arcs from avalanche size, avalanche likelihood, persistent
avalanche size, persistent avalanche likelihood, avalanche
hazard, runout size, runout depth, percent of PRA, slope an-
gle, skier traffic mitigation, and the run list status from the
prior day (runlist_y). By combining condition variables, run

Table 1. Accuracy metrics for three decision support tools using
30 % of run list data for model evaluation.

BN RF XGB

n features 23 42 58
Size of test dataset 27 254 20 899 20 898
AUROC 0.87 0.97 0.98
Overall accuracy 84.6 91.9 93.3
Kappa 0.74 0.87 0.89
“Closing” sensitivity 27.8 70.5 72.0
“Opening” sensitivity 24.4 50.2 56.8

characteristics, and prior status, we aimed to capture the in-
teractions between the range of potential factors that drive
the run coding decisions for different types of runs.

3.1.4 BN performance

The BN has an overall accuracy of 84.6 % compared to the
test cases with an area under the receiver operating curve
(AUROC) of 0.87 and a kappa statistic of 0.74 (Table 1). The
no information rate for the BN sample is 59.0 %, which is the
class frequency of “status green”. For the transition classes
“closing” and “opening” the BN has a sensitivity of 27.8 %
and 24.4 % respectively. For complete results of the confu-
sion matrix for the BN model, see Appendix B. The BN fit-
ting process does not include a method for class weighting.
However, as an alternative to prioritize the performance of
the transition classes we tested manually setting the classifi-
cation threshold for “closing” and “opening” to 25 % instead
of simply selecting the class with the highest probability. We
found that the performance in transition classes improved
substantially from 27.8 % to 40.5 % for “closing” and 24.4 %
to 34.7 % for “opening”. However, manually setting the clas-
sification threshold to improve sensitivity for transition cases
results in a decrease in overall accuracy and Cohen’s kappa,
from 84.6 % to 81.7 % and 0.74 to 0.70 respectively.

3.2 Random forest

3.2.1 Features included

Due to missing data in the additional features for the RF,
the overall dataset was slightly smaller than the BN, with
48 755 cases in the training dataset and 20 899 in the testing
dataset. The final set of features was tested by trial and error
and evaluated against the accuracy metrics from the testing
dataset. Our grid search for tuning the “mtry” parameter re-
sulted in a value of 9, which means that nine features were
randomly selected and tested at each split while growing the
decision trees. We used the default value of 500 for the num-
ber of trees in the RF. To account for the imbalance in the
run list classification target variable, we used inverse pro-
portional weighting to penalize errors in the minority classes
more heavily while training the model. This improved perfor-
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mance for the transition periods closing and opening, which
makes the model more useful as an operational decision sup-
port tool.

The additional terrain characteristics included in the RF
model are categorical versions of the 95th percentile PRA
size for the large avalanche scenario (pra30y), average PRA
size along the run for the frequent (pra_mean) and large sce-
narios (pra30y_mean), 95th percentile runout pressure for
the frequent scenario (runout_press), 95th percentile runout
height for the large scenario (runout_height_1m), and the as-
pect (aspect) of the run with the highest proportion of raster
cells within 20 m of GPS tracks. These additional features
help to capture the unique characteristics of each run based
on the exposure to avalanche start zones and runout zones.

We also added several additional operational factors to
the RF model to help capture some of the more nuanced
operational considerations that can impact run list coding.
Those features are the number of days since the run was last
skied (last_skied), the overall quality of skiing on the run
(ski_quality), overall accessibility of the run (access_gen),
accessibility of the landing zone (access_land), and whether
there was an exchange of guests or guides (exchange) taking
place that could impact operational logistics.

To capture the current conditions in more detail, we
also added additional features to the RF model focused on
weather conditions, field observations, and avalanche hazard
assessment. The weather condition features we added are the
height of new snow in the past 24 h (hn24), the wind speed
observed from the field (wind), sky cover observed from the
lodge in the morning (sky), and the current precipitation rate
from the lodge in the morning (precip). Additional field ob-
servations include the total snowpack height (hs) observed in
the field on the day prior, the percent of the tenure observed
on the prior day (perc_observed), and the maximum size of
avalanche observations over the past week (axobs_sizeweek).
We also replaced the daily max avalanche hazard feature
from the BN with avalanche hazard ratings for each elevation
band (alpine – alp_hzd, treeline – tl_hzd, below treeline –
btl_hzd). To capture the shared mindset of the guiding team,
we included the strategic mindset (mindset) as a feature for
the RF model. Finally, we removed the status of deep per-
sistent avalanche problem and persistent avalanche problem
from the RF model because the persistent likelihood and size
features capture this information implicitly, and the overall
accuracy of the RF decreased with these avalanche problem
features included.

3.2.2 Feature importance

The feature with by far the highest feature importance for
the RF model is the run list from the prior day, which nat-
urally emerges from the fact that in roughly 90 % of cases
the run list code stays the same as the prior day (Fig. 5).
Features 2 through 7 by feature importance are all related
to current conditions, with the most important features being

strategic mindset, new snow in past 24 h, treeline hazard rat-
ing, overall height of snow, alpine hazard rating, and likeli-
hood of persistent avalanches. The below-treeline hazard rat-
ing is also ranked relatively highly in 15th. The remaining
features that capture snow loading, 3 d snow loading (hn72)
and 12 h snow loading (h2d), are ranked 19th and 21st by
feature importance. The avalanche observation features that
are most important are the percent of the tenure observed on
the prior day (perc_observed) and total number of avalanches
observed over a 3 d period (axobs_num72), which are ranked
10th and 18th.

Operational features with the highest feature importance
are overall accessibility of the run (access_gen) ranked 8th
and flight distance (flight_dist) in 9th. Other highly ranked
operational features are the quality of the skiing experience
on the run (ski_quality) in 17th and whether a run is main-
tained by skier traffic (skier_mitig) in 26th. The least impor-
tant features in the RF model are operational role (op_role)
in 41st, which designates runs as having a specific value
to operational logistics beyond physical characteristics, and
whether the guiding program is on an exchange day (ex-
change) in 42nd.

The terrain characteristics that are ranked highest by fea-
ture importance occupy positions 11 through 14 and are the
aspect of the run (aspect), runout height for the frequent sce-
nario (runout_height), runout height for the large scenario
(runout_height_1m), and runout pressure for the frequent
scenario (runout_press). Features related to PRA are gener-
ally ranked lower compared to those runout features, with the
most important PRA features being PRA size for the frequent
scenario (pra) ranked 20th, mean size of PRA for the large
scenario (pra30y_mean) ranked 22nd, mean size of PRA for
the frequent scenario (pra_mean) ranked 25th, and percent
of raster cells in PRA polygon areas (pra %) ranked 27th.

3.2.3 RF performance

The RF overall accuracy is 91.9 % with an AUROC of 0.97
and a kappa statistic of 0.87. The no information rate for the
RF dataset is 57.4 %, which is the class frequency of status
green. The improvement in predictive performance of the RF
model over the BN is 7.3 percentage points in overall ac-
curacy with 0.10 for AUROC and 0.13 for kappa. The sen-
sitivity for the “closing” and “opening” classes for the RF
is 70.5 % and 50.2 % respectively, which is an improvement
of 42.7 and 25.8 percentage points respectively compared to
the BN with default classification thresholds. For complete
results of the confusion matrix for the RF model see Ap-
pendix B. Tuning the RF model without class weighting re-
sulted in a higher overall accuracy by 0.8 percentage points
and a higher Cohen’s kappa by 0.01. However, the class-
weighted RF has higher sensitivity for the closing and open-
ing classes by 15.1 and 9.7 percentage points respectively.
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Figure 5. Feature importance for RF model for all classes of the run list output variable color-coded by the feature type.

3.3 Extreme gradient boosting

3.3.1 Features included

For the XGB model we used the same features as the RF. The
only features that were dummy-encoded were the categorical
strategic mindset and the run list from the day prior. For ele-
vation, we switched from categorizing which elevation bands
are part of each run in the RF to calculating the percentage
of each run in the alpine (perc_alp), treeline (perc_tl), and
below-treeline (perc_btl) elevation bands. We also included
the maximum (elev_max) and minimum elevation (elev_min)
for each run. To accurately capture the influence of slope
aspect we switched from using a categorical variable repre-
senting the majority aspect in the RF to calculating the aver-
age northness of each run (northness). Sample sizes for the
XGB training and testing datasets are almost identical to the
RF, with 48 756 cases for training and 20 898 cases for test-
ing. The grid search procedure to optimize the XGB model
parameters resulted in “nrounds” of 4400, “eta” of 0.05,
“max_depth” of 6, “gamma” of 0.05, “colsample_bytree” of
0.4, “min_child_weight” of 2, and “subsample” of 1.

3.3.2 Feature importance

Figures 6 and 7 visualize the feature contributions by plot-
ting the SHAP values for all possible outcomes of the run list
target variable (Fig. 6) as well as for the individual transition
classes “closing” and “opening” (Fig. 7). The features on the
SHAP plots are ordered on the y axis by their feature impor-
tance, and the x axis shows the SHAP value. The top three
features by feature importance for the overall classification
are the dummy-encoded features that represent the status of
the run from the prior day. This indicates that the prior day’s
run list code is the strongest predictor of the current day’s
run list code, which makes sense since the run list code only
changes in roughly 10 % of cases. The points along the x axis
for each feature show the distribution of feature values rang-
ing from low (yellow) to high (purple). The distribution of
the points is shown by the shape of the bee swarm plot, with
a higher density of feature values shown as a thicker section
of the point distribution. For the top two features in Fig. 6,
prior run list green and prior run list red, we see that high fea-
ture values have high SHAP values, which indicates that the
prior run list code being green or red (coded as 1 for dummy
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variables) has a very strong contribution to the run list clas-
sification. In contrast the prior run list being black, shown
by a high feature value, has a much lower SHAP value. This
means that the prior run list being black contributes much
less to the run list classification than green or red. Since run
list code black is considered a non-decision that can have a
variety of reasons unrelated to current conditions or terrain
characteristics, it makes sense that this run list code would
contribute less to the XGB model predictions.

Of the remaining top 20 features shown in Fig. 7 there is
a mix of operational factors, terrain characteristics, and cur-
rent conditions. The operational factors included in the top
20 features are number of days since the run was last skied,
flight distance to the run, and percent of tenure observed on
the prior day. For both number of days since last skied and
percent of terrain observed, higher values make a stronger
contribution to the overall classification, whereas lower val-
ues of flight distance make a higher contribution to the clas-
sification.

The terrain characteristics with the highest contribution to
the XGB classification are runout impact pressure from the
frequent avalanche scenario, runout impact pressure from the
large avalanche scenario, runout height from the frequent
avalanche scenario, degree of northness of the run, and the
maximum elevation of the run. In general, lower values of
runout pressure for the frequent and large scenarios con-
tribute more strongly to the classification, whereas higher
values of runout height make a stronger contribution. Runs
with low values of northness (i.e., run with southern aspects)
make higher contributions, along with runs that start at higher
elevations.

A total of 9 out of the 20 top features for the overall classi-
fication represent the current conditions. The total snowpack
height and all three snow loading features (72, 24, and 12 h)
are included. The avalanche hazard rating for all three ele-
vation bands is also included, with a general trend that low
or high values make stronger contributions compared to in-
termediate values. This is intuitive because high avalanche
hazard or low avalanche hazard both represent hazard scenar-
ios with greater certainty about current conditions, whereas
a wide range of conditions can be observed under moder-
ate or considerable avalanche hazard ratings. High values
in the number of avalanche observations in a 72 h period
make a strong contribution to the classification. Finally, the
avalanche likelihood for persistent slab avalanches shows
that the lower values tend to have a stronger impact on the
classification.

Feature importance for transition classes

Looking at the SHAP values for closing and opening specifi-
cally can provide additional insights into how individual fea-
tures and feature values contribute to these particular deci-
sions (Fig. 7). To simplify interpretation, we removed the
prior run list feature that corresponds to the current run code

(i.e., prior run list red for closing class), which has the high-
est feature importance for both classes since to open or close
the run must change the status from the day prior. A total of
15 out of the 20 most important features are shared by both
response classes, although the order of importance differs be-
tween the two classes. The 15 shared features include a mix
of current conditions, terrain characteristics, and operational
considerations. In general, the relationship of feature val-
ues and SHAP values is reversed for opening versus closing
runs. For example, high feature values for the height of new
snow in 24 h (hn24) contributes strongly to run closing (the
more new snow, the more likely a run gets closed), whereas
lower values of hn24 are more important for run opening, as
expected. However, the overall importance of hn24 for run
openings is much lower than for run closings as indicated by
the difference in feature importance (rank 17 versus rank 1).

The additional 5 features that are only included in the
top 20 features for run closing are the likelihood of per-
sistent avalanches, flight distance to access the run, below-
treeline and alpine avalanche hazard ratings, and maximum
avalanche observation size over 72 h. Low feature values of
persistent avalanche likelihood align with negative SHAP
values, indicating that when persistent avalanches are less
likely, runs are less likely to be closed. Longer flight dis-
tances appear to also make a negative contribution to runs be-
ing closed, which may indicate that runs that are further from
the lodge tend to change from open to closed less frequently.
Avalanche hazard ratings for all elevation bands have a sim-
ilar distribution of feature values and SHAP values, with
lower ratings leading to fewer runs closing and higher rat-
ings leading to more runs closing. Similarly, field observa-
tions of smaller avalanches contribute less to the decision to
close runs than observations of larger avalanches.

The features that are only included in the top 20 for run
openings are the strategic mindset stepping out, maximum
elevation of the run, degree of northness, total distance in
PRA, and percentage of sky cover. When the guides’ strate-
gic mindset is stepping out, runs are more likely to open,
which is unsurprising but also encouraging as their stated
mindset corresponds to patterns in their run list practices.
Run elevation and aspect seem to contribute more to the de-
cision to open a run for low-elevation and more southerly
runs than for more northerly or high-elevation runs. The per-
centage of a run that is within PRA has the expected effect,
with lower values contributing to run openings more heav-
ily. Finally, runs tend to open more when the percentage of
sky cover is low. This is likely due to increased access to a
larger portion of the CMH Galena tenure due to greater vis-
ibility and flying conditions from stable weather. These dif-
ferences reveal some of the unique patterns identified by the
XGB model in the decision-making drivers that impact the
run list coding process.
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Figure 6. SHAP plot for XGB model with the top 20 features on the y axis ordered by feature importance and x axis showing the SHAP
value. The color-coded points show the distribution of the individual features, with hotter colors indicating high feature values and cooler
colors indicating low feature values.

Feature importance for status quo classes

The overall factors that make the largest contribution to runs
staying open are their exposure to avalanche runout zones,
the overall avalanche hazard conditions, how much recent
snow loading has taken place, and whether the runs are
maintained using skier traffic. Within the top 20 features by
feature importance for status green, there are four different
avalanche runout features, with low values in all these fea-
tures making a strong contribution to runs remaining open
(Appendix C). The avalanche hazard ratings for alpine, tree-
line, and below treeline are also included in the top 20 fea-
tures, with low values making a strong contribution to runs
remaining open. The same can be said for the three snow
loading features, where low values contribute more strongly
to runs staying open. Other terrain characteristics that con-
tribute to runs staying open are whether they are maintained
by skier traffic to mitigate persistent weak layers on the sur-

face, lower values in the mean and 95th percentile PRA size
for the frequent avalanche simulation, and runs with southern
aspects.

The characteristics of runs that tend to remain closed are
the opposite of runs that tend to remain open, with higher
runout exposure and an overall higher percentage of PRA.
Runs that are further away tend to remain closed more of-
ten and so do runs that start at higher elevations and have
a more northerly exposure. Conditions that lead to runs re-
maining closed include higher avalanche hazard ratings in
the alpine elevation band and higher likelihood of persistent
avalanches. Snow loading over a 72 h period contributes to
the decision to keep a run closed more strongly than the 24 h
or 12 h snowfall, which plays a more important role in clos-
ing a run in the first place.

When a run is coded black it is simply not considered for
the day, which is not necessarily an indication that it was
deemed unsafe under the current conditions. Instead, there
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Figure 7. SHAP plots for transition classes “closing” and “opening”. Features are ordered on the y axis by their feature importance for each
individual class. Negative SHAP values indicate that features are associated with that class being less likely while positive values indicate
that the class is more likely. Color-coded points show the relative values of the features with yellows indicating low values and purple high
values. Note that the order of features on the y-axis and x-axis range differs for panels (a) and (b). See Figs. C2 and C6 for larger versions
of these SHAP plots.

are a wide variety of operational factors that could play into
whether a run is discussed during the morning guides’ meet-
ing. Our analysis reveals several features with strong contri-
butions to black run codes that seem to have stronger ties to
operational decision-making than hazard evaluation. For ex-
ample, runs that are often skied tend to a make stronger con-
tribution to being coded black, which may be an indication
that guides use this code to put frequently used runs on pause
during uncertain conditions instead of closing them (Ap-
pendix C). This interpretation is further supported by the ob-
servation that periods of high avalanche hazard at the treeline
and below-treeline elevation bands also contribute strongly
to runs being coded black. Similarly, periods of higher likeli-
hood for persistent avalanches tend to contribute to runs be-
ing coded black. Other operational considerations that con-
tribute to runs being coded black include the flight distance,
with runs further away making a strong contribution to black
run codes, as well as the height of snow, with low overall
snowpack heights making a strong contribution to black run
codes. This pattern is likely related to more runs being coded
black at the beginning of the season.

3.3.3 XGB Performance

The XGB model has the highest overall accuracy at 93.3 %,
an improvement of 1.4 percentage points over the RF. The
AUROC and the kappa for the XGB model are 0.98 and 0.89

respectively, which are improvements of 0.01 for AUROC
and 0.02 for kappa over the RF model. The sensitivity of
the transition classes for the XGB model is 72.0 % for clos-
ing and 56.8 % for opening, an improvement over the RF by
1.5 and 6.6 percentage points respectively. We used the same
class weight scheme for the XGB model as the RF model,
with weights determined using the inverse proportion of the
class frequency. Tuning the model without class weights re-
sulted in a slightly higher overall accuracy by 0.3 percentage
points. However, the improvement in sensitivity for the tran-
sition classes “closing” and “opening” of 6 percentage points
for both classes justifies using the class weights for our appli-
cation. A subset of the confusion matrix results is presented
in Table 1, but interested readers are referred to Appendix C
for the complete output.

4 Discussion

The objective of this research is to better understand the
decision-making process of professional guides in terms of
their daily run list coding and develop models that can mean-
ingfully capture this decision-making process to provide de-
cision support by producing run list predictions based on past
decisions. In this section we compare the relative strengths
and weaknesses of the three different models, discuss the
insights that each model provides into the decision-making
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process, and reflect on potential applications and implica-
tions for incorporating this type of predictive model into the
real-world decision-making process in mechanized skiing.

4.1 Summary and comparison of models

While the predictive accuracy is clearly much higher for the
machine learning models than the BN, there are pros and
cons to both approaches. The biggest benefit of the BN is
the process of manually constructing the decision-making
network by working closely with domain experts to under-
stand the nature of the decision-making process. This collab-
oration required considerable time and energy to drill down
into the details of the decision drivers, but the insights gained
from this process benefitted not only the construction of the
BN model but also the curation of the datasets and selec-
tion of features for the machine learning models. The DAG
that forms the foundation of the BN is a beneficial byproduct
of this process which helps to visualize the decision-making
process and captures the theoretical underpinnings (Fig. 4).
In addition, the combination of being based on expert input
and having the predicted probabilities calculated as a simple
conditional probability of input nodes makes the output of
the BN much more transparent and therefore possibly more
trustworthy for adoption by practitioners.

Even though the interviews with the domain expert identi-
fied many factors that contribute to the decision-making pro-
cess, the best performing BN was limited to 23 input nodes
(Fig. 4). We found that including additional input nodes
decreased the predictive performance and significantly in-
creased the computation time required to process the predic-
tions. The increase in processing time is due to the exponen-
tial growth of the conditional probability table for the output
node as more input nodes are added (Fenton and Neil, 2019).
The reason for the predictive accuracy of the BN decreasing
when including additional variables is not obvious. Many of
the additional variables that we tested in the BN were shown
to be strong predictors in the machine learning approaches
(e.g., hn24, last_skied). Two potential causes could be that
there are strong correlations between these additional input
nodes and existing nodes in the DAG or that further increas-
ing the number of arcs directly linked to the output node is
creating a much larger conditional probability table causing
relatively small sample sizes for each potential combination
of input node conditions despite our relatively large over-
all sample size. Due to this trade-off between computation
time and predictive performance with complexity, we man-
ually fit and tested many versions of the BN. To select the
final version, we considered both the theoretical accuracy,
as determined by our domain expert, and prediction accu-
racy to arrive at a relatively simple final model. While the
BN is a meaningful representation of the high-level decision-
making process, the fact that it only includes roughly half as
many features compared to the machine learning approaches
may prevent the BN from capturing subtle patterns in the

decision-making process and therefore contribute to lower
overall performance.

Both machine learning approaches performed better than
the BN in terms of predictive performance in all accuracy
metrics. The advantage of the machine learning models was
greatest in the sensitivity of the transition classes closing and
opening, with a roughly 2-fold increase in the percentage of
cases where the actual run list was a transition class correctly
identified. This reveals that the machine learning models are
much better at capturing the conditions and terrain charac-
teristics of runs which are likely to transition from closed to
open or vice versa. The cause of the machine learning mod-
els higher skill in the transition cases is likely due to multi-
ple factors, including the increased number of features in the
models, the inclusion of class weights in the model fitting
process which intentionally penalizes errors in the transition
cases more severely, the ability of decision tree models to
naturally integrate all types of interactions between features,
and the greater complexity of the machine learning models
being able to identify more subtle patterns in the data. Fur-
thermore, the inclusion of strategic mindset likely played a
role in the improved performance, while we elected not to
include the strategic mindset variable in the BN because we
felt it was too much of a high-level summary of the decision-
making process. Mindset had a high variable importance for
the machine learning approaches, especially for the “stepping
out” and “stepping back” mindsets, which explains some of
the improved predictive performance during periods when
runs were closing and opening. Hence, including strategic
mindset in the machine learning approaches allows us to de-
termine the upper limit of predictive accuracy when consid-
ering all possible input data.

Between the two machine learning models the XGB
showed higher performance across all accuracy metrics com-
pared to the RF, although the improvements were much
smaller than the gap between the BN and the machine learn-
ing models (Table 1). The largest difference between the RF
and XGB was again in the transition classes, specifically the
opening class where accuracy improved by 6.6 percentage
points over the RF. Since this class has the lowest sensitivity
overall, these improvements represent a substantial benefit to
model performance. The improvement in accuracy for tran-
sition cases in the XGB model is likely due to the boost-
ing approach, which builds an ensemble of decision trees
that use misclassified cases to sequentially improve perfor-
mance. Essentially the model identifies the cases where it
is wrong and trains more decision trees to try and improve
the fit for those misclassified cases. Through this process the
XGB model fitting can focus more training effort on difficult
to capture cases and potentially extract more subtle patterns
in the decision-making process.

While the XGB model performed best with respect to all
predictive accuracy metrics, this improvement comes with a
cost from the additional feature engineering to prepare data
as well as more complexity and computer resources required
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to tune model parameters. Finally, both machine learning
models are much less transparent than the BN in terms of
understanding the pathway to how the models produce their
predictions. However, the same techniques for visualizing
feature importance and contributions of different features to
the classification task can be applied to both.

In comparing the feature importance for the RF to the
XGB model there are differences in the exact order of the
features, but the highest-ranked features are largely similar
(Figs. 5 and 6). In both models the prior run list is by far
the most important, and the snow loading variables hn24
and hn72 are relatively highly ranked in both models. The
avalanche hazard assessment variables are also highly ranked
and include, in the same order, treeline hazard (tl_hzd), rating
as the most important, followed by alpine (alp_hzd) and be-
low treeline (btl_hzd). Both models rank the percent of tenure
observed (perc_observed) and total number of avalanche ob-
servations in 72 h (axobs_num72) as the most important fea-
tures related to field avalanche observations. Terrain charac-
teristics related to avalanche runout are highly ranked in both
models; however the XGB model ranks the runout pressure
features for the frequent and large scenarios (runout_press,
runout_press_1m) as the most important, whereas the RF
ranks the runout height features for frequent and large sce-
narios (runout_height, runout_height_1m) as the most im-
portant. Both the primary aspect (aspect) for the RF and
northness for the XGB approximate the impact of solar radi-
ation and are relatively highly ranked by feature importance.
Although the RF ranks aspect as the most important ter-
rain characteristic, whereas northness is the fourth-highest-
ranked terrain characteristic in the XGB model. In terms of
operational features, the flight distance (flight_dist) is highly
ranked in both models.

There are several notable differences in features impor-
tance between the two machine learning models. First, the
XGB model ranks the number of days since the run was last
skied (last_skied) as 4th overall, where it is ranked 36th in
the RF model. The SHAP value plot in Fig. 6 shows that high
values of last_skied make a strong contribution to the overall
classification, which may not be captured in the RF model.
In contrast strategic mindset (mindset) is the second most im-
portant feature in the RF model, and it is not included in the
top 20 features of the XGB model. This is likely due to the
fact the strategic mindset was dummy-encoded for the XGB
model, so instead of determining the feature importance in
aggregate across all levels of mindset, the XGB model con-
siders the importance of each individual level of the mind-
set feature. The most important levels of mindset for the
XGB model are stepping out and stepping back, which are
included in the top 20 features for the class-specific SHAP
plots for opening and closing (Fig. 7). Despite these notable
differences, the fact that the feature importances are broadly
similar for both machine learning models points to consis-
tency in the ability of models to detect patterns in the guide’s
decision-making process.

4.2 Insights about decision-making process

Each of the models presented in this paper offer different
insights into the decision-making process of professional
guides. The BN illustrates the decision-making process as
perceived by an expert guide and describes the essential fac-
tors that are considered when generating run lists. This has
the benefit of being directly vetted by domain experts, but
the predictive accuracy of such a model is likely limited by
its relative simplicity compared to the real-world process.
Adding more features and arcs quickly makes the model dif-
ficult to manage and understand. However, it is possible that
the accessibility and transparency of this model could be
most beneficial as a tool for training new guides because it
illustrates the factors considered in the run list coding pro-
cess and the relationships between the different factors. This
could assist newer guides in developing a mental model that
is in line with the past decisions of the operation. In addition,
the BN model is likely more generalizable to other operations
because it captures the decision process at a higher level of
abstraction.

In contrast, the machine learning approaches can identify
more subtle patterns in the real-world data and determine
which factors have the strongest relationships with past guid-
ing decisions. The notably higher accuracy of the machine
learning model predictions supports the complexity of the
real-world decision-making process, with a multitude of fac-
tors impacting daily decision-making practices beyond what
is possible to capture in a manually defined decision-making
model. The complexity of the models required to capture
their decision-making process to the best of our ability given
the data available is a testament to the complex and dynamic
environment that guides operate in.

Interpreting the output of the machine learning models us-
ing feature importance and SHAP value plots reveals that the
patterns identified by the models seem to align with practi-
cal decision-making patterns. The relatively consistent rank-
ing of feature importance between the RF and XGB models
indicates that the models are not detecting spurious relation-
ships but homing in on specific factors that impact decisions
under a particular set of conditions. By diving deeper into
the contributions of model features for specific run list codes
we can see that the factors that impact the decision-making
process differ during static periods versus transition periods
when runs are more likely to open and close.

4.3 Implications for the development of decision
support tools

The ultimate goal of our research is to develop meaningful
and practical tools that have the potential to be integrated
into the real-world decision-making process of professional
guides. While the academic value of each of these models
is laid out in the paper, there remains a question of whether
guides on the ground will trust the output enough so that it
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can add value to their guiding operation. A key consideration
along these lines is the transparency of the model and how
the output compares to the guides’ lived experience. The BN
stands above the machine learning approaches in terms of
transparency and being grounded in a representation of the
decision-making process of real-world guides, but the deci-
sion of which model to operationalize is in the hands of the
people who are accepting the real-world risk that these mod-
els aim to help mitigate.

In the case of the black-box machine learning models, one
approach to instill confidence in their predictions could be to
front load the transparency onto the features used as input to
fit the models. If guides have confidence in the data that go
into the models and know that they are trained and evaluated
against their own real-world decisions, then the lack of ex-
act details of how the predictions are made may become less
important. For the models presented here, much of the data
originate from guides on the ground. Field observations, haz-
ard assessments, and operational logistics are all extracted
directly from guides or records of guiding operations which
represent their perspective and past decisions. Our avalanche
terrain modeling approach was originally tuned against the
input of local guides (Sykes et al., 2022), and we could im-
prove transparency and confidence in the terrain model data
by providing a web mapping platform for guides to interact
with the various terrain layers and gain an intuitive and per-
sonal understanding of their strengths and weaknesses.

To apply the models in day-to-day guiding operations, one
approach would be to use the run list classification to popu-
late a web map, with runs color-coded according to the run
list status the model predicts is most likely based on the cur-
rent conditions (Fig. 8). This would give the guides easy ac-
cess to the model output without requiring technical knowl-
edge to interpret the model predictions. Using the model
predictions as a post-assessment after their morning run list
meeting could highlight cases where the guides are making
decisions that are opposed to what the historic data from their
operation indicate. Furthermore, providing the guides with
the probability estimate for each run list status could provide
a “level of certainty” score that might be useful for the guides
to determine how confident the model predictions are rel-
ative to past decision-making patterns. Additional informa-
tion captured in the terrain characterization, such as the GPS
tracks or clustering results, PRA model output, and runout
model output, could be presented for individual runs to fur-
ther help guides be on the same page about the avalanche
hazard potential of the terrain in their tenure.

A potential drawback of using predictive models as deci-
sion support tools is the potential to bias guides by revealing
the predicted run list status before they have created their
manual assessment. By anchoring their discussion with the
model output first, a tendency to default to the model pre-
dictions could hamper guides’ likelihood of having a critical
discussion about the run list. The potential for this type of
unintended consequence of adopting decision support tools

Figure 8. Example visualization of run list codes based on predic-
tions of decision-making tools. Runs are color-coded by run list pre-
diction status, with yellow-outlined runs indicating a transition from
the prior day’s run list code.

is a real concern, and careful consideration of how to apply
these tools should include both developers of the tools and
experienced guides and operation managers.

4.4 Limitations

While our analyses offer valuable insights, there are several
limitations to consider when interpreting the results. Our fo-
cus on predictive performance as the benchmark for compar-
ing model performance might undervalue the potential ap-
plications of BN for modeling the run list coding process.
Since the dataset of observed run list decisions we used to
evaluate performance was not validated, it can include er-
rors, biases, and inconsistencies, as well as potentially unde-
sirable practices. While our analyses assume that our dataset
at large represents meaningful decisions, it is difficult if not
impossible to assess whether they were truly “correct” deci-
sions. This is an inherent limitation of working with human
judgment datasets that do not have objective validation crite-
ria. Under these circumstances, machine learning algorithms
will inherently do a better job capturing the existing patterns
in a dataset. However, decision support tools developed with
BN might be theoretically more valid and produce more de-
sirable predictions due to their grounding in a DAG. In ad-
dition, there are many possible DAG designs to capture the
run list coding decision-making process, and it is important
to remember that our BN model was based on the expertise
of one single experienced guide and our best assessment of
meaningful relationships within the data. Hence, it is possi-
ble that alternative BN designs may be able to better incor-
porate additional variables in the BN and improve predictive
performance.
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Our analysis also focused exclusively on the CMH Galena
operation, and our results are therefore heavily affected by
their operational hazard assessment and risk management
practices and the local terrain. As a consequence, the models
themselves and their accuracies may not apply to any other
guiding tenures. For example, CMH Galena guides do not
explicitly record the aspect-dependence of avalanche prob-
lem characteristics as outlined in the conceptual model of
avalanche hazard (Statham et al., 2018), which limited our
ability to explore the relationship between hazard conditions
and terrain characteristics in more detail. Conducting a sim-
ilar study at an operation where these details are recorded
might provide additional insight into the run coding process.

Finally, our decision to convert features to numeric values
for the XGB model was driven by the requirements of the
model and a desire for ease of interpretation. Hence, differ-
ences in model performance compared to the RF, which used
the categorical variables from the BN, may reflect differences
in our feature engineering choices and not purely capture the
inherent advantages of the XGB model.

5 Conclusions

Our research aimed to combine avalanche terrain modeling,
GPS tracking data, and avalanche condition information to
examine the run coding process and explore the potential
for a decision support tool for mechanized ski guides. We
develop three decision support tools aimed at capturing the
run list process that Canadian mechanized ski guides use to
determine what terrain is available for guiding each day. To
characterize the important decision-making factors, we work
closely with local guides at CMH Galena to understand their
process. We applied data which capture current weather and
avalanche hazard conditions, operational considerations, and
terrain characteristics of each run. Weather and avalanche
conditions were extracted from the records of CMH Galena
from the 2015/2016 winter season through the 2022/2023
winter season. We utilize survey data from local guides to
capture the general terrain and operational characteristics of
the runs included in this study.

To represent the potential avalanche terrain severity for
each run we simulate avalanche start zones and runout zones
using state-of-the-art GIS, an avalanche dynamics simu-
lation, and remote sensing methods (Bühler et al., 2022;
Sykes et al., 2022). The simulations represent two different
avalanche scenarios: a frequent scenario aimed at smaller-
magnitude avalanche events that are regularly encountered
and a large scenario aimed at capturing conditions where
persistent weak layers cause larger and more connected
avalanches. To extract the avalanche terrain data and apply
them to the decision-making models, we used GPS tracks
collected from guides over seven seasons to determine the
portion of each run where guides regularly travel. On runs
that are heavily used, we apply a clustering approach to deter-

mine the most conservative line within the run based on ter-
rain characteristics and pickup and landing locations to fur-
ther refine the portion of the terrain data used in the decision-
making models.

The three decision-making models were fit using Bayesian
network (BN), random forest (RF), and extreme gradient
boosting (XGB) approaches. The BN was built manually in
close collaboration with an experienced guide and is based
on the theoretical real-world decision-making process. The
RF and XGB were fit on an expanded set of features and
were each tuned to address the class imbalance in the run list
classification and to optimize the parameters of the models.
Overall, the XGB model demonstrates the highest predictive
performance, with an overall accuracy of 93.3 % and an area
under the receiver operating curve of 0.98. All three models
struggled to precisely capture cases where the run list status
changed from open to closed or vice versa, with the XGB
having the highest sensitivity for these classes at 72.0 % for
run closings and 56.8 % for run openings.

While the present research represents a substantial step to-
wards the design of practical decision support tools from op-
erational datasets, a thorough understanding of the practical
applications and a consideration of unintended side effects
are key to address before operationalizing predictive models.
Hence, future research should focus on how decision sup-
port tools such as the models presented in this paper can be
applied in a meaningful way to support operational decision-
making. Based on the methods developed in this paper, ex-
panding the decision support tools to additional operations
would be a natural next step. However, one of the biggest
hurdles to applying these methods in Canada is the relative
lack of high-resolution digital elevation models (DEMs). Re-
cent developments in automated Avalanche Terrain Expo-
sure Scale (ATES) mapping (Sykes et al., 2024a; Toft et al.,
2024) could provide a low-cost alternative to characterize
avalanche terrain severity without the need to invest in the
development of high-resolution DEM data.

While the target of this research was decision support tools
for mechanized guiding operations, the methods developed
and lessons learned could be adapted to a wide variety of as-
sessment and decision-making tasks in the avalanche safety
field. One key takeaway from this study is the importance
of working closely with domain experts to develop deci-
sion support tools. A thorough understanding of the decision-
making context and perspective of real-world practitioners
is essential for meaningfully developing datasets that can
capture the essential features of the decision process and
for creating informed methods to evaluate predictive mod-
els. One main challenge in developing decision support tools
that truly add operational value is the requirement of large
datasets which capture multiple seasons and contain a variety
of avalanche conditions. We encourage operations that are
interested in incorporating decision support tools into their
daily practices to invest in the curation of high-quality oper-
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ational records that capture the essential factors for their own
decision-making processes.

Appendix A: Variable table

Table A1. Description of variables included in decision support models. Variable distributions are shown with the mean and maximum values
labeled for numerical variables and all classes labeled for categorical variables.
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Table A1. Continued.
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Table A1. Continued.
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Table A1. Continued.

https://doi.org/10.5194/nhess-25-1255-2025 Nat. Hazards Earth Syst. Sci., 25, 1255–1292, 2025



1280 J. Sykes et al.: Development of operational decision support tools for mechanized ski guiding
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Appendix B: Confusion matrix output

B1 Bayesian network

Table B1. Bayesian network confusion matrix.

Reference

Prediction Closing Status Status Status Opening
black red green

Closing 431 230 118 391 106
Status black 445 2692 124 163 250
Status red 40 68 4347 162 627
Status green 519 70 103 15 240 68
Opening 113 150 335 122 340

Table B2. Bayesian network overall statistics. The abbreviation
“acc” signifies accuracy, CI signifies confidence interval, and NIR
signifies no information rate.

Accuracy 0.8457
95 % CI (0.8414, 0.85)
NIR 0.5899
P value (acc > NIR) < 2.2× 10−16

Kappa 0.7419
McNemar’s test P value < 2.2× 10−16

Table B3. Bayesian network statistics by class.

Closing Status Status Status Opening
black red green

Sensitivity 0.27842 0.83863 0.8647 0.9479 0.24443
Specificity 0.96713 0.95916 0.9596 0.9320 0.97216
Pos. pred. value 0.33777 0.73272 0.8289 0.9525 0.32075
Neg. pred. value 0.95700 0.97803 0.9691 0.9255 0.95988
Precision 0.33777 0.73272 0.8289 0.9525 0.32075
Recall 0.27842 0.83863 0.8647 0.9479 0.24443
F1 0.30524 0.78210 0.8465 0.9502 0.27744
Prevalence 0.05680 0.11778 0.1844 0.5899 0.05104
Detection rate 0.01581 0.09877 0.1595 0.5592 0.01248
Detection prev. 0.04682 0.13481 0.1924 0.5871 0.03889
Balanced acc 0.62278 0.89889 0.9122 0.9399 0.60829

B2 Random forest

Table B4. Random forest confusion matrix.

Reference

Prediction Closing Status Status Status Opening
black red green

Closing 905 77 0 334 62
Status black 137 2090 0 0 119
Status red 0 0 3935 0 430
Status green 191 0 0 11 663 0
Opening 51 44 246 0 615

Table B5. Random forest overall statistics. The abbreviation “acc”
signifies accuracy, CI signifies confidence interval, and NIR signi-
fies no information rate.

Accuracy 0.9191
95 % CI (0.9153, 0.9227)
No information rate 0.574
P value (acc > NIR) < 2.2× 10−16

Kappa 0.8682
McNemar’s test P value NA

Table B6. Random forest statistics by class.

Closing Status Status Status Opening
black red green

Sensitivity 0.70483 0.9453 0.9412 0.9722 0.50163
Specificity 0.97589 0.9863 0.9743 0.9785 0.98267
Pos. pred. value 0.65675 0.8909 0.9015 0.9839 0.64331
Neg. pred. value 0.98059 0.9935 0.9851 0.9631 0.96936
Precision 0.65675 0.8909 0.9015 0.9839 0.64331
Recall 0.70483 0.9453 0.9412 0.9722 0.50163
F1 0.67994 0.9173 0.9209 0.9780 0.56370
Prevalence 0.06144 0.1058 0.2001 0.5740 0.05866
Detection rate 0.04330 0.1000 0.1883 0.5581 0.02943
Detection prev. 0.06594 0.1123 0.2089 0.5672 0.04574
Balanced acc 0.84036 0.9658 0.9577 0.9754 0.74215
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B3 Extreme gradient boosting

Table B7. XGB confusion matrix.

Reference

Prediction Closing Status Status Status Opening
black red green

Closing 901 50 0 153 50
Status black 74 2058 0 0 102
Status red 0 0 3990 0 378
Status green 236 0 0 11 844 0
Opening 40 39 287 0 696

Table B8. XGB overall statistics. The abbreviation “acc” signifies
accuracy, CI signifies confidence interval, and NIR signifies no in-
formation rate.

Accuracy 0.9326
95 % CI (0.9291, 0.9359)
No information rate 0.5741
P value (acc > NIR) < 2.2× 10−16

Kappa 0.8891
McNemar’s test P value NA

Table B9. XGB statistics by class.

Closing Status Status Status Opening
black red green

Sensitivity 0.72022 0.95855 0.9329 0.9872 0.56770
Specificity 0.98712 0.99061 0.9773 0.9735 0.98139
Pos. pred. value 0.78076 0.92122 0.9135 0.9805 0.65537
Neg. pred. value 0.98227 0.99523 0.9826 0.9826 0.97328
Precision 0.78076 0.92122 0.9135 0.9805 0.65537
Recall 0.72022 0.95855 0.9329 0.9872 0.56770
F1 0.74927 0.93951 0.9231 0.9838 0.60839
Prevalence 0.05986 0.10274 0.2047 0.5741 0.05867
Detection rate 0.04311 0.09848 0.1909 0.5668 0.03330
Detection prev. 0.05522 0.10690 0.2090 0.5780 0.05082
Balanced acc 0.85367 0.97458 0.9551 0.9804 0.77455
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Appendix C: SHAP value plots

C1 SHAP value plots for all classification levels

Figure C1. SHAP value summary plot with features ranked by feature importance relative to the overall classification on the y axis, SHAP
value on the x axis, and the relative value of the individual features shown with color-coded points.
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C2 SHAP value plots for run closing

Figure C2. SHAP summary plot for the top 20 features by feature importance for the classification level “closing”.
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C3 SHAP value plots for status black

Figure C3. SHAP summary plot for the top 20 features by feature importance for the classification level “status black”.
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C4 SHAP value plots for status red

Figure C4. SHAP summary plot for the top 20 features by feature importance for the classification level “status red”.
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C5 SHAP value plots for status green

Figure C5. SHAP summary plot for the top 20 features by feature importance for the classification level “status green”.
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C6 SHAP value plots for run opening

Figure C6. SHAP summary plot for the top 20 features by feature importance for the classification level “opening”.
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